US20080237125A1 - Method of cleaning membranes - Google Patents
Method of cleaning membranes Download PDFInfo
- Publication number
- US20080237125A1 US20080237125A1 US12/130,664 US13066408A US2008237125A1 US 20080237125 A1 US20080237125 A1 US 20080237125A1 US 13066408 A US13066408 A US 13066408A US 2008237125 A1 US2008237125 A1 US 2008237125A1
- Authority
- US
- United States
- Prior art keywords
- membrane
- cleaning
- sodium
- water
- sulfite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D65/00—Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
- B01D65/02—Membrane cleaning or sterilisation ; Membrane regeneration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/14—Ultrafiltration; Microfiltration
- B01D61/145—Ultrafiltration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/14—Ultrafiltration; Microfiltration
- B01D61/147—Microfiltration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/14—Ultrafiltration; Microfiltration
- B01D61/16—Feed pretreatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/30—Polyalkenyl halides
- B01D71/32—Polyalkenyl halides containing fluorine atoms
- B01D71/34—Polyvinylidene fluoride
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2311/00—Details relating to membrane separation process operations and control
- B01D2311/04—Specific process operations in the feed stream; Feed pretreatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2321/00—Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
- B01D2321/04—Backflushing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2321/00—Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
- B01D2321/16—Use of chemical agents
- B01D2321/168—Use of other chemical agents
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
- C02F1/444—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/124—Water desalination
- Y02A20/131—Reverse-osmosis
Definitions
- the present invention relates a method for cleaning polymeric microfiltration membranes and membrane units, and to compositions useful in such methods.
- Synthetic membranes are used for a variety of applications including desalination, gas separation, filtration, and dialysis.
- the properties of the membranes vary depending on the morphology of the membrane, i.e. properties such as symmetry, pore shape, and pore size, and the polymeric material used to form the membrane.
- MF and UF processes are carried out under differential pressure and are distinguished by the size of the particle or molecule that the membrane is capable of retaining or passing.
- MF can remove very fine colloidal particles in the micrometer and sub micrometer range. As a general rule, it can filter particles down to 0.1 ⁇ m, whereas ultrafiltration can retain particles as small as 0.01 ⁇ m and smaller.
- Reverse osmosis operates on an even smaller scale.
- the pore size of the membrane decreases and the pressure required to carry out the separation accordingly increases.
- a large surface area is generally needed when a large filtrate flow is required.
- One known technique to make a filtration apparatus more compact is to form a membrane in the shape of a hollow porous fiber. Modules of such fibers can be made with an extremely large surface area per unit volume. Microporous synthetic membranes are particularly suitable for use in hollow fibers and are typically produced by phase inversion techniques.
- Microporous phase inversion membranes are particularly well suited to the application of removal of colloidal suspensions, viruses, and bacteria.
- the hollow fiber membrane contains the largest membrane area per unit volume.
- UF and MF membranes are used in separating particles and colloidal matter from liquids.
- water containing solutes and precipitates is passed through a bank of semipermeable tubular membranes housed in a module, often at elevated pressures.
- the filtered water is drawn off and collected, leaving a residue of solid material in the membrane pores or on the unfiltered side of the membrane.
- the pores of the membrane be kept relatively free of contaminants. As the amount of pore blockage increases, the filtration efficiency of the module decreases and the amount of pressure required to maintain a viable throughput of liquid increases. As pressure increases, the likelihood of membrane rupture becomes more significant.
- flocculating agents are to cause dispersed colloids to coagulate and form ‘flocs’.
- Flocs have the advantage of entrapping smaller colloidal particles, thereby making filtration more efficient. They may also aid in the removal of dissolved particles. Under the influence of a flocculating agent, dissolved and suspended particles coagulate and precipitate from the water, thereby removing color, and turbidity.
- the filtrate containing the flocculating agents, colloids, bacteria and other particulate matter is passed through the filtration unit under pressure, expelling filtered water and leaving the floe trapped within the unit, and more particularly on the waste side of the membrane and in the pores of the membrane. Flocs are particularly problematical in causing membrane blockage, and membrane performance gradually diminishes with use until it becomes necessary to clean the membranes.
- One of the most commonly employed flocculating agents in the water purification field is ferric chloride, and the resultant floe is known as Fe floe.
- Fe floe the resultant floe
- Build-up of Fe floe leads to iron fouling and eventually results in membrane performance degradation that diminishes the lifetime of these high cost membrane units.
- Two of the most widely used membrane compositions polypropylene (PP) and polyvinylidene fluoride (PVDF), foul irreversibly with Fe floc and can become useless.
- Residual material accumulating in and on the membrane is often removed by ‘backwashing’, that is, running the current of water counter to its normal direction of flow to dislodge the contaminants from the membrane. Gas backwashing of the membrane is also possible.
- Backwashing generally involves increasing the pressure on both sides of the hollow fibers within a module a relatively high value before suddenly releasing that pressure on the unfiltered side of the membrane walls to cause a sudden pressure differential across the walls, which causes a backwash action.
- the membranes may be de-fouled by more conventional cleaning regimes such as solution treatment with one or more of (and usually in a sequential manner) citric acid, oxidizing agents, in particular chlorine, and chelating agents such as EDTA.
- solution treatment with one or more of (and usually in a sequential manner) citric acid, oxidizing agents, in particular chlorine, and chelating agents such as EDTA.
- Citric acid is usually regarded as a satisfactory cleaning agent, however, even it does not provide ideal levels of cleaning, and the membrane performance diminishes even following regular use/cleaning cycles. Moreover, the cleaning process usually involves a number of steps, and one or more of the steps may need to be conducted for long periods of time. Temperature control is also usually required.
- Inorganic acids and bases are the mainstay of conventional cleaning agents. As well as suffering from the drawbacks mentioned above; these agents present their own problems because they may chemically attack the membranes and/or module components. Combinations of an aqueous inorganic acid, generally nitric acid, and a reducing agent, e.g., ascorbic acid, have also been used. However, none of the above regimes sufficiently de-foul membranes, particularly PVDF membranes, of the floc. Hence, there exists the need to improve the cleaning regime while at the same time avoiding the use of potentially severe cleaning agents.
- a method of cleaning a membrane contaminated with a contaminant including the step of contacting the contaminant with a composition including at least one soluble sulfite reducing agent and a compatible solvent.
- sulfite as used herein is used in its broadest general sense and includes, without limitation, sulfite, bisulfite, metabisulfite, hydrosulfite, and the like.
- the membrane is of a hollow fiber configuration, although alternatively it may be a flat sheet membrane or other membrane configuration.
- the membrane is formed from PVDF (polyvinylidene fluoride) polymer, although the methods of the preferred embodiments are applicable to polysulfone, polyethylene, polypropylene, polyacrylonitrile (PAN), fluorinated membranes, cellulose acetate membranes and the like and mixtures of the above, as well as all commonly used membrane polymers.
- PVDF polyvinylidene fluoride
- the soluble sulfite reducing agent is sodium metabisulfite, sodium hydrosulfite, sodium sulfite or mixtures thereof. Most preferably, a mixture of sodium metabisulfite and sodium hydrosulfite is used.
- the solvent is preferably water. However any suitable solvent that is compatible with the materials comprising the membrane and is a suitable solvent for the sulfite may also be employed.
- the sodium metabisulfite and sodium hydrosulfite are present in an amount of 20 wt. % to 65 wt. % each, when used alone or in combination. This combination may be used neat or further diluted when in use, for example, to around 0.5 wt. %. Dilutions of about 2 wt % are particularly preferred. However, any suitable dilution may be employed.
- the method reduces the cleaning time relative to known cleaning methods and is carried out at low or ambient temperatures.
- a method of cleaning a membrane contaminated with a contaminant including the step of contacting the contaminant with a composition including a sulfite reducing agent and a solvent, wherein the sulfite reducing agent is soluble in the solvent, and wherein the solvent is compatible with the membrane.
- the contaminant includes a metal oxide or a metal hydroxide.
- the contaminant includes ferric floc.
- the contaminant includes an organic compound.
- the solvent includes water.
- the sulfite reducing agent includes sodium metabisulfite, sodium hydrosulfite, sodium sulfite, potassium metabisulfite, potassium hydrosulfite, potassium sulfite, or mixtures thereof.
- method further includes the step of reducing a valence state of an atom of the contaminant to a lower valence state, whereby the contaminant is solubilized and removed from the membrane.
- the composition further includes an enhancing agent.
- the enhancing agent includes inorganic acids, organic acids, or mixtures thereof.
- the enhancing agent includes citric acid.
- the solvent includes water and the sulfite reducing agent includes sodium metabisulfite, sodium hydrosulfite, or mixtures thereof.
- the sulfite reducing agent includes from about 0.1 wt. % to about 5 wt. % of a component including sodium metabisulfite, sodium hydrosulfite, or mixtures thereof.
- the sulfite reducing agent includes from about 0.5 wt. % to about 2 wt. % of a component including sodium metabisulfite, sodium hydrosulfite, or mixtures thereof.
- the composition includes from about 0.5 wt. % to about 1.5 wt. % sodium metabisulfite and from about 0.5 wt. % to about 1.5 wt. % sodium hydrosulfite.
- the membrane includes a hollow fiber microfiltration membrane or a hollow fiber ultrafiltration membrane.
- the membrane includes a flat microfiltration membrane or a flat ultrafiltration membrane.
- the membrane includes a polyvinylidene fluoride polymer.
- a composition for cleaning a membrane contaminated with a contaminant including a sulfite reducing agent and a solvent, wherein the sulfite reducing agent is soluble in the solvent, and wherein the solvent is compatible with the membrane.
- the contaminant includes a metal oxide or a metal hydroxide.
- the contaminant is ferric floc.
- the sulfite reducing agent includes sodium metabisulfite, sodium hydrosulfite, sodium sulfite, potassium metabisulfite, potassium hydrosulfite, potassium sulfite, or mixtures thereof.
- the sulfite reducing agent includes sodium metabisulfite and sodium hydrosulfite.
- the composition further includes an enhancing agent.
- the enhancing agent includes an inorganic acid or an organic acid.
- the organic acid includes citric acid.
- the sulfite reducing agent includes from about 20 wt. % to about 60 wt. % sodium metabisulfite, wherein the sulfite reducing agent is capable of dilution to a working concentration of about 0.5 wt. % to about 2 wt. % of sulfite reducing agent in a solubilized form.
- the sulfite reducing agent includes from about 0.5 wt. % to about 2 wt. % sodium metabisulfite.
- the sulfite reducing agent includes from about 20 wt. % to about 65 wt. % sodium hydrosulfite, and wherein the sulfite reducing agent is capable of dilution to a working concentration of about 0.5 wt. % to about 2 wt. % soluble sulfite reducing agent present in solubilized form.
- the sulfite reducing agent includes from about 0.5 wt. % to about 2 wt. % sodium hydrosulfite.
- the composition includes from about 20 wt. % to about 65 wt. % sodium metabisulfite and from about 20 wt. % to about 65 wt. % sodium hydrosulfite, wherein the sodium metabisulfite and sodium hydrosulfite are capable of dilution to a working concentration of about 0.5 wt. % to about 2 wt. % sulfite reducing agent in solubilized form.
