US20080251244A1 - Three Pipe System - Google Patents
Three Pipe System Download PDFInfo
- Publication number
- US20080251244A1 US20080251244A1 US12/066,658 US6665806A US2008251244A1 US 20080251244 A1 US20080251244 A1 US 20080251244A1 US 6665806 A US6665806 A US 6665806A US 2008251244 A1 US2008251244 A1 US 2008251244A1
- Authority
- US
- United States
- Prior art keywords
- pipes
- pipe
- central
- water
- split
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24D—DOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
- F24D3/00—Hot-water central heating systems
- F24D3/02—Hot-water central heating systems with forced circulation, e.g. by pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24D—DOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
- F24D19/00—Details
- F24D19/10—Arrangement or mounting of control or safety devices
- F24D19/1006—Arrangement or mounting of control or safety devices for water heating systems
- F24D19/1009—Arrangement or mounting of control or safety devices for water heating systems for central heating
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F3/00—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
- F24F3/06—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units
Definitions
- HVAC systems heat transfer is achieved by building closed hydraulic networks, in which the heating medium—usually water—flows.
- the water flows through pumps or circulators, which lend water with energy that compensates for friction loss in the network.
- Network building methodologies are plenty. All networks are comprised of a central distribution pipe and a central return pipe. The water flows through the central pipe of distribution, supplies the terminal units through the local distribution risers and branches, enters the local return pipes and, finally, the central return pipe and ends at the point it started.
- Conventional network structures are demonstrated in FIGS. ⁇ 1 >, ⁇ 2 >, ⁇ 3 >, ⁇ 4 > and ⁇ 5 >.
- object 1 is a circulator and object 2 is a two-way control valve.
- object 3 is a non-return valve and object 4 indicates the flow direction.
- the initial distribution temperature is common for all terminal units. There are special cases, however, for which the temperature in the central distribution pipe is variable during water flow, and, therefore, in each terminal unit, temperature is decreased (heating) or increased (cooling) ( FIG. 6 ).
- the specific structure is common, but not widely used.
- the above applications which are conventional structures in a number of versions, are comprised of 3-way or 4-way control valves, additional circulators apart from the basic ones, a pressure break bottle, and self regulating valves, which do not spoil the fundamental and original structure and network building methodology.
- FIG. ⁇ 1 > The structure demonstrated in FIG. ⁇ 1 > is the most common type and is widely used. A simple form of such a structure has got a central circulator for water flow, but in extended networks there can be more circulators for energy distribution.
- FIG. ⁇ 2 > The structure demonstrated in FIG. ⁇ 2 > has got one circulator for each terminal unit and after each circulator there is a non-return valve to cut off any undesirable reverse flow.
- structures like that in FIG. ⁇ 2 > include a central circulator (FIG. ⁇ 3 >, with or without a bypass pipe), whereas structures similar to those in FIG. ⁇ 3 > are often used as collectors of low pressure drop and provide for terminal unit hydraulic independence. Apart from the non-return valve above the circulators, it is likely that a 2-way on-off valve be used so that undesirable flow could be cut off.
- the structure demonstrated in FIG. ⁇ 4 > (also called Tichelmann structure), is similar to that in FIG. ⁇ 1 >, but the only difference is that each local branch is composed of equal sized pipes.
- the structure demonstrated in FIG. ⁇ 5 > is a Tichelmann structure with circulators per branch, whereas the structure in FIG. ⁇ 6 > is a special structure, which is not commonly used due to the fact that the distribution temperature in the local branches is variable.
- the central distribution pipe is also used as a central return pipe.
- the structure suggested consists of a central distribution pipe which is split into two pipes and after that joined again in one pipe, so as to create a central closed loop where the local terminal units are connected.
- the local terminal units are distributed through the one side of the split central distribution pipe and the water from each local branch returns to the other side of the split central pipe.
- the structure of the application suggested is depicted in FIG. ⁇ 7 >.
- the central distribution pipe ⁇ A>> is split in two pipes, pipes ⁇ B>> and ⁇ C>>. In the specific pipes, water flow is also split.
