US20080256928A1 - System and method for quantizing fuel dilution of engine motor due to post-injection fueling to regenerate an exhaust aftertreatment device - Google Patents
System and method for quantizing fuel dilution of engine motor due to post-injection fueling to regenerate an exhaust aftertreatment device Download PDFInfo
- Publication number
- US20080256928A1 US20080256928A1 US11/736,879 US73687907A US2008256928A1 US 20080256928 A1 US20080256928 A1 US 20080256928A1 US 73687907 A US73687907 A US 73687907A US 2008256928 A1 US2008256928 A1 US 2008256928A1
- Authority
- US
- United States
- Prior art keywords
- engine
- motor oil
- fuel
- cylinder
- engine motor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01M—LUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
- F01M11/00—Component parts, details or accessories, not provided for in, or of interest apart from, groups F01M1/00 - F01M9/00
- F01M11/10—Indicating devices; Other safety devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D43/00—Conjoint electrical control of two or more functions, e.g. ignition, fuel-air mixture, recirculation, supercharging or exhaust-gas treatment
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/02—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
- F01N3/021—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
- F01N3/023—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N9/00—Electrical control of exhaust gas treating apparatus
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/30—Controlling fuel injection
- F02D41/38—Controlling fuel injection of the high pressure type
- F02D41/40—Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
- F02D41/402—Multiple injections
- F02D41/405—Multiple injections with post injections
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D45/00—Electrical control not provided for in groups F02D41/00 - F02D43/00
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2250/00—Engine control related to specific problems or objectives
- F02D2250/11—Oil dilution, i.e. prevention thereof or special controls according thereto
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/021—Introducing corrections for particular conditions exterior to the engine
- F02D41/0235—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
- F02D41/027—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
- F02D41/029—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a particulate filter
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Definitions
- soot created by combustion of fuel in the engine.
- the patent describes a sophisticated algorithm for estimating the amount of soot added to the motor oil by each combustion event in each cylinder. Specifically, soot addition is estimated as a function of fuel flow, load, coolant temperature, and an injection timing factor. When the quality of the oil has deteriorated to some defined extent suggesting that the oil be changed, a signal to that effect is given.
- Active regeneration may be initiated before a DPF becomes loaded with DPM to an extent where regeneration would be mandated by the engine control system on its own due to the amount of DPM loading.
- the use of post injection can result in fuel deposition on the cylinder wall, ultimately leading to fuel dilution of the lubricating oil. This dilution results in lower viscosity and other property changes of the lubricating oil, reducing its effectiveness.
- One general aspect of the invention relates to a method for quantizing fuel dilution of a supply of engine motor oil in a lubrication system of an internal combustion engine due to post-injection of fuel into a cylinder of the engine that occurs after a main injection to create rich exhaust leaving the cylinder.
- a data processing system associated with the engine executes an algorithm for a) calculating a quantity of post-injected fuel that is retained in a film of engine motor oil on a wall of the cylinder and that, as a consequence of such retention and continuing operation of the engine, is returned to the engine motor oil supply, the algorithm comprising processing various data including data indicative of the quantity of post-injected fuel, data indicative of in-cylinder pressure at some point in the engine cycle that bears on the quantity of post-injected fuel retained in the film, data indicative of in-cylinder temperature at some point in the engine cycle that bears on the quantity of post-injected fuel retained in the film, and data indicative of engine speed, and b) using the calculated quantity of post-injected fuel that is retained in the film to quantize fuel dilution of the engine motor oil supply.
- a data processing system associated with the engine executes an algorithm for a) calculating quantities of fuel retained in films of engine motor oil on walls of the cylinders as the engine operates and subsequently returned to the engine motor oil supply, by processing, in accordance with the algorithm, various data including data indicative of engine speed, data indicative of in-cylinder pressure at some point in the engine cycle that bears on the quantity of post-injected fuel retained in the film that is returned to the engine motor oil supply, data indicative of in-cylinder temperature at some point in the engine cycle that bears on the quantity of post-injected fuel retained in the film that is returned to the engine motor oil supply, and data indicative of quantities of fuel introduced into the cylinders, and b) using the calculated quantities of fuel retained in films of engine motor oil on walls of the cylinders as the engine operates and subsequently returned to the engine motor oil supply in processing that estimates degradation of engine motor oil viscosity.
- Engine 12 also has an exhaust system 20 for conveying exhaust gases generated by combustion of fuel in cylinders of engine 12 from the engine to the surrounding atmosphere.
- Exhaust system 20 contains one or more after-treatment devices, one of which is a diesel particulate filter (DPF) 22 , for treating exhaust gases before they pass into the atmosphere via a tailpipe 24 .
- DPF diesel particulate filter
- Engine 12 also has a lubrication system that contains a supply of engine motor oil in an oil sump. Some parts of the engine kinematic mechanism may be lubricated because they are exposed directly to sump oil while other moving parts may be lubricated by circulating oil that is pumped through passageways and galleries from the sump.
- each calculation may be processed as a rate that is integrated over the ensuing time interval until the next iteration of the algorithm. If the algorithm iterates at precisely periodic intervals, then the calculations can simply be accumulated as a total that represents an estimate of the amount of fuel that is diluting the oil supply. When the dilution reaches a point that is deemed to indicate incipient impairment of the lubricating quality of the oil, a signal is given.
- Look-up table 32 is populated with data values in accordance with a function shown for purposes of illustration in FIG. 3 as a continuous imaginary surface 80 within a three-dimensional reference system.
- the two orthogonal horizontal axes represent exhaust pressure and exhaust temperature in units appropriate to the location at which the pressure and temperature are measured or inferred, such as explained above.
- the vertical axis represents a percentage of post-injected fuel that is retained in the oil film on a cylinder wall, and as can be appreciated, the percentage is a function of both pressure and temperature.
- Surface 80 is bounded by edges 82 , 84 , 86 , and 88 that lie substantially in respective vertical planes, as shown.
- Algorithm 30 is mathematically expressed by FIG. 5 .
- Fuel_In is the processing result of step 34 .
- Fuel_Out is the processing result of step 40 .
- Post_Fuel_Qty is the data value for quantized fuel calculated by step 36 .
- % Post_Fuel_On_Wall is the data value selected from look-up table 32 .
- Num_Cyl is the number of cylinders.
- Sump_Capacity is the amount of oil nominally in the lubrication system.
- Toil is the temperature of oil in the sump.
- Oil_Dilution(%) used in calculating Fuel_Out is the difference between Fuel_In and Fuel_Out from the previous calculation of the difference.
- the algorithm iterates the calculated difference is added to an accumulation of the prior differences, or integrated, as explained above, so that the accumulation reflects the current estimate of how diluted the oil has become.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Lubrication Details And Ventilation Of Internal Combustion Engines (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
- Processes For Solid Components From Exhaust (AREA)
- Exhaust Gas After Treatment (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
Abstract
Description
- This invention relates generally to motor vehicles, such as trucks, that are powered by internal combustion engines, particularly diesel engines that have certain exhaust gas treatment devices for treating exhaust gases passing through their exhaust systems. The invention especially relates to a system and method for quantizing the dilution of engine motor oil due to the use of post-injection of fuel to regenerate an exhaust aftertreatment device.
- Known systems and methods for indicating when the motor oil that lubricates moving internal parts of an engine needs to be changed are commonly based on elapse of time and/or miles traveled after the immediately previous oil change. The lengths of time and/or of mileage may be based on data developed through prior studies of the effect of vehicle operation on motor oil lubricating quality.
- U.S. Pat. No. 6,513,367 mentions other known systems and methods. One involves using a dielectric sensor to monitor the quality of motor oil. Another involves estimating oil quality by tracking vehicle operation after the most recent addition of fresh motor oil. That patent also identifies various factors that contribute to contamination of engine motor oil.
- One of those factors is soot created by combustion of fuel in the engine. The patent describes a sophisticated algorithm for estimating the amount of soot added to the motor oil by each combustion event in each cylinder. Specifically, soot addition is estimated as a function of fuel flow, load, coolant temperature, and an injection timing factor. When the quality of the oil has deteriorated to some defined extent suggesting that the oil be changed, a signal to that effect is given.
- Certain engines, diesel engines especially, may have one or more aftertreatment devices in their exhaust systems for removing undesired materials from engine exhaust so that those materials don't enter the atmosphere. Such devices may at times require regeneration. As used here, “regeneration” of an aftertreatment device applies to any aftertreatment device that on occasion requires a specific cylinder combustion event that creates additional soot, HC, and the like in order to maintain effectiveness of the aftertreatment device.
- One such device is a diesel particulate filter (DPF) that traps certain particulates in the exhaust. A DPF requires regeneration from time to time in order to maintain particulate trapping efficiency. Regeneration as applied to a DPF involves the presence of conditions that will burn off trapped particulates whose unchecked accumulation would otherwise impair DPF effectiveness. While “regeneration” of a DPF often refers to the general process of burning off DPM from a DPF, two particular types of DPF regeneration are recognized by those familiar with DPF regeneration technology as presently being applied to motor vehicle engines.
- “Passive regeneration” is generally understood to mean regeneration that can occur anytime that the engine is operating under conditions that burn off DPM without having been initiated by a specific regeneration strategy embodied by algorithms in an engine control system. “Active regeneration” is generally understood to mean regeneration that is initiated intentionally, either by the engine control system on its own initiative, or by the driver causing the engine control system to initiate a regeneration, with the goal of elevating temperature of exhaust gases entering the DPF to a range suitable for initiating and maintaining burning of trapped particulates.
- Active regeneration may be initiated before a DPF becomes loaded with DPM to an extent where regeneration would be mandated by the engine control system on its own due to the amount of DPM loading.
- The creation of conditions for initiating and continuing active regeneration, whether forced by the control system on its on or by driver action, generally involves elevating the temperature of exhaust gas entering the DPF to a suitably high temperature to initiate and continue burning of trapped particulates. Because a diesel engine typically runs relatively cool and lean, the post-injection of diesel fuel is one technique used as part of a regeneration strategy to elevate exhaust gas temperatures entering the DPF while still leaving excess oxygen for burning the trapped particulate matter. Post-injection may be used in conjunction with other procedures and/or devices, a diesel oxidation catalyst ahead of the DPF for example, for elevating exhaust gas temperature to the relatively high temperatures needed for active DPF regeneration.
- The post-injection of fuel for DPF regeneration however inherently creates certain additional exhaust constituants, including an excess of unburned fuel, to be exhausted from each combustion chamber. Hence, active regeneration of a DPF, even if only occasional, creates an additional contamination component in the exhaust created within the engine combustion chambers. Particulate filters used to reduce particulate emissions from diesel engines require periods of time at sufficient temperature to regenerate or burn off the collect soot. If the vehicle/engine duty cycle doesn't provide for the required particulate filter inlet temperature to be attained periodically, an alternate means of sufficient increase in filter inlet temperature must be employed. One such means is to use additional in-cylinder fuel injection pulse(s) late in the expansion stroke to provide a source of unburned fuel to the exhaust gas. This unburned fuel is then oxidized in an oxidation catalyst, causing a temperature increase in the exhaust gas entering the particulate trap sufficient to initiate regeneration.
- In some cases the use of post injection can result in fuel deposition on the cylinder wall, ultimately leading to fuel dilution of the lubricating oil. This dilution results in lower viscosity and other property changes of the lubricating oil, reducing its effectiveness.
- The present invention is directed toward a strategy that specifically takes active regeneration of a DPF into account when calculating quality of engine motor oil.
- One general aspect of the invention relates to a method for quantizing fuel dilution of a supply of engine motor oil in a lubrication system of an internal combustion engine due to post-injection of fuel into a cylinder of the engine that occurs after a main injection to create rich exhaust leaving the cylinder.
