US20080245658A1 - METHOD OF FORMING HfSiN METAL FOR n-FET APPLICATIONS - Google Patents
METHOD OF FORMING HfSiN METAL FOR n-FET APPLICATIONS Download PDFInfo
- Publication number
- US20080245658A1 US20080245658A1 US12/141,476 US14147608A US2008245658A1 US 20080245658 A1 US20080245658 A1 US 20080245658A1 US 14147608 A US14147608 A US 14147608A US 2008245658 A1 US2008245658 A1 US 2008245658A1
- Authority
- US
- United States
- Prior art keywords
- hfsin
- source
- stack
- dielectric
- interfacial layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims description 39
- 229910052751 metal Inorganic materials 0.000 title abstract description 33
- 239000002184 metal Substances 0.000 title abstract description 33
- 239000004065 semiconductor Substances 0.000 claims description 32
- 239000000758 substrate Substances 0.000 claims description 24
- 238000004544 sputter deposition Methods 0.000 claims description 13
- 239000007789 gas Substances 0.000 claims description 8
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical group [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 claims description 5
- 238000004519 manufacturing process Methods 0.000 claims description 5
- 125000001931 aliphatic group Chemical group 0.000 claims description 4
- 150000002736 metal compounds Chemical class 0.000 claims description 4
- 239000007787 solid Substances 0.000 claims description 4
- 125000004432 carbon atom Chemical group C* 0.000 claims description 3
- 239000007788 liquid Substances 0.000 claims description 3
- 239000004020 conductor Substances 0.000 claims 2
- 238000000059 patterning Methods 0.000 claims 2
- 238000000137 annealing Methods 0.000 abstract description 11
- 150000001875 compounds Chemical class 0.000 abstract description 11
- 229910004200 TaSiN Inorganic materials 0.000 abstract description 8
- 230000009467 reduction Effects 0.000 abstract description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 28
- 239000000463 material Substances 0.000 description 24
- 230000008569 process Effects 0.000 description 24
- 229910052681 coesite Inorganic materials 0.000 description 14
- 229910052906 cristobalite Inorganic materials 0.000 description 14
- 239000000377 silicon dioxide Substances 0.000 description 14
- 229910052682 stishovite Inorganic materials 0.000 description 14
- 229910052905 tridymite Inorganic materials 0.000 description 14
- 238000005530 etching Methods 0.000 description 10
- 229910021332 silicide Inorganic materials 0.000 description 10
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 10
- 125000006850 spacer group Chemical group 0.000 description 10
- CJNBYAVZURUTKZ-UHFFFAOYSA-N hafnium(IV) oxide Inorganic materials O=[Hf]=O CJNBYAVZURUTKZ-UHFFFAOYSA-N 0.000 description 9
- 238000002955 isolation Methods 0.000 description 9
- 239000007943 implant Substances 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 7
- 229910052710 silicon Inorganic materials 0.000 description 7
- 238000005229 chemical vapour deposition Methods 0.000 description 6
- 238000005137 deposition process Methods 0.000 description 6
- 239000012212 insulator Substances 0.000 description 6
- 230000003647 oxidation Effects 0.000 description 6
- 238000007254 oxidation reaction Methods 0.000 description 6
- 229920002120 photoresistant polymer Polymers 0.000 description 6
- 238000000231 atomic layer deposition Methods 0.000 description 5
- 239000002019 doping agent Substances 0.000 description 5
- 238000001020 plasma etching Methods 0.000 description 5
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 5
- 229920005591 polysilicon Polymers 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- 238000005468 ion implantation Methods 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 3
- 230000004913 activation Effects 0.000 description 3
- 238000001312 dry etching Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 229910052814 silicon oxide Inorganic materials 0.000 description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 2
- 229910003811 SiGeC Inorganic materials 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000000224 chemical solution deposition Methods 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- -1 for example Inorganic materials 0.000 description 2
- 229910052732 germanium Inorganic materials 0.000 description 2
- 238000010884 ion-beam technique Methods 0.000 description 2
- 238000001459 lithography Methods 0.000 description 2
- 229910052914 metal silicate Inorganic materials 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 238000002161 passivation Methods 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 229910000673 Indium arsenide Inorganic materials 0.000 description 1
- 229910002244 LaAlO3 Inorganic materials 0.000 description 1
- 229910002370 SrTiO3 Inorganic materials 0.000 description 1
- 229910010282 TiON Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- CEPICIBPGDWCRU-UHFFFAOYSA-N [Si].[Hf] Chemical compound [Si].[Hf] CEPICIBPGDWCRU-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 150000001345 alkine derivatives Chemical class 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- QZQVBEXLDFYHSR-UHFFFAOYSA-N gallium(III) oxide Inorganic materials O=[Ga]O[Ga]=O QZQVBEXLDFYHSR-UHFFFAOYSA-N 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- RPQDHPTXJYYUPQ-UHFFFAOYSA-N indium arsenide Chemical compound [In]#[As] RPQDHPTXJYYUPQ-UHFFFAOYSA-N 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum oxide Inorganic materials [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 description 1
- 238000000608 laser ablation Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910003465 moissanite Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- KTUFCUMIWABKDW-UHFFFAOYSA-N oxo(oxolanthaniooxy)lanthanum Chemical compound O=[La]O[La]=O KTUFCUMIWABKDW-UHFFFAOYSA-N 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000005546 reactive sputtering Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 239000003870 refractory metal Substances 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
- RUDFQVOCFDJEEF-UHFFFAOYSA-N yttrium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/43—Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/49—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
- H01L29/4966—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a composite material, e.g. organic material, TiN, MoSi2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/28008—Making conductor-insulator-semiconductor electrodes
- H01L21/28017—Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
- H01L21/28026—Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
- H01L21/28088—Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being a composite, e.g. TiN
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/43—Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/49—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
- H01L29/51—Insulating materials associated therewith
- H01L29/511—Insulating materials associated therewith with a compositional variation, e.g. multilayer structures
- H01L29/513—Insulating materials associated therewith with a compositional variation, e.g. multilayer structures the variation being perpendicular to the channel plane
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/43—Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/49—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
- H01L29/51—Insulating materials associated therewith
- H01L29/517—Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/665—Unipolar field-effect transistors with an insulated gate, i.e. MISFET using self aligned silicidation, i.e. salicide
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66568—Lateral single gate silicon transistors
- H01L29/66575—Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate
- H01L29/6659—Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate with both lightly doped source and drain extensions and source and drain self-aligned to the sides of the gate, e.g. lightly doped drain [LDD] MOSFET, double diffused drain [DDD] MOSFET
Definitions
- the present invention relates to a semiconductor device and a method of fabricating the same. More particularly, the present invention relates to a complementary metal oxide semiconductor (CMOS) device which includes a thermally stable n-type metal on a high dielectric constant, k/interfacial layer stack. The present invention also provides a process for forming the thermally stable n-type metal which can be integrated with a CMOS processing flow.
- CMOS complementary metal oxide semiconductor
- polysilicon In standard CMOS devices, polysilicon is typically the standard gate material.
- the technology of fabricating CMOS devices using polysilicon gates has been in a constant state of development, and is now widely used in the semiconductor industry.
- One advantage of using polysilicon gates is that they can sustain high temperatures.
- polysilicon gate due to the poly-depletion effect and relative high electrical sheet resistance (approximately 150 Ohms/Sq.), polySi gates commonly used in CMOS devices are becoming a gating factor in chip performance for channel lengths of 0.1 micron and below.
- Another problem with polySi gates is that the dopant in the polySi gate, such as boron, can easily diffuse through the thin gate dielectric causing further degradation of the device performance.
- Metals with different workfunctions one for pFETs and one for nFETs are required for CMOS technologies using a high k dielectric.
- Metal/high k dielectric stacks also have to be subjected to a high temperature (on the order of about 1000° C.) anneals required for the source/drain self-aligned implant activation. Gate stack reactions occur during this high temperature anneal limiting the choice of materials. For example, in gate stacks including W and a high k dielectric, SiO 2 regrowth occurs at the interface limiting inversion layer scalability. See, for example, A. Callegari, et al. IEDM 2004, p.825, S. Francisco Ca., Dec. 13-15, 2004.
- Metal compounds may be more stable, but still have problems with targeting the right workfunction.
- TaSiN has been proposed as a nFET candidate, but still there are some questions about its workfunction and mobility reduction is observed in nFET devices. Furthermore, it appears that the inversion thickness scability is somewhat limited using TaSiN.
- the present invention provides a new compound metal comprising HISiN which is a n-type metal having a workfunction of about 3.7 to about 4.5 eV, preferably about 4.0, eV which is thermally stable on a gate stack comprising a high k dielectric and an interfacial layer. Furthermore, after annealing the stack of HfSiN/high k dielectric/interfacial layer at a high temperature (on the order of about 1000° C.), there is a reduction of the interfacial layer, thus the gate stack produces a very small equivalent oxide thickness (12 ⁇ classical), which cannot be achieved using TaSiN.