- the two pipes, ⁇ B>> and ⁇ C>> are joined again in one pipe, pipe ⁇ D>>, and creates a closed loop. Water in pipes ⁇ A>>, ⁇ B>>, ⁇ C>> and ⁇ D>> flows in the same direction.
- the terminal unit branches are connected to the loop. Each local branch has a circulator to compensate for water distribution.
- water flow in the terminal unit loop requires the use of a central circulator, as demonstrated in FIG. ⁇ 8 >.
- FIG. ⁇ 10 > there is the structure of a simple application of the system.
- the Figure demonstrates the division of the central pipe, the terminal unit loop, the use of the one part of the loop for the local distribution pipes, and of the other part for the point where local return pipes end.
- FIGS. ⁇ 11 >, ⁇ 12 > and ⁇ 13 > demonstrate some other more complex applications of the three-pipe system.
- the system is characterized by symmetry, harmony and balance during operation. It is also particularly stable and hydraulically independent, and, compared with all existing similar systems, interference and interactive phenomena in the network, under similar conditions of operation, are significantly fewer and, in effect, negligible. This is an essential advantage in terms of operation, reliability and energy saving.
- the specific structure can be applied to any HVAC system, that is, in every hydraulic closed network of heat transfer, such as in home central heating units, district heating, and hotel or building air conditioning systems with water coolers.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Pipeline Systems (AREA)
- Branch Pipes, Bends, And The Like (AREA)
- Steam Or Hot-Water Central Heating Systems (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
The 3-pipe system is a new method of building closed hydraulic networks for heat transfer and fluid distribution. Generally, the new system can be applied in HVAC networks and ensures better and more stable network behaviour during flow adjustment. In other words, it ensures hydraulically balanced networks with optimal behaviour. The basic characteristic of the new three-pipe system is that the central distribution pipe is split into two, in which water flows in the same direction as in the central distribution pipe. Subsequently, the two pipes are joined in one, which is the return pipe. Thus, the pipes create a central loop, which includes the terminal units. The one part of the loop is the point where the terminal unit branches start and the other is where they end. Water flow is ensured by means of a local circulator, which compensates for pressure drop in the branch. In case of reverse flow in deactivated terminal units, a non-return valve is recommended for each terminal unit. The structure of the patent is demonstrated in FIG. <8>. The central distribution pipe <<A>> is split into two pipes, <<B>> and <<C>>, in which water flow is also split. The two pipes are joined again in pipe <<D>>, creating a closed loop. Water in pipes <<A>>, <<B>>, <<C>> and <<D>> flows in the same direction. The terminal unit branches are positioned inside the loop. Each local branch has got a circulator to compensate for water supply. There is also a central circulator, which supplies the central loop with water.
Description
- In HVAC systems, heat transfer is achieved by building closed hydraulic networks, in which the heating medium—usually water—flows. The water flows through pumps or circulators, which lend water with energy that compensates for friction loss in the network. Network building methodologies are plenty. All networks are comprised of a central distribution pipe and a central return pipe. The water flows through the central pipe of distribution, supplies the terminal units through the local distribution risers and branches, enters the local return pipes and, finally, the central return pipe and ends at the point it started. Conventional network structures are demonstrated in FIGS. <1>, <2>, <3>, <4> and <5>.
- To facilitate understanding, it is emphasized that in
FIG. 1 ,object 1 is a circulator andobject 2 is a two-way control valve. InFIG. 3 ,object 3 is a non-return valve andobject 4 indicates the flow direction. The specific objects are depicted in all Figures according to the illustrated example. - In all networks, the initial distribution temperature is common for all terminal units. There are special cases, however, for which the temperature in the central distribution pipe is variable during water flow, and, therefore, in each terminal unit, temperature is decreased (heating) or increased (cooling) (
FIG. 6 ). The specific structure is common, but not widely used. - Notably, the above applications, which are conventional structures in a number of versions, are comprised of 3-way or 4-way control valves, additional circulators apart from the basic ones, a pressure break bottle, and self regulating valves, which do not spoil the fundamental and original structure and network building methodology.
- The structure demonstrated in FIG. <1> is the most common type and is widely used. A simple form of such a structure has got a central circulator for water flow, but in extended networks there can be more circulators for energy distribution.
- The structure demonstrated in FIG. <2> has got one circulator for each terminal unit and after each circulator there is a non-return valve to cut off any undesirable reverse flow.
- Frequently, structures like that in FIG. <2> include a central circulator (FIG. <3>, with or without a bypass pipe), whereas structures similar to those in FIG. <3> are often used as collectors of low pressure drop and provide for terminal unit hydraulic independence. Apart from the non-return valve above the circulators, it is likely that a 2-way on-off valve be used so that undesirable flow could be cut off. The structure demonstrated in FIG. <4> (also called Tichelmann structure), is similar to that in FIG. <1>, but the only difference is that each local branch is composed of equal sized pipes. The structure demonstrated in FIG. <5> is a Tichelmann structure with circulators per branch, whereas the structure in FIG. <6> is a special structure, which is not commonly used due to the fact that the distribution temperature in the local branches is variable. In the specific structure, the central distribution pipe is also used as a central return pipe.
- In all structures discussed above, especially in the basic types, there are interference and interactive phenomena; in other words, adjusting or cutting off a branch can lead to flow variation and ΔP (pressure drop) in the rest of branches, which is different for different types of networks and depends on network sizing. Interactive phenomena in the branches are critical and bring about various problems related to network operation, heating or cooling failure per terminal unit, energy waste and, in general terms, network deterioration.
- The specific problems can be partly eliminated by using self regulating valves, pressure break bottles and 3-way or 4-way valves, depending on the case.
-
- 1. Recknagel Sprenger Schramek, Taschenbuch fuer Heizung und Klimatechnik 94/95
- 2. Robert Petitjean, Total Hydronic Balancing
- 3. H. Roos, Hydraulik der Wasserheizung. 2A
- 4. W. Burkhardt, Projektierung von Warmwasserheizungen
- 5. Trainings & Weiterbildungszentrum Wolfenbueteel e.V. (enev.tww.de)
- 6. Internetsite (hydronicpros.com) by John Siegenthaler
- 7. ASHRAE Handbook
- The structure suggested consists of a central distribution pipe which is split into two pipes and after that joined again in one pipe, so as to create a central closed loop where the local terminal units are connected.
- In detail, the local terminal units are distributed through the one side of the split central distribution pipe and the water from each local branch returns to the other side of the split central pipe. The structure of the application suggested is depicted in FIG. <7>. The central distribution pipe <<A>> is split in two pipes, pipes <<B>> and <<C>>. In the specific pipes, water flow is also split. The two pipes, <<B>> and <<C>>, are joined again in one pipe, pipe <<D>>, and creates a closed loop. Water in pipes <<A>>, <<B>>, <<C>> and <<D>> flows in the same direction. The terminal unit branches are connected to the loop. Each local branch has a circulator to compensate for water distribution. During operation, when all terminal units are deactivated, water flow is split in branches <<B>> and <<C>> and does not enter any terminal unit branches. When one terminal unit is activated, water flow in branch “B” is increased by the rate of flow in the activated terminal unit and in branch “C” it is reduced by the same rate. At the point after the terminal unit, the opposite procedure takes place in the two branches, and consequently the water flow in branch “B” is reduced by the rate of flow in the activated terminal unit and in branch “C” it is increased at the same rate.
- The more terminal units are activated, the more the quantity of water that enters branch <<B>> and the less that enters branch <<C>>.
- On the contrary, at the end of the loop, water flow is increased in branch <<C>> and reduced in branch <<B>>.
- Notably, water flow in the terminal unit loop requires the use of a central circulator, as demonstrated in FIG. <8>.
- In case of reverse flow in deactivated terminal units, a non-return valve is recommended for each terminal unit, FIG. <9>.
- In FIG. <10>, there is the structure of a simple application of the system. The Figure demonstrates the division of the central pipe, the terminal unit loop, the use of the one part of the loop for the local distribution pipes, and of the other part for the point where local return pipes end. FIGS. <11>, <12> and <13> demonstrate some other more complex applications of the three-pipe system.