- A data processing system associated with the engine executes an algorithm for a) calculating a quantity of post-injected fuel that is retained in a film of engine motor oil on a wall of the cylinder and that, as a consequence of such retention and continuing operation of the engine, is returned to the engine motor oil supply, the algorithm comprising processing various data including data indicative of the quantity of post-injected fuel, data indicative of in-cylinder pressure at some point in the engine cycle that bears on the quantity of post-injected fuel retained in the film, data indicative of in-cylinder temperature at some point in the engine cycle that bears on the quantity of post-injected fuel retained in the film, and data indicative of engine speed, and b) using the calculated quantity of post-injected fuel that is retained in the film to quantize fuel dilution of the engine motor oil supply.
- Another generic aspect relates to an algorithm for calculating a quantity of post-injected fuel that is retained in a film of engine motor oil on a wall of a cylinder of an internal combustion engine into which fuel is injected and that, as a consequence of such retention and continuing operation of the engine, is returned to a supply of engine motor oil in a lubrication system of the engine.
- The algorithm comprises processing various data including data indicative of engine speed, data indicative of in-cylinder pressure at some point in the engine cycle bearing on the quantity of post-injected fuel retained in the film of engine motor oil that is returned to the engine motor oil supply, data indicative of in-cylinder temperature at some point in the engine cycle bearing on the quantity of post-injected fuel retained in the film of engine motor oil that is returned to the engine motor oil supply, and data indicative of the quantity of post-injected fuel.
- A further generic aspect relates to a method for estimating degradation of engine motor oil viscosity that occurs over time with running of an internal combustion engine having a lubrication system containing a supply of engine motor oil and cylinders into which fuel is introduced and combusted to run the engine.
- A data processing system associated with the engine executes an algorithm for a) calculating quantities of fuel retained in films of engine motor oil on walls of the cylinders as the engine operates and subsequently returned to the engine motor oil supply, by processing, in accordance with the algorithm, various data including data indicative of engine speed, data indicative of in-cylinder pressure at some point in the engine cycle that bears on the quantity of post-injected fuel retained in the film that is returned to the engine motor oil supply, data indicative of in-cylinder temperature at some point in the engine cycle that bears on the quantity of post-injected fuel retained in the film that is returned to the engine motor oil supply, and data indicative of quantities of fuel introduced into the cylinders, and b) using the calculated quantities of fuel retained in films of engine motor oil on walls of the cylinders as the engine operates and subsequently returned to the engine motor oil supply in processing that estimates degradation of engine motor oil viscosity.
- A further generic aspect relates to an internal combustion engine comprising combustion chambers in which fuel is combusted to run the engine, a lubrication system that contains a supply of engine motor oil and through which engine motor oil from the supply is circulated to lubricate moving internal parts of the engine, and a data processing system for developing a data estimate of degradation of viscosity of the engine motor oil that occurs over time as the engine runs.
- When executed, the algorithm a) calculates quantities of fuel retained in films of engine motor oil on walls of the combustion chambers as the engine operates and subsequently returned to the engine motor oil supply, by processing, in accordance with the algorithm, various data including data indicative of engine speed, data indicative of combustion chamber pressure at some point in the engine cycle that bears on quantities of fuel retained in engine motor oil films on the combustion chamber walls, data indicative of combustion chamber temperature at some point in the engine cycle that bears on quantities of fuel retained in engine motor oil films on the combustion chamber walls, and data indicative of quantities of fuel introduced into the combustion chambers, and b) uses the calculated quantities of fuel retained in engine motor oil films on the combustion chamber walls and subsequently returned to the engine motor oil supply in processing that develops a data estimate of degradation of viscosity of the engine motor oil.
- The foregoing, along with further features and advantages of the invention, will be seen in the following disclosure of a presently preferred embodiment of the invention depicting the best mode contemplated at this time for carrying out the invention. This specification includes drawings, now briefly described as follows.
-
FIG. 1 is an illustration of a representative motor vehicle powered by a diesel engine. -
FIG. 2 is a partial half-section diagram of a cylinder of the diesel engine. -
FIG. 3 is a three dimensional graph plot showing certain relationships relevant to principles of the invention. -
FIG. 4 is a block diagram representing an algorithm embodying principles of the invention. -
FIG. 5 is a mathematical expression of the algorithm. -
FIG. 1 shows atruck 10 having adiesel engine 12 and adrivetrain 14 that couples the engine to drivenwheels 16 for propelling the truck.Engine 12 has an associated processor that is part of an engine control system (ECS) 18 and that processes data from various sources to develop various control data for controlling various aspects of engine operation and for developing information related to operation ofengine 12. -
Engine 12 also has anexhaust system 20 for conveying exhaust gases generated by combustion of fuel in cylinders ofengine 12 from the engine to the surrounding atmosphere.Exhaust system 20 contains one or more after-treatment devices, one of which is a diesel particulate filter (DPF) 22, for treating exhaust gases before they pass into the atmosphere via atailpipe 24. - A
fueling system 26 fuels the engine by injecting diesel fuel into the engine cylinders where the fuel combusts to run the engine. -
Engine 12 also has a lubrication system that contains a supply of engine motor oil in an oil sump. Some parts of the engine kinematic mechanism may be lubricated because they are exposed directly to sump oil while other moving parts may be lubricated by circulating oil that is pumped through passageways and galleries from the sump. - When the vehicle/engine duty cycle doesn't provide a sufficient amount of passive regeneration of
DPF 22, regeneration must be forced. One method for elevating exhaust temperature at the DPF inlet to force regeneration comprises post-injection of fuel by one or more fuel injection pulse(s) after the main fuel charge has combusted at or near top dead center (TDC) in the engine cycle, such as later in the expansion stroke, to provide an excess of unburned fuel and oxygen in the exhaust leaving the cylinders. This unburned fuel is then oxidized in an oxidation catalyst, causing an increase in temperature of exhaust entering the DPF sufficiently large to initiate DPF regeneration. - In some cases the use of post-injection can result in fuel deposition on the cylinder wall, ultimately leading to fuel dilution of the engine motor oil. This dilution results in lower viscosity and other changes that can affect the lubricating properties of the oil.
- The diagram of
FIG. 4 illustrates steps that are embodied in analgorithm 30 in the processor ofECS 18 for calculating fuel dilution of the engine motor oil supply due to post-injection fueling that is used to regenerateDPF 22. When a regeneration ofDPF 22 is requested, post-injections of fuel commence andalgorithm 30 begins to iterate. - The algorithm executes a spray-model-based calculation that predicts a quantity of post-injection fuel that is transported into the oil sump by motor oil from the cylinder walls. Evaporative fuel lost is also modeled. The difference between the two represents an estimate of fuel added to the oil supply in the lubrication system.
- Because calculations are made at different points in time which may not necessarily be precisely periodic, each calculation may be processed as a rate that is integrated over the ensuing time interval until the next iteration of the algorithm. If the algorithm iterates at precisely periodic intervals, then the calculations can simply be accumulated as a total that represents an estimate of the amount of fuel that is diluting the oil supply. When the dilution reaches a point that is deemed to indicate incipient impairment of the lubricating quality of the oil, a signal is given.
- The spray model used to calculate the quantity of fuel retained in oil on the cylinder walls is based on known geometric parameters such as nozzle geometry and engine geometry, post-injection parameters available from the control strategy such as post-injection pressure and post-injection quantity, and engine operating parameters such as engine speed, cylinder pressure, and cylinder temperature. Engine speed is typically measured directly and published as such on a data link. Cylinder pressure and temperature can be inferred from exhaust manifold pressure and exhaust manifold temperature, which can themselves be measured or inferred.
- The vaporization model used to calculate evaporative fuel is based on the existing estimate of fuel diluting the oil supply and the oil supply temperature.
-
FIG. 4 shows exhaust temperature Texh and exhaust pressure Pexh being processed byalgorithm 30 to select from a look-up table 32, a data value correlated with values for Texh and Pexh. Texh and Pexh can be measured in the exhaust system at any suitable location that is downstream of the cylinders and upstream of a turbocharger turbine in which pressure and temperature are lost due to expansion. (Diesel engines manufactured today typically are turbocharged.) In-cylinder temperature and in-cylinder pressure correlate with Texh and Pexh, and so values for the latter two can be considered representative of values for the former two for purposes of the algorithm. Alternatively, direct measurement of in-cylinder parameters could be obtained from one or more cylinder pressure sensors and cylinder temperature sensors. Because in-cylinder pressure and temperature change significantly during the expansion downstroke, any direct measurement needs to be taken at an appropriate time in the downstroke. - Look-up table 32 is populated with data values in accordance with a function shown for purposes of illustration in
FIG. 3 as a continuousimaginary surface 80 within a three-dimensional reference system. The two orthogonal horizontal axes represent exhaust pressure and exhaust temperature in units appropriate to the location at which the pressure and temperature are measured or inferred, such as explained above. The vertical axis represents a percentage of post-injected fuel that is retained in the oil film on a cylinder wall, and as can be appreciated, the percentage is a function of both pressure and temperature.Surface 80 is bounded byedges - Each data value in table 32 representing percentage of post-injected fuel retained in oil film on a cylinder wall correlates both with a corresponding fractional span of the pressure range and with a corresponding fraction span of the temperature range. Consequently, it can be understood that the algorithm will determine within which pressure span and temperature span the measured pressure and temperature values fall, and then select the data value for percentage of retained post-injected fuel that correlates with those spans. The selected data value is further processed by a
step 34 to calculate a data value for a parameter Fuel_In. - Post-injections of fuel are quantized by a
step 36, and the quantized data value is also processed bystep 34. Engine speed data is also processed bystep 34. The data vale for Fuel_In calculated during each iteration ofalgorithm 30 represents a quantity of fuel retained in oil on the cylinder walls that is being transferred to the oil supply. That data value is an input to an algebraic summingfunction 38. - A second input to function 38 is the data value for a parameter Fuel_Out calculated by a
processing step 40.Step 40 utilizes a modeled correlation function that correlates fuel evaporation from the engine motor oil supply with engine motor oil temperature at a location where oil temperature is sensed to reflect temperature of oil in the sump. Fuel retained in oil in the sump is still volatile and as oil temperature increases, some of the fuel will vaporize at a rate correlated with temperature. Hence, step 40 quantizes evaporative fuel loss, and with each iteration of the algorithm,function 38 subtracts the evaporative fuel loss from the oil supply from the post-injected fuel being added to the oil supply. This typically yields a net addition of fuel to the oil. Fuel continues to evaporate after post-injection ceases, and so the evaporation model continues to be applied. -
Algorithm 30 is mathematically expressed byFIG. 5 . Fuel_In is the processing result ofstep 34. Fuel_Out is the processing result ofstep 40. Post_Fuel_Qty is the data value for quantized fuel calculated bystep 36. % Post_Fuel_On_Wall is the data value selected from look-up table 32. Num_Cyl is the number of cylinders. Sump_Capacity is the amount of oil nominally in the lubrication system. Toil is the temperature of oil in the sump. Oil_Dilution(%) used in calculating Fuel_Out is the difference between Fuel_In and Fuel_Out from the previous calculation of the difference. Each time the algorithm iterates, the calculated difference is added to an accumulation of the prior differences, or integrated, as explained above, so that the accumulation reflects the current estimate of how diluted the oil has become. -
FIG. 2 shows how anengine cylinder 50 is modeled for purposes of calculating the quantities of fuel retained in oil on thecylinder wall 54, which is typically lined. Asengine 12 runs, apiston 52 reciprocates withincylinder 50. Piston rings 56, 58 provide a seal of the side of the piston head to wall 54, with motor oil providing lubrication. Thereference 60 designates the point at whichring 56 reverses travel, i.e. TDC. With the piston at or very near TDC, thebowl 62 ofpiston 52 is positioned generally in the path of fuel injected from thetip 64 of a fuel injector through anorifice 66, resulting in main combustion and downstroking of the piston as the hot gas expands. - When the cycle includes a post-injection phase, one or more post-injection pulses occur later in the expansion downstroke. The position of
piston 52 shown inFIG. 2 is representative of that phase. It can be seen that the spray angle of the injected fuel pulses β/2 that is appropriate for main combustion at TDC no longer intersects the piston. Consequently, the widening fuel spray cone (angle α) is directed toward azone 68 onwall 54. Some of the fuel in the spray cone does evaporate, but a residual liquid core strikes the wall. Some of that liquid is retained in the oil on the wall and eventually is returned to the oil sump thereby diluting the oil supply. The remainder bounces off the wall. Depending on engine speed, the velocity of the spray can cause liquid to traverse a cylinder up to several times before vaporizing and finally exiting the cylinder through one or more open exhaust valves. - Because the inventors have discovered that the particular operating parameters processed by the algorithm have dominant influence on the calculation and reflect influence of other parameters on fuel dilution, the use of other operating parameters such as injection pressure need not necessarily be used. The design parameters in the mathematical expression of
FIG. 5 are ones of dominant importance, and the effect of other parameters such as injector nozzle diameter, included angle of spray, and cylinder bore are generalized inFIG. 3 . - While a presently preferred embodiment of the invention has been illustrated and described, it should be appreciated that principles of the invention apply to all embodiments falling within the scope of the invention defined by the following claims.
Claims (9)
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/736,879 US7433776B1 (en) | 2007-04-18 | 2007-04-18 | System and method for quantizing fuel dilution of engine motor due to post-injection fueling to regenerate an exhaust aftertreatment device |
EP08006393A EP1983165A1 (en) | 2007-04-18 | 2008-03-31 | System and method for quantizing fuel dilution of engine motor oil due to post-injection fueling to regenererate an exhaust aftertreatment device |
CA002628369A CA2628369A1 (en) | 2007-04-18 | 2008-04-04 | System and method for quantizing fuel dilution of engine motor oil due to post-injection fueling to regenerate an exhaust aftertreatment device |
MX2008004870A MX2008004870A (en) | 2007-04-18 | 2008-04-14 | System and method for quantizing fuel dilution of engine motor due to post-injection fueling to regenerate an exhaust aftertreatment device. |
KR1020080035083A KR20080093897A (en) | 2007-04-18 | 2008-04-16 | System and method for quantizing fuel dilution of engine motor oil due to post-injection fueling to regenerate an exhaust aftertreatment device |
CNA2008100955036A CN101299038A (en) | 2007-04-18 | 2008-04-17 | System and method for quantizing fuel dilution of engine motor oil |
BRPI0801151-6A BRPI0801151A2 (en) | 2007-04-18 | 2008-04-18 | system and method for quantifying engine oil fuel dilution due to post-injection fuel supply to regenerate an exhaust aftertreatment device |
JP2008108803A JP2008267386A (en) | 2007-04-18 | 2008-04-18 | System and method for quantizing fuel dilution of engine oil due to post-injection to regenerate exhaust aftertreatment device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/736,879 US7433776B1 (en) | 2007-04-18 | 2007-04-18 | System and method for quantizing fuel dilution of engine motor due to post-injection fueling to regenerate an exhaust aftertreatment device |
Publications (2)
Publication Number | Publication Date |
---|---|
US7433776B1 US7433776B1 (en) | 2008-10-07 |
US20080256928A1 true US20080256928A1 (en) | 2008-10-23 |
Family
ID=39523744
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/736,879 Active US7433776B1 (en) | 2007-04-18 | 2007-04-18 | System and method for quantizing fuel dilution of engine motor due to post-injection fueling to regenerate an exhaust aftertreatment device |
Country Status (8)
Country | Link |
---|---|
US (1) | US7433776B1 (en) |
EP (1) | EP1983165A1 (en) |
JP (1) | JP2008267386A (en) |
KR (1) | KR20080093897A (en) |
CN (1) | CN101299038A (en) |
BR (1) | BRPI0801151A2 (en) |
CA (1) | CA2628369A1 (en) |
MX (1) | MX2008004870A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110047968A1 (en) * | 2009-08-25 | 2011-03-03 | International Engine Intellectual Property Company, Llc | Method and Apparatus for De-Sulfurization on a Diesel Oxidation Catalyst |
US20110088371A1 (en) * | 2006-03-09 | 2011-04-21 | Berke Paul L | System And Method For Inhibiting Regeneration Of A Diesel Particulate Filter |
US20110203258A1 (en) * | 2010-02-25 | 2011-08-25 | International Engine Intellectual Property Company , Llc | Exhaust valve actuation system for diesel particulate filter regeneration |
US8826650B2 (en) | 2010-02-12 | 2014-09-09 | Mitsubishi Heavy Industries, Ltd. | Exhaust gas treatment method and device for internal combustion engine |
US8966880B2 (en) | 2013-03-15 | 2015-03-03 | Paccar Inc | Systems and methods for determining the quantity of a combustion product in a vehicle exhaust |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080078176A1 (en) * | 2006-10-02 | 2008-04-03 | International Engine Intellectual Property Company | Strategy for control of recirculated exhaust gas to null turbocharger boost error |
JP4905415B2 (en) * | 2007-11-13 | 2012-03-28 | トヨタ自動車株式会社 | Exhaust gas purification system for internal combustion engine |
US9403151B2 (en) | 2009-01-30 | 2016-08-02 | Umicore Ag & Co. Kg | Basic exchange for enhanced redox OS materials for emission control applications |
EP2259870A4 (en) | 2008-03-27 | 2017-11-15 | Umicore AG & Co. KG | Continuous diesel soot control with minimal back pressure penality using conventional flow substrates and active direct soot oxidation catalyst disposed thereon |
US8778831B2 (en) * | 2008-03-27 | 2014-07-15 | Umicore Ag & Co. Kg | Base metal and base metal modified diesel oxidation catalysts |
US20100077727A1 (en) * | 2008-09-29 | 2010-04-01 | Southward Barry W L | Continuous diesel soot control with minimal back pressure penatly using conventional flow substrates and active direct soot oxidation catalyst disposed thereon |
JP5168179B2 (en) * | 2009-02-10 | 2013-03-21 | マツダ株式会社 | Diesel engine control device |
US20100318276A1 (en) * | 2009-06-10 | 2010-12-16 | Zhengbai Liu | Control Strategy For A Diesel Engine During Lean-Rich Modulation |
US8407985B2 (en) * | 2009-07-28 | 2013-04-02 | International Engine Intellectual Property Company, Llc | Method of monitoring hydrocarbon levels in a diesel particulate filter |
US20110023461A1 (en) * | 2009-07-29 | 2011-02-03 | International Engine Intellectual Property Company, Llc | Exhaust aftertreatment system with heated device |
US8010276B2 (en) | 2009-08-31 | 2011-08-30 | International Engine Intellectual Property Company, Llc | Intake manifold oxygen control |
US8306710B2 (en) | 2010-04-14 | 2012-11-06 | International Engine Intellectual Property Company, Llc | Method for diesel particulate filter regeneration in a vehicle equipped with a hybrid engine background of the invention |
FR2970045B1 (en) * | 2011-01-04 | 2015-04-24 | Peugeot Citroen Automobiles Sa | METHOD FOR CONTROLLING AN ENGINE GUARANTEEING MAXIMUM GAIL DILUTION AT REVISION |
GB2488761B (en) * | 2011-03-03 | 2017-11-29 | Ford Global Tech Llc | A method for controlling a diesel engine system |
EP2607672B1 (en) | 2011-12-20 | 2016-08-17 | Fiat Powertrain Technologies S.p.A. | System and method for regenerating the particulate filter of a Diesel engine |
DE102012221507B3 (en) * | 2012-10-15 | 2013-11-21 | Continental Automotive Gmbh | Method for determination of composition of fuel in engine oil in housing of e.g. Flex fuel engine of motor car, involves determining mass flow portions of mass flows of fuel components based on entry parameter and portions of fuel component |
EP3267020A4 (en) * | 2015-03-04 | 2018-04-25 | Nissan Motor Co., Ltd. | Control device for internal combustion engine and control method for internal combustion engine |
CN106405056B (en) * | 2015-07-29 | 2018-06-26 | 上海汽车集团股份有限公司 | The diluted on-line determination method and system of engine fuel |
CN110886635B (en) * | 2018-09-06 | 2021-01-29 | 北京福田康明斯发动机有限公司 | Method and device for evaluating engine oil dilution level of engine |
CN110095381B (en) * | 2019-05-20 | 2020-10-20 | 安徽江淮汽车集团股份有限公司 | Engine oil dilution detection device and detection method |
AT522868A1 (en) * | 2019-08-09 | 2021-02-15 | Avl List Gmbh | Method for operating an internal combustion engine |
CN114607493B (en) * | 2022-03-16 | 2023-03-21 | 潍柴动力股份有限公司 | Method and device for accelerating parking regeneration, engine and storage medium |
US11994056B1 (en) | 2023-03-07 | 2024-05-28 | International Engine Intellectual Property Company, Llc | Logic for improved delta pressure based soot estimation on low restriction particulate filters |
US11867112B1 (en) | 2023-03-07 | 2024-01-09 | International Engine Intellectual Property Company, Llc | Logic for improved delta pressure based soot estimation on low restriction particulate filters |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6718946B2 (en) * | 2002-06-24 | 2004-04-13 | Toyota Jidosha Kabushiki Kaisha | Fuel injection device of an engine |
US6823834B2 (en) * | 2000-05-04 | 2004-11-30 | Cummins, Inc. | System for estimating auxiliary-injected fueling quantities |
US7043903B2 (en) * | 2004-04-06 | 2006-05-16 | Isuzu Motors Limited | Control method for an exhaust gas purification system and an exhaust gas purification system |
US20070044781A1 (en) * | 2003-09-18 | 2007-03-01 | Toyota Jidosha Kabushiki Kaisha | Method of estimating state quantity or temperature of gas mixture for internal combustion engine |
US7331171B2 (en) * | 2005-06-21 | 2008-02-19 | Honda Motor Co., Ltd. | Control system and method for internal combustion engine |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6513367B2 (en) | 2001-02-22 | 2003-02-04 | International Truck Intellectual Property Company, L.L.C. | Method of monitoring engine lubricant condition |
US6966304B2 (en) * | 2002-10-17 | 2005-11-22 | Nissan Motor Co., Ltd. | Estimation of oil-diluting fuel quantity of engine |
FR2862087B1 (en) * | 2003-11-10 | 2008-05-16 | Renault Sas | CONTROL METHOD FOR REGENERATING A PARTICLE FILTER |
FR2866957B1 (en) * | 2004-02-27 | 2006-11-24 | Peugeot Citroen Automobiles Sa | SYSTEM FOR DETERMINING THE LUBRICATION OIL DILUTION RATE OF A THERMAL MOTOR OF A MOTOR VEHICLE |
EP1614870B1 (en) * | 2004-07-06 | 2011-12-14 | Volvo Car Corporation | A method and a counter for predicting a fuel dilution level of an oil in an internal combustion engine |
DE102004033413A1 (en) * | 2004-07-10 | 2006-02-02 | Robert Bosch Gmbh | Method for operating an internal combustion engine and device for carrying out the method |
FR2890411B1 (en) * | 2005-09-05 | 2010-10-29 | Peugeot Citroen Automobiles Sa | SYSTEM FOR DETERMINING THE DILUTION RATE OF THE LUBRICATING OIL OF A MOTOR VEHICLE HEAT ENGINE BY FUEL FUEL THEREOF |
-
2007
- 2007-04-18 US US11/736,879 patent/US7433776B1/en active Active
-
2008
- 2008-03-31 EP EP08006393A patent/EP1983165A1/en not_active Withdrawn
- 2008-04-04 CA CA002628369A patent/CA2628369A1/en not_active Abandoned
- 2008-04-14 MX MX2008004870A patent/MX2008004870A/en unknown
- 2008-04-16 KR KR1020080035083A patent/KR20080093897A/en not_active Application Discontinuation
- 2008-04-17 CN CNA2008100955036A patent/CN101299038A/en active Pending
- 2008-04-18 JP JP2008108803A patent/JP2008267386A/en active Pending
- 2008-04-18 BR BRPI0801151-6A patent/BRPI0801151A2/en not_active IP Right Cessation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6823834B2 (en) * | 2000-05-04 | 2004-11-30 | Cummins, Inc. | System for estimating auxiliary-injected fueling quantities |
US6718946B2 (en) * | 2002-06-24 | 2004-04-13 | Toyota Jidosha Kabushiki Kaisha | Fuel injection device of an engine |
US20070044781A1 (en) * | 2003-09-18 | 2007-03-01 | Toyota Jidosha Kabushiki Kaisha | Method of estimating state quantity or temperature of gas mixture for internal combustion engine |
US7043903B2 (en) * | 2004-04-06 | 2006-05-16 | Isuzu Motors Limited | Control method for an exhaust gas purification system and an exhaust gas purification system |
US7331171B2 (en) * | 2005-06-21 | 2008-02-19 | Honda Motor Co., Ltd. | Control system and method for internal combustion engine |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110088371A1 (en) * | 2006-03-09 | 2011-04-21 | Berke Paul L | System And Method For Inhibiting Regeneration Of A Diesel Particulate Filter |
US8479499B2 (en) | 2006-03-09 | 2013-07-09 | International Engine Intellectual Property Company, Llc | System and method for inhibiting regeneration of a diesel particulate filter |
US20110047968A1 (en) * | 2009-08-25 | 2011-03-03 | International Engine Intellectual Property Company, Llc | Method and Apparatus for De-Sulfurization on a Diesel Oxidation Catalyst |
US8302387B2 (en) | 2009-08-25 | 2012-11-06 | International Engine Intellectual Property Company, Llc | Method and apparatus for de-sulfurization on a diesel oxidation catalyst |
US8826650B2 (en) | 2010-02-12 | 2014-09-09 | Mitsubishi Heavy Industries, Ltd. | Exhaust gas treatment method and device for internal combustion engine |
US20110203258A1 (en) * | 2010-02-25 | 2011-08-25 | International Engine Intellectual Property Company , Llc | Exhaust valve actuation system for diesel particulate filter regeneration |
US8966880B2 (en) | 2013-03-15 | 2015-03-03 | Paccar Inc | Systems and methods for determining the quantity of a combustion product in a vehicle exhaust |
US9594067B2 (en) | 2013-03-15 | 2017-03-14 | Paccar Inc | Systems and methods for determining the quantity of a combustion product in a vehicle exhaust |
Also Published As
Publication number | Publication date |
---|---|
MX2008004870A (en) | 2009-03-02 |
JP2008267386A (en) | 2008-11-06 |
CA2628369A1 (en) | 2008-10-18 |
BRPI0801151A2 (en) | 2008-12-02 |
KR20080093897A (en) | 2008-10-22 |
US7433776B1 (en) | 2008-10-07 |
CN101299038A (en) | 2008-11-05 |
EP1983165A1 (en) | 2008-10-22 |
EP1983165A8 (en) | 2008-11-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7433776B1 (en) | System and method for quantizing fuel dilution of engine motor due to post-injection fueling to regenerate an exhaust aftertreatment device | |
US8826650B2 (en) | Exhaust gas treatment method and device for internal combustion engine | |
JP4591423B2 (en) | Engine unburned fuel estimation device, exhaust purification device temperature estimation device | |
US7331171B2 (en) | Control system and method for internal combustion engine | |
RU2710451C2 (en) | Method and system of filter regeneration for particles entrapping (embodiments) | |
US20080295491A1 (en) | Exhaust gas purification device for internal combustion engine | |
US9097150B2 (en) | Method of estimating a variation of a quantity of soot accumulated in a diesel particulate filter | |
US20080154478A1 (en) | System and method for indicating quality of motor oil in a vehicle whose engine has an exhaust aftertreatment device that requires occasional regeneration | |
FR2899932A1 (en) | METHOD AND DEVICE FOR CONTROLLING THE REGENERATION OF A DEPOLLUTION SYSTEM | |
US20160160723A1 (en) | Method and system for removing ash within a particulate filter | |
JP2010196498A (en) | Pm emission estimation device | |
CN110234852A (en) | The method of the discharge of the nitrogen oxides in exhaust for controlling internal combustion engine | |
FR2862342B1 (en) | METHOD AND SYSTEM FOR ESTIMATING QUANTITIES OF PARTICLES EMITTED IN EXHAUST GASES OF A DIESEL ENGINE OF A MOTOR VEHICLE | |
US9151230B2 (en) | Method for controlling a diesel engine system | |
EP2322776B1 (en) | Exhaust gas purification system for internal combustion engine | |
CN103233809A (en) | Method for reducing discharge of diesel engine and diesel engine | |
JP2011231645A (en) | Exhaust emission control device for internal combustion engine | |
JP2010090875A (en) | Exhaust gas control device for internal combustion engine | |
WO2018078415A1 (en) | Controlling fuel transport to oil during regeneration of an aftertreatment device | |
JP6569873B2 (en) | Engine exhaust purification system | |
JP2010223187A (en) | Engine control device | |
JP6270246B1 (en) | Engine exhaust purification system | |
JP6573130B2 (en) | Engine exhaust purification system | |
EP2182187B1 (en) | Exhaust gas purification system for internal combustion engine and exhaust gas purification method | |
JP2011241783A (en) | Exhaust emission control device for internal combustion engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: INTERNATIONAL ENGINE INTELLECTUAL PROPERTY COMPANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HUNTER, GARY L.;MAKARTCHOUK, ANDREI;REEL/FRAME:019282/0361;SIGNING DATES FROM 20070328 TO 20070406 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
AS | Assignment |
Owner name: JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT, NE Free format text: SECURITY AGREEMENT;ASSIGNORS:INTERNATIONAL ENGINE INTELLECTUAL PROPERTY COMPANY, LLC;INTERNATIONAL TRUCK INTELLECTUAL PROPERTY COMPANY, LLC;NAVISTAR INTERNATIONAL CORPORATION;AND OTHERS;REEL/FRAME:028944/0730 Effective date: 20120817 |
|
AS | Assignment |
Owner name: JPMORGAN CHASE BANK N.A., AS COLLATERAL AGENT, NEW Free format text: SECURITY AGREEMENT;ASSIGNORS:NAVISTAR INTERNATIONAL CORPORATION;INTERNATIONAL TRUCK INTELLECTUAL PROPERTY COMPANY, LLC;INTERNATIONAL ENGINE INTELLECTUAL PROPERTY COMPANY, LLC;REEL/FRAME:036616/0243 Effective date: 20150807 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
AS | Assignment |
Owner name: JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT, NEW YORK Free format text: SECURITY INTEREST;ASSIGNORS:NAVISTAR INTERNATIONAL CORPORATION;NAVISTAR, INC.;REEL/FRAME:044418/0310 Effective date: 20171106 Owner name: INTERNATIONAL TRUCK INTELLECTUAL PROPERTY COMPANY, Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:044780/0456 Effective date: 20171106 Owner name: NAVISTAR INTERNATIONAL CORPORATION, ILLINOIS Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:044780/0456 Effective date: 20171106 Owner name: INTERNATIONAL ENGINE INTELLECTUAL PROPERTY COMPANY Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:044780/0456 Effective date: 20171106 Owner name: INTERNATIONAL TRUCK INTELLECTUAL PROPERTY COMPANY, Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:044416/0867 Effective date: 20171106 Owner name: NAVISTAR, INC., ILLINOIS Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:044416/0867 Effective date: 20171106 Owner name: INTERNATIONAL ENGINE INTELLECTUAL PROPERTY COMPANY Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:044416/0867 Effective date: 20171106 Owner name: JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT, NE Free format text: SECURITY INTEREST;ASSIGNORS:NAVISTAR INTERNATIONAL CORPORATION;NAVISTAR, INC.;REEL/FRAME:044418/0310 Effective date: 20171106 Owner name: NAVISTAR INTERNATIONAL CORPORATION, ILLINOIS Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:044416/0867 Effective date: 20171106 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 12 |
|
AS | Assignment |
Owner name: JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT, NEW YORK Free format text: SECURITY INTEREST;ASSIGNORS:INTERNATIONAL TRUCK INTELLECTUAL PROPERTY COMPANY, LLC;INTERNATIONAL ENGINE INTELLECTUAL PROPERTY COMPANY, LLC;NAVISTAR, INC. (F/K/A INTERNATIONAL TRUCK AND ENGINE CORPORATION);REEL/FRAME:052483/0742 Effective date: 20200423 |
|
AS | Assignment |
Owner name: THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS COLLATERAL AGENT, ILLINOIS Free format text: SECURITY INTEREST;ASSIGNORS:NAVISTAR INTERNATIONAL CORPORATION;INTERNATIONAL ENGINE INTELLECTUAL PROPERTY COMPANY, LLC;INTERNATIONAL TRUCK INTELLECTUAL PROPERTY COMPANY, LLC;AND OTHERS;REEL/FRAME:053545/0443 Effective date: 20200427 Owner name: JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT, NEW YORK Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE CONVEYING PARTY DATA PREVIOUSLY RECORDED AT REEL: 052483 FRAME: 0742. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY INTEREST.;ASSIGNORS:NAVISTAR INTERNATIONAL CORPORATION;INTERNATIONAL ENGINE INTELLECTUAL PROPERTY COMPANY, LLC;INTERNATIONAL TRUCK INTELLECTUAL PROPERTY COMPANY, LLC;AND OTHERS;REEL/FRAME:053457/0001 Effective date: 20200423 |
|
AS | Assignment |
Owner name: INTERNATIONAL TRUCK INTELLECTUAL PROPERTY COMPANY, LLC, ILLINOIS Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:056757/0136 Effective date: 20210701 Owner name: NAVISTAR, INC. (F/KA/ INTERNATIONAL TRUCK AND ENGINE CORPORATION), ILLINOIS Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:056757/0136 Effective date: 20210701 Owner name: INTERNATIONAL ENGINE INTELLECTUAL PROPERTY COMPANY, LLC, ILLINOIS Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:056757/0136 Effective date: 20210701 |
|
AS | Assignment |
Owner name: NAVISTAR, INC., ILLINOIS Free format text: RELEASE OF SECURITY INTEREST RECORDED AT REEL/FRAME 53545/443;ASSIGNOR:THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A.;REEL/FRAME:057441/0404 Effective date: 20210701 Owner name: INTERNATIONAL ENGINE INTELLECTUAL PROPERTY COMPANY, LLC, ILLINOIS Free format text: RELEASE OF SECURITY INTEREST RECORDED AT REEL/FRAME 53545/443;ASSIGNOR:THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A.;REEL/FRAME:057441/0404 Effective date: 20210701 Owner name: INTERNATIONAL TRUCK INTELLECTUAL PROPERTY COMPANY, LLC, ILLINOIS Free format text: RELEASE OF SECURITY INTEREST RECORDED AT REEL/FRAME 53545/443;ASSIGNOR:THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A.;REEL/FRAME:057441/0404 Effective date: 20210701 Owner name: NAVISTAR INTERNATIONAL CORPORATION, ILLINOIS Free format text: RELEASE OF SECURITY INTEREST RECORDED AT REEL/FRAME 53545/443;ASSIGNOR:THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A.;REEL/FRAME:057441/0404 Effective date: 20210701 |