- the composition includes from about 0.5 wt. % to about 2 wt. % sodium metabisulfite and sodium hydrosulfite.
- a method for cleaning a membrane including the step of cleaning the membrane using a composition including a sulfite reducing agent and a solvent, wherein the sulfite reducing agent is soluble in the solvent, and wherein the solvent is compatible with the membrane.
- a membrane is provided wherein the membrane is capable of cleaning by a composition including a sulfite reducing agent and a solvent, wherein the sulfite reducing agent is soluble in the solvent, and wherein the solvent is compatible with the membrane.
- a membrane is provided, wherein the membrane is contaminated with a contaminant including a metal oxide or a metal hydroxide, and wherein the membrane is capable of cleaning by a composition including a sulfite reducing agent and a solvent, wherein the sulfite reducing agent is soluble in the solvent, and wherein the solvent is compatible with the membrane.
- the membrane includes a hollow fiber or a flat sheet.
- the membrane includes a polyvinylidene fluoride polymer.
- Ferric chloride is the preferred flocculating agent in water clean-up procedures.
- standard cleaning regimes have not been highly effective in cleaning PVDF membranes of the resultant Fe floc, leading to significant commercial costs associated with ultimate irreversible membrane fouling by metal oxides and/or hydroxides.
- the present inventors have found that the methods of the preferred embodiments are particularly suited for PVDF membranes.
- metabisulfite was used as a cleaning agent on PVDF membranes, there was successful removal of metal oxides and metal hydroxides.
- This material may be used neat, although it is possible to use it diluted in an amount such that the dilution is as low as 0.5 wt. %, although dilutions of around 2 wt. % have been found advantageous.
- standardized solutions may be prepared from the starting materials. While the exact concentration will be selected depending on the time limits set for the membrane cleaning and on cost considerations, it has been found particularly-useful to use solutions of around 2 wt. %/volume total sulfite content based on the starting materials, i.e. 2 g sodium metabisulfite per 100 ml of water, or 1 g sodium bisulfite and 1 g of sodium hydrosulfite per 100 ml of water, and the like.
- the ferric floe applications can be run at the higher flux and the fouled membranes can be quickly and efficiently cleaned.
- the ability to use such high fluxes can translate into a significant commercial advantage.
- CIP cleaning-in-place
- one form of CIP cleaning involves isolating the module to be cleaned by means of taps and pipes and the like from fluid communication with the remainder of the system.
- the water or liquid normally filtered is then replaced with a cleaning fluid.
- the cleaning fluid is then allowed to run through the membrane module to carry out the cleaning.
- the cleaning fluid may be recycled through the module, or allowed to pass through the module just once before being run off to waste, depending upon the particular requirements of the system and the amount of contaminants being removed.
- the CIP procedure can take place at ambient temperatures or at controlled temperatures outside the normal range of filtration temperatures, e.g. at higher temperatures to increase dissolution of solids, or at lower temperatures to allow for a greater concentration of dissolved gaseous agents e.g., especially chlorine gas, in the fluid.
- the CIP can be carried out for varying lengths of time and at pressures outside the normal range of those used for filtration.
- the filtration agent is flushed to remove traces of the cleaning agent before being returned to service by being reconnected to the normal fluid flow.
- CIP can be carried out manually or by means of fully automated systems which activate in response to pressure differentials or after predetermined module operating times.
- the examples given below relate to modules prepared from banks of hollow fiber PVDF membranes.
- the membrane modules are as described in U.S. Pat. No. 6,159,373, the contents of which are incorporated herein by reference.
- the module includes a shell within which is positioned a bundle containing from about 2800 to about 30,000 hollow fibers with a diameter of 500 ⁇ m to 650 ⁇ m and a lumen diameter of 250 ⁇ m to 310 ⁇ m, with a pore size of 0.2 ⁇ m, but these sizes may be varied as required.
- membrane and module configurations different from the one described above may also be employed with the methods of preferred embodiments, as will be appreciated by one skilled in the art.
- a potting compound holds the ends of the fibers in place without blocking the lumens and closes off each end of the module.
- the liquid feed is pumped into the module, between the shell and the outside of the hollow fibers. Some of the feed liquid passes into the lumen of the fibers, being filtered as it does so. The clean liquid then concentrates in the inside of the lumen, and flows, or is drawn off and taken outside the module, as a clarified liquid.
- the cleaning agent is introduced in place of the untreated liquid stream.
- the flow can be introduced counter to that normally used.
- Membranes in a raw water filtration module were cleaned using a 2 wt. % solution of citric acid in water at 35° C., which was recirculated for 60 minutes. Three repeats of a 300 second aeration followed by a 300 second soak were conducted. Then, a solution of 300 ppm Cl in water at 20° C. was recirculated for 60 minutes, followed by a 30 minute soak. The total duration of the CIP was 3 hours.
- Table 1 provides measurements of transmembrane pressure (TMP), resistance (R), and flow (in gallons per minute per module) both before and after the CIP.
- Membranes in a clarified water filtration module were cleaned 400 ppm solution of Cl in water at 20° C., which was recirculated for 60 minutes, followed by a 30 minute soak. Then the membranes were washed with a 2.7 wt. % citric acid solution in water at 35° C., which was recirculated for 60 minutes. Three repeats of a 300 second aeration followed by a 300 second soak were conducted. Then, an overnight soak was conducted. The total duration of the CEP was 13 hours. Table 2 provides measurements of transmembrane pressure, resistance, and flow both before and after the CIP.
- Membranes in a clarified water filtration module were cleaned using a 1000 ppm solution of Cl in water at 20° C., which was recirculated for 60 minutes, followed by a 30 minute soak. Then the membranes were washed with a 4 wt. % citric acid solution in water at 35° C., which was recirculated for 60 minutes. Three repeats of a 300 second aeration followed by a 300 second soak were conducted. Then, an overnight soak in a 1000 ppm Cl solution in water was conducted. The total duration of the CIP was 13 hours. Table 3 provides measurements of transmembrane pressure, resistance, and flow both before and after the CIP.
- Membranes in a raw water filtration module were cleaned using a solution of 300 ppm Cl in water at 20° C., followed by an overnight soak. Then, the membranes were cleaned with a 2 wt. % citric acid solution in water at 40° C. for two hours. The total duration of the CIP was 13 hours.
- Table 4 provides measurements of transmembrane pressure CIM), resistance (R), and flow (in gallons per minute per module) both before and after the CIP.
- Membranes in a clarified water filtration module were cleaned using a 2 wt. % solution of SUPER IRON OUT® in water at 20° C. for 30 minutes. Then the membranes were washed with a solution of 1000 ppm Cl in water at 20° C., which was recirculated for 60 minutes, followed by a 30 minute soak. The total duration of the CIP was 2 hours.
- Table 5 provides measurements of transmembrane pressure, resistance, and flow both before and after the CIP. The data demonstrate a substantial reduction in transmembrane pressure and resistance, and an increase in flow following the cleaning method.
- cleaning-the membranes by both conventional methods and by the methods of the preferred embodiments, results in a reduction in transmembrane pressure, a decrease in resistance, and an increase in flow, all indicators that the membrane has been cleaned.
- Sulfite agents such as sodium metabisulfite and SUPER IRON OUT® can also be used in conjunction with other conventional methods, for example, in conjunction with sulfuric acid for cleaning membranes (including polypropylene membranes). In low concentrations, it is believed sodium metabisulfite may act as a sacrificial agent, protecting the membrane from degradation by other cleaning agents.
- the best post-clean fouling rates were also investigated.
- the poorest post-clean fouling rate was found using the conventional chlorine clean.
- the best post clean fouling was found using 2 wt. % citric acid and 2 wt. % SMBS, with the 1.5 wt. % SMBS/0.5 wt. % SHS and 0.5 wt. % SMBS/1.5 wt % SHS mixtures also performing very well.
- the citric acid gave the lowest permeability recovery.
- Three cleans, 1.5% SMBS+0.5 wt. % SHS, 1 wt. % SMBS+1 wt. % SHS, and 2 wt. % SHS gave the best permability recoveries.
- the permeability recoveries for the sulfite cleaning agents show that for two specific combinations, 1.5 wt. % SMBS/0.5 wt. % SHS and 1 wt. % SMBS/1 wt. % SHS, the permeability recovery (of 221% and 236%, respectively) was greater than the permeability recovery for either the SMBS or SHS alone, indicating a synergistic relationship between the two.
- the other cleaning combinations are likewise not simply additive, indicating that in combination, the two sulfite cleaning agents may act co-operatively.
- the sulfite cleaning method of the preferred embodiments provided in all cases a good TMP recovery, good permeability recovery and a low rate of post clean fouling.
- the all round performance was not matched by conventional cleaning methodologies.
- sulfite cleaning required less time to achieve CIP (cleaning in place) de-fouling of membranes than conventional (chlorine) membrane cleans.
Landscapes
- Engineering & Computer Science (AREA)
- Water Supply & Treatment (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
The present invention relates a method for cleaning polymeric microfiltration membranes and membrane units, and to compositions useful in such methods. The compositions include at least one soluble sulfite reducing agent and a compatible solvent.
Description
- This application claims the benefit of U.S. Provisional Application No. 60/333,828, filed Nov. 16, 2001.
- The present invention relates a method for cleaning polymeric microfiltration membranes and membrane units, and to compositions useful in such methods.
- Synthetic membranes are used for a variety of applications including desalination, gas separation, filtration, and dialysis. The properties of the membranes vary depending on the morphology of the membrane, i.e. properties such as symmetry, pore shape, and pore size, and the polymeric material used to form the membrane.
- Different membranes can be used for specific separation processes, including microfiltration (MF), ultrafiltration (UF), and reverse osmosis. MF and UF processes are carried out under differential pressure and are distinguished by the size of the particle or molecule that the membrane is capable of retaining or passing. MF can remove very fine colloidal particles in the micrometer and sub micrometer range. As a general rule, it can filter particles down to 0.1 μm, whereas ultrafiltration can retain particles as small as 0.01 μm and smaller. Reverse osmosis operates on an even smaller scale.
- As the size of the particles to be separated decreases, the pore size of the membrane decreases and the pressure required to carry out the separation accordingly increases.
- A large surface area is generally needed when a large filtrate flow is required. One known technique to make a filtration apparatus more compact is to form a membrane in the shape of a hollow porous fiber. Modules of such fibers can be made with an extremely large surface area per unit volume. Microporous synthetic membranes are particularly suitable for use in hollow fibers and are typically produced by phase inversion techniques.
- Microporous phase inversion membranes are particularly well suited to the application of removal of colloidal suspensions, viruses, and bacteria. Of all types of membranes, the hollow fiber membrane contains the largest membrane area per unit volume.
- UF and MF membranes are used in separating particles and colloidal matter from liquids. In a typical scenario, water containing solutes and precipitates is passed through a bank of semipermeable tubular membranes housed in a module, often at elevated pressures. The filtered water is drawn off and collected, leaving a residue of solid material in the membrane pores or on the unfiltered side of the membrane.
- It is preferred that the pores of the membrane be kept relatively free of contaminants. As the amount of pore blockage increases, the filtration efficiency of the module decreases and the amount of pressure required to maintain a viable throughput of liquid increases. As pressure increases, the likelihood of membrane rupture becomes more significant.
- Under some circumstances, it may be desirable to treat water containing impurities with a flocculating agent prior to filtration. The purpose of flocculating agents is to cause dispersed colloids to coagulate and form ‘flocs’. Flocs have the advantage of entrapping smaller colloidal particles, thereby making filtration more efficient. They may also aid in the removal of dissolved particles. Under the influence of a flocculating agent, dissolved and suspended particles coagulate and precipitate from the water, thereby removing color, and turbidity.
- Thus, in practice, the filtrate containing the flocculating agents, colloids, bacteria and other particulate matter is passed through the filtration unit under pressure, expelling filtered water and leaving the floe trapped within the unit, and more particularly on the waste side of the membrane and in the pores of the membrane. Flocs are particularly problematical in causing membrane blockage, and membrane performance gradually diminishes with use until it becomes necessary to clean the membranes.
- One of the most commonly employed flocculating agents in the water purification field is ferric chloride, and the resultant floe is known as Fe floe. Build-up of Fe floe leads to iron fouling and eventually results in membrane performance degradation that diminishes the lifetime of these high cost membrane units. Two of the most widely used membrane compositions, polypropylene (PP) and polyvinylidene fluoride (PVDF), foul irreversibly with Fe floc and can become useless.
- Residual material accumulating in and on the membrane is often removed by ‘backwashing’, that is, running the current of water counter to its normal direction of flow to dislodge the contaminants from the membrane. Gas backwashing of the membrane is also possible.
- Backwashing generally involves increasing the pressure on both sides of the hollow fibers within a module a relatively high value before suddenly releasing that pressure on the unfiltered side of the membrane walls to cause a sudden pressure differential across the walls, which causes a backwash action. However, it is difficult to achieve complete removal of particulate matter, especially when flocculants have been used.
- In addition to backwashing, the membranes may be de-fouled by more conventional cleaning regimes such as solution treatment with one or more of (and usually in a sequential manner) citric acid, oxidizing agents, in particular chlorine, and chelating agents such as EDTA.
- Citric acid is usually regarded as a satisfactory cleaning agent, however, even it does not provide ideal levels of cleaning, and the membrane performance diminishes even following regular use/cleaning cycles. Moreover, the cleaning process usually involves a number of steps, and one or more of the steps may need to be conducted for long periods of time. Temperature control is also usually required.
- Inorganic acids and bases are the mainstay of conventional cleaning agents. As well as suffering from the drawbacks mentioned above; these agents present their own problems because they may chemically attack the membranes and/or module components. Combinations of an aqueous inorganic acid, generally nitric acid, and a reducing agent, e.g., ascorbic acid, have also been used. However, none of the above regimes sufficiently de-foul membranes, particularly PVDF membranes, of the floc. Hence, there exists the need to improve the cleaning regime while at the same time avoiding the use of potentially severe cleaning agents.
- It is desirable to overcome or ameliorate at least one of the disadvantages of the prior art methods of de-fouling membranes, to provide a useful alternative to conventional methods of de-fouling membranes, or to provide suitable compositions for use in cleaning or de-fouling membranes.
- In a preferred embodiment, there is provided a method of cleaning a membrane contaminated with a contaminant including the step of contacting the contaminant with a composition including at least one soluble sulfite reducing agent and a compatible solvent. The term sulfite as used herein is used in its broadest general sense and includes, without limitation, sulfite, bisulfite, metabisulfite, hydrosulfite, and the like.
- Preferably the membrane is of a hollow fiber configuration, although alternatively it may be a flat sheet membrane or other membrane configuration. In highly preferred embodiments, the membrane is formed from PVDF (polyvinylidene fluoride) polymer, although the methods of the preferred embodiments are applicable to polysulfone, polyethylene, polypropylene, polyacrylonitrile (PAN), fluorinated membranes, cellulose acetate membranes and the like and mixtures of the above, as well as all commonly used membrane polymers.
- Preferably, the soluble sulfite reducing agent is sodium metabisulfite, sodium hydrosulfite, sodium sulfite or mixtures thereof. Most preferably, a mixture of sodium metabisulfite and sodium hydrosulfite is used. Those skilled in the art will appreciate that, for instance, besides sodium, other soluble salts such as potassium or other alkali metals or alkaline earth metals may be used. The solvent is preferably water. However any suitable solvent that is compatible with the materials comprising the membrane and is a suitable solvent for the sulfite may also be employed.
- It is also preferred that the sodium metabisulfite and sodium hydrosulfite are present in an amount of 20 wt. % to 65 wt. % each, when used alone or in combination. This combination may be used neat or further diluted when in use, for example, to around 0.5 wt. %. Dilutions of about 2 wt % are particularly preferred. However, any suitable dilution may be employed.
- Preferably, and without wishing to be bound by any particular theory, the contaminant believed to be removed by solubilization resulting from a reduction to a lower valence state of at least a part of the contaminant
- Preferably, the method reduces the cleaning time relative to known cleaning methods and is carried out at low or ambient temperatures.
- Accordingly, in a first embodiment, a method of cleaning a membrane contaminated with a contaminant is provided, the method including the step of contacting the contaminant with a composition including a sulfite reducing agent and a solvent, wherein the sulfite reducing agent is soluble in the solvent, and wherein the solvent is compatible with the membrane.
- In an aspect of the first embodiment, the contaminant includes a metal oxide or a metal hydroxide.
- In an aspect of the first embodiment, the contaminant includes ferric floc.
- In an aspect of the first embodiment, the contaminant includes an organic compound.
- In an aspect of the first embodiment, the solvent includes water.
- In an aspect of the first embodiment, the sulfite reducing agent includes sodium metabisulfite, sodium hydrosulfite, sodium sulfite, potassium metabisulfite, potassium hydrosulfite, potassium sulfite, or mixtures thereof.
- In an aspect of the first embodiment, method further includes the step of reducing a valence state of an atom of the contaminant to a lower valence state, whereby the contaminant is solubilized and removed from the membrane.
- In an aspect of the first embodiment, the composition further includes an enhancing agent.
- In an aspect of the first embodiment, the enhancing agent includes inorganic acids, organic acids, or mixtures thereof.
- In an aspect of the first embodiment, the enhancing agent includes citric acid.
- In an aspect of the first embodiment, the solvent includes water and the sulfite reducing agent includes sodium metabisulfite, sodium hydrosulfite, or mixtures thereof.
- In an aspect of the first embodiment, the sulfite reducing agent includes from about 0.1 wt. % to about 5 wt. % of a component including sodium metabisulfite, sodium hydrosulfite, or mixtures thereof.
- In an aspect of the first embodiment, the sulfite reducing agent includes from about 0.5 wt. % to about 2 wt. % of a component including sodium metabisulfite, sodium hydrosulfite, or mixtures thereof.
- In an aspect of the first embodiment, the composition includes from about 0.5 wt. % to about 1.5 wt. % sodium metabisulfite and from about 0.5 wt. % to about 1.5 wt. % sodium hydrosulfite.
- In an aspect of the first embodiment, the membrane includes a hollow fiber microfiltration membrane or a hollow fiber ultrafiltration membrane.
- In an aspect of the first embodiment, the membrane includes a flat microfiltration membrane or a flat ultrafiltration membrane.
- In an aspect of the first embodiment, the membrane includes a polyvinylidene fluoride polymer.
- In a second embodiment, a composition for cleaning a membrane contaminated with a contaminant is provided, the composition including a sulfite reducing agent and a solvent, wherein the sulfite reducing agent is soluble in the solvent, and wherein the solvent is compatible with the membrane.
- In an aspect of the second embodiment, the contaminant includes a metal oxide or a metal hydroxide.
- In an aspect of the second embodiment, the contaminant is ferric floc.
- In an aspect of the second embodiment, the sulfite reducing agent includes sodium metabisulfite, sodium hydrosulfite, sodium sulfite, potassium metabisulfite, potassium hydrosulfite, potassium sulfite, or mixtures thereof.
- In an aspect of the second embodiment, the sulfite reducing agent includes sodium metabisulfite and sodium hydrosulfite.
- In an aspect of the second embodiment, the composition further includes an enhancing agent.
- In an aspect of the second embodiment, the enhancing agent includes an inorganic acid or an organic acid.
- In an aspect of the second embodiment, the organic acid includes citric acid.
- In an aspect of the second embodiment, the sulfite reducing agent includes from about 20 wt. % to about 60 wt. % sodium metabisulfite, wherein the sulfite reducing agent is capable of dilution to a working concentration of about 0.5 wt. % to about 2 wt. % of sulfite reducing agent in a solubilized form.
- In an aspect of the second embodiment, the sulfite reducing agent includes from about 0.5 wt. % to about 2 wt. % sodium metabisulfite.
- In an aspect of the second embodiment, the sulfite reducing agent includes from about 20 wt. % to about 65 wt. % sodium hydrosulfite, and wherein the sulfite reducing agent is capable of dilution to a working concentration of about 0.5 wt. % to about 2 wt. % soluble sulfite reducing agent present in solubilized form.
- In an aspect of the second embodiment, the sulfite reducing agent includes from about 0.5 wt. % to about 2 wt. % sodium hydrosulfite.
- In an aspect of the second embodiment, the composition includes from about 20 wt. % to about 65 wt. % sodium metabisulfite and from about 20 wt. % to about 65 wt. % sodium hydrosulfite, wherein the sodium metabisulfite and sodium hydrosulfite are capable of dilution to a working concentration of about 0.5 wt. % to about 2 wt. % sulfite reducing agent in solubilized form.
- In an aspect of the second embodiment, the composition includes from about 0.5 wt. % to about 2 wt. % sodium metabisulfite and sodium hydrosulfite.
- In a third embodiment, a method for cleaning a membrane is provided, the method including the step of cleaning the membrane using a composition including a sulfite reducing agent and a solvent, wherein the sulfite reducing agent is soluble in the solvent, and wherein the solvent is compatible with the membrane.
- In a fourth embodiment, a membrane is provided wherein the membrane is capable of cleaning by a composition including a sulfite reducing agent and a solvent, wherein the sulfite reducing agent is soluble in the solvent, and wherein the solvent is compatible with the membrane.
- In a fifth embodiment, a membrane is provided, wherein the membrane is contaminated with a contaminant including a metal oxide or a metal hydroxide, and wherein the membrane is capable of cleaning by a composition including a sulfite reducing agent and a solvent, wherein the sulfite reducing agent is soluble in the solvent, and wherein the solvent is compatible with the membrane.
- In an aspect of the fifth embodiment, the membrane includes a hollow fiber or a flat sheet.
- In an aspect of the fifth embodiment, the membrane includes a polyvinylidene fluoride polymer.
- The following description and examples illustrate a preferred embodiment of the present invention in detail. Those of skill in the art will recognize that there are numerous variations and modifications of this invention that are encompassed by its scope. Accordingly, the description of a preferred embodiment should not be deemed to limit the scope of the present invention.
- Ferric chloride is the preferred flocculating agent in water clean-up procedures. However, standard cleaning regimes have not been highly effective in cleaning PVDF membranes of the resultant Fe floc, leading to significant commercial costs associated with ultimate irreversible membrane fouling by metal oxides and/or hydroxides.
- Surprisingly, the present inventors have found that the methods of the preferred embodiments are particularly suited for PVDF membranes. When metabisulfite was used as a cleaning agent on PVDF membranes, there was successful removal of metal oxides and metal hydroxides.
- More surprisingly, when sodium hydrosulfite and sodium metabisulfite were used in combination as cleaning agents for PVDF membranes, significant antifouling properties ere observed.
- One commercial blend of sodium hydrosulfite (20-65 wt. %) and sodium metabisulfite (20-65 wt. %) was found to be particularly useful. This mixture, marketed as SUPER IRON OUT®, has been commercially available since the 1950's, although it has not been used for cleaning membranes. SUPER IRON OUT® has been marketed to household consumers as an all-purpose rust and stain remover, water softener, a cleaning agent for toilets, sinks tubs, dishwashers, white clothing, and fabrics as well as exterior surfaces, i.e. as a general household reductant.
- This material may be used neat, although it is possible to use it diluted in an amount such that the dilution is as low as 0.5 wt. %, although dilutions of around 2 wt. % have been found advantageous.
- Alternatively, standardized solutions may be prepared from the starting materials. While the exact concentration will be selected depending on the time limits set for the membrane cleaning and on cost considerations, it has been found particularly-useful to use solutions of around 2 wt. %/volume total sulfite content based on the starting materials, i.e. 2 g sodium metabisulfite per 100 ml of water, or 1 g sodium bisulfite and 1 g of sodium hydrosulfite per 100 ml of water, and the like.
- The commercial importance of this new application is that it allows ferric floc applications to be run at 20 to 30% higher water flux than has previously been thought possible. Using such high fluxes is normally to be avoided because of the extreme fouling that takes place under such conditions, and the resultant difficulty in cleaning badly fouled membranes, wherein the floc is forced hard into the pores and cannot be readily physically removed by backwashing, or by chemical cleaners.
- With the advent of the cleaning method of the preferred embodiments, the ferric floe applications can be run at the higher flux and the fouled membranes can be quickly and efficiently cleaned. The ability to use such high fluxes can translate into a significant commercial advantage.
- As more liquid is filtered, the amount of residue removed from that liquid increases in the pores and on the outside and needs to be cleaned.
- The methods of the preferred embodiments can be used in conjunction with backwashing methodology, or as a stand-alone cleaning method suitable for carrying out “cleaning-in-place” (CIP). CIP involves cleaning the membrane module without removal from its normal in situ place of operation.
- In general terms, one form of CIP cleaning involves isolating the module to be cleaned by means of taps and pipes and the like from fluid communication with the remainder of the system. The water or liquid normally filtered is then replaced with a cleaning fluid. The cleaning fluid is then allowed to run through the membrane module to carry out the cleaning. The cleaning fluid may be recycled through the module, or allowed to pass through the module just once before being run off to waste, depending upon the particular requirements of the system and the amount of contaminants being removed.
- The CIP procedure can take place at ambient temperatures or at controlled temperatures outside the normal range of filtration temperatures, e.g. at higher temperatures to increase dissolution of solids, or at lower temperatures to allow for a greater concentration of dissolved gaseous agents e.g., especially chlorine gas, in the fluid. The CIP can be carried out for varying lengths of time and at pressures outside the normal range of those used for filtration.
- Once the cleaning is completed, the filtration agent is flushed to remove traces of the cleaning agent before being returned to service by being reconnected to the normal fluid flow.
- CIP can be carried out manually or by means of fully automated systems which activate in response to pressure differentials or after predetermined module operating times.
- A preferred embodiment is described below, by way of example only.
- The examples given below relate to modules prepared from banks of hollow fiber PVDF membranes. The membrane modules are as described in U.S. Pat. No. 6,159,373, the contents of which are incorporated herein by reference. The module includes a shell within which is positioned a bundle containing from about 2800 to about 30,000 hollow fibers with a diameter of 500 μm to 650 μm and a lumen diameter of 250 μm to 310 μm, with a pore size of 0.2 μm, but these sizes may be varied as required. Moreover, membrane and module configurations different from the one described above may also be employed with the methods of preferred embodiments, as will be appreciated by one skilled in the art.
- At each end of the fiber bundle, a potting compound holds the ends of the fibers in place without blocking the lumens and closes off each end of the module. The liquid feed is pumped into the module, between the shell and the outside of the hollow fibers. Some of the feed liquid passes into the lumen of the fibers, being filtered as it does so. The clean liquid then concentrates in the inside of the lumen, and flows, or is drawn off and taken outside the module, as a clarified liquid.
- In the CIP method exemplified, the cleaning agent is introduced in place of the untreated liquid stream. However, those skilled in the art will realize that the flow can be introduced counter to that normally used.
- CIP Comparative Method 1—Raw Water Filtration Module
- Membranes in a raw water filtration module were cleaned using a 2 wt. % solution of citric acid in water at 35° C., which was recirculated for 60 minutes. Three repeats of a 300 second aeration followed by a 300 second soak were conducted. Then, a solution of 300 ppm Cl in water at 20° C. was recirculated for 60 minutes, followed by a 30 minute soak. The total duration of the CIP was 3 hours. Table 1 provides measurements of transmembrane pressure (TMP), resistance (R), and flow (in gallons per minute per module) both before and after the CIP.
-
TABLE 1 BEFORE CIP AFTER CIP TMP Flow TMP Flow (psi) R (gpm/mod) (psi) R (gpm/mod) 8.1 4.27 4.4 3.5 2.21 4.9 - CIP Comparative Method 2—Clarified Water Filtration Module
- Membranes in a clarified water filtration module (containing flocculant) were cleaned 400 ppm solution of Cl in water at 20° C., which was recirculated for 60 minutes, followed by a 30 minute soak. Then the membranes were washed with a 2.7 wt. % citric acid solution in water at 35° C., which was recirculated for 60 minutes. Three repeats of a 300 second aeration followed by a 300 second soak were conducted. Then, an overnight soak was conducted. The total duration of the CEP was 13 hours. Table 2 provides measurements of transmembrane pressure, resistance, and flow both before and after the CIP.
-
TABLE 2 BEFORE CIP AFTER CIP TMP Flow TMP Flow (psi) R (gpm/mod) (psi) R (gpm/mod) 11 7.48 4.9 5.9 3.56 4.9 - CIP Comparative Method 3—Clarified Water Filtration Module
- Membranes in a clarified water filtration module (containing flocculant) were cleaned using a 1000 ppm solution of Cl in water at 20° C., which was recirculated for 60 minutes, followed by a 30 minute soak. Then the membranes were washed with a 4 wt. % citric acid solution in water at 35° C., which was recirculated for 60 minutes. Three repeats of a 300 second aeration followed by a 300 second soak were conducted. Then, an overnight soak in a 1000 ppm Cl solution in water was conducted. The total duration of the CIP was 13 hours. Table 3 provides measurements of transmembrane pressure, resistance, and flow both before and after the CIP.
-
TABLE 3 BEFORE CIP AFTER CIP TMP Flow TMP Flow (psi) R (gpm/mod) (psi) R (gpm/mod) 10.9 10.61 3.6 5.4 3.34 3.6 - CIP Comparative Method 4—Raw Water Filtration Module
- Membranes in a raw water filtration module were cleaned using a solution of 300 ppm Cl in water at 20° C., followed by an overnight soak. Then, the membranes were cleaned with a 2 wt. % citric acid solution in water at 40° C. for two hours. The total duration of the CIP was 13 hours. Table 4 provides measurements of transmembrane pressure CIM), resistance (R), and flow (in gallons per minute per module) both before and after the CIP.
-
TABLE 4 BEFORE CIP AFTER CIP TMP Flow TMP Flow (psi) R (gpm/mod) (psi) R (gpm/mod) 5.58 4.08 3.85 3.5 2.63 3.75 - CIP Method 1—Clarified Water Filtration Module
- Membranes in a clarified water filtration module (containing flocculant) were cleaned using a 2 wt. % solution of SUPER IRON OUT® in water at 20° C. for 30 minutes. Then the membranes were washed with a solution of 1000 ppm Cl in water at 20° C., which was recirculated for 60 minutes, followed by a 30 minute soak. The total duration of the CIP was 2 hours. Table 5 provides measurements of transmembrane pressure, resistance, and flow both before and after the CIP. The data demonstrate a substantial reduction in transmembrane pressure and resistance, and an increase in flow following the cleaning method.
-
TABLE 5 BEFORE CIP AFTER CIP TMP Flow TMP Flow (psi) R (gpm/mod) (psi) R (gpm/mod) 10.6 7.19 4.8 5 2.8 5.7 - It can be seen from all the above examples that cleaning-the membranes, by both conventional methods and by the methods of the preferred embodiments, results in a reduction in transmembrane pressure, a decrease in resistance, and an increase in flow, all indicators that the membrane has been cleaned.
- The results with SUPER IRON OUT® are significantly better than the comparative conventional methods. It enables the highest restoration of flow and the most significant decrease in resistance on cleaning.
- It has also achieved these results at ambient temperatures, and with fewer steps, meaning that the amount of external apparatus required to carry out the CIP of the module is considerably reduced.
- Possibly most significantly, however, it achieved this high level of cleaning in 2 hours for clarified (flocculant-containing) water. To achieve close to this result using the standard methods required overnight CIP times, typically around 13 hours. This dramatic reduction in CIP time translates into a reduction in downtime of modules, as well as allowing higher liquid throughput by permitting effective clean up after running at high flux rates.
- Sulfite agents such as sodium metabisulfite and SUPER IRON OUT® can also be used in conjunction with other conventional methods, for example, in conjunction with sulfuric acid for cleaning membranes (including polypropylene membranes). In low concentrations, it is believed sodium metabisulfite may act as a sacrificial agent, protecting the membrane from degradation by other cleaning agents.
- Further investigations were carried out to better standardize the active amount of sulfite agent present (rather than relying on the broader ranges which may be found in proprietary formulations and to investigate the optimal cleaning compositions, as established by the differing criteria to determine membrane de-fouling.
- Two sets of experiments were carried out to determine the efficiency of sulfite cleaning compositions of precisely defined composition relative to citric acid and chlorine, and measured with reference to different criteria. In both sets of experiments, the membranes were fouled with a mixture of 100 ppm humic acid and 100 ppm FeCl3.6H2O, by filtering this mixture through the membranes.
- In the transmembrane pressure recovery and refouling experiments, the same equipment was used to filter the cleaning solution through the membranes. The TMP change versus time was recorded while filtering this humic acid/iron solution through the membrane before and after the clean. The results are shown in Table 6.
-
TABLE 6 Fouling Final TMP Initial TMP TMP rate before clean after clean recovery post-clean Clean (kPa) (kPa) (kPa) (kPa/min) 2 wt. % Citric acid 38 18 20 0.07 200 ppm NaOCl 46 21 25 0.6 2 wt. % SHS 60 21 39 0.15 2 wt. % SMBS 36 20 16 0.08 1.5 wt. % SMBS + 31 17 14 0.1 0.5 wt. % SHS 0.5 wt. % SMBS + 39 20 19 0.1 1.5 wt. % SHS 1 wt. % SMBS + 36 20 16 0.3 1 wt. % SHS SMBS = sodium metabisulfite SHS = sodium hydrosulfite - The results in the experiment show that the TMP recoveries were similar for all the cleaning methodologies used except for 2 wt. % sodium hydrosulfite which gave a significantly higher recovery than the other cleaning agents.
- The best post-clean fouling rates were also investigated. The poorest post-clean fouling rate was found using the conventional chlorine clean. The best post clean fouling was found using 2 wt. % citric acid and 2 wt. % SMBS, with the 1.5 wt. % SMBS/0.5 wt. % SHS and 0.5 wt. % SMBS/1.5 wt % SHS mixtures also performing very well.
- In the second set of experiments, the dirty membranes were placed in jars of the cleaning solution and allowed to soak. The permeability of the fibers was measured before and after the clean. The results are shown in Table 7.
-
TABLE 7 % Perme- Permeability Permeability Permeability ability before clean after clean recovery re- Clean (L/m2 · hour) (L/m2 · hour) (L/m2 · hour) covery 2 wt. % Citric acid 589 795 206 135 200 ppm NaOCl 277 576 299 207 2 wt. % SHS 383 795 412 208 2 wt. % SMBS 454 714 260 157 1.5 wt. % SMBS + 350 774 424 221 0.5 wt. % SHS 0.5 wt. % SMBS + 591 835 244 141 1.5 wt. % SHS 1 wt. % SMBS + 378 824 446 236 1 wt. % SHS SMBS = sodium metabisulfite SHS = sodium hydrosulfite - The citric acid gave the lowest permeability recovery. Three cleans, 1.5% SMBS+0.5 wt. % SHS, 1 wt. % SMBS+1 wt. % SHS, and 2 wt. % SHS gave the best permability recoveries. The permeability recoveries for the sulfite cleaning agents show that for two specific combinations, 1.5 wt. % SMBS/0.5 wt. % SHS and 1 wt. % SMBS/1 wt. % SHS, the permeability recovery (of 221% and 236%, respectively) was greater than the permeability recovery for either the SMBS or SHS alone, indicating a synergistic relationship between the two. On the basis of the individual mixture components, a 1 wt. %:1 wt. % SMBS/SHS mixture would be expected to restore about 183% (based on 208%/2+157%/ 2) of the permeability, yet the actual value was 236%.
- The other cleaning combinations are likewise not simply additive, indicating that in combination, the two sulfite cleaning agents may act co-operatively.
- Thus, it can be seen that the sulfite cleaning method of the preferred embodiments provided in all cases a good TMP recovery, good permeability recovery and a low rate of post clean fouling. The all round performance was not matched by conventional cleaning methodologies. Further, sulfite cleaning required less time to achieve CIP (cleaning in place) de-fouling of membranes than conventional (chlorine) membrane cleans.
- The above description discloses several methods and materials of the present invention. This invention is susceptible to modifications in the methods and materials, as well as alterations in the fabrication methods and equipment. Such modifications will become apparent to those skilled in the art from a consideration of this disclosure or practice of the invention disclosed herein. Consequently, it is not intended that this invention be limited to the specific embodiments disclosed herein, but that it cover all modifications and alternatives coming within the true scope and spirit of the invention as embodied in the attached claims. All patents, applications, and other references cited herein are hereby incorporated by reference in their entirety.
Claims (16)
1-36. (canceled)
37. A method of cleaning a microfiltration or ultrafiltration porous polymeric membrane contaminated with a contaminant, comprising:
providing a cleaning solution prepared from at least two sulfites and a solvent; and
contacting the contaminated microfiltration or ultrafiltration porous polymeric membrane with the cleaning solution.
38. The method according to claim 37 , wherein the cleaning solution further comprises an enhancing agent.
39. The method according to claim 38 , wherein the enhancing agent is selected from the group consisting of inorganic acids, organic acids, and mixtures thereof.
40. The method according to claim 39 , wherein the enhancing agent comprises citric acid.
41. The method according to claim 37 , wherein the sulfites are selected from the group consisting of sodium metabisulfite, sodium hydrosulfite, sodium sulfite, potassium metabisulfite, potassium hydrosulfite, potassium sulfite, and mixtures thereof.
42. The method according to claim 41 , wherein the solvent comprises water and the sulfites comprise sodium metabisulfite and sodium hydrosulfite.
43. A method of treating water, comprising:
providing a water treatment system comprising a microfiltration or ultrafiltration membrane;
connecting a source of water to be treated to the water treatment system;
filtering the water through the membrane, thereby retaining a contaminant on a surface of the membrane;
providing a cleaning solution prepared from at least two sulfites and a solvent; and
contacting the contaminated membrane with the cleaning solution.
44. The method of claim 43 , further comprising the step of adding a flocculating agent to the water.
45. The method of claim 43 , further comprising the step of isolating the membrane from the source of water to be treated.
46. The method of claim 45 , further comprising the step of reconnecting the membrane to the source of water to be treated.
47. The method of claim 43 , wherein the at least two sulfites are selected from the group consisting of sodium metabisulfite, sodium hydrosulfite, sodium sulfite, potassium metabisulfite, potassium hydrosulfite, and potassium sulfite.
48. A method of cleaning a microfiltration or ultrafiltration membrane, comprising the step of:
cleaning the microfiltration or ultrafiltration membrane using a composition comprising at least two sulfites.
49. The method of claim 48 , wherein the at least two sulfites are selected from the group consisting of sodium metabisulfite, sodium hydrosulfite, sodium sulfite, potassium metabisulfite, potassium hydrosulfite, and potassium sulfite.
50. The method of claim 49 , wherein the composition comprises sodium metabisulfite and sodium hydrosulfite.
51. The method of claim 48 , wherein the composition further comprises an enhancing agent.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/130,664 US20080237125A1 (en) | 2001-11-16 | 2008-05-30 | Method of cleaning membranes |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US33382801P | 2001-11-16 | 2001-11-16 | |
US10/298,471 US6955762B2 (en) | 2001-11-16 | 2002-11-15 | Method of cleaning membranes |
US11/073,137 US20050218073A1 (en) | 2001-11-16 | 2005-03-04 | Method of cleaning membranes |
US11/145,773 US20050224411A1 (en) | 2001-11-16 | 2005-06-06 | Method of cleaning membranes |
US12/130,664 US20080237125A1 (en) | 2001-11-16 | 2008-05-30 | Method of cleaning membranes |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/145,773 Continuation US20050224411A1 (en) | 2001-11-16 | 2005-06-06 | Method of cleaning membranes |
Publications (1)
Publication Number | Publication Date |
---|---|
US20080237125A1 true US20080237125A1 (en) | 2008-10-02 |
Family
ID=23304416
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/298,471 Expired - Lifetime US6955762B2 (en) | 2001-11-16 | 2002-11-15 | Method of cleaning membranes |
US11/073,137 Abandoned US20050218073A1 (en) | 2001-11-16 | 2005-03-04 | Method of cleaning membranes |
US11/145,773 Abandoned US20050224411A1 (en) | 2001-11-16 | 2005-06-06 | Method of cleaning membranes |
US12/130,664 Abandoned US20080237125A1 (en) | 2001-11-16 | 2008-05-30 | Method of cleaning membranes |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/298,471 Expired - Lifetime US6955762B2 (en) | 2001-11-16 | 2002-11-15 | Method of cleaning membranes |
US11/073,137 Abandoned US20050218073A1 (en) | 2001-11-16 | 2005-03-04 | Method of cleaning membranes |
US11/145,773 Abandoned US20050224411A1 (en) | 2001-11-16 | 2005-06-06 | Method of cleaning membranes |
Country Status (4)
Country | Link |
---|---|
US (4) | US6955762B2 (en) |
EP (1) | EP1312408B1 (en) |
AT (1) | ATE333318T1 (en) |
DE (1) | DE60213184T2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102407076A (en) * | 2011-10-11 | 2012-04-11 | 清远加多宝草本植物科技有限公司 | Membrane element cleaning agent in membrane separation industry |
Families Citing this family (53)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2551202C (en) * | 1996-12-20 | 2010-10-26 | Usf Filtration And Separations Group, Inc. | Scouring method |
US20040232076A1 (en) * | 1996-12-20 | 2004-11-25 | Fufang Zha | Scouring method |
AUPQ680100A0 (en) * | 2000-04-10 | 2000-05-11 | Usf Filtration And Separations Group Inc. | Hollow fibre restraining system |
AUPR143400A0 (en) * | 2000-11-13 | 2000-12-07 | Usf Filtration And Separations Group Inc. | Modified membranes |
AUPR421501A0 (en) | 2001-04-04 | 2001-05-03 | U.S. Filter Wastewater Group, Inc. | Potting method |
AUPR584301A0 (en) * | 2001-06-20 | 2001-07-12 | U.S. Filter Wastewater Group, Inc. | Membrane polymer compositions |
AUPR692401A0 (en) | 2001-08-09 | 2001-08-30 | U.S. Filter Wastewater Group, Inc. | Method of cleaning membrane modules |
AUPR774201A0 (en) * | 2001-09-18 | 2001-10-11 | U.S. Filter Wastewater Group, Inc. | High solids module |
ATE333318T1 (en) * | 2001-11-16 | 2006-08-15 | Us Filter Wastewater Group Inc | METHOD FOR CLEANING MEMBRANES |
US7247238B2 (en) * | 2002-02-12 | 2007-07-24 | Siemens Water Technologies Corp. | Poly(ethylene chlorotrifluoroethylene) membranes |
AUPS300602A0 (en) | 2002-06-18 | 2002-07-11 | U.S. Filter Wastewater Group, Inc. | Methods of minimising the effect of integrity loss in hollow fibre membrane modules |
ATE542593T1 (en) | 2002-10-10 | 2012-02-15 | Siemens Industry Inc | MEMBRANE FILTER AND BACKWASHING METHOD THEREOF |
AU2002953111A0 (en) | 2002-12-05 | 2002-12-19 | U. S. Filter Wastewater Group, Inc. | Mixing chamber |
KR101115173B1 (en) | 2003-08-29 | 2012-02-24 | 지멘스 워터 테크놀로지스 코포레이션 | Backwash |
EP1687078B1 (en) | 2003-11-14 | 2012-03-14 | Siemens Industry, Inc. | Improved module cleaning method |
WO2005092799A1 (en) | 2004-03-26 | 2005-10-06 | U.S. Filter Wastewater Group, Inc. | Process and apparatus for purifying impure water using microfiltration or ultrafiltration in combination with reverse osmosis |
JP2007535398A (en) | 2004-04-22 | 2007-12-06 | シーメンス ウォーター テクノロジース コーポレイション | Filtration device including membrane bioreactor and treatment tank for digesting organic substances, and waste liquid treatment method |
WO2006017911A1 (en) | 2004-08-20 | 2006-02-23 | Siemens Water Technologies Corp. | Square mbr manifolding system |
AU2005282211B2 (en) | 2004-09-07 | 2011-04-21 | Evoqua Water Technologies Llc | Reduction of backwash liquid waste |
US8506806B2 (en) | 2004-09-14 | 2013-08-13 | Siemens Industry, Inc. | Methods and apparatus for removing solids from a membrane module |
NZ553771A (en) | 2004-09-15 | 2010-11-26 | Siemens Water Tech Corp | Continuously variable aeration of membrane filtration system and flow control device when used in such application |
EP1819426A4 (en) * | 2004-11-02 | 2009-08-12 | Siemens Water Tech Corp | Submerged cross-flow filtration |
US7591950B2 (en) * | 2004-11-02 | 2009-09-22 | Siemens Water Technologies Corp. | Submerged cross-flow filtration |
EP1838422A4 (en) | 2004-12-24 | 2009-09-02 | Siemens Water Tech Corp | Simple gas scouring method and apparatus |
NZ583228A (en) | 2004-12-24 | 2012-05-25 | Siemens Industry Inc | Cleaning in membrane filtration systems |
EP1885475B1 (en) | 2005-04-29 | 2015-03-25 | Evoqua Water Technologies LLC | Chemical clean for membrane filter |
US20060273038A1 (en) * | 2005-06-02 | 2006-12-07 | Syed Murtuza A | Chemical cleaning for membranes |
CN101287538B (en) | 2005-08-22 | 2013-03-06 | 西门子工业公司 | An assembly for water filtration using a tube manifold to minimise backwash |
US20070138090A1 (en) | 2005-10-05 | 2007-06-21 | Jordan Edward J | Method and apparatus for treating wastewater |
US20070084795A1 (en) * | 2005-10-05 | 2007-04-19 | Jordan Edward J | Method and system for treating wastewater |
US20070092464A1 (en) * | 2005-10-25 | 2007-04-26 | Duff Rocky J | Betadine neutralizer |
WO2008051546A2 (en) | 2006-10-24 | 2008-05-02 | Siemens Water Technologies Corp. | Infiltration/inflow control for membrane bioreactor |
WO2008123972A1 (en) | 2007-04-02 | 2008-10-16 | Siemens Water Technologies Corp. | Improved infiltration/inflow control for membrane bioreactor |
US9764288B2 (en) | 2007-04-04 | 2017-09-19 | Evoqua Water Technologies Llc | Membrane module protection |
CA2822316A1 (en) | 2007-05-29 | 2008-12-18 | Siemens Industry, Inc. | Membrane cleaning with pulsed airlift pump |
US8236178B2 (en) * | 2007-08-20 | 2012-08-07 | Earth Renaissance Technologies, Llc | Reverse osmosis water recover method |
CN106064021B (en) | 2008-07-24 | 2019-06-04 | 懿华水处理技术有限责任公司 | Frame system for film filter module |
CN102123784A (en) | 2008-08-20 | 2011-07-13 | 西门子水处理技术公司 | Improved membrane system backwash energy efficiency |
DE102008039676A1 (en) * | 2008-08-26 | 2010-03-04 | Inge Watertechnologies Ag | Device and method for backwashing filter membrane modules |
AU2010101488B4 (en) | 2009-06-11 | 2013-05-02 | Evoqua Water Technologies Llc | Methods for cleaning a porous polymeric membrane and a kit for cleaning a porous polymeric membrane |
EP2563501B1 (en) | 2010-04-30 | 2019-05-15 | Evoqua Water Technologies LLC | Fluid flow distribution device |
AU2011305377B2 (en) | 2010-09-24 | 2014-11-20 | Evoqua Water Technologies Llc | Fluid control manifold for membrane filtration system |
EP2763776B1 (en) | 2011-09-30 | 2021-07-28 | Rohm & Haas Electronic Materials Singapore Pte. Ltd | Improved filtration module assembly |
KR20140097140A (en) | 2011-09-30 | 2014-08-06 | 에보쿠아 워터 테크놀로지스 엘엘씨 | Isolation valve |
EP2866922B1 (en) | 2012-06-28 | 2018-03-07 | Evoqua Water Technologies LLC | A potting method |
DE112013004713T5 (en) | 2012-09-26 | 2015-07-23 | Evoqua Water Technologies Llc | Membrane safety device |
US9962865B2 (en) | 2012-09-26 | 2018-05-08 | Evoqua Water Technologies Llc | Membrane potting methods |
AU2013101765A4 (en) | 2012-09-27 | 2016-10-13 | Evoqua Water Technologies Llc | Gas Scouring Apparatus for Immersed Membranes |
AU2014329869B2 (en) | 2013-10-02 | 2018-06-14 | Evoqua Water Technologies Llc | A method and device for repairing a membrane filtration module |
EP3322511B1 (en) | 2015-07-14 | 2022-09-07 | Rohm & Haas Electronic Materials Singapore Pte. Ltd | Aeration device for filtration system |
US11117099B2 (en) | 2016-04-19 | 2021-09-14 | Gwinnett County Board of Commissioners | Method of cleaning microfiltration and ultrafiltration membranes |
US10703658B2 (en) | 2017-03-06 | 2020-07-07 | Tangent Company Llc | Home sewage treatment system |
CN109201644B (en) * | 2018-08-29 | 2021-11-12 | 湖南军信环保股份有限公司 | Cleaning method for bacterial sludge breeding on inner wall of water inlet pipeline of NF/RO membrane unit |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3139401A (en) * | 1962-01-05 | 1964-06-30 | Hach Chemical Co | Method for removing rust from water softeners |
US3183191A (en) * | 1960-04-19 | 1965-05-11 | Hach Chemical Co | Stain and rust removing composition |
US3700591A (en) * | 1970-09-24 | 1972-10-24 | Us Interior | Cleaning of used membrane with oxalic acid |
US6280626B1 (en) * | 1998-08-12 | 2001-08-28 | Mitsubishi Rayon Co., Ltd. | Membrane separator assembly and method of cleaning the assembly utilizing gas diffuser underneath the assembly |
US6468430B1 (en) * | 1998-07-21 | 2002-10-22 | Toray Industries, Inc. | Method for inhibiting growth of bacteria or sterilizing around separating membrane |
US6955762B2 (en) * | 2001-11-16 | 2005-10-18 | U. S. Filter Wastewater Group, Inc. | Method of cleaning membranes |
Family Cites Families (153)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US655505A (en) * | 1900-02-13 | 1900-08-07 | Lloyd Sherbondy Morrow | End-gate fastener for mining-cars. |
US2105700A (en) * | 1936-07-13 | 1938-01-18 | William D Ramage | Process for purification of beverages |
US2926086A (en) * | 1957-07-30 | 1960-02-23 | Universal Oil Prod Co | Stabilization of non-distilled alcoholic beverages and the resulting product |
DE123476C (en) | 1960-09-19 | |||
US3693406A (en) | 1970-01-26 | 1972-09-26 | Air Intake Renu | Method for inspecting filters |
US3708071A (en) * | 1970-08-05 | 1973-01-02 | Abcor Inc | Hollow fiber membrane device and method of fabricating same |
US3955998A (en) * | 1973-06-21 | 1976-05-11 | Phillips Petroleum Company | Aqueous gels for plugging fractures in subterranean formation and production of said aqueous gels |
US3992301A (en) | 1973-11-19 | 1976-11-16 | Raypak, Inc. | Automatic flushing system for membrane separation machines such as reverse osmosis machines |
US3968192A (en) | 1974-04-19 | 1976-07-06 | The Dow Chemical Company | Method of repairing leaky hollow fiber permeability separatory devices |
GB1496805A (en) * | 1975-09-19 | 1978-01-05 | Unilever Ltd | Dithionite composition |
US4192750A (en) | 1976-08-09 | 1980-03-11 | Massey-Ferguson Inc. | Stackable filter head unit |
US4193780A (en) | 1978-03-20 | 1980-03-18 | Industrial Air, Inc. | Air filter construction |
JPS54162684A (en) * | 1978-06-14 | 1979-12-24 | Ebara Infilco Co Ltd | Preliminary treating method for contaminated membrane |
US4188817A (en) | 1978-10-04 | 1980-02-19 | Standard Oil Company (Indiana) | Method for detecting membrane leakage |
JPS55129107A (en) * | 1979-03-28 | 1980-10-06 | Nitto Electric Ind Co Ltd | Washing method of selective permeable membrane |
US4218324A (en) | 1979-05-03 | 1980-08-19 | Textron, Inc. | Filter element having removable filter media member |
US4248648A (en) | 1979-07-18 | 1981-02-03 | Baxter Travenol Laboratories, Inc. | Method of repairing leaks in a hollow capillary fiber diffusion device |
JPS5621604A (en) * | 1979-07-27 | 1981-02-28 | Toray Ind Inc | Separation of liquid by semipermeable composite membrane |
JPS56121685A (en) * | 1980-02-29 | 1981-09-24 | Ebara Infilco Co Ltd | Treatment of liquid containing iron ion and manganese ion |
JPS5770144A (en) | 1980-10-17 | 1982-04-30 | Asahi Glass Co Ltd | Organic solution of fluorinated copolymer containing carboxyl group |
US4384474A (en) | 1980-10-30 | 1983-05-24 | Amf Incorporated | Method and apparatus for testing and using membrane filters in an on site of use housing |
JPS57102202A (en) | 1980-12-18 | 1982-06-25 | Toyobo Co Ltd | Fluid separator |
US4496470A (en) * | 1981-01-12 | 1985-01-29 | The B. F. Goodrich Company | Cleaning composition |
US4812235A (en) | 1982-03-29 | 1989-03-14 | Hr Textron, Inc. | Filter element assembly replaceable mesh pack |
US4540490A (en) | 1982-04-23 | 1985-09-10 | Jgc Corporation | Apparatus for filtration of a suspension |
WO1983003984A1 (en) | 1982-05-13 | 1983-11-24 | Gerhard Kunz | Method for the treatment of a liquid phase, particularly method for desalting aqueous solutions, as well as device for its implementation |
JPS5952507A (en) | 1982-06-03 | 1984-03-27 | デ−・エル・エム・ドクトル・ミユラ−・アクチエンゲゼルシヤフト | Apparatus for continuously concentrating suspension |
GB2132366B (en) | 1982-12-27 | 1987-04-08 | Brunswick Corp | Method and device for testing the permeability of membrane filters |
CA1221645A (en) | 1983-02-28 | 1987-05-12 | Yoshihiro Okano | Filtration apparatus using hollow fiber-membrane |
DE3317396A1 (en) * | 1983-05-13 | 1984-11-15 | Henkel KGaA, 4000 Düsseldorf | USE OF COLOYERS FROM ESTERS AND AMIDES OF ACRYLIC AND / OR METHACRYLIC ACIDS AS STOCK POINTS LOW FOR PARAFFIN SOLUTIONS |
GB8313635D0 (en) | 1983-05-17 | 1983-06-22 | Whatman Reeve Angel Plc | Porosimeter |
CH673275A5 (en) * | 1983-05-20 | 1990-02-28 | Christ Ag | |
US4636296A (en) | 1983-08-18 | 1987-01-13 | Gerhard Kunz | Process and apparatus for treatment of fluids, particularly desalinization of aqueous solutions |
US4650586A (en) | 1983-09-26 | 1987-03-17 | Kinetico, Inc. | Fluid treatment system |
US4756875A (en) | 1983-09-29 | 1988-07-12 | Kabushiki Kaisha Toshiba | Apparatus for filtering water containing radioactive substances in nuclear power plants |
JPH0659393B2 (en) | 1983-09-30 | 1994-08-10 | メムテツク リミテツド | Filter cleaning method |
DE3582394D1 (en) * | 1984-04-11 | 1991-05-08 | Syrinx Res Pty Ltd | HIGH FLUX MEMBRANE. |
US4609465A (en) | 1984-05-21 | 1986-09-02 | Pall Corporation | Filter cartridge with a connector seal |
DE3568946D1 (en) | 1984-07-09 | 1989-04-27 | Millipore Corp | Improved electrodeionization apparatus and method |
JPS6125903U (en) | 1984-07-24 | 1986-02-15 | 株式会社 伊藤鉄工所 | filtration equipment |
DE3428307A1 (en) | 1984-08-01 | 1986-02-13 | Filterwerk Mann & Hummel Gmbh, 7140 Ludwigsburg | DISPLAY DEVICE FOR THE POLLUTION LEVEL OF SUCTION AIR FILTERS |
US5192478A (en) * | 1984-10-22 | 1993-03-09 | The Dow Chemical Company | Method of forming tubesheet for hollow fibers |
WO1986005116A1 (en) | 1985-03-05 | 1986-09-12 | Memtec Limited | Concentration of solids in a suspension |
US5024762A (en) | 1985-03-05 | 1991-06-18 | Memtec Limited | Concentration of solids in a suspension |
US4642182A (en) | 1985-03-07 | 1987-02-10 | Mordeki Drori | Multiple-disc type filter with extensible support |
EP0216876B1 (en) | 1985-03-28 | 1990-05-16 | Memtec Limited | Cooling hollow fibre cross-flow separators |
JPS62502452A (en) | 1985-04-10 | 1987-09-24 | メムテック・リミテッド | Variable volume filter or concentrator |
JPS61249505A (en) * | 1985-04-27 | 1986-11-06 | Toyobo Co Ltd | Method for preserving fluid separator |
CA1247329A (en) | 1985-05-06 | 1988-12-28 | Craig J. Brown | Fluid treatment process and apparatus |
US4660411A (en) | 1985-05-31 | 1987-04-28 | Reid Philip L | Apparatus for measuring transmission of volatile substances through films |
US4656865A (en) | 1985-09-09 | 1987-04-14 | The Dow Chemical Company | System for analyzing permeation of a gas or vapor through a film or membrane |
US4876006A (en) | 1985-10-08 | 1989-10-24 | Ebara Corporation | Hollow fiber filter device |
DE3546091A1 (en) | 1985-12-24 | 1987-07-02 | Kernforschungsz Karlsruhe | CROSS-CURRENT MICROFILTER |
US4779448A (en) | 1986-01-28 | 1988-10-25 | Donaldson Company, Inc. | Photoelectric bubble detector apparatus and method |
JPH0742861B2 (en) | 1986-03-10 | 1995-05-15 | ヤマハ発動機株式会社 | Internal combustion engine intake system |
DE3617724A1 (en) | 1986-05-27 | 1987-12-03 | Akzo Gmbh | METHOD FOR DETERMINING THE BLOW POINT OR THE BIGGEST PORE OF MEMBRANES OR FILTER MATERIALS |
FR2600265B1 (en) | 1986-06-20 | 1991-09-06 | Rhone Poulenc Rech | DRY AND HYDROPHILIC SEMI-PERMEABLE MEMBRANES BASED ON VINYLIDENE POLYFLUORIDE |
US4670145A (en) | 1986-07-08 | 1987-06-02 | E. I. Du Pont De Nemours And Company | Multiple bundle fluid separation apparatus |
ES2014516A6 (en) | 1986-07-11 | 1990-07-16 | Mentec Ltd | Cleaning of filters. |
JPH01501046A (en) | 1986-09-04 | 1989-04-13 | メムテック・リミテッド | How to clean hollow fiber filters |
DE3776562D1 (en) | 1986-09-12 | 1992-03-12 | Memtec Ltd | HOLLOW FIBER FILTER CARTRIDGE AND DISTRIBUTOR. |
US5094750A (en) | 1986-09-12 | 1992-03-10 | Memtec Limited | Hollow fibre filter cartridge and header |
US4834998A (en) * | 1986-12-22 | 1989-05-30 | Heublein, Inc. | Ultrafiltration of red wines |
US4846970A (en) | 1987-06-22 | 1989-07-11 | Osmonics, Inc. | Cross-flow filtration membrane test unit |
US4784771A (en) | 1987-08-03 | 1988-11-15 | Environmental Water Technology, Inc. | Method and apparatus for purifying fluids |
US5221478A (en) | 1988-02-05 | 1993-06-22 | The Dow Chemical Company | Chromatographic separation using ion-exchange resins |
US4999038A (en) | 1989-02-07 | 1991-03-12 | Lundberg Bo E H | Filter unit |
DE3904544A1 (en) | 1989-02-15 | 1990-08-16 | Fraunhofer Ges Forschung | POLYMINE MEMBRANES BASED ON POLYVINYLIDENE FLUORIDE, METHOD FOR THE PRODUCTION AND USE THEREOF |
NL8901090A (en) | 1989-04-28 | 1990-11-16 | X Flow Bv | METHOD FOR MANUFACTURING A MICROPOROUS MEMBRANE AND SUCH MEMBRANE |
US4988444A (en) * | 1989-05-12 | 1991-01-29 | E. I. Du Pont De Nemours And Company | Prevention of biofouling of reverse osmosis membranes |
US5005430A (en) | 1989-05-16 | 1991-04-09 | Electric Power Research Institute, Inc. | Automated membrane filter sampler |
US5138870A (en) | 1989-07-10 | 1992-08-18 | Lyssy Georges H | Apparatus for measuring water vapor permeability through sheet materials |
DE3923128A1 (en) | 1989-07-13 | 1991-01-24 | Akzo Gmbh | FLAX OR CAPILLARY MEMBRANE BASED ON A HOMOGENEOUS MIXTURE OF POLYVINYLIDE FLUORIDE AND OF A SECOND, BY CHEMICAL IMPROVEMENT, HYDROPHILIBLABLE POLYMERS |
DE69029850D1 (en) | 1989-09-29 | 1997-03-13 | Memtec Ltd | COLLECTION LINE FOR FILTER CARTRIDGES |
US5227063A (en) | 1989-10-03 | 1993-07-13 | Zenon Environmental Inc. | Tubular membrane module |
US5158721A (en) | 1989-11-30 | 1992-10-27 | Millipore Corporation | Porous membrane formed from interpenetrating polymer network having hydrophilic surface |
US5079272A (en) | 1989-11-30 | 1992-01-07 | Millipore Corporation | Porous membrane formed from interpenetrating polymer network having hydrophilic surface |
DE4000978A1 (en) * | 1990-01-16 | 1991-07-18 | Basf Ag | METHOD FOR REMOVING HEAVY METALIONS FROM WINE AND WINE-BASED BEVERAGES |
US5066375A (en) | 1990-03-19 | 1991-11-19 | Ionics, Incorporated | Introducing and removing ion-exchange and other particulates from an assembled electrodeionization stack |
EP0525096B1 (en) | 1990-04-20 | 1998-10-21 | Memtec Limited | Modular microporous filter assemblies |
US5364527A (en) | 1990-06-20 | 1994-11-15 | Heinz Zimmermann | Apparatus and process for treating water |
US5104546A (en) | 1990-07-03 | 1992-04-14 | Aluminum Company Of America | Pyrogens separations by ceramic ultrafiltration |
US5639373A (en) * | 1995-08-11 | 1997-06-17 | Zenon Environmental Inc. | Vertical skein of hollow fiber membranes and method of maintaining clean fiber surfaces while filtering a substrate to withdraw a permeate |
US5104535A (en) * | 1990-08-17 | 1992-04-14 | Zenon Environmental, Inc. | Frameless array of hollow fiber membranes and module containing a stack of arrays |
US5248424A (en) | 1990-08-17 | 1993-09-28 | Zenon Environmental Inc. | Frameless array of hollow fiber membranes and method of maintaining clean fiber surfaces while filtering a substrate to withdraw a permeate |
US5182019A (en) * | 1990-08-17 | 1993-01-26 | Zenon Environmental Inc. | Cartridge of hybrid frameless arrays of hollow fiber membranes and module containing an assembly of cartridges |
FR2666245B1 (en) | 1990-08-31 | 1992-10-23 | Lyonnaise Eaux | METHOD FOR CONTROLLING THE OPERATING MODES OF AN AUTOMATIC WATER FILTRATION APPARATUS ON TUBULAR MEMBRANES. |
JP2904564B2 (en) | 1990-08-31 | 1999-06-14 | オルガノ株式会社 | Method of scrubbing filtration tower using hollow fiber membrane |
JP2858913B2 (en) | 1990-09-26 | 1999-02-17 | オルガノ株式会社 | Filtration method using hollow fiber membrane |
USH1045H (en) | 1990-11-19 | 1992-05-05 | The United States Of America As Represented By The Secretary Of The Army | Air bubble leak detection test device |
US5069065A (en) | 1991-01-16 | 1991-12-03 | Mobil Oil Corporation | Method for measuring wettability of porous rock |
EP0510328B1 (en) | 1991-03-07 | 1995-10-04 | Kubota Corporation | Apparatus for treating activated sludge |
DE4119040C2 (en) | 1991-06-10 | 1997-01-02 | Pall Corp | Method and device for testing the operating state of filter elements |
US5211823A (en) | 1991-06-19 | 1993-05-18 | Millipore Corporation | Process for purifying resins utilizing bipolar interface |
JP3302992B2 (en) | 1991-08-07 | 2002-07-15 | ユーエスエフ フィルトレーション ピーティーワイ リミテッド | Concentration of solids in suspension using hollow fiber membranes |
US5135663A (en) * | 1991-10-18 | 1992-08-04 | Loctite Corporation | Method of treating (meth)acrylic monomer-containing wastewater |
US5137631A (en) | 1991-10-22 | 1992-08-11 | E. I. Du Pont De Nemours And Company | Multiple bundle permeator |
US5198116A (en) | 1992-02-10 | 1993-03-30 | D.W. Walker & Associates | Method and apparatus for measuring the fouling potential of membrane system feeds |
EP0598909B1 (en) | 1992-02-12 | 1998-01-14 | Mitsubishi Rayon Co., Ltd. | Hollow yarn membrane module |
FR2697446B1 (en) * | 1992-11-03 | 1994-12-02 | Aquasource | Process for the treatment of a fluid containing suspended and dissolved materials, using separation membranes. |
DE69313574T2 (en) | 1992-05-01 | 1998-01-08 | Filtec Corp | Device for checking the integrity of membrane filters |
ATE144725T1 (en) | 1992-05-18 | 1996-11-15 | Minntech Corp | HOLLOW FIBER FILTER CARTRIDGE AND METHOD FOR THE PRODUCTION THEREOF |
WO1994009890A1 (en) | 1992-11-02 | 1994-05-11 | Memtec Limited | Fibre monitoring system |
US5320760A (en) | 1992-12-07 | 1994-06-14 | E. I. Du Pont De Nemours And Company | Method of determining filter pluggage by measuring pressures |
US5401401A (en) | 1993-01-13 | 1995-03-28 | Aquaria Inc. | Hang on tank canister filter |
US5389260A (en) | 1993-04-02 | 1995-02-14 | Clack Corporation | Brine seal for tubular filter |
US5361625A (en) | 1993-04-29 | 1994-11-08 | Ylvisaker Jon A | Method and device for the measurement of barrier properties of films against gases |
US5297420A (en) | 1993-05-19 | 1994-03-29 | Mobil Oil Corporation | Apparatus and method for measuring relative permeability and capillary pressure of porous rock |
FR2705734B1 (en) | 1993-05-25 | 1995-06-30 | Snecma | Method and device for improving the safety of fluid filters. |
US5419816A (en) | 1993-10-27 | 1995-05-30 | Halox Technologies Corporation | Electrolytic process and apparatus for the controlled oxidation of inorganic and organic species in aqueous solutions |
FR2713220B1 (en) | 1993-11-30 | 1996-03-08 | Omnium Traitement Valorisa | Installation of water purification with submerged filter membranes. |
US5403479A (en) | 1993-12-20 | 1995-04-04 | Zenon Environmental Inc. | In situ cleaning system for fouled membranes |
JPH07313850A (en) * | 1994-05-30 | 1995-12-05 | Kubota Corp | Method for backward washing immersion-type ceramic membrane separator |
US5531900A (en) | 1994-07-07 | 1996-07-02 | University Of Arizona | Modification of polyvinylidene fluoride membrane and method of filtering |
US5470469A (en) | 1994-09-16 | 1995-11-28 | E. I. Du Pont De Nemours And Company | Hollow fiber cartridge |
US5906742A (en) * | 1995-07-05 | 1999-05-25 | Usf Filtration And Separations Group Inc. | Microfiltration membranes having high pore density and mixed isotropic and anisotropic structure |
US5944997A (en) * | 1995-08-11 | 1999-08-31 | Zenon Environmental Inc. | System for maintaining a clean skein of hollow fibers while filtering suspended solids |
DE69636130T2 (en) * | 1995-08-11 | 2006-12-07 | Zenon Environmental Inc., Oakville | Permeatsammelsystem |
US6685832B2 (en) * | 1995-08-11 | 2004-02-03 | Zenon Environmental Inc. | Method of potting hollow fiber membranes |
US6193890B1 (en) * | 1995-08-11 | 2001-02-27 | Zenon Environmental Inc. | System for maintaining a clean skein of hollow fibers while filtering suspended solids |
FR2741280B1 (en) * | 1995-11-22 | 1997-12-19 | Omnium Traitement Valorisa | METHOD FOR CLEANING A FILTER SYSTEM OF THE SUBMERSIBLE MEMBRANE TYPE |
US6077435A (en) * | 1996-03-15 | 2000-06-20 | Usf Filtration And Separations Group Inc. | Filtration monitoring and control system |
US5888401A (en) * | 1996-09-16 | 1999-03-30 | Union Camp Corporation | Method and apparatus for reducing membrane fouling |
JP3686918B2 (en) * | 1996-10-16 | 2005-08-24 | 森村興産株式会社 | Filtration device for solid-liquid separation of sewage, wastewater, etc. |
USD396046S (en) | 1996-10-24 | 1998-07-14 | Allen Scheel | Steer device for an outboard motor |
AUPO412596A0 (en) * | 1996-12-10 | 1997-01-09 | Memtec America Corporation | Improved microporous membrane filtration assembly |
CA2551202C (en) * | 1996-12-20 | 2010-10-26 | Usf Filtration And Separations Group, Inc. | Scouring method |
DE19700493A1 (en) * | 1997-01-09 | 1998-07-16 | Bayer Ag | Methods for cleaning surfaces |
USD396726S (en) | 1997-02-06 | 1998-08-04 | Abc Group | Combined air intake manifold and filter |
US6048454A (en) * | 1997-03-18 | 2000-04-11 | Jenkins; Dan | Oil filter pack and assembly |
AUPO709797A0 (en) * | 1997-05-30 | 1997-06-26 | Usf Filtration And Separations Group Inc. | Predicting logarithmic reduction values |
US5914039A (en) | 1997-07-01 | 1999-06-22 | Zenon Environmental Inc. | Filtration membrane with calcined α-alumina particles therein |
US6354444B1 (en) * | 1997-07-01 | 2002-03-12 | Zenon Environmental Inc. | Hollow fiber membrane and braided tubular support therefor |
US6641733B2 (en) * | 1998-09-25 | 2003-11-04 | U. S. Filter Wastewater Group, Inc. | Apparatus and method for cleaning membrane filtration modules |
US6039872A (en) * | 1997-10-27 | 2000-03-21 | Pall Corporation | Hydrophilic membrane |
US6083393A (en) * | 1997-10-27 | 2000-07-04 | Pall Corporation | Hydrophilic membrane |
USD400890S (en) | 1997-12-03 | 1998-11-10 | Gambardella C Bruce | Automotive manifold |
TWI222895B (en) * | 1998-09-25 | 2004-11-01 | Usf Filtration & Separations | Apparatus and method for cleaning membrane filtration modules |
US6550747B2 (en) * | 1998-10-09 | 2003-04-22 | Zenon Environmental Inc. | Cyclic aeration system for submerged membrane modules |
CZ300382B6 (en) * | 1998-10-09 | 2009-05-06 | Zenon Environmental Inc. | Method for cleaning or protecting membrane modules from siltation |
CA2290053C (en) * | 1999-11-18 | 2009-10-20 | Zenon Environmental Inc. | Immersed membrane module and process |
WO2000030742A1 (en) * | 1998-11-23 | 2000-06-02 | Zenon Environmental Inc. | Water filtration using immersed membranes |
JP2000157850A (en) * | 1998-11-27 | 2000-06-13 | Nitto Denko Corp | Separating membrane preservation liquid and separating membrane module |
US6221247B1 (en) * | 1999-06-03 | 2001-04-24 | Cms Technology Holdings, Inc. | Dioxole coated membrane module for ultrafiltration or microfiltration of aqueous suspensions |
US6214231B1 (en) * | 1999-08-27 | 2001-04-10 | Zenon Environmental Inc. | System for operation of multiple membrane filtration assemblies |
JP3603692B2 (en) * | 1999-09-14 | 2004-12-22 | 日立プラント建設株式会社 | Membrane separation method and apparatus |
US6589426B1 (en) * | 1999-09-29 | 2003-07-08 | Zenon Environmental Inc. | Ultrafiltration and microfiltration module and system |
US6440303B2 (en) * | 2000-03-02 | 2002-08-27 | Chapin Manufacturing, Inc. | Fluid filter |
AUPQ680100A0 (en) * | 2000-04-10 | 2000-05-11 | Usf Filtration And Separations Group Inc. | Hollow fibre restraining system |
JP2002058968A (en) * | 2000-08-18 | 2002-02-26 | Suehiro Tadashi | Filter |
AUPR143400A0 (en) * | 2000-11-13 | 2000-12-07 | Usf Filtration And Separations Group Inc. | Modified membranes |
AUPR421501A0 (en) * | 2001-04-04 | 2001-05-03 | U.S. Filter Wastewater Group, Inc. | Potting method |
US7247238B2 (en) * | 2002-02-12 | 2007-07-24 | Siemens Water Technologies Corp. | Poly(ethylene chlorotrifluoroethylene) membranes |
-
2002
- 2002-11-14 AT AT02257855T patent/ATE333318T1/en not_active IP Right Cessation
- 2002-11-14 DE DE60213184T patent/DE60213184T2/en not_active Expired - Lifetime
- 2002-11-14 EP EP02257855A patent/EP1312408B1/en not_active Expired - Lifetime
- 2002-11-15 US US10/298,471 patent/US6955762B2/en not_active Expired - Lifetime
-
2005
- 2005-03-04 US US11/073,137 patent/US20050218073A1/en not_active Abandoned
- 2005-06-06 US US11/145,773 patent/US20050224411A1/en not_active Abandoned
-
2008
- 2008-05-30 US US12/130,664 patent/US20080237125A1/en not_active Abandoned
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3183191A (en) * | 1960-04-19 | 1965-05-11 | Hach Chemical Co | Stain and rust removing composition |
US3139401A (en) * | 1962-01-05 | 1964-06-30 | Hach Chemical Co | Method for removing rust from water softeners |
US3700591A (en) * | 1970-09-24 | 1972-10-24 | Us Interior | Cleaning of used membrane with oxalic acid |
US6468430B1 (en) * | 1998-07-21 | 2002-10-22 | Toray Industries, Inc. | Method for inhibiting growth of bacteria or sterilizing around separating membrane |
US6280626B1 (en) * | 1998-08-12 | 2001-08-28 | Mitsubishi Rayon Co., Ltd. | Membrane separator assembly and method of cleaning the assembly utilizing gas diffuser underneath the assembly |
US6955762B2 (en) * | 2001-11-16 | 2005-10-18 | U. S. Filter Wastewater Group, Inc. | Method of cleaning membranes |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102407076A (en) * | 2011-10-11 | 2012-04-11 | 清远加多宝草本植物科技有限公司 | Membrane element cleaning agent in membrane separation industry |
Also Published As
Publication number | Publication date |
---|---|
US20050224411A1 (en) | 2005-10-13 |
EP1312408A3 (en) | 2003-08-06 |
US20040000520A1 (en) | 2004-01-01 |
EP1312408A2 (en) | 2003-05-21 |
DE60213184T2 (en) | 2007-06-28 |
DE60213184D1 (en) | 2006-08-31 |
US20050218073A1 (en) | 2005-10-06 |
EP1312408B1 (en) | 2006-07-19 |
US6955762B2 (en) | 2005-10-18 |
ATE333318T1 (en) | 2006-08-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6955762B2 (en) | Method of cleaning membranes | |
JP2007130523A (en) | Membrane washing method for water treatment system | |
JP2008229418A (en) | Method and apparatus for industrial water treatment | |
US11117099B2 (en) | Method of cleaning microfiltration and ultrafiltration membranes | |
JP4135267B2 (en) | Method of operating a total filtration type membrane separation apparatus and total filtration type membrane separation apparatus | |
JPH10225682A (en) | Method of removing boron in reverse osmosis seawater desalination | |
JP2012200696A (en) | Desalting method and desalting apparatus | |
JP2003001073A (en) | Method for cleaning separation membrane | |
JPH09262444A (en) | Cleaning method of membrane module | |
EP3201139B1 (en) | Device and method for filtering water | |
JP2002035748A (en) | Water cleaning treatment apparatus using large pore size filter membrane member | |
KR102467729B1 (en) | Treatment method and water treatment method of nonionic surfactant-containing water | |
JP3838689B2 (en) | Water treatment system | |
KR20230019096A (en) | Water treatment method and water treatment device | |
JP2004130307A (en) | Method for filtration of hollow fiber membrane | |
JPH10118471A (en) | Cleaning of membrane module | |
JP2006218341A (en) | Method and apparatus for treating water | |
JP2005046801A (en) | Water treatment method and apparatus therefor | |
TWI850558B (en) | Water treatment method and water treatment device | |
JP3220216B2 (en) | Water treatment method | |
JP2005103510A (en) | Method for cleaning liquid chemical | |
JP2006198531A (en) | Operating method of hollow fiber membrane module | |
JP2002248325A (en) | Method for cleaning separation membrane | |
Wilf et al. | Reclamation of sand filter backwash effluent using HYDRAcap LD capillary UF membrane technology | |
JP2006167582A (en) | Membrane filtration method of organic matter- containing water |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |