US20080224283A1 - Leadframe-based semiconductor package and fabrication method thereof - Google Patents

Leadframe-based semiconductor package and fabrication method thereof Download PDF

Info

Publication number
US20080224283A1
US20080224283A1 US11/523,719 US52371906A US2008224283A1 US 20080224283 A1 US20080224283 A1 US 20080224283A1 US 52371906 A US52371906 A US 52371906A US 2008224283 A1 US2008224283 A1 US 2008224283A1
Authority
US
United States
Prior art keywords
chip
conductive bumps
leadframe
leads
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/523,719
Inventor
Han-Ping Pu
Chien-Ping Huang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siliconware Precision Industries Co Ltd
Original Assignee
Siliconware Precision Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siliconware Precision Industries Co Ltd filed Critical Siliconware Precision Industries Co Ltd
Assigned to SILICONWARE PRECISION INDUSTRIES CO., LTD. reassignment SILICONWARE PRECISION INDUSTRIES CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HUANG, CHIEN-PING, PU, HAN-PING
Assigned to SILICONWARE PRECISION INDUSTRIES CO., LTD. reassignment SILICONWARE PRECISION INDUSTRIES CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HUANG, CHIEN-PING, PU, HAN-PING
Publication of US20080224283A1 publication Critical patent/US20080224283A1/en
Priority to US13/214,076 priority Critical patent/US8420452B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/433Auxiliary members in containers characterised by their shape, e.g. pistons
    • H01L23/4334Auxiliary members in encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49503Lead-frames or other flat leads characterised by the die pad
    • H01L23/4951Chip-on-leads or leads-on-chip techniques, i.e. inner lead fingers being used as die pad
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49541Geometry of the lead-frame
    • H01L23/49548Cross section geometry
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/17Structure, shape, material or disposition of the bump connectors after the connecting process of a plurality of bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/0401Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
    • H01L2224/1401Structure
    • H01L2224/1403Bump connectors having different sizes, e.g. different diameters, heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
    • H01L2224/141Disposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16245Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys

Abstract

A leadframe-based semiconductor package and a fabrication method thereof are provided. The leadframe-based semiconductor package includes a chip implanted with a plurality of first and second conductive bumps thereon, and a leadframe having a plurality of leads. The first conductive bumps are bonded to the leads to electrically connect the chip to the leadframe. The chip, the first and second conductive bumps, and the leadframe are encapsulated by an encapsulant, with bottom ends of the second conductive bumps and bottom surfaces of the leads being exposed from the encapsulant. This allows the second conductive bumps to provide additional input/output electrical connections for the chip besides the leads.

Description

    FIELD OF THE INVENTION
  • The present invention relates to semiconductor packages and fabrication methods hereof, and more particularly, to a leadframe-based flip-chip type semiconductor package and a method of fabricating the semiconductor package.
  • BACKGROUND OF THE INVENTION
  • Conventionally, a semiconductor package using a leadframe as a chip carrier, which is referred to as a leadframe-based semiconductor package, is formed by attaching a non-active surface of a semiconductor chip to a die pad of the leadframe, electrically connecting the semiconductor chip to a plurality of leads of the leadframe via a plurality of bonding wires, and forming an encapsulant to encapsulate the semiconductor chip, the bonding wires and a part of the leadframe. However, this type of semiconductor package usually encounters problems that, for example, electronic signals become weakened due to the length of the bonding wires, and during a molding process of forming the encapsulant, wire loops of the bonding wires tend to be swept or sagged due to impact of mold flow of an encapsulating resin, thereby leading to undesirable contact and short circuit between adjacent bonding wires. Moreover, the leadframe-based semiconductor package cannot be further reduced in thickness as the height of the wire loops of the bonding wires must be considered.
  • Accordingly, there has been proposed another leadframe-based semiconductor package using a flip-chip technology. In this semiconductor package, a semiconductor chip is mounted on a leadframe in an upside-down manner that a plurality of conductive bumps implanted to an active surface of the semiconductor chip are bonded and electrically connected to corresponding leads of the leadframe. Consequently, without the use of bonding wires, a path for transmitting electronic signals in the semiconductor package is shortened through the conductive bumps and the quality of electronic signals during transmission is not adversely affected, and further, the semiconductor package can be effectively reduced in height as not having to consider the loop height of the bonding wires.
  • However, in the above leadframe-based flip-chip type semiconductor package, the leads of the leadframe are disposed at a peripheral portion of the leadframe, and there is no electrical connection provided at a central portion of the leadframe, such that an issue of not having a sufficient number of electrical connections may arise.
  • In order to solve the aforementioned problem, U.S. Pat. No. 6,815,833 proposes a semiconductor package 1 having electrical connections formed at a central portion of a leadframe. As shown in FIGS. 1A and 1B, the semiconductor package 1 comprises: a leadframe 17 having a plurality of leads 14 and a die pad 15; a semiconductor chip 11 having an active surface 112, the semiconductor chip 11 being mounted and electrically connected to the die pad 15 and the leads 14 of the leadframe 17 by a plurality of conductive bumps 12 formed on the active surface 112 of the semiconductor chip 11; and an encapsulant 16 for encapsulating a part of the leadframe 17, the conductive bumps 12 and the semiconductor chip 11, wherein bottom surfaces of the leads 14 and the die pad 15 are exposed from the encapsulant 16. By this arrangement, the leads 14 of the leadframe 17 serve as input/output (I/O) connections, and the die pad 15 of the leadframe 17 serves as, for example, an additional power or grounding connection.
  • U.S. Pat. No. 6,597,059 also proposes a semiconductor package 2 with an increased number of electrical connections. As shown in FIGS. 2A and 2B, the semiconductor package 2 comprises: a leadframe 27 having a plurality of leads 24 and two die pads 25; a semiconductor chip 21 having an active surface 212, the semiconductor chip 21 being electrically connected to the corresponding leads 24 and the two die pads 25 by a plurality of conductive bumps 22 formed on the active surface 212 of the semiconductor chip 21; and an encapsulant 26 for encapsulating a part of the leadframe 27, the conductive bumps 22 and the semiconductor chip 21, wherein bottom surfaces of the leads 24 and the die pads 25 are exposed from the encapsulant 26. By such arrangement, the leads 24 of the leadframe 27 serve as I/O connections, and the two die pads 25 of the leadframe 27 serve as, for example, two additional power and/or grounding connections.
  • Although in the above-mentioned packages, it seems beneficial of having the die pad(s) provide one or two additional electrical connections besides the leads of the lead frame, the die pad(s) may only serve as power or grounding connection(s) but not I/O connection(s) because a plurality of conductive bumps are electrically connected thereto, such that this arrangement still does not fulfill the need of sufficient I/O connections for a highly integrated semiconductor chip with high electrical performance and multi-functionality. Therefore, the problem to be solved here is to provide a semiconductor package with an increased number of I/O connections so as to enhance the electrical performance of the semiconductor package.
  • SUMMARY OF THE INVENTION
  • In view of the foregoing drawbacks of the prior art, a primary objective of the present invention is to provide a leadframe-based semiconductor package and a fabrication method thereof, which can increase the number of I/O connections of the semiconductor package.
  • Another objective of the present invention is to provide a leadframe-based semiconductor package and a fabrication method thereof, which can enhance the heat dissipating efficiency, improve the electrical performance and increase the number of I/O connections of the semiconductor package.
  • In order to achieve the foregoing and other objectives, the present invention proposes a leadframe-based semiconductor package, comprising: a leadframe having a plurality of leads; a chip mounted on the leadframe, wherein the chip has an active surface defined with a first region and a second region surrounded by the first region; a plurality of first conductive bumps implanted to the first region of the active surface of the chip, for electrically connecting the chip to the leads of the leadframe; a plurality of second conductive bumps implanted to the second region of the active surface of the chip, for electrically connecting the chip directly to an external device; and an encapsulant for encapsulating the chip, the first conductive bumps, the second conductive bumps and the leadframe, wherein a bottom surface of each of the leads and a bottom end of each of the second conductive bumps are exposed from the encapsulant.
  • The bottom ends of the second conductive bumps may be exposed by performing a grinding process on the encapsulant and the bottom surfaces of the leads, such that the second conductive bumps act as additional electrical connections for the semiconductor package.
  • As such, the chip can be electrically connected to the external device via the first conductive bumps and the leads of the leadframe, and may further be electrically connected directly to the external device by the second conductive bumps, such that the number of electrical connections for the semiconductor package is increased by means of the second conductive bumps. The additional electrical connections provided by the second conductive bumps implanted to the second region of the active surface of the chip not only may serve as grounding or power connections but also may function as signal I/O connections for the chip, thereby desirably increasing the number of I/O connections for the semiconductor package. This solves the problem of not able to increase the number of I/O connections as in the prior art.
  • Further, the chip in the semiconductor package may have a redistribution layer for redistributing bond pads of the chip to the first and second regions of the active surface of the chip, such that the first conductive bumps can be implanted to the first region of the active surface of the chip and the second conductive bumps can be implanted to the second region of the active surface of the chip, so as to desirably increase the overall number of I/O connections for the semiconductor package.
  • Moreover, besides the plurality of leads, the leadframe of the semiconductor package can also comprise a conductive pad (die pad), such that a portion of the second conductive bumps implanted to the second region of the chip can be attached to and electrically connected to the conductive pad to serve as grounding or power connections. The rest of the second conductive bumps, which are not attached to the conductive pad, are exposed from the encapsulant and serve as I/O connections.
  • The present invention also proposes a fabrication method of the foregoing leadframe-based semiconductor package, comprising the steps of: preparing a leadframe and a chip, the leadframe having a plurality of leads and the chip having an active surface defined with a first region and a second region surrounded by the first region, wherein a plurality of first conductive bumps are implanted on the first region of the active surface of chip and a plurality of second conductive bumps are implanted on the second region of the active surface of the chip; attaching and electrically connecting the first conductive bumps on the chip to the corresponding leads of the leadframe; forming an encapsulant to encapsulate the chip, the first and second conductive bumps and the leadframe; and performing a grinding process on the encapsulant and bottom surfaces of the leads so as to expose the second conductive bumps from the encapsulant.
  • The above fabrication method of the semiconductor package further comprises: forming a redistribution layer on the active surface of the chip, for redistributing bond pads of the chip to the first region and the second region of the chip. This allows the bond pads, if not disposed at proper positions on the chip originally, to be redistributed to the proper positions where the first conductive bumps can be implanted to the first region of the chip and correspond in position to the leads and the second conductive bumps can be implanted to the second region of the chip and subsequently exposed from the encapsulant to serve as additional I/O connections for the semiconductor package.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The present invention can be more fully understood by reading the following detailed description of the preferred embodiments, with reference made to the accompanying drawings, wherein:
  • FIG. 1A (PRIOR ART) is a plane view of a leadframe-based semiconductor package disclosed by U.S. Pat. No. 6,815,833;
  • FIG. 1B (PRIOR ART) is a cross-sectional view of the leadframe-based semiconductor package disclosed by U.S. Pat. No. 6,815,833;
  • FIG. 2A (PRIOR ART) is a plane view of a leadframe-based semiconductor package disclosed by U.S. Pat. No. 6,597,059;
  • FIG. 2B (PRIOR ART) is a cross-sectional view of the leadframe-based semiconductor package disclosed by U.S. Pat. No. 6,597,059;
  • FIG. 3A is a plane view of a semiconductor package according to a first preferred embodiment of the present invention;
  • FIG. 3B is a cross-sectional view of the semiconductor package of FIG. 3A taken along line 3B-3B;
  • FIGS. 4A to 4F are schematic diagrams showing the steps of a fabrication method of the semiconductor package according to the first preferred embodiment of the present invention;
  • FIG. 5A is a plane view of a semiconductor package according to a second preferred embodiment of the present invention; and
  • FIG. 5B is a cross-sectional view of the semiconductor package of FIG. 5A taken along line 5B-5B.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Preferred embodiments of a semiconductor package and a fabrication method thereof as proposed in the present invention are described as follows with reference to FIGS. 3A to 3B, 4A to 4F and 5A to 5B.