- In general terms, the system is characterized by symmetry, harmony and balance during operation. It is also particularly stable and hydraulically independent, and, compared with all existing similar systems, interference and interactive phenomena in the network, under similar conditions of operation, are significantly fewer and, in effect, negligible. This is an essential advantage in terms of operation, reliability and energy saving. The specific structure can be applied to any HVAC system, that is, in every hydraulic closed network of heat transfer, such as in home central heating units, district heating, and hotel or building air conditioning systems with water coolers.
Claims (5)
1. Structure of a closed HVAC network, which is characterised by a central loop created by a distribution pipe which is split into two pipes and joined in one again. Water in the distribution pipe, the split pipes and the pipe joined in one flows in the same direction. The terminal unit branches are positioned inside the central loop. In other words, the terminal unit branches start at the one split pipe and end at the other. When water flows in the central loop, there is no initial flow tendency through the terminal unit branches. Thus, water flow in the local branches requires a local circulator. Water flow in the central loop should be regulated by means of a suitable circulator.
2. Structure as in <1>; the only difference is that the central distribution pipe is split into more than two pipes. One pipe is chosen as a network component where the return pipes of the local branches end whereas the rest of the pipes are used as a component where the distribution of local supply branches start.
3. Structure as in <1>; the only difference is that the central distribution pipe is split into more than two pipes. One pipe is chosen as a network component where the supply pipes of the local branches start whereas the rest of the pipes are used as a component where the local return branches end.
4. Structure as in <1>, composed of multiple central loops in series.
5. Structure as in <1>, composed of multiple central loops in parallel.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GR20050100487 | 2005-09-22 | ||
GR20050100487A GR1005315B (en) | 2005-09-22 | 2005-09-22 | Three-pipe heating and cooling system |
PCT/GR2006/000051 WO2007034246A1 (en) | 2005-09-22 | 2006-09-20 | New three pipe system |
Publications (1)
Publication Number | Publication Date |
---|---|
US20080251244A1 true US20080251244A1 (en) | 2008-10-16 |
Family
ID=37600746
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/066,658 Abandoned US20080251244A1 (en) | 2005-09-22 | 2006-09-20 | Three Pipe System |
Country Status (4)
Country | Link |
---|---|
US (1) | US20080251244A1 (en) |
EP (1) | EP1926941B1 (en) |
GR (1) | GR1005315B (en) |
WO (1) | WO2007034246A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110100497A1 (en) * | 2008-06-07 | 2011-05-05 | Uponor Innovation Ab | Pipe arrangement for temperature control of buildings |
US20120279681A1 (en) * | 2009-06-16 | 2012-11-08 | Dec Design Mechanical Consultants Ltd. | District Energy Sharing System |
US20140116646A1 (en) * | 2012-08-29 | 2014-05-01 | Mario Viscovich | Conflated Air Conditioning System |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2428738A3 (en) * | 2010-09-14 | 2014-07-09 | Aristidis Afentoulidis | Closed, hydraulic pipeline structure for a heating or cooling system |
CN103255806B (en) * | 2013-05-30 | 2015-01-28 | 广西红墙新材料有限公司 | Central circulating water supply system of workshops |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5517053A (en) * | 1978-07-21 | 1980-02-06 | Mitsubishi Electric Corp | Air conditioning unit |
JPS5674714A (en) * | 1979-11-24 | 1981-06-20 | Matsushita Electric Ind Co Ltd | Shunt type fluid bridge circuit |
JPS6269035A (en) * | 1985-09-20 | 1987-03-30 | Matsushita Seiko Co Ltd | Heating medium supply device |
JPH0198836A (en) * | 1987-10-09 | 1989-04-17 | Hoxan Corp | Centralized hot water feed system by instantaneous water heater |
US20020033420A1 (en) * | 2000-08-02 | 2002-03-21 | Somchai Paarporn | Decentralized pumping system |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE9211724U1 (en) | 1992-08-31 | 1992-12-24 | Kutzer, Annerose, 8911 Windach | System for energy-efficient heating of buildings |
FR2716959B1 (en) * | 1994-03-04 | 1996-05-15 | Thermique Generale Vinicole | Distribution and / or collection of cold and / or hot. |
DE19806157C2 (en) * | 1998-02-14 | 2003-04-17 | Herbert Schwarz | Kit for creating a water-bearing piping system |
DE10027656A1 (en) | 2000-06-03 | 2001-12-13 | Bosch Gmbh Robert | Heating system with at least two heating circuits |
-
2005
- 2005-09-22 GR GR20050100487A patent/GR1005315B/en not_active IP Right Cessation
-
2006
- 2006-09-20 EP EP06779678.9A patent/EP1926941B1/en not_active Not-in-force
- 2006-09-20 WO PCT/GR2006/000051 patent/WO2007034246A1/en active Search and Examination
- 2006-09-20 US US12/066,658 patent/US20080251244A1/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5517053A (en) * | 1978-07-21 | 1980-02-06 | Mitsubishi Electric Corp | Air conditioning unit |
JPS5674714A (en) * | 1979-11-24 | 1981-06-20 | Matsushita Electric Ind Co Ltd | Shunt type fluid bridge circuit |
JPS6269035A (en) * | 1985-09-20 | 1987-03-30 | Matsushita Seiko Co Ltd | Heating medium supply device |
JPH0198836A (en) * | 1987-10-09 | 1989-04-17 | Hoxan Corp | Centralized hot water feed system by instantaneous water heater |
US20020033420A1 (en) * | 2000-08-02 | 2002-03-21 | Somchai Paarporn | Decentralized pumping system |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110100497A1 (en) * | 2008-06-07 | 2011-05-05 | Uponor Innovation Ab | Pipe arrangement for temperature control of buildings |
US20120279681A1 (en) * | 2009-06-16 | 2012-11-08 | Dec Design Mechanical Consultants Ltd. | District Energy Sharing System |
US20140116646A1 (en) * | 2012-08-29 | 2014-05-01 | Mario Viscovich | Conflated Air Conditioning System |
Also Published As
Publication number | Publication date |
---|---|
EP1926941B1 (en) | 2013-06-12 |
EP1926941A1 (en) | 2008-06-04 |
WO2007034246A1 (en) | 2007-03-29 |
GR1005315B (en) | 2006-10-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20080251244A1 (en) | Three Pipe System | |
CN203203170U (en) | Air conditioner system | |
CN102308131A (en) | Fluid flow control assembly | |
CN109564438B (en) | Reduction of return temperature in zone heating and increase of return temperature in zone cooling | |
US5573183A (en) | Method and apparatus for heating building and ventilation air | |
EP3726146A1 (en) | Combined heating and cooling system | |
US20100269910A1 (en) | Method for operating a fluidic pipeline system | |
Taylor | Optimizing design & control of chilled water plants: Part 1: chilled water distribution system selection | |
US20120118556A1 (en) | Control device for a heating system and heating system | |
RU2676579C1 (en) | Heating system | |
KR100543254B1 (en) | Hydraulic assembly for hot water and sanitary water | |
EP3404499B1 (en) | Method for adjusting a climate system | |
US20220252277A1 (en) | HVAC Hydronic System with Split Buffer Tank for Zero-Mixing System Operation | |
CN107676956B (en) | Heat exchanger and air conditioner | |
US20020084337A1 (en) | Central heating system for heating rooms | |
Taylor | Optimizing Design & Control Of Chilled Water Plants. | |
JP4367931B2 (en) | Air conditioning system. | |
Kavanaugh et al. | Energy use of pumping options for ground-source heat pumps/Discussion | |
Liu et al. | A simulation-based study on different control strategies for variable speed pump in distributed ground source heat pump systems | |
CN113531698A (en) | Single-pipe air conditioner terminal equipment chilled water connecting pipe pipeline | |
CA3127287A1 (en) | Single primary loop, dual secondary loop hydronic hvac system and methods of operation | |
FI73305C (en) | Device for heating / cooling system for flow adjustment. | |
CN205481591U (en) | Temperature adjusting system | |
CN214751538U (en) | Device system for stabilizing water supply balance flow | |
CN107110567A (en) | Humidity control system and its control method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |