US20080223826A1 - Reagent Delivery using a Membrane-Mediated Process - Google Patents
Reagent Delivery using a Membrane-Mediated Process Download PDFInfo
- Publication number
- US20080223826A1 US20080223826A1 US12/047,970 US4797008A US2008223826A1 US 20080223826 A1 US20080223826 A1 US 20080223826A1 US 4797008 A US4797008 A US 4797008A US 2008223826 A1 US2008223826 A1 US 2008223826A1
- Authority
- US
- United States
- Prior art keywords
- membrane
- workpiece
- reagent
- enclosed container
- mps
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000012528 membrane Substances 0.000 title claims abstract description 67
- 239000003153 chemical reaction reagent Substances 0.000 title claims abstract description 35
- 238000000034 method Methods 0.000 title claims abstract description 25
- 230000001404 mediated effect Effects 0.000 title description 8
- 239000007800 oxidant agent Substances 0.000 claims abstract description 13
- OBDVFOBWBHMJDG-UHFFFAOYSA-N 3-mercapto-1-propanesulfonic acid Chemical compound OS(=O)(=O)CCCS OBDVFOBWBHMJDG-UHFFFAOYSA-N 0.000 claims description 35
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims description 20
- 150000001875 compounds Chemical class 0.000 claims description 18
- 239000012530 fluid Substances 0.000 claims description 17
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 16
- 229920000554 ionomer Polymers 0.000 claims description 6
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 claims description 5
- 229930195733 hydrocarbon Natural products 0.000 claims description 4
- 150000002430 hydrocarbons Chemical class 0.000 claims description 4
- 239000004215 Carbon black (E152) Substances 0.000 claims description 3
- ABDBNWQRPYOPDF-UHFFFAOYSA-N carbonofluoridic acid Chemical compound OC(F)=O ABDBNWQRPYOPDF-UHFFFAOYSA-N 0.000 claims description 3
- UQSQSQZYBQSBJZ-UHFFFAOYSA-N fluorosulfonic acid Chemical compound OS(F)(=O)=O UQSQSQZYBQSBJZ-UHFFFAOYSA-N 0.000 claims description 3
- 150000008282 halocarbons Chemical class 0.000 claims description 3
- VCJMYUPGQJHHFU-UHFFFAOYSA-N iron(III) nitrate Inorganic materials [Fe+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O VCJMYUPGQJHHFU-UHFFFAOYSA-N 0.000 claims description 3
- 150000004965 peroxy acids Chemical class 0.000 claims description 3
- 239000011248 coating agent Substances 0.000 claims 1
- 238000000576 coating method Methods 0.000 claims 1
- 239000010949 copper Substances 0.000 abstract description 29
- 239000010411 electrocatalyst Substances 0.000 abstract description 10
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 abstract description 4
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 abstract description 3
- 229910052802 copper Inorganic materials 0.000 abstract description 3
- 229910052717 sulfur Inorganic materials 0.000 abstract description 3
- 239000011593 sulfur Substances 0.000 abstract description 3
- 239000003054 catalyst Substances 0.000 abstract description 2
- 235000012431 wafers Nutrition 0.000 description 26
- 238000002484 cyclic voltammetry Methods 0.000 description 10
- 239000000243 solution Substances 0.000 description 10
- 230000003647 oxidation Effects 0.000 description 8
- 238000007254 oxidation reaction Methods 0.000 description 8
- 239000012634 fragment Substances 0.000 description 7
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 6
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 6
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 6
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229910000372 mercury(II) sulfate Inorganic materials 0.000 description 4
- 238000007747 plating Methods 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 235000011037 adipic acid Nutrition 0.000 description 3
- 239000001361 adipic acid Substances 0.000 description 3
- 230000002706 hydrostatic effect Effects 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 229920000557 Nafion® Polymers 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 238000004070 electrodeposition Methods 0.000 description 2
- -1 for example Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 1
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical class [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 1
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000010349 cathodic reaction Methods 0.000 description 1
- HSJPMRKMPBAUAU-UHFFFAOYSA-N cerium(3+);trinitrate Chemical class [Ce+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O HSJPMRKMPBAUAU-UHFFFAOYSA-N 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000002845 discoloration Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000001314 profilometry Methods 0.000 description 1
- 239000005297 pyrex Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000012279 sodium borohydride Substances 0.000 description 1
- 229910000033 sodium borohydride Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 229910001428 transition metal ion Inorganic materials 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02041—Cleaning
- H01L21/02057—Cleaning during device manufacture
- H01L21/02068—Cleaning during device manufacture during, before or after processing of conductive layers, e.g. polysilicon or amorphous silicon layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76838—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
- H01L21/76877—Filling of holes, grooves or trenches, e.g. vias, with conductive material
Definitions
- the invention is directed to methods and apparatuses for using a semi-permeable membrane to deliver a reagent to a surface in a topographically selective manner.
- the methods and apparatuses are particularly useful for removing sulfur-containing electrocatalysts from copper surfaces using a semi-permeable membrane to deliver an oxidizing agent to a catalyst-coated surface.
- Interconnections on integrated circuits are fabricated by the Cu damascene process in which the interconnect circuit pattern is lithographically etched into the surface of a dielectric layer on the surface of the wafer.
- the etching creates “recessed areas” in the dielectric layer that can be several nanometers to several microns in depth.
- the remaining surface of the dielectric layer forms “non-recessed areas” that surround the “recessed areas.”
- the pattern is then coated with thin conformal layers of a barrier metal, such as Ta, followed by Cu. Additional Cu is then electroplated over the entire surface of a wafer to fill completely the recessed areas with Cu.
- the electroplating chemistry incorporates an electrocatalyst, most commonly 3-mercapto-1-propane sulfonic acid (MPS), a salt of MPS, or a corresponding disulfide.
- MPS 3-mercapto-1-propane sulfonic acid
- a salt of MPS or a corresponding disulfide.
- These electrocatalysts adsorb to the Cu surface and increase the rate of Cu electrodeposition relative to areas of bare Cu lacking an adsorbed electrocatalyst. This effect is amplified in very small recessed areas because the surface concentration increases during filling. Because the electrocatalyst is present on all surfaces of the wafer, in the course of filling larger recessed areas, excess Cu is deposited everywhere and must be removed.
- MMEP membrane-mediated electropolishing
- One way to achieve this objective would be to interrupt electrodeposition immediately after filling the small recessed areas with Cu, and to then remove the electrocatalysts in a topographically selective manner from the non-recessed areas, while leaving the electrocatalysts in the recessed areas. In this way, subsequent plating becomes concentrated in the recessed areas and can be stopped with minimal accumulation of Cu on the non-recessed areas.
- MMEP has been shown to be highly effective for topographically selective removal of MPS, but it is accompanied by a significant amount of Cu removal. Typically, in order to completely remove MPS from the surface of the non-recessed areas, several nm of Cu must also be removed. It is therefore desirable to improve the efficiency of MPS removal relative to Cu removal.
- One aspect of this invention is an apparatus comprising:
- Another aspect of this invention is a process comprising:
- FIG. 1 is a schematic cross-section of an apparatus.
- One embodiment of the process of this invention can be used to deliver reagents to the surface of a workpiece.
- the reagents can react either with the surface of the workpiece, or with an oxidizable or reducible compound that is adsorbed onto the surface of the workpiece. If the surface of the workpiece has topographical features, i.e., recessed areas and non-recessed areas, one embodiment of the process of this invention can be used to deliver reagents selectively to the non-recessed areas. In this way, material can be removed from the non-recessed areas of the workpiece without also removing material from the recessed areas.
- One aspect of this invention is an apparatus comprising:
- the apparatus can be used in the membrane-mediated delivery of a reagent to the non-recessed areas of a workpiece having non-recessed areas.
- the recessed areas can be about 0.5 micron below the surrounding non-recessed areas.
- the recessed areas may be 10 to 50 microns below the surrounding areas.
- Suitable reagents include oxidizing agents and reducing agents.
- Suitable oxidizing agents include ozone, hydrogen peroxide, peracids, and salts of high valent transition metal ions (e.g., Fe(NO 3 ) 3 or Ce(NH 4 ) 2 (NO 3 ) 6 ).
- Some reagents, for example, hydrogen peroxide can be used at concentrations as high as 70%.
- the transition metal salts are more typically used at concentrations of 0.01 M-1.0 M.
- Peracids can be made in situ by combining a carboxylic acid with hydrogen peroxide.
- the reagent-containing fluid is maintained at a hydrostatic pressure greater than ambient atmospheric pressure, and the membrane is sufficiently flexible to expand under the influence of this pressure to establish a convex external surface (a “bulge” or “blister”) to contact the workpiece.
- a convex external surface a “bulge” or “blister”
- Suitable semi-permeable membranes for use with oxidizing agents are those which are stable in the presence of the oxidizing agent(s) and which are permeable to the oxidizing agent(s).
- Suitable membranes include copolymers of fluorinated and/or perfluorinated olefins and monomers containing strong acid groups.
- Perfluorosulfonate ionomer membranes and perfluorocarboxylate ionomer membranes are suitable.
- Other semi-permeable membranes can also be used.
- FIG. 1 shows a schematic of an apparatus in which A represents a reagent-containing fluid, B represents a semi-permeable membrane, C represents a workpiece, and D represents recessed areas in a workpiece.
- a membrane is interposed between the reagent and the workpiece.
- the workpiece has small topographic features such as recessed and non-recessed areas.
- the membrane will not contact the surfaces of the recessed areas.
- the reagent is delivered selectively to the non-recessed areas, and the process can selectively remove material that is adsorbed onto the non-recessed areas of the workpiece, without removing material that is in the recessed areas.
- the workpiece is a metal-coated substrate, e.g., a damascene wafer.
- One aspect of this invention is a process comprising:
- Suitable reaction temperatures are from 10-80° C. In one embodiment, the reaction temperature is within the range of 15-50° C. Reaction times are from 0.1 sec to several minutes, depending on the concentration and composition of the reagent.
- a compound is adsorbed onto the workpiece prior to contacting the surface of the workpiece with the external surface of the membrane.
- the workpiece has adsorbed onto it a sulfur-containing electrocatalyst (e.g., MPS, 3-mercapto-1-propane sulfonic acid) and the reagent in the reagent-containing fluid is an active oxidizing agent.
- a sulfur-containing electrocatalyst e.g., MPS, 3-mercapto-1-propane sulfonic acid
- Removal of an adsorbed oxidizable compound is accomplished by oxidizing it to form a soluble species. After the oxidizing agent diffuses through the membrane, it reacts with the adsorbed oxidizable compound, converting it to a form that has less affinity for the workpiece surface and can be washed or rinsed or dissolved away.
- the soluble species is then removed from the workpiece surface by rinsing with a suitable or solution, i.e., a solvent or solution that will dissolve the soluble species.
- a suitable or solution i.e., a solvent or solution that will dissolve the soluble species.
- the oxidized adsorbed oxidizable compound can be removed from the workpiece surface by immersing the workpiece in a suitable solvent (e.g., water) or by periodically rinsing the surface with a suitable solvent.
- Oxidation of the adsorbed oxidizable compound is accomplished when a portion of the external surface of the membrane contacts a portion of the non-recessed areas of the workpiece.
- contact means that preferably the workpiece and the membrane are within close proximity, e.g., between 1 nm and 1 micron.
- the apparatus is moved across the surface of workpiece, especially if the area of the surface to be treated is larger than the contact area of the membrane with the surface.
- the workpiece is coated with a thin layer (less than 1 micron thick) of water-immiscible hydrocarbon or halocarbon before being contacted with the membrane.
- Suitable hydrocarbons include heptane and toluene. While it is not intended that the invention be bound by any particular mechanism or theory, it is believed the hydrocarbon or halocarbon lubricates the surface and also improves the selectivity of the adsorbed oxidizable compound removal by slowing or stopping diffusion of the oxidizing agent into the recessed areas of the workpiece. In this way, adsorbed oxidizable compound is removed preferentially, preferably only, from those areas in direct contact with the membrane, leaving the electrocatalyst in the recesses. This leads to more copper plating out in the recesses than on the non-recessed areas of the workpiece in a subsequent plating process.
- Removal of an adsorbed reducible compound is carried out in an analogous process, except that the reagent is a reducing agent, for example sodium borohydride.
- the reagent is a reducing agent, for example sodium borohydride.
- Selective oxidation of the adsorbed oxidizable compound can also be accomplished by a membrane-mediated electrochemical process.
- the half-cell is configured as described in U.S. Ser. No. 10/976,897.
- the amount of adsorbed compound removed can be determined by XPS and/or cyclic voltammetry.
- a 12′′ silicon wafer pre-plated with approximately 150 nm of Cu (Novellus Systems, Inc., Tualatin, Oreg.) was mounted on a spin-coater (Headway Research, Inc., Garland, Tex., Model PWM32) and treated at 300 rpm with reagents in the following sequence: DI (de-ionized) water; 10 ml of 5% H 2 SO 4 ; DI water; 10 ml 0.1% MPS (3-mercapto-1-propane sulfonic acid) in 5% H 2 SO 4 ; and DI water.
- DI de-ionized
- the MPS-coated wafer was then dried at 1000 rpm. By skipping the treatment with the 0.1% MPS solution, the same procedure was used to prepare wafers free of MPS.
- Cyclic voltammetry measurements (EG&G PARC, Princeton, N.J., Model 173 potentiostat and Model 175 programmer) were made at a scan rate of 10 mV/sec, operating at potentials between ⁇ 0.40V and ⁇ 1.00 V versus Hg/HgSO 4 .
- selected areas of the wafer were masked by applications of a 2.5 cm square piece of Teflon® tape with a round opening 1 cm in diameter (0.785 cm 2 ).
- a pyrex flange joint 7 cm long with a 2 cm O-ring was centered over the hole in the tape mask and clamped onto the wafer to form a cylindrical cell with liquid-tight seal.
- X-ray photoelectron spectroscopy was used to analyze the surfaces.
- the signal from S (2p electrons) represented 4% of all elements detected.
- the signal from S represented only 0.2% of all elements detected.
- a wafer fragment activated with MPS as in Example 1 was immersed in a solution of 0.5M Fe(NO 3 ) 3 for approximately 5 sec and immediately rinsed with DI water. Visual inspection showed that all of the Cu had been removed exposing, the silver-colored Ta sub-layer.
- One area of a second MPS-activated wafer fragment was exposed to a solution of 0.05M Fe(NO 3 ) 6 for 15 sec and immediately rinsed with DI water. Cyclic voltammetry indicated no detectable loss of MPS relative to an un-treacted area of the same wafer fragment.
- a third MPS-activated wafer fragment was exposed to a solution of 0.05M Ce(NH 4 ) 2 (NO 3 ) 6 for 10 sec. Cyclic voltammetry indicated little if any MPS was removed. When this experiment was repeated with 30 sec exposure the thickness of Cu layer was reduced from 147 to 110 nm and cyclic voltammetry showed more than 50% of the MPS had been removed.
- a wafer fragment activated with MPS as in Example 1 was immersed in a 50% solution of hydrogen peroxide in water (Aldrich) for 15 sec and then rinsed with DI water. Discoloration on the surface indicated the formation of copper oxides, but the thickness of Cu was only reduced by 3 ⁇ 2 nm. Cyclic voltammetry showed that more than 50% of the MPS had been removed.
- a membrane cell with a window 1′ in diameter was fitted with a Nafion® PFSA membrane (N1110-H, E. I. du Pont de Nemours and Company, Wilmington, Del.) and filled with a 50% solution of hydrogen peroxide in water (Aldrich) adjusted to a hydrostatic pressure of approximately 1 psi.
- An MPS-activated wafer was rinsed with DI water, then brought into contact and gently stroked with the external surface of the membrane for 30 sec, and then rinsed in DI water. Cyclic voltammetry showed approximately 50% of the MPS had been removed.
- a wafer fragment activated with MPS as in Example 1 was immersed in water saturated with ozone for 30 sec and then rinsed with DI water. Cyclic voltammetry showed that virtually all of the MPS had been removed. As second wafer fragment activated with MPS as in Example 1 was exposed to a stream of gaseous ozone for 30 sec and then rinsed with DI water. Cyclic voltammetry indicated approximately 20% of the MPS had been removed.
- a wafer with 600 nm deep recessed features was activated with MPS as in Example 1.
- a drop of heptane was placed on the wafer surface.
- a membrane cell with a window 3′′ in diameter was fitted with a Nafion® PFSA membrane (N1110-H) and filled with a 20% solution of hydrogen peroxide in water (Aldrich) and 0.1 wt % adipic acid and adjusted to a hydrostatic pressure of approximately 1 psi.
- the membrane was brought down dry onto the surface of the wafer and moved back and forth (2 cm/sec, 2 rpm) on the heptane-wetted area for 60 sec.
- the heptane was then evaporated and the wafer rinsed with 5% sulfuric acid in de-ionized water.
- Profilometry of the surface indicated that the step height had been reduced from about 600 nm to 200-400 nm.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Chemically Coating (AREA)
Abstract
Methods and apparatuses for using a semi-permeable membrane to deliver a reagent to a surface in a topographically selective manner are provided. The methods and apparatuses are particularly useful for removing sulfur-containing electrocatalysts from copper surfaces using a semi-permeable membrane to deliver an oxidizing agent to a catalyst-coated surface.
Description
- This application claims priority under 35 U.S.C. §119 from U.S. Provisional Application Ser. No. 60/894,487, filed Mar. 13, 2007.
- The invention is directed