  • The following embodiments are exemplified by a Flip-Chip Quad Flat Non-Leads (FC-QFN) semiconductor package and a fabrication method thereof. It should be understood that the drawings are simplified schematic diagrams only showing the elements relevant to the present invention, and the layout of elements could be more complicated in practical implementation.
  • First Preferred Embodiment
  • FIGS. 3A and 3B are respectively a plan view and a cross-sectional view of a semiconductor package 3 according to a first preferred embodiment of the present invention. As shown in FIGS. 3A and 3B, the semiconductor package 3 comprises: a leadframe 30, a chip 31 mounted on the leadframe 30, and an encapsulant 32 for encapsulating the leadframe 30 and the chip 31. The leadframe 30 comprises a plurality of leads 300, wherein an inner end 300 a of each of the leads 300 is directed toward a center of the leadframe 30, and the inner ends 300 a of the leads 300 define and surround a spacing 300 b. Each of the leads 300 further has a top surface 300 c and an opposite bottom surface 300 d. The leadframe 30 may be made of a metallic material, such as copper or an alloy thereof. The leadframe 30 can be formed by any suitable conventional method such as punching, etching, or the like.
  • The chip 31 has an active surface 310 on which a redistribution layer (RDL, not shown) is formed. The redistribution layer is used to redistribute a plurality of electrical connections such as bond pads 311 on the chip 31 to desirable positions on the active surface 310. As the formation of the redistribution layer is conventional and well known to persons skilled in the art, detailed description thereto and physical indication thereof in the drawings are herein omitted. The active surface 310 of the chip 31 is further defined with a first region 310 a (e.g. a peripheral region as shown) and a second region 310 b (e.g. a central region as shown) surrounded by the first region 310 a, such that a portion of the bond pads 311 are positioned within the first region 310 a and the rest of the bond pads 311 are positioned within the second region 310 b.
  • A plurality of first conductive bumps 33, for serving as I/O connections for the chip 31, are implanted to the corresponding bond pads 311 located within the first region 310 a of the active surface 310 of the chip 31, such that when the chip 31 is mounted on the leadframe 30, each of the first conductive bumps 33 is bonded to the top surface 300 c of a corresponding one of the leads 300. Accordingly, the chip 31 is electrically connected to the leads 300 of the leadframe 30 by the first conductive bumps 33.
  • In addition to the first conductive bumps 33, a plurality of second conductive bumps 34 are implanted to the corresponding bond pads 311 located within the second region 310 b and are received in the spacing 300 b of the leadframe 30. The second conductive bumps 34 are used for serving as power connections, grounding connections, heat-dissipating connections, and/or I/O connections for the chip 31, such that the chip 31 can be directly electrically connected to an external device, such as a printed circuit board (not shown), by the second conductive bumps 34. In order to establish the direct connection relationship with the external device, the second conductive bumps 34 are required to be exposed from the encapsulant 32. Accordingly, an exposed portion (e.g. a bottom end) of each of the second conductive bumps 34 is made to be flush with the bottom surfaces 300 d of the leads 300 and a lower surface 320 of the encapsulant 32. This thus allows the exposed portions of the second conductive bumps 34 and the bottom surfaces 300 d of the leads 300 to be electrically connected to the external device in a coplanar manner.
  • Further, the height of each of the second conductive bumps 34 has to be greater than that of each of the first conductive bumps 33, so as for the second conductive bumps 34 to be exposed from the encapsulant 32. That is, the height of each of the second conductive bumps 34 has to be equal to the sum of the height of each of the first conductive bumps 33 and the thickness of each of the leads 300.
  • Also, for the sake of further enhancing the bonding strength between the leadframe 30 and the encapsulant 32, the inner end 300 a of each of the leads 300 may additionally be etched or punched from the bottom surface 300 d to form a recess 300 e. Thus, the leads 300 can be anchored into the encapsulant 32 by allowing the encapsulant 32 to fill the recesses 300 e of the leads 300.
  • It is thus clear that the semiconductor package 3 of the present invention, with provision of the second conductive bumps 34 bonded to the chip 31, has an increased number of I/O connections than that of the prior art, such that the electrical performance of the semiconductor package 3 is enhanced.
  • The semiconductor package 3 of the present invention can be fabricated by a method shown in FIGS. 4A to 4F.
  • As shown in FIGS. 4A and 4B, a semiconductor chip 31 having an active surface 310 is prepared. A plurality of bond pads 311, such as I/O connections, power connections, grounding connections and so on, are formed on the active surface 310 of the chip 31. The active surface 310 is defined with a first region 310 a and a second region 310 b surrounded by the first region 310 a, wherein a portion of the bond pads 311 are disposed within the first region 310 a and the rest of the bond pads 311 are disposed within the second region 310 b by means of a redistribution technology. As shown in FIG. 4C, a plurality of first conductive bumps 33 are implanted on the bond pads 311 formed in the first region 310 a of the active surface 310 of the chip 31 to serve as I/O connections for the chip 31, and a plurality of second conductive bumps 34 are implanted on the bond pads 311 formed in the second region 310 b of the active surface 310 of the chip 31 to serve as electrical connections such as power connections, grounding connections and/or I/O connections. The height of each of the second conductive bumps 34 is greater than that of each of the first conductive bumps 33.
  • As shown in FIG. 4D, a leadframe 30, which can be made of copper or an alloy thereof, is provided. The leadframe 30 comprises a plurality of leads 300, wherein each of the leads 300 has an inner end 300 a directed toward a center of the leadframe 30, with a spacing 300 b being defined and surrounded by the inner ends 300 a of the leads 300. Further, each of the leads 300 has a top surface 300 c and an opposite bottom surface 300 d. The chip 31 is mounted to the leadframe 30 by having each of the first conductive bumps 33 bonded to the top surface 300 c of a corresponding one of the leads 300. As shown in FIG. 4E, an encapsulant 32 is formed for encapsulating the chip 31, the first conductive bumps 33, the second conductive bumps 34 and the leadframe 30, with the bottom surfaces 300 d of the leads 300 being exposed from the encapsulant 32.
  • As shown in FIG. 4F, a grinding process is carried out to grind the bottom surfaces 300 d of the leads 300 and a lower surface 320 of the encapsulant 32 until a desired portion (e.g. a bottom end 340) of each of the second conductive bumps 34 is exposed from the encapsulant 32. By such processing, the bottom ends 340 of the second conductive bumps 34 are flush with the bottom surfaces 300 d of the leads 300 and the lower surface 320 of the encapsulant 32. This thus completes the fabrication of the semiconductor package 3 shown in FIGS. 3A and 3B. Since the grinding process is performed, the final thickness of the fabricated semiconductor package 3 can be reduced to a desired extent.
  • The foregoing fabrication method of the semiconductor package of the present invention may optionally comprise a step of plating the bottom surfaces 300 d of the leads 300 with a solder layer (not shown) following the completion of the grinding process, such that the semiconductor package 3 can be electrically connected to an external device such as a printed circuit board via the solder layer and the second conductive bumps 34 exposed from the encapsulant 32.
  • Second Preferred Embodiment
  • FIGS. 5A and 5B are respectively a plane view and a cross-sectional view of a semiconductor package according to a second preferred embodiment of the present invention. The semiconductor package of the second embodiment is similar to that of the first embodiment, with a primary difference in that the leadframe further comprises at least one conductive pad (die pad) formed in a central portion of the leadframe and spaced apart from a plurality of leads formed in a peripheral portion of the leadframe.
  • Particularly, as shown in FIGS. 5A and 5B, the semiconductor package 5 of the second embodiment comprises: a leadframe 50, a chip 51 attached to the leadframe 50, and an encapsulant 52 for encapsulating the leadframe 50 and the chip 51. The leadframe 50 includes a plurality of leads 500, and a die pad 501 spaced apart from and surrounded by the plurality of leads 500. Each of the leads 500 has a top surface 500 a and an opposite bottom surface 500 b, and the die pad 501 has a top surface 501 a and an opposite bottom surface 501 b. And between the leads 500 and the die pad 501 there is formed a spacing 502 with a predetermined width.
  • The chip 51 has an active surface 510, wherein the active surface 510 is defined with a first region 510 a, a second region 510 b within the first region 510 a, and a third region 510 c within the second region 510 b. A plurality of bond pads 511 are formed on the active surface 510 and disposed within the first region 510 a, the second region 510 b, and the third region 510 c. By such arrangement, a plurality of first conductive bumps 53 can be implanted on the bond pads 511 located within the first region 510 a, a plurality of second conductive bumps 54 can be implanted on the bond pads 511 located within the second region 510 b, and a plurality of third conductive bumps 55 can be implanted on the bond pads 511 located within the third region 510 c. The chip 51 is attached to the leadframe 50 via the active surface 510 in a manner that the first conductive bumps 53 are bonded to the top surfaces 500 a of the leads 500, the second conductive bumps 54 are received in the spacing 502, and the third conductive bumps 55 are bonded to the top surface 501 a of the die pad 501. Thus, the chip 51 is electrically connected to the leadframe 50 by the first conductive bumps 53 and the third conductive bumps 55.
  • The second conductive bumps 54 are greater in height than the first and third conductive bumps 53, 55 respectively, such that subsequent to the formation of the encapsulant 52, bottom ends 540 of the second conductive bumps 54 are exposed from the encapsulant 52 and are used to electrically connect the chip 51 to an external device such as a printed circuit board. Likewise, the bottom surfaces 500 b of the leads 500 and the bottom surface 501 b of the die pad 501 are also exposed from the encapsulant 52 and are coplanar with the bottom ends 540 of the second conductive bumps 54. Thus, the die pad 501 may act as a power connection, a grounding connection and/or a heat-dissipating connection for the chip 51, and the second conductive bumps 54 may act as I/O connections for the chip 51. As such, desired multi-functionality, electrical performance and heat dissipating efficiency for the semiconductor package 5 can be achieved.
  • The invention has been described using exemplary preferred embodiments. However, it is to be understood that the scope of the invention is not limited to the disclosed embodiments. On the contrary, it is intended to cover various modifications and similar arrangements. For example, a non-active surface of the chip opposing to the active surface thereof may be exposed from an upper surface of the encapsulant opposing to the lower surface thereof, allowing the exposed non-active surface of the chip to be optionally adhered to a heat spreader in order to enhance the heat dissipating performance of the semiconductor package. The scope of the claims, therefore, should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements.

Claims (20)

1. A leadframe-based semiconductor package comprising:
a leadframe having a plurality of leads;
a chip mounted on the lead frame, wherein the chip has an active surface, and the active surface is defined with a first region and a second region surrounded by the first region;
a plurality of first conductive bumps attached to the first region of the active surface of the chip, allowing the chip to be electrically connected to the leads of the leadframe via the plurality of the first conductive bumps;
a plurality of second conductive bumps attached to the second region of the active surface of the chip; and
an encapsulant for encapsulating the chip, the first and second conductive bumps and the leadframe, wherein bottom surfaces of the leads and bottom ends of the second conductive bumps are exposed from the encapsulant so as to allow the chip to be electrically connected to an external device via the leads and the second conductive bumps.
2. The leadframe-based semiconductor package of claim 1, wherein the active surface of the chip further comprises a redistribution layer for redistributing a plurality of bond pads formed on the chip to the first region and the second region of the chip.
3. The leadframe-based semiconductor package of claim 1, wherein the first conductive bumps serve as input/output (I/O) connections for the chip.
4. The leadframe-based semiconductor package of claim 1, wherein the second conductive bumps serve as power connections, grounding connections, heat-dissipating connections and/or I/O connections for the chip.
5. The leadframe-based semiconductor package of claim 1, wherein the second conductive bumps are greater in height than the first conductive bumps.
6. The leadframe-based semiconductor package of claim 1, further comprising a solder layer formed on the bottom surfaces of the leads.
7. The leadframe-based semiconductor package of claim 1, wherein the bottom ends of the second conductive bumps are flush with the bottom surfaces of the leads.
8. The leadframe-based semiconductor package of claim 1, wherein the leadframe further comprises a die pad surrounded by and spaced from the leads, and the active surface of the chip is further defined with a third region located within the second region, allowing a plurality of third conductive bumps to be attached to the third region of the chip and electrically connected to the die pad.
9. The leadframe-based semiconductor package of claim 8, wherein a bottom surface of the die pad is exposed from the encapsulant and is flush with the bottom ends of the second conductive bumps and the bottom surfaces of the leads.
10. The leadframe-based semiconductor package of claim 8, wherein the second conductive bumps serve as I/O connections for the chip, and the third conductive bumps serve as power connections, grounding connections and/or heat-dissipating connections for the chip.
11. A fabrication method of a leadframe-based semiconductor package, comprising the steps of:
preparing a leadframe and a chip, the lead frame having a plurality of leads, and the chip having an active surface defined with a first region and a second region surrounded by the first region, wherein a plurality of first conductive bumps are attached to the first region of the active surface of the chip and a plurality of second conductive bumps are attached to the second region of the active surface of the chip;
bonding the first conductive bumps to top surfaces of the leads so as to electrically connect the chip to the leadframe; and
forming an encapsulant to encapsulate the chip, the first and second conductive bumps and the leadframe, wherein bottom surfaces of the leads and bottom ends of the second conductive bumps are exposed from the encapsulant and are flush with a lower surface of the encapsulant.
12. The fabrication method of claim 11, further comprising performing a grinding process on the bottom surfaces of the leads and the lower surface of the encapsulant, so as to reduce a thickness of the leadframe-based semiconductor package.
13. The fabrication method of claim 11, further comprising plating a solder layer on the bottom surfaces of the leads.
14. The fabrication method of claim 11, wherein the chip is electrically connected to the leadframe by a flip-chip process.
15. The fabrication method of claim 11, wherein the first conductive bumps serve as I/O connections for the chip.
16. The fabrication method of claim 11, wherein the second conductive bumps serve as power connections, grounding connections, heat-dissipating connections and/or I/O connections for the chip.
17. The fabrication method of claim 11, wherein the second conductive bumps are greater in height than the first conductive bumps.
18. The fabrication method of claim 11, wherein the leadframe further comprises a die pad surrounded by and spaced from the leads, and the active surface of the chip is further defined with a third region located within the second region, allowing a plurality of third conductive bumps to be attached to the third region of the chip and electrically connected to the die pad.
19. The fabrication method of claim 18, wherein a bottom surface of the die pad is exposed from the encapsulant and is flush with the bottom ends of the second conductive bumps and the bottom surfaces of the leads.
20. The fabrication method of claim 18, wherein the second conductive bumps serve as I/O connections for the chip, and the third conductive bumps serve as power connections, grounding connections and/or heat-dissipating connections for the chip.
US11/523,719 2005-09-20 2006-09-20 Leadframe-based semiconductor package and fabrication method thereof Abandoned US20080224283A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/214,076 US8420452B2 (en) 2005-09-20 2011-08-19 Fabrication method of leadframe-based semiconductor package