- the present invention provides a semiconductor structure, i.e., film stack, which comprises:
- the present invention provides a semiconductor structure that comprises:
- the present invention also provides a method of fabricating a HfSiN metal compound that comprises:
- the Si source diluted with He which limits the Si source reactivity, improves the quality of the film.
- the resistivities of the HfSiN film can vary depending on the concentration of the process gases. Typically, the higher the nitrogen and/or Si concentrations, the higher the resistivity.
- the present invention also provides a method of fabricating the semiconductor structure described above in which the inventive process for forming a HfSiN film is employed.
- the semiconductor structure is formed by first providing a stack comprising a high k dielectric and an interfacial layer on a surface of a substrate; and thereafter forming a HfSiN film on said stack utilizing the processing steps mentioned above, i.e., by providing a Hf target and an atmosphere that comprises Ar/N 2 /a Si source that is diluted with He; and sputtering a HfSiN film from said Hf target in said atmosphere.
- the HfSiN metal gate can be used alone as the gate electrode, or in conjunction with a Si-containing gate electrode that includes a silicide contact on an upper surface thereof.
- the later structure is referred to herein as a dual polySi/HfSiN-containing FET.
- high k dielectric is used throughout the present application to denote an insulator material whose dielectric constant k, is greater than SiO 2 , e.g., greater than 4.0.
- the high k dielectric has a k that is about 7.0 or greater.
- interfacial layer is used throughout the present application to denote an insulator material that comprises atoms of at least Si or O including, for example, SiO 2 , and SiON.
- FIGS. 1A-1C are pictorial representations (through cross sectional views) illustrating the various processing steps used in forming a film stack structure which includes the HfSiN metal compound as a n-type metal gate on a stack comprising a high k dielectric and an interfacial layer.
- FIGS. 2A-2D are pictorial representations (through cross sectional views) illustrating the basic processing steps of the present invention for forming a polySi/gate metal self-aligned FET structure.
- FIG. 3 shows capacitance-voltage (CV, n-substrate) characteristics of HfSiN compared with TaSiN in a similar process on the same gate stack; 30 ⁇ HfO 2 /SiO 2 . Note that the HfSiN has a workfunction of about 4.3 eV (nFET) compared with a 4.7 eV for TaSiN (mid-gap).
- FIG. 4 shows capacitance-voltage (CV, p-substrate) characteristics of HfSiN on a HfO 2 /SiO 2 stack annealed at 1000° C. and then annealed in a forming gas ambient at 450° C. Workfunction is about 3.7 eV.
- the present invention which provides a HfSiN compound metal that can be used as a thermally stable n-metal gate on a stack comprising a high k dielectric and an interfacial layer as well as a method of fabricating the same, will now be described in greater detail by referring to the drawings that accompany the present application. It is noted that the drawings of the present invention are provided for illustrative purposes and thus they are not drawn to scale.
- FIGS. 1A-1C illustrate basic processing steps that are used in forming a film stack structure that includes the inventive HfSiN compound metal on a stack containing a high k dielectric and an interfacial layer.
- FIG. 1A shows an initial film stack structure that includes an interfacial layer 12 on a surface of a semiconductor substrate 10 .
- the semiconductor substrate 10 employed in the present invention comprises any semiconducting material including, but not limited to: Si, Ge, SiGe, SiC, SiGeC, Ga, GaAs, InAs, InP and all other IV/IV, III/V, or II/VI compound semiconductors.
- Semiconductor substrate 10 may also comprise an organic semiconductor or a layered semiconductor such as Si/SiGe, a silicon-on-insulator (SOI) or a SiGe-on-insulator (SGOI).
- SOI silicon-on-insulator
- SGOI SiGe-on-insulator
- the semiconductor substrate 10 may be doped, undoped or contain doped and undoped regions therein.
- the semiconductor substrate 10 may also include a first doped (n- or p-) region, and a second doped (n- or p-) region.
- the first doped region and the second doped region may be the same, or they may have different conductivities and/or doping concentrations. These doped regions are known as “wells”.
- the semiconductor substrate 10 may be strained, unstrained or a combination thereof.
- the semiconductor substrate 10 may have any crystallographic orientation including, for example, 100 , 110 , 111 or a combination thereof.
- the semiconductor substrate 10 may be a hybrid substrate that includes at least two planar surfaces of different crystallographic orientation.
- the isolation region may be a trench isolation region or a field oxide isolation region.
- the trench isolation region is formed utilizing a conventional trench isolation process well known to those skilled in the art. For example, lithography, etching and filling of the trench with a trench dielectric may be used in forming the trench isolation region.
- a liner may be formed in the trench prior to trench fill, a densification step may be performed after the trench fill and a planarization process may follow the trench fill as well.
- the field oxide may be formed utilizing a so-called local oxidation of silicon process.
- the at least one isolation region provides isolation between neighboring gate regions, typically required when the neighboring gates have opposite conductivities.
- the neighboring gate regions can have the same conductivity (i.e., both n- or p-type), or alternatively they can have different conductivities (i.e., one n-type and the other p-type).
- Interfacial layer 12 is then formed atop the surface of the semiconductor substrate 10 utilizing a thermal process such as oxidation or oxynitridation, a deposition process such as chemical vapor deposition (CVD), plasma-assisted CVD, atomic layer deposition (ALD), evaporation, sputtering, and chemical solution deposition, or a combination thereof.
- a deposition process and nitridation can be used to form the interfacial layer 12 .
- the interfacial layer 12 comprising atoms of at least Si and O, with N being optional.
- the interfacial layer 12 thus may comprise SiO 2 , SiON, silicates thereof, or multilayers thereof.
- the interfacial layer 12 comprises SiO 2 , while in other embodiments the interfacial layer 12 comprises SiON.
- the interfacial layer 12 comprises from about 1 to about 80, typically from about 1 to about 30, atomic percent Si. The remaining is O and/or N.
- the Si can be continuously present throughout the interfacial layer 12 or it can be graded.
- the interfacial layer 12 typically has a dielectric constant from about 4.0 to about 20, with a dielectric constant from about 4.5 to about 18 being even more typical.
- the interfacial layer 12 typically has a thickness from about 0.1 to about 5 nm, with a thickness from about 0.2 to about 2.5 nm being more typical.
- a high k dielectric 14 is formed on a surface of the interfacial layer 12 .
- the term “high k” denotes an insulator whose dielectric constant is greater than 4.0, typically from about 7.0 or greater.
- the high k dielectric 14 can be formed by a thermal growth process such as, for example, oxidation, nitridation or oxynitridation.
- the high k dielectric 14 can be formed by a deposition process such as, for example, chemical vapor deposition (CVD), plasma-assisted CVD, metalorganic chemical vapor deposition (MOCVD), atomic layer deposition (ALD), evaporation, reactive sputtering, chemical solution deposition and other like deposition processes.
- CVD chemical vapor deposition
- MOCVD metalorganic chemical vapor deposition
- ALD atomic layer deposition
- evaporation reactive sputtering
- chemical solution deposition chemical solution deposition and other like deposition processes.
- the dielectric 14 may also be formed utilizing any combination of the above processes.
- the high k dielectric 14 employed in the present invention includes, but is not limited to: an oxide, nitride, oxynitride, and/or silicate (including metal silicates and nitrided metal silicates).
- the high k dielectric 14 is comprised of an oxide such as, for example, HfO 2 , ZrO 2 , Al 2 O 3 , TiO 2 , La 2 O 3 , SrTiO 3 , LaAlO 3 , Y 2 O 3 , Ga 2 O 3 , GdGaO and mixtures thereof
- oxide such as, for example, HfO 2 , ZrO 2 , Al 2 O 3 , TiO 2 , La 2 O 3 , SrTiO 3 , LaAlO 3 , Y 2 O 3 , Ga 2 O 3 , GdGaO and mixtures thereof
- Highly preferred examples of the high k dielectric 14 include HfO 2 , hafnium silicate or hafnium silicon oxynitride.
- the physical thickness of the high k dielectric 14 may vary, but typically, the high k dielectric 14 has a thickness from about 0.5 to about 10 nm, with a thickness from about 0.5 to about 3 nm being more typical.
- a HfSiN compound metal layer 16 is then formed atop the high k dielectric 14 providing the structure shown, for example, in FIG. 1C .
- the HfSiN compound metal layer 16 is formed by providing a Hf target and an atmosphere that comprises Ar/N 2 /Si source diluted in He and then sputtering a HfSiN film from said Hf target in said atmosphere.
- the sputtering process occurs in a reactor chamber of any conventional sputtering apparatus.
- the He is used to dilute the Si source.
- the amount of He used to dilute the Si source is from about 70 to about 99%, with an amount of He of about 95 to about 99% being even more typical.
- the Si source contains 98% He.
- the Hf target used in the present invention includes any solid source of Hf.
- the silicon, Si source used in the atmosphere during the sputtering of the HfSiN film includes any organic containing Si compound including for example, SiH 4-n R n wherein n is 0, 1, 2, 3, or 4, and R is an aliphatic moiety (i.e., alkane, alkene, alkyne or a combination thereof) containing from 1 to about 18, preferably from about 1 to about 8 carbon atoms.
- the aliphatic moiety can be straight chain or branched.
- n is 0 and the Si source is SiH 4 .
- the source of Si can be a solid, liquid or gas, with gaseous Si sources being highly preferred.
- the flow ratio of Ar/N2/Si source employed in the present invention is from about 1-100/1-100/1-100 sccm, respectively, with a flow ratio from about 10-20/5-15/10-30 sccm being even more typical.
- the flow ratio of Ar/N 2 /Si source from about 5/5/5 sccm to about 50/50/50 sccm, respectively can be employed.
- sputtering conditions such as temperature, pressure and time are conventional and are well known to those skilled in the art.
- the resistivity of the HfSiN film depends on the concentration of the process gases; the higher the nitrogen and/or Si concentration the higher the resistivity of the HfSiN film 16 .
- the resistivity of the HfSiN film is about 105 micro-ohm/cm or less, with a resistivity from about 100 to about 130 micro-ohm/cm being even more typical.
- the thickness of the HfSiN film 16 formed may vary depending on the sputtering conditions used and the type of device to be fabricated. Typically, the HfSiN film 16 has a thickness, after sputtering, from about 2 to about 200 nm, with a thickness from about 5 to about 40 nm being even more typical.
- the structure shown in FIG. 1C can then be formed into a CMOS device, e.g., FET, utilizing any conventional CMOS processing flow.
- the stacked structure shown in FIG. 1C can be processed as is, or alternatively, a Si-containing gate material 18 can be formed on top of the HfSiN layer 16 .
- FIG. 2A-2D The later embodiment is shown in FIG. 2A-2D .
- FIGS. 2A-2D illustrate the presence of the Si-containing material 18 , the following processing steps can generally work when no Si-containing material is formed. Note that the subsequent silicidation of the patterned gate region 20 including only the HfSiN layer 16 is typically not performed.
- a Si-containing material 18 such as polysilicon, SiGe and SiGeC is formed atop the HfSiN layer 16 .
- the Si-containing material 18 and the HfSiN layer 16 form a multilayered gate.
- the HfSiN is used as a single metal gate.
- the Si-containing material 18 used is in either single crystal, polycrystalline or amorphous, or consists of mixtures of such forms.
- the Si-containing material is typically doped utilizing an in-situ deposition process or by deposition, ion implantation and annealing.
- the dopant is a n-type dopant since HfSiN is a n-type metal.
- the thickness, i.e., height, of the Si-containing material 18 formed at this point of the present invention may vary depending on the process employed. Typically, the Si-containing material has a vertical thickness from about 20 to about 180 nm, with a thickness from about 40 to about 150 nm being more typical.
- the Si-containing material 18 , the HfSiN layer 16 , and optionally the high k dielectric 14 and the interfacial layer 12 are then patterned by lithography and etching so as to provide a patterned gate region or stack 20 .
- a single patterned gate region (or stack) 20 is shown, the present invention contemplates forming a plurality of patterned gate regions (or stacks) 20 .
- the gate regions (or stacks) may have the same dimension, i.e., length, or they can have variable dimensions to improve device performance.
- Each patterned gate stack (or region) 20 at this point of the present invention includes at least a patterned HfSiN layer 16 .
- FIG. 2B shows the structure after pattern gate region (or stack) 20 formation.
- the Si-containing material 18 , the HfSiN layer 16 , the high k dielectric 14 and the interfacial layer 12 are etched, i.e., patterned, during this step of the present invention.
- the lithographic step includes applying a photoresist to the upper surface of the blanket layered structure shown in either FIG. 2A or FIG. 1C , exposing the photoresist to a desired pattern of radiation and developing the exposed photoresist utilizing a conventional resist developer.
- the pattern in the photoresist is then transferred to the structure utilizing one or more dry etching steps.
- the patterned photoresist may be removed after the pattern has been transferred into one of the layers of the blanket layered structure. In other embodiments, the patterned photoresist is removed after etching has been completed.
- Suitable dry etching processes that can be used in the present invention in forming the patterned gate region (or stack) 20 include, but are not limited to: reactive ion etching, ion beam etching, plasma etching or laser ablation.
- the dry etching process employed is typically, but not always, selective to the underlying high k dielectric 14 therefore this etching step does not typically remove the stack containing the high k dielectric 14 and the interfacial layer 12 . In some embodiments and as shown in FIG. 2B , this etching step may however be used to remove portions of the high k dielectric 14 and the interfacial layer 12 that are not protected by the material layers of the gate region (or stack) that were previously etched.
- At least one spacer 22 is typically, but not always, formed on exposed sidewalls of each patterned gate region (or stack) 20 , see, for example, FIG. 2C .
- the at least one spacer 22 is comprised of an insulator such as an oxide, nitride, oxynitride and/or any combination thereof.
- the at least one spacer 22 is formed by deposition and etching.
- the width of the at least one spacer 22 must be sufficiently wide such that the source and drain silicide contacts (to be subsequently formed) do not encroach underneath the edges of the gate region (or stack) 20 .
- the source/drain silicide does not encroach underneath the edges of the gate region (or stack) 20 when the at least one spacer 22 has a width, as measured at the bottom, from about 20 to about 80 nm.
- the gate region (or stack) 20 can also be passivated prior to spacer formation by subjecting the same to a thermal oxidation, nitridation or oxynitridation process.
- the passivation step forms a thin layer of passivating material (not shown) about the gate region (or stack) 20 . This step may be used instead or in conjunction with the previous step of spacer formation. When used with the spacer formation step, spacer formation occurs after the gate region (or stack) 20 passivation process.
- Source/drain diffusion regions 24 are then formed into the substrate.
- the source/drain diffusion regions 24 are formed utilizing ion implantation and an annealing step.
- the annealing step serves to activate the dopants that were implanted by the previous implant step.
- the conditions for the ion implantation and annealing are well known to those skilled in the art.
- the structure formed after ion implantation and annealing is shown in FIG. 2D .
- the source/drain diffusion regions 24 may also include extension implant regions (not separately labeled) which are formed prior to source/drain implantation using a conventional extension implant.
- the extension implant may be followed by an activation anneal, or alternatively the dopants implanted during the extension implant and the source/drain implant can be activated using the same activation anneal cycle.
- Halo implants (not shown) are also contemplated herein.
- the source/drain extensions are typically shallower than the deep source/drain regions and they include an edge that is aligned with an edge of the patterned gate region (or stack) 20 .
- the exposed portion of the high k dielectric 14 and the underlying interfacial layer 12 are removed utilizing a chemical etching process that selectively removes these insulating materials. This etching step stops on an upper surface of the semiconductor substrate 10 .
- a chemical etchant may be used in removing the exposed portions of the high k dielectric 14 and the underlying interfacial layer 12 , in one embodiment dilute hydrofluoric acid (DHF) is used.
- DHF dilute hydrofluoric acid
- FIG. 2D also shows the presence of silicide regions 26 atop the source/drain diffusion regions 24 and, if present, the Si-containing material 18 .
- the silicide atop the Si-containing material 18 is optional and is not formed if no Si-containing material is present on top of the gate region (or stack 20 ).
- the silicide regions 26 are formed utilizing any conventional silicidation process.
- a Si-containing material such as epitaxial Si or amorphous Si, can be formed prior to silicidation.
- the silicidation process comprises forming a conductive and refractory metal such as Co, Ti, W, Ni, Pt or alloys thereof with other alloying additives, such as C, Ge, Si, and etc., on top of the area to be silicided.
- a conventional deposition process such as CVD, PECVD, sputtering, evaporation or plating, can be used.
- a barrier layer may be formed over the metal layer that protects the metal from oxidation. Examples of optional barrier layers include, for example, SiN, TiN, TaN, TiON and combinations thereof.
- the structure is subjected to at least a first anneal that causes reaction between the deposited metal and Si and subsequent formation of a metal silicide.
- the annealing is typically performed at a temperature from about 250° to about 800° C., with a first annealing temperature from about 400° to about 550° C. being more typical.
- the first anneal forms a metal rich silicide phase, which is highly resistant to a selective etch process.
- a metal rich phase is produced, a second higher temperature anneal is required to form a low resistivity silicide.
- the first anneal is sufficient in forming the low resistivity silicide.
- the unreacted and remaining portions of the deposited metal are removed using a conventional etch process, such as wet etching, reactive-ion etching (RIE), ion beam etching, or plasma etching.
- a conventional etch process such as wet etching, reactive-ion etching (RIE), ion beam etching, or plasma etching.
- a second anneal is performed after the etching process.
- the second annealing is typically performed at higher temperatures than the first annealing.
- a typical temperature range for the second, optional, anneal is from about 550° to about 900° C.
- CMOS processing such as the formation of BEOL (back-end-of-the-line) interconnect levels with metal interconnects can be formed utilizing processing steps that are well known to those skilled in the art.
- BEOL back-end-of-the-line
- a HfSiN/HfO 2 /SiO 2 stack was formed on a surface of a Si wafer.
- the SiO 2 interfacial layer was formed by oxidation of the Si wafer.
- the thickness of the SiO 2 interfacial layer was about 1 nm.
- a HfO 2 dielectric having a thickness of about 3 nm was then formed on the SiO 2 interfacial layer by ALD.
- the HfSiN layer was then formed by providing a Hf target and an atmosphere comprising Ar/N 2 /SiH 4 (2% in He) in which flow ratio of Ar:N 2 :SiH 4 (2% in He) was 20:10:20 sccm, respectively.
- the HfSiN layer had a thickness of about 40 nm.
- the stack was subjected to a 1000° C. anneal, followed by a forming gas anneal that was performed at 450° C.
- a TaSiN compound metal was formed about a similar HfO 2 /SiO 2 stack.
- FIG. 3 shows the CV characteristics at 10 kHz of these stacks on a n-substrate. Note that the workfunction for the stack containing HfSiN was about 4.3 eV which is typical for a nMOS device, while the TaSiN-containing stack had a workfunction of about 4.7 eV (mid-gap). Workfunction were calculated according to S. M.
- FIG. 4 shows again a CV characteristic taken at 300 kHz of a HfSiN/HfO 2 /SiO 2 gate stack on a p-substrate.
- the gate stack is similar to the one shown in FIG. 3 , except for the HfO 2 (3 nm) which was deposited by MOCVD.
- the stack was rapid annealed at 1000° C. in N 2 for 5 S and then annealed in a forming gas ambient at 450° C.
- workfunction calculated according to S. M. Sze, Physics of Semiconductor Devices, Second Edition, pages 395-397, J. Wiley&Sons, is about 3.7 eV. This shows again n-FET behavior for the HfSiN.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Chemical & Material Sciences (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Composite Materials (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Ceramic Engineering (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
- Formation Of Insulating Films (AREA)
- Electrodes Of Semiconductors (AREA)
Abstract
Description
- This application is a continuation application of U.S. Patent Application Ser. No. 11/875,524, filed Oct. 19, 2007, which is a divisional application of U.S. Patent Application Ser. No. 11/035,369, filed Jan. 13, 2005, now U.S. Patent Application Publication No. 2006/0151846.
- 1. Field of the Invention
- The present invention relates to a semiconductor device and a method of fabricating the same. More particularly, the present invention relates to a complementary metal oxide semiconductor (CMOS) device which includes a thermally stable n-type metal on a high dielectric constant, k/interfacial layer stack. The present invention also provides a process for forming the thermally stable n-type metal which can be integrated with a CMOS processing flow.
- 2. Background of the Invention
- In standard CMOS devices, polysilicon is typically the standard gate material. The technology of fabricating CMOS devices using polysilicon gates has been in a constant state of development, and is now widely used in the semiconductor industry. One advantage of using polysilicon gates is that they can sustain high temperatures. However, there are also some problems associated with using a polysilicon gate. For example, due to the poly-depletion effect and relative high electrical sheet resistance (approximately 150 Ohms/Sq.), polySi gates commonly used in CMOS devices are becoming a gating factor in chip performance for channel lengths of 0.1 micron and below. Another problem with polySi gates is that the dopant in the polySi gate, such as boron, can easily diffuse through the thin gate dielectric causing further degradation of the device performance.
- In order to avoid the problems with polySi gates, it has been suggested to replace the polySi gate with a single metal. Metals with different workfunctions, one for pFETs and one for nFETs are required for CMOS technologies using a high k dielectric. Metal/high k dielectric stacks also have to be subjected to a high temperature (on the order of about 1000° C.) anneals required for the source/drain self-aligned implant activation. Gate stack reactions occur during this high temperature anneal limiting the choice of materials. For example, in gate stacks including W and a high k dielectric, SiO2 regrowth occurs at the interface limiting inversion layer scalability. See, for example, A. Callegari, et al. IEDM 2004, p.825, S. Francisco Ca., Dec. 13-15, 2004.
- Metal compounds may be more stable, but still have problems with targeting the right workfunction. For example, TaSiN has been proposed as a nFET candidate, but still there are some questions about its workfunction and mobility reduction is observed in nFET devices. Furthermore, it appears that the inversion thickness scability is somewhat limited using TaSiN.
- In view of the above, there is a need for providing a new compound metal which is thermally stable on a gate stack including a high k dielectric. In particular, there is a need for providing a new compound metal useful in nFET devices.
- The present invention provides a new compound metal comprising HISiN which is a n-type metal having a workfunction of about 3.7 to about 4.5 eV, preferably about 4.0, eV which is thermally stable on a gate stack comprising a high k dielectric and an interfacial layer. Furthermore, after annealing the stack of HfSiN/high k dielectric/interfacial layer at a high temperature (on the order of about 1000° C.), there is a reduction of the interfacial layer, thus the gate stack produces a very small equivalent oxide thickness (12 Å classical), which cannot be achieved using TaSiN.
- In broad terms, the present invention provides a semiconductor structure, i.e., film stack, which comprises:
-
- a semiconductor substrate;
- an interfacial layer located on said semiconductor substrate;
- a high k dielectric located on said interfacial layer; and
- a HfSiN gate metal located on said high k dielectric.
- Additionally, the present invention provides a semiconductor structure that comprises:
-
- a semiconductor substrate; and
- a patterned gate region comprising at least an interfacial layer located on a portion of said substrate, a high k dielectric located on said interfacial layer, and a HfSiN metal located on said high gate dielectric.
- In addition to the film stack and the semiconductor structure described above, the present invention also provides a method of fabricating a HfSiN metal compound that comprises:
-
- providing a Hf target and an atmosphere that comprises Ar/N2/a Si source, said Si source is diluted with He; and
- sputtering a HfSiN film from said Hf target in said atmosphere.
- In accordance with the present invention, the Si source diluted with He, which limits the Si source reactivity, improves the quality of the film. The resistivities of the HfSiN film can vary depending on the concentration of the process gases. Typically, the higher the nitrogen and/or Si concentrations, the higher the resistivity.
- The present invention also provides a method of fabricating the semiconductor structure described above in which the inventive process for forming a HfSiN film is employed. In general terms, the semiconductor structure is formed by first providing a stack comprising a high k dielectric and an interfacial layer on a surface of a substrate; and thereafter forming a HfSiN film on said stack utilizing the processing steps mentioned above, i.e., by providing a Hf target and an atmosphere that comprises Ar/N2/a Si source that is diluted with He; and sputtering a HfSiN film from said Hf target in said atmosphere.
- In some embodiments of the present invention, the HfSiN metal gate can be used alone as the gate electrode, or in conjunction with a Si-containing gate electrode that includes a silicide contact on an upper surface thereof. The later structure is referred to herein as a dual polySi/HfSiN-containing FET.
- It is noted that the term high k dielectric is used throughout the present application to denote an insulator material whose dielectric constant k, is greater than SiO2, e.g., greater than 4.0. Preferably, the high k dielectric has a k that is about 7.0 or greater.
- The term “interfacial layer” is used throughout the present application to denote an insulator material that comprises atoms of at least Si or O including, for example, SiO2, and SiON.
-
FIGS. 1A-1C are pictorial representations (through cross sectional views) illustrating the various processing steps used in forming a film stack structure which includes the HfSiN metal compound as a n-type metal gate on a stack comprising a high k dielectric and an interfacial layer. -
FIGS. 2A-2D are pictorial representations (through cross sectional views) illustrating the basic processing steps of the present invention for forming a polySi/gate metal self-aligned FET structure. -
FIG. 3 shows capacitance-voltage (CV, n-substrate) characteristics of HfSiN compared with TaSiN in a similar process on the same gate stack; 30 Å HfO2/SiO2. Note that the HfSiN has a workfunction of about 4.3 eV (nFET) compared with a 4.7 eV for TaSiN (mid-gap). -
FIG. 4 shows capacitance-voltage (CV, p-substrate) characteristics of HfSiN on a HfO2/SiO2 stack annealed at 1000° C. and then annealed in a forming gas ambient at 450° C. Workfunction is about 3.7 eV. - The present invention, which provides a HfSiN compound metal that can be used as a thermally stable n-metal gate on a stack comprising a high k dielectric and an interfacial layer as well as a method of fabricating the same, will now be described in greater detail by referring to the drawings that accompany the present application. It is noted that the drawings of the present invention are provided for illustrative purposes and thus they are not drawn to scale.
- Reference is first made to
FIGS. 1A-1C which illustrate basic processing steps that are used in forming a film stack structure that includes the inventive HfSiN compound metal on a stack containing a high k dielectric and an interfacial layer.FIG. 1A shows an initial film stack structure that includes aninterfacial layer 12 on a surface of asemiconductor substrate 10. - The
semiconductor substrate 10 employed in the present invention comprises any semiconducting material including, but not limited to: Si, Ge, SiGe, SiC, SiGeC, Ga, GaAs, InAs, InP and all other IV/IV, III/V, or II/VI compound semiconductors.Semiconductor substrate 10 may also comprise an organic semiconductor or a layered semiconductor such as Si/SiGe, a silicon-on-insulator (SOI) or a SiGe-on-insulator (SGOI). In some embodiments of the present invention, it is preferred that thesemiconductor substrate 10 be composed of a Si-containing semiconductor material, i.e., a semiconductor material that includes silicon. Thesemiconductor substrate 10 may be doped, undoped or contain doped and undoped regions therein. - The
semiconductor substrate 10 may also include a first doped (n- or p-) region, and a second doped (n- or p-) region. For clarity, the doped regions are not specifically shown in the drawings of the present application. The first doped region and the second doped region may be the same, or they may have different conductivities and/or doping concentrations. These doped regions are known as “wells”. Thesemiconductor substrate 10 may be strained, unstrained or a combination thereof. Moreover, thesemiconductor substrate 10 may have any crystallographic orientation including, for example, 100, 110, 111 or a combination thereof. Alternatively, thesemiconductor substrate 10 may be a hybrid substrate that includes at least two planar surfaces of different crystallographic orientation. - At least one isolation region (not shown) is then typically formed into the
semiconductor substrate 10. The isolation region may be a trench isolation region or a field oxide isolation region. The trench isolation region is formed utilizing a conventional trench isolation process well known to those skilled in the art. For example, lithography, etching and filling of the trench with a trench dielectric may be used in forming the trench isolation region. Optionally, a liner may be formed in the trench prior to trench fill, a densification step may be performed after the trench fill and a planarization process may follow the trench fill as well. The field oxide may be formed utilizing a so-called local oxidation of silicon process. Note that the at least one isolation region provides isolation between neighboring gate regions, typically required when the neighboring gates have opposite conductivities. The neighboring gate regions can have the same conductivity (i.e., both n- or p-type), or alternatively they can have different conductivities (i.e., one n-type and the other p-type). -
Interfacial layer 12 is then formed atop the surface of thesemiconductor substrate 10 utilizing a thermal process such as oxidation or oxynitridation, a deposition process such as chemical vapor deposition (CVD), plasma-assisted CVD, atomic layer deposition (ALD), evaporation, sputtering, and chemical solution deposition, or a combination thereof. Alternatively, a deposition process and nitridation can be used to form theinterfacial layer 12. Theinterfacial layer 12 comprising atoms of at least Si and O, with N being optional. Theinterfacial layer 12 thus may comprise SiO2, SiON, silicates thereof, or multilayers thereof. In some embodiments, theinterfacial layer 12 comprises SiO2, while in other embodiments theinterfacial layer 12 comprises SiON. Theinterfacial layer 12 comprises from about 1 to about 80, typically from about 1 to about 30, atomic percent Si. The remaining is O and/or N. The Si can be continuously present throughout theinterfacial layer 12 or it can be graded. - The
interfacial layer 12 typically has a dielectric constant from about 4.0 to about 20, with a dielectric constant from about 4.5 to about 18 being even more typical. Theinterfacial layer 12 typically has a thickness from about 0.1 to about 5 nm, with a thickness from about 0.2 to about 2.5 nm being more typical. - Next, and as shown in
FIG. 1B , ahigh k dielectric 14 is formed on a surface of theinterfacial layer 12. The term “high k” denotes an insulator whose dielectric constant is greater than 4.0, typically from about 7.0 or greater. Thehigh k dielectric 14 can be formed by a thermal growth process such as, for example, oxidation, nitridation or oxynitridation. Alternatively, thehigh k dielectric 14 can be formed by a deposition process such as, for example, chemical vapor deposition (CVD), plasma-assisted CVD, metalorganic chemical vapor deposition (MOCVD), atomic layer deposition (ALD), evaporation, reactive sputtering, chemical solution deposition and other like deposition processes. The dielectric 14 may also be formed utilizing any combination of the above processes. - Illustratively, the
high k dielectric 14 employed in the present invention includes, but is not limited to: an oxide, nitride, oxynitride, and/or silicate (including metal silicates and nitrided metal silicates). In one embodiment, it is preferred that thehigh k dielectric 14 is comprised of an oxide such as, for example, HfO2, ZrO2, Al2O3, TiO2, La2O3, SrTiO3, LaAlO3, Y2O3, Ga2O3, GdGaO and mixtures thereof Highly preferred examples of thehigh k dielectric 14 include HfO2, hafnium silicate or hafnium silicon oxynitride. - The physical thickness of the
high k dielectric 14 may vary, but typically, thehigh k dielectric 14 has a thickness from about 0.5 to about 10 nm, with a thickness from about 0.5 to about 3 nm being more typical. - After providing the stacked structure shown in
FIG. 1B , a HfSiNcompound metal layer 16 is then formed atop thehigh k dielectric 14 providing the structure shown, for example, inFIG. 1C . In accordance with the present invention, the HfSiNcompound metal layer 16 is formed by providing a Hf target and an atmosphere that comprises Ar/N2/Si source diluted in He and then sputtering a HfSiN film from said Hf target in said atmosphere. The sputtering process occurs in a reactor chamber of any conventional sputtering apparatus. As mentioned above, the He is used to dilute the Si source. Typically, the amount of He used to dilute the Si source is from about 70 to about 99%, with an amount of He of about 95 to about 99% being even more typical. In some embodiments, the Si source contains 98% He. - The Hf target used in the present invention includes any solid source of Hf. The silicon, Si source used in the atmosphere during the sputtering of the HfSiN film includes any organic containing Si compound including for example, SiH4-nRn wherein n is 0, 1, 2, 3, or 4, and R is an aliphatic moiety (i.e., alkane, alkene, alkyne or a combination thereof) containing from 1 to about 18, preferably from about 1 to about 8 carbon atoms. The aliphatic moiety can be straight chain or branched. Preferably, n is 0 and the Si source is SiH4. The source of Si can be a solid, liquid or gas, with gaseous Si sources being highly preferred.
- The flow ratio of Ar/N2/Si source employed in the present invention is from about 1-100/1-100/1-100 sccm, respectively, with a flow ratio from about 10-20/5-15/10-30 sccm being even more typical. In some preferred embodiments, the flow ratio of Ar/N2/Si source from about 5/5/5 sccm to about 50/50/50 sccm, respectively can be employed.
- The other sputtering conditions such as temperature, pressure and time are conventional and are well known to those skilled in the art.
- As indicated above, the resistivity of the HfSiN film depends on the concentration of the process gases; the higher the nitrogen and/or Si concentration the higher the resistivity of the
HfSiN film 16. Typically, the resistivity of the HfSiN film is about 105 micro-ohm/cm or less, with a resistivity from about 100 to about 130 micro-ohm/cm being even more typical. - The thickness of the
HfSiN film 16 formed may vary depending on the sputtering conditions used and the type of device to be fabricated. Typically, theHfSiN film 16 has a thickness, after sputtering, from about 2 to about 200 nm, with a thickness from about 5 to about 40 nm being even more typical. - The structure shown in
FIG. 1C can then be formed into a CMOS device, e.g., FET, utilizing any conventional CMOS processing flow. In some embodiments, the stacked structure shown inFIG. 1C can be processed as is, or alternatively, a Si-containinggate material 18 can be formed on top of theHfSiN layer 16. The later embodiment is shown inFIG. 2A-2D . AlthoughFIGS. 2A-2D illustrate the presence of the Si-containingmaterial 18, the following processing steps can generally work when no Si-containing material is formed. Note that the subsequent silicidation of the patternedgate region 20 including only theHfSiN layer 16 is typically not performed. - In the embodiment illustrated in
FIG. 2A , a Si-containingmaterial 18 such as polysilicon, SiGe and SiGeC is formed atop theHfSiN layer 16. Thus, in this embodiment the Si-containingmaterial 18 and theHfSiN layer 16 form a multilayered gate. In another embodiment, the HfSiN is used as a single metal gate. The Si-containingmaterial 18 used is in either single crystal, polycrystalline or amorphous, or consists of mixtures of such forms. - The Si-containing material is typically doped utilizing an in-situ deposition process or by deposition, ion implantation and annealing. The dopant is a n-type dopant since HfSiN is a n-type metal. The thickness, i.e., height, of the Si-containing
material 18 formed at this point of the present invention may vary depending on the process employed. Typically, the Si-containing material has a vertical thickness from about 20 to about 180 nm, with a thickness from about 40 to about 150 nm being more typical. - In the processing embodiment illustrated, the Si-containing
material 18, theHfSiN layer 16, and optionally thehigh k dielectric 14 and theinterfacial layer 12 are then patterned by lithography and etching so as to provide a patterned gate region or stack 20. Although a single patterned gate region (or stack) 20 is shown, the present invention contemplates forming a plurality of patterned gate regions (or stacks) 20. When a plurality of patterned gate regions (or stacks) are formed, the gate regions (or stacks) may have the same dimension, i.e., length, or they can have variable dimensions to improve device performance. Each patterned gate stack (or region) 20 at this point of the present invention includes at least apatterned HfSiN layer 16.FIG. 2B shows the structure after pattern gate region (or stack) 20 formation. In the illustrated embodiment, the Si-containingmaterial 18, theHfSiN layer 16, thehigh k dielectric 14 and theinterfacial layer 12 are etched, i.e., patterned, during this step of the present invention. - The lithographic step includes applying a photoresist to the upper surface of the blanket layered structure shown in either
FIG. 2A orFIG. 1C , exposing the photoresist to a desired pattern of radiation and developing the exposed photoresist utilizing a conventional resist developer. The pattern in the photoresist is then transferred to the structure utilizing one or more dry etching steps. In some embodiments, the patterned photoresist may be removed after the pattern has been transferred into one of the layers of the blanket layered structure. In other embodiments, the patterned photoresist is removed after etching has been completed. - Suitable dry etching processes that can be used in the present invention in forming the patterned gate region (or stack) 20 include, but are not limited to: reactive ion etching, ion beam etching, plasma etching or laser ablation. The dry etching process employed is typically, but not always, selective to the underlying
high k dielectric 14 therefore this etching step does not typically remove the stack containing thehigh k dielectric 14 and theinterfacial layer 12. In some embodiments and as shown inFIG. 2B , this etching step may however be used to remove portions of thehigh k dielectric 14 and theinterfacial layer 12 that are not protected by the material layers of the gate region (or stack) that were previously etched. - Next, at least one
spacer 22 is typically, but not always, formed on exposed sidewalls of each patterned gate region (or stack) 20, see, for example,FIG. 2C . The at least onespacer 22 is comprised of an insulator such as an oxide, nitride, oxynitride and/or any combination thereof. The at least onespacer 22 is formed by deposition and etching. - The width of the at least one
spacer 22 must be sufficiently wide such that the source and drain silicide contacts (to be subsequently formed) do not encroach underneath the edges of the gate region (or stack) 20. Typically, the source/drain silicide does not encroach underneath the edges of the gate region (or stack) 20 when the at least onespacer 22 has a width, as measured at the bottom, from about 20 to about 80 nm. - The gate region (or stack) 20 can also be passivated prior to spacer formation by subjecting the same to a thermal oxidation, nitridation or oxynitridation process. The passivation step forms a thin layer of passivating material (not shown) about the gate region (or stack) 20. This step may be used instead or in conjunction with the previous step of spacer formation. When used with the spacer formation step, spacer formation occurs after the gate region (or stack) 20 passivation process.
- Source/drain diffusion regions 24 (with or without the spacers present) are then formed into the substrate. The source/
drain diffusion regions 24 are formed utilizing ion implantation and an annealing step. The annealing step serves to activate the dopants that were implanted by the previous implant step. The conditions for the ion implantation and annealing are well known to those skilled in the art. The structure formed after ion implantation and annealing is shown inFIG. 2D . - The source/
drain diffusion regions 24 may also include extension implant regions (not separately labeled) which are formed prior to source/drain implantation using a conventional extension implant. The extension implant may be followed by an activation anneal, or alternatively the dopants implanted during the extension implant and the source/drain implant can be activated using the same activation anneal cycle. Halo implants (not shown) are also contemplated herein. The source/drain extensions are typically shallower than the deep source/drain regions and they include an edge that is aligned with an edge of the patterned gate region (or stack) 20. - Next, and if not previously removed, the exposed portion of the
high k dielectric 14 and the underlyinginterfacial layer 12 are removed utilizing a chemical etching process that selectively removes these insulating materials. This etching step stops on an upper surface of thesemiconductor substrate 10. Although any chemical etchant may be used in removing the exposed portions of thehigh k dielectric 14 and the underlyinginterfacial layer 12, in one embodiment dilute hydrofluoric acid (DHF) is used. -
FIG. 2D also shows the presence ofsilicide regions 26 atop the source/drain diffusion regions 24 and, if present, the Si-containingmaterial 18. The silicide atop the Si-containingmaterial 18 is optional and is not formed if no Si-containing material is present on top of the gate region (or stack 20). Thesilicide regions 26 are formed utilizing any conventional silicidation process. In some embodiments and when no Si-containing material is present on at least the source/drain regions 26, a Si-containing material, such as epitaxial Si or amorphous Si, can be formed prior to silicidation. - The silicidation process comprises forming a conductive and refractory metal such as Co, Ti, W, Ni, Pt or alloys thereof with other alloying additives, such as C, Ge, Si, and etc., on top of the area to be silicided. A conventional deposition process, such as CVD, PECVD, sputtering, evaporation or plating, can be used. Optionally, a barrier layer may be formed over the metal layer that protects the metal from oxidation. Examples of optional barrier layers include, for example, SiN, TiN, TaN, TiON and combinations thereof. Following metal deposition the structure is subjected to at least a first anneal that causes reaction between the deposited metal and Si and subsequent formation of a metal silicide. The annealing is typically performed at a temperature from about 250° to about 800° C., with a first annealing temperature from about 400° to about 550° C. being more typical.
- In some embodiments, the first anneal forms a metal rich silicide phase, which is highly resistant to a selective etch process. When a metal rich phase is produced, a second higher temperature anneal is required to form a low resistivity silicide. In other embodiments, the first anneal is sufficient in forming the low resistivity silicide.
- Following the first anneal, the unreacted and remaining portions of the deposited metal are removed using a conventional etch process, such as wet etching, reactive-ion etching (RIE), ion beam etching, or plasma etching.
- If needed, a second anneal is performed after the etching process. The second annealing is typically performed at higher temperatures than the first annealing. A typical temperature range for the second, optional, anneal is from about 550° to about 900° C.
- Further CMOS processing such as the formation of BEOL (back-end-of-the-line) interconnect levels with metal interconnects can be formed utilizing processing steps that are well known to those skilled in the art.
- The following example provides an illustration of the inventive process as well as some advantages that can be obtained from using the same in forming a HfSiN-containing gate stack.
- In this example, a HfSiN/HfO2/SiO2 stack was formed on a surface of a Si wafer. The SiO2 interfacial layer was formed by oxidation of the Si wafer. The thickness of the SiO2 interfacial layer was about 1 nm. A HfO2 dielectric having a thickness of about 3 nm was then formed on the SiO2 interfacial layer by ALD. The HfSiN layer was then formed by providing a Hf target and an atmosphere comprising Ar/N2/SiH4(2% in He) in which flow ratio of Ar:N2:SiH4 (2% in He) was 20:10:20 sccm, respectively. The HfSiN layer had a thickness of about 40 nm. After providing the stack, the stack was subjected to a 1000° C. anneal, followed by a forming gas anneal that was performed at 450° C. For comparison, a TaSiN compound metal was formed about a similar HfO2/SiO2 stack.
FIG. 3 shows the CV characteristics at 10 kHz of these stacks on a n-substrate. Note that the workfunction for the stack containing HfSiN was about 4.3 eV which is typical for a nMOS device, while the TaSiN-containing stack had a workfunction of about 4.7 eV (mid-gap). Workfunction were calculated according to S. M. Sze, Physics of Semiconductor Devices, Second Edition, pages 395-397, J. Wiley&Sons. Also, notice that the equivalent oxide thickness of the stack containing HfSiN was only about 12 Å. Thus, the nFET fabricated using this stack should operate at an inversion layer thickness of about 12 Å with substantial gate leakage reduction because of the high k dielectric implemented in the gate stack. Current SiO2 technology has an inversion layer thickness of about 19 Å with a much higher gate leakage. -
FIG. 4 shows again a CV characteristic taken at 300 kHz of a HfSiN/HfO2/SiO2 gate stack on a p-substrate. The gate stack is similar to the one shown inFIG. 3 , except for the HfO2 (3 nm) which was deposited by MOCVD. The stack was rapid annealed at 1000° C. in N2 for 5S and then annealed in a forming gas ambient at 450° C. In this case workfunction, calculated according to S. M. Sze, Physics of Semiconductor Devices, Second Edition, pages 395-397, J. Wiley&Sons, is about 3.7 eV. This shows again n-FET behavior for the HfSiN. - While the present invention has been particularly shown and described with respect to preferred embodiments thereof it will be understood by those skilled in the art that the foregoing and other changes in forms and details may be made without departing from the spirit and scope of the present invention. It is therefore intended that the present invention not be limited to the exact forms and details described and illustrated, but fall within the scope of the appended claims.
Claims (15)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/141,476 US20080245658A1 (en) | 2005-01-13 | 2008-06-18 | METHOD OF FORMING HfSiN METAL FOR n-FET APPLICATIONS |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/035,369 US20060151846A1 (en) | 2005-01-13 | 2005-01-13 | Method of forming HfSiN metal for n-FET applications |
US11/875,524 US7521346B2 (en) | 2005-01-13 | 2007-10-19 | Method of forming HfSiN metal for n-FET applications |
US12/141,476 US20080245658A1 (en) | 2005-01-13 | 2008-06-18 | METHOD OF FORMING HfSiN METAL FOR n-FET APPLICATIONS |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/875,524 Continuation US7521346B2 (en) | 2005-01-13 | 2007-10-19 | Method of forming HfSiN metal for n-FET applications |
Publications (1)
Publication Number | Publication Date |
---|---|
US20080245658A1 true US20080245658A1 (en) | 2008-10-09 |
Family
ID=36652441
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/035,369 Abandoned US20060151846A1 (en) | 2005-01-13 | 2005-01-13 | Method of forming HfSiN metal for n-FET applications |
US11/875,524 Expired - Fee Related US7521346B2 (en) | 2005-01-13 | 2007-10-19 | Method of forming HfSiN metal for n-FET applications |
US12/141,476 Abandoned US20080245658A1 (en) | 2005-01-13 | 2008-06-18 | METHOD OF FORMING HfSiN METAL FOR n-FET APPLICATIONS |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/035,369 Abandoned US20060151846A1 (en) | 2005-01-13 | 2005-01-13 | Method of forming HfSiN metal for n-FET applications |
US11/875,524 Expired - Fee Related US7521346B2 (en) | 2005-01-13 | 2007-10-19 | Method of forming HfSiN metal for n-FET applications |
Country Status (7)
Country | Link |
---|---|
US (3) | US20060151846A1 (en) |
EP (1) | EP1836732B1 (en) |
JP (1) | JP5160238B2 (en) |
CN (2) | CN101401211B (en) |
AT (1) | ATE526684T1 (en) |
TW (1) | TW200636870A (en) |
WO (1) | WO2006076087A2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012087637A2 (en) * | 2010-12-22 | 2012-06-28 | Intel Corporation | Improving transistor channel mobility using alternate gate dielectric materials |
US8350341B2 (en) | 2010-04-09 | 2013-01-08 | International Business Machines Corporation | Method and structure for work function engineering in transistors including a high dielectric constant gate insulator and metal gate (HKMG) |
TWI675408B (en) * | 2017-10-20 | 2019-10-21 | 南韓商三星電子股份有限公司 | Semiconductor device and method for providing gate structure for a plurality of components thereof |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060151846A1 (en) * | 2005-01-13 | 2006-07-13 | International Business Machines Corporation | Method of forming HfSiN metal for n-FET applications |
JP2006245461A (en) * | 2005-03-07 | 2006-09-14 | Sony Corp | Semiconductor device and its manufacturing method |
US7301219B2 (en) * | 2005-06-06 | 2007-11-27 | Macronix International Co., Ltd. | Electrically erasable programmable read only memory (EEPROM) cell and method for making the same |
JP4455427B2 (en) * | 2005-06-29 | 2010-04-21 | 株式会社東芝 | Semiconductor device and manufacturing method thereof |
US7425497B2 (en) | 2006-01-20 | 2008-09-16 | International Business Machines Corporation | Introduction of metal impurity to change workfunction of conductive electrodes |
US7611979B2 (en) * | 2007-02-12 | 2009-11-03 | International Business Machines Corporation | Metal gates with low charge trapping and enhanced dielectric reliability characteristics for high-k gate dielectric stacks |
US7648868B2 (en) * | 2007-10-31 | 2010-01-19 | International Business Machines Corporation | Metal-gated MOSFET devices having scaled gate stack thickness |
EP2123789A1 (en) * | 2008-05-15 | 2009-11-25 | Eifeler Werkzeuge GmbH | A method of producing hard coatings |
US8916427B2 (en) * | 2013-05-03 | 2014-12-23 | Texas Instruments Incorporated | FET dielectric reliability enhancement |
KR102392059B1 (en) * | 2013-07-29 | 2022-04-28 | 삼성전자주식회사 | Semiconductor device and method of fabricating the same |
CN106158601A (en) * | 2015-03-26 | 2016-11-23 | 比亚迪股份有限公司 | The gate dielectric layer structure of SiC base device and the forming method of gate dielectric layer |
CN105448742B (en) * | 2015-12-30 | 2019-02-26 | 东莞市义仁汽车租赁有限公司 | The method of gate medium is prepared on a kind of carbofrax material |
CN110993603A (en) * | 2019-12-09 | 2020-04-10 | 中国科学院微电子研究所 | Semiconductor structure and forming method thereof |
Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6413386B1 (en) * | 2000-07-19 | 2002-07-02 | International Business Machines Corporation | Reactive sputtering method for forming metal-silicon layer |
US20030111678A1 (en) * | 2001-12-14 | 2003-06-19 | Luigi Colombo | CVD deposition of M-SION gate dielectrics |
US20040161883A1 (en) * | 2003-02-13 | 2004-08-19 | Luigi Colombo | High temperature interface layer growth for high-k gate dielectric |
US20040222443A1 (en) * | 2003-01-03 | 2004-11-11 | Rotondaro Antonio Luis Pacheco | Use of indium to define work function of p-type doped polysilicon |
US20050026459A1 (en) * | 2003-07-31 | 2005-02-03 | Tokyo Electron Limited | Method of forming uniform ultra-thin oxynitride layers |
US20050136690A1 (en) * | 2003-12-18 | 2005-06-23 | Luigi Colombo | Defect control in gate dielectrics |
US20050199877A1 (en) * | 2004-03-10 | 2005-09-15 | Tokyo Electron Limited Of Tbs Broadcast Center | Silicon germanium surface layer for high-k dielectric integration |
US20050236678A1 (en) * | 2004-04-27 | 2005-10-27 | Motoyuki Sato | Semiconductor device and method of fabricating the same |
US20050258500A1 (en) * | 2004-05-24 | 2005-11-24 | Texas Instruments, Incorporated | Refractory metal-based electrodes for work function setting in semiconductor devices |
US6974779B2 (en) * | 2003-09-16 | 2005-12-13 | Tokyo Electron Limited | Interfacial oxidation process for high-k gate dielectric process integration |
US20060068603A1 (en) * | 2004-09-30 | 2006-03-30 | Tokyo Electron Limited | A method for forming a thin complete high-permittivity dielectric layer |
US20060065938A1 (en) * | 2004-09-30 | 2006-03-30 | Tokyo Electron Limited | Method and system for forming a feature in a high-k layer |
US20060125026A1 (en) * | 2004-09-14 | 2006-06-15 | Infineon Technologies North America Corp. | Semiconductor device with high-k dielectric layer |
US20060131652A1 (en) * | 2004-12-20 | 2006-06-22 | Hong-Jyh Li | Transistor device and method of manufacture thereof |
US7375403B2 (en) * | 2003-09-26 | 2008-05-20 | Kabushiki Kaisha Toshiba | Semiconductor device and method of manufacturing the same |
US7521346B2 (en) * | 2005-01-13 | 2009-04-21 | International Business Machines Corporation | Method of forming HfSiN metal for n-FET applications |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6861356B2 (en) * | 1997-11-05 | 2005-03-01 | Tokyo Electron Limited | Method of forming a barrier film and method of forming wiring structure and electrodes of semiconductor device having a barrier film |
US6313539B1 (en) * | 1997-12-24 | 2001-11-06 | Sharp Kabushiki Kaisha | Semiconductor memory device and production method of the same |
JP2003069011A (en) * | 2001-08-27 | 2003-03-07 | Hitachi Ltd | Semiconductor device and method of manufacturing the same |
US6797525B2 (en) * | 2002-05-22 | 2004-09-28 | Agere Systems Inc. | Fabrication process for a semiconductor device having a metal oxide dielectric material with a high dielectric constant, annealed with a buffered anneal process |
WO2004027824A2 (en) * | 2002-09-18 | 2004-04-01 | Infineon Technologies Ag | Nitride and polysilicon interface with titanium layer |
US6858524B2 (en) * | 2002-12-03 | 2005-02-22 | Asm International, Nv | Method of depositing barrier layer for metal gates |
CN1263147C (en) * | 2002-12-09 | 2006-07-05 | 旺宏电子股份有限公司 | Structure and manufacture of ROM with tunneling dielectric layer of high dielectric constant |
JP2004221467A (en) * | 2003-01-17 | 2004-08-05 | Fujitsu Ltd | Semiconductor device, and manufacturing method thereof |
JP4489368B2 (en) * | 2003-03-24 | 2010-06-23 | 株式会社日立製作所 | Semiconductor device and manufacturing method thereof |
JP2005005603A (en) * | 2003-06-13 | 2005-01-06 | Toshiba Corp | Semiconductor device and its manufacturing method |
WO2005013348A2 (en) * | 2003-07-31 | 2005-02-10 | Tokyo Electron Limited | Formation of ultra-thin oxide and oxynitride layers by self-limiting interfacial oxidation |
JP2006114747A (en) * | 2004-10-15 | 2006-04-27 | Seiko Epson Corp | Method for manufacturing semiconductor device |
-
2005
- 2005-01-13 US US11/035,369 patent/US20060151846A1/en not_active Abandoned
- 2005-12-02 CN CN2005800465277A patent/CN101401211B/en not_active Expired - Fee Related
- 2005-12-02 EP EP05826298A patent/EP1836732B1/en not_active Not-in-force
- 2005-12-02 CN CN2010101366125A patent/CN101789370B/en not_active Expired - Fee Related
- 2005-12-02 AT AT05826298T patent/ATE526684T1/en not_active IP Right Cessation
- 2005-12-02 JP JP2007551254A patent/JP5160238B2/en not_active Expired - Fee Related
- 2005-12-02 WO PCT/US2005/043555 patent/WO2006076087A2/en active Application Filing
-
2006
- 2006-01-09 TW TW095100785A patent/TW200636870A/en unknown
-
2007
- 2007-10-19 US US11/875,524 patent/US7521346B2/en not_active Expired - Fee Related
-
2008
- 2008-06-18 US US12/141,476 patent/US20080245658A1/en not_active Abandoned
Patent Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6413386B1 (en) * | 2000-07-19 | 2002-07-02 | International Business Machines Corporation | Reactive sputtering method for forming metal-silicon layer |
US20030111678A1 (en) * | 2001-12-14 | 2003-06-19 | Luigi Colombo | CVD deposition of M-SION gate dielectrics |
US20040222443A1 (en) * | 2003-01-03 | 2004-11-11 | Rotondaro Antonio Luis Pacheco | Use of indium to define work function of p-type doped polysilicon |
US20040161883A1 (en) * | 2003-02-13 | 2004-08-19 | Luigi Colombo | High temperature interface layer growth for high-k gate dielectric |
US20050026459A1 (en) * | 2003-07-31 | 2005-02-03 | Tokyo Electron Limited | Method of forming uniform ultra-thin oxynitride layers |
US6974779B2 (en) * | 2003-09-16 | 2005-12-13 | Tokyo Electron Limited | Interfacial oxidation process for high-k gate dielectric process integration |
US7375403B2 (en) * | 2003-09-26 | 2008-05-20 | Kabushiki Kaisha Toshiba | Semiconductor device and method of manufacturing the same |
US20050136690A1 (en) * | 2003-12-18 | 2005-06-23 | Luigi Colombo | Defect control in gate dielectrics |
US20050199877A1 (en) * | 2004-03-10 | 2005-09-15 | Tokyo Electron Limited Of Tbs Broadcast Center | Silicon germanium surface layer for high-k dielectric integration |
US20050236678A1 (en) * | 2004-04-27 | 2005-10-27 | Motoyuki Sato | Semiconductor device and method of fabricating the same |
US20050258500A1 (en) * | 2004-05-24 | 2005-11-24 | Texas Instruments, Incorporated | Refractory metal-based electrodes for work function setting in semiconductor devices |
US20060125026A1 (en) * | 2004-09-14 | 2006-06-15 | Infineon Technologies North America Corp. | Semiconductor device with high-k dielectric layer |
US20060065938A1 (en) * | 2004-09-30 | 2006-03-30 | Tokyo Electron Limited | Method and system for forming a feature in a high-k layer |
US20060068603A1 (en) * | 2004-09-30 | 2006-03-30 | Tokyo Electron Limited | A method for forming a thin complete high-permittivity dielectric layer |
US20060131652A1 (en) * | 2004-12-20 | 2006-06-22 | Hong-Jyh Li | Transistor device and method of manufacture thereof |
US7521346B2 (en) * | 2005-01-13 | 2009-04-21 | International Business Machines Corporation | Method of forming HfSiN metal for n-FET applications |
Non-Patent Citations (2)
Title |
---|
Perkins et al., "Thermal Stability of polycrystalline silicon electrodes on ZrO2 gate dielectrics", Applied Physics Letters, Vol. 81, No. 8, Aug. 2002, pp. 1417-1419. * |
Roy et al., "Synthesis of a New Manufacturable High-Quality Graded Gate Oxide for sub-0.2 micron Technologies", IEEE Transactions on Electron Devices, Vol. 48, No. 9, Sept. 2001, pp. 2016-2021. * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8350341B2 (en) | 2010-04-09 | 2013-01-08 | International Business Machines Corporation | Method and structure for work function engineering in transistors including a high dielectric constant gate insulator and metal gate (HKMG) |
US8728925B2 (en) | 2010-04-09 | 2014-05-20 | International Business Machines Corporation | Method and structure for work function engineering in transistors including a high dielectric constant gate insulator and metal gate (HKMG) |
WO2012087637A2 (en) * | 2010-12-22 | 2012-06-28 | Intel Corporation | Improving transistor channel mobility using alternate gate dielectric materials |
WO2012087637A3 (en) * | 2010-12-22 | 2012-09-27 | Intel Corporation | Improving transistor channel mobility using alternate gate dielectric materials |
US8633534B2 (en) | 2010-12-22 | 2014-01-21 | Intel Corporation | Transistor channel mobility using alternate gate dielectric materials |
TWI675408B (en) * | 2017-10-20 | 2019-10-21 | 南韓商三星電子股份有限公司 | Semiconductor device and method for providing gate structure for a plurality of components thereof |
Also Published As
Publication number | Publication date |
---|---|
CN101401211A (en) | 2009-04-01 |
EP1836732A4 (en) | 2009-07-01 |
EP1836732B1 (en) | 2011-09-28 |
CN101401211B (en) | 2012-03-21 |
US7521346B2 (en) | 2009-04-21 |
WO2006076087A3 (en) | 2008-11-13 |
EP1836732A2 (en) | 2007-09-26 |
US20080038905A1 (en) | 2008-02-14 |
ATE526684T1 (en) | 2011-10-15 |
CN101789370A (en) | 2010-07-28 |
CN101789370B (en) | 2012-05-30 |
WO2006076087A2 (en) | 2006-07-20 |
JP5160238B2 (en) | 2013-03-13 |
JP2008530770A (en) | 2008-08-07 |
US20060151846A1 (en) | 2006-07-13 |
TW200636870A (en) | 2006-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7521346B2 (en) | Method of forming HfSiN metal for n-FET applications | |
US8288237B2 (en) | TiC as a thermally stable p-metal carbide on high k SiO2 gate stacks | |
US7436034B2 (en) | Metal oxynitride as a pFET material | |
US7872317B2 (en) | Dual metal gate self-aligned integration | |
US8193051B2 (en) | Selective implementation of barrier layers to achieve threshold voltage control in CMOS device fabrication with high-k dielectrics | |
US7611979B2 (en) | Metal gates with low charge trapping and enhanced dielectric reliability characteristics for high-k gate dielectric stacks | |
US7880241B2 (en) | Low-temperature electrically activated gate electrode and method of fabricating same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: GLOBALFOUNDRIES U.S. 2 LLC, NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:INTERNATIONAL BUSINESS MACHINES CORPORATION;REEL/FRAME:036550/0001 Effective date: 20150629 |
|
AS | Assignment |
Owner name: GLOBALFOUNDRIES INC., CAYMAN ISLANDS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GLOBALFOUNDRIES U.S. 2 LLC;GLOBALFOUNDRIES U.S. INC.;REEL/FRAME:036779/0001 Effective date: 20150910 |