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW094132399A TWI263351B (en) 2005-09-20 2005-09-20 Semiconductor package and fabrication method thereof
TW094132399 2005-09-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/214,076 Division US8420452B2 (en) 2005-09-20 2011-08-19 Fabrication method of leadframe-based semiconductor package

Publications (1)

Publication Number Publication Date
US20080224283A1 true US20080224283A1 (en) 2008-09-18

Family

ID=37966348

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/523,719 Abandoned US20080224283A1 (en) 2005-09-20 2006-09-20 Leadframe-based semiconductor package and fabrication method thereof
US13/214,076 Active US8420452B2 (en) 2005-09-20 2011-08-19 Fabrication method of leadframe-based semiconductor package

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/214,076 Active US8420452B2 (en) 2005-09-20 2011-08-19 Fabrication method of leadframe-based semiconductor package

Country Status (2)

Country Link
US (2) US20080224283A1 (en)
TW (1) TWI263351B (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080283984A1 (en) * 2007-05-14 2008-11-20 Advanced Semiconductor Engineering, Inc. Package structure and manufacturing method thereof
US20130049182A1 (en) * 2011-08-31 2013-02-28 Zhiwei Gong Semiconductor device packaging having pre-encapsulation through via formation using lead frames with attached signal conduits
US20130049217A1 (en) * 2011-08-31 2013-02-28 Zhiwei Gong Semiconductor device packaging having pre-encapsulation through via formation using drop-in signal conduits
CN103107152A (en) * 2011-11-11 2013-05-15 台湾积体电路制造股份有限公司 Bumps for chip scale packaging
US8597983B2 (en) 2011-11-18 2013-12-03 Freescale Semiconductor, Inc. Semiconductor device packaging having substrate with pre-encapsulation through via formation
US20200075523A1 (en) * 2018-08-29 2020-03-05 Texas Instruments Incorporated Integrated circuits with conductive bumps having a profile with a wave pattern
CN112204732A (en) * 2018-05-31 2021-01-08 华为技术有限公司 Circuit board and mobile terminal
US11355470B2 (en) * 2020-02-27 2022-06-07 Amkor Technology Singapore Holding Pte. Ltd. Semiconductor device and methods of manufacturing semiconductor devices
US11444048B2 (en) * 2017-10-05 2022-09-13 Texas Instruments Incorporated Shaped interconnect bumps in semiconductor devices
US20230068329A1 (en) * 2021-08-30 2023-03-02 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11291146B2 (en) 2014-03-07 2022-03-29 Bridge Semiconductor Corp. Leadframe substrate having modulator and crack inhibiting structure and flip chip assembly using the same
KR101892876B1 (en) * 2017-12-01 2018-08-28 삼성전기주식회사 Fan-out semiconductor package
TWI749465B (en) * 2020-02-14 2021-12-11 聚積科技股份有限公司 Transfer packaging method of integrated circuit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6686268B2 (en) * 1998-04-06 2004-02-03 Micron Technology, Inc. Method of forming overmolded chip scale package and resulting product
US20040089921A1 (en) * 2002-11-01 2004-05-13 Matsushita Electric Industrial Co., Ltd. Lead frame and method of producing the same, and resin-encapsulated semiconductor device and method of producing the same
US7138707B1 (en) * 2003-10-21 2006-11-21 Amkor Technology, Inc. Semiconductor package including leads and conductive posts for providing increased functionality

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6686268B2 (en) * 1998-04-06 2004-02-03 Micron Technology, Inc. Method of forming overmolded chip scale package and resulting product
US20040089921A1 (en) * 2002-11-01 2004-05-13 Matsushita Electric Industrial Co., Ltd. Lead frame and method of producing the same, and resin-encapsulated semiconductor device and method of producing the same
US7138707B1 (en) * 2003-10-21 2006-11-21 Amkor Technology, Inc. Semiconductor package including leads and conductive posts for providing increased functionality

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7816773B2 (en) * 2007-05-14 2010-10-19 Advanced Semiconductor Engineering, Inc. Package structure and manufacturing method thereof
US20080283984A1 (en) * 2007-05-14 2008-11-20 Advanced Semiconductor Engineering, Inc. Package structure and manufacturing method thereof
US8916421B2 (en) * 2011-08-31 2014-12-23 Freescale Semiconductor, Inc. Semiconductor device packaging having pre-encapsulation through via formation using lead frames with attached signal conduits
US20130049182A1 (en) * 2011-08-31 2013-02-28 Zhiwei Gong Semiconductor device packaging having pre-encapsulation through via formation using lead frames with attached signal conduits
US20130049217A1 (en) * 2011-08-31 2013-02-28 Zhiwei Gong Semiconductor device packaging having pre-encapsulation through via formation using drop-in signal conduits
US9142502B2 (en) * 2011-08-31 2015-09-22 Zhiwei Gong Semiconductor device packaging having pre-encapsulation through via formation using drop-in signal conduits
US9553065B2 (en) 2011-11-11 2017-01-24 Taiwan Semiconductor Manufacturing Company, Ltd. Bumps for chip scale packaging including under bump metal structures with different diameters
CN103107152A (en) * 2011-11-11 2013-05-15 台湾积体电路制造股份有限公司 Bumps for chip scale packaging
US8597983B2 (en) 2011-11-18 2013-12-03 Freescale Semiconductor, Inc. Semiconductor device packaging having substrate with pre-encapsulation through via formation
US11444048B2 (en) * 2017-10-05 2022-09-13 Texas Instruments Incorporated Shaped interconnect bumps in semiconductor devices
CN112204732A (en) * 2018-05-31 2021-01-08 华为技术有限公司 Circuit board and mobile terminal
US20200075523A1 (en) * 2018-08-29 2020-03-05 Texas Instruments Incorporated Integrated circuits with conductive bumps having a profile with a wave pattern
US10847483B2 (en) * 2018-08-29 2020-11-24 Texas Instruments Incorporated Integrated circuits with conductive bumps having a profile with a wave pattern
US11855027B2 (en) 2018-08-29 2023-12-26 Texas Instruments Incorporated Integrated circuits with conductive bumps having a profile with a wave pattern
US11355470B2 (en) * 2020-02-27 2022-06-07 Amkor Technology Singapore Holding Pte. Ltd. Semiconductor device and methods of manufacturing semiconductor devices
US20230068329A1 (en) * 2021-08-30 2023-03-02 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device

Also Published As

Publication number Publication date
TWI263351B (en) 2006-10-01
US20110300671A1 (en) 2011-12-08
TW200713613A (en) 2007-04-01
US8420452B2 (en) 2013-04-16

Similar Documents

Publication Publication Date Title
US8420452B2 (en) Fabrication method of leadframe-based semiconductor package
US6759737B2 (en) Semiconductor package including stacked chips with aligned input/output pads
US6590281B2 (en) Crack-preventive semiconductor package
US6781242B1 (en) Thin ball grid array package
US7309624B2 (en) Semiconductor device and method for the fabrication thereof including grinding a major portion of the frame
US6800948B1 (en) Ball grid array package
US6995448B2 (en) Semiconductor package including passive elements and method of manufacture
US7115441B2 (en) Semiconductor package with semiconductor chips stacked therein and method of making the package
US7790504B2 (en) Integrated circuit package system
US20020113308A1 (en) Semiconductor package with heat dissipating structure
US6815833B2 (en) Flip chip package
US5923954A (en) Ball grid array package and fabrication method therefor
US7514771B2 (en) Leadless lead-frame
KR101563911B1 (en) Semiconductor package
WO1999028969A1 (en) Integrated circuit chip package and method of making the same
US6753599B2 (en) Semiconductor package and mounting structure on substrate thereof and stack structure thereof
US7291924B2 (en) Flip chip stacked package
US6864588B2 (en) MCM package with bridge connection
US6894904B2 (en) Tab package
US7173341B2 (en) High performance thermally enhanced package and method of fabricating the same
KR19990085107A (en) Semiconductor chip package and manufacturing method
US6160311A (en) Enhanced heat dissipating chip scale package method and devices
US11715644B2 (en) Method for packaging integrated circuit chip
EP1283547A1 (en) Packaging process for semiconductor package
US20060060958A1 (en) Semiconductor package, and fabrication method and carrier thereof

Legal Events

Date Code Title Description
AS Assignment

Owner name: SILICONWARE PRECISION INDUSTRIES CO., LTD., TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PU, HAN-PING;HUANG, CHIEN-PING;REEL/FRAME:018325/0980

Effective date: 20060822

AS Assignment

Owner name: SILICONWARE PRECISION INDUSTRIES CO., LTD., TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PU, HAN-PING;HUANG, CHIEN-PING;REEL/FRAME:018786/0724

Effective date: 20060822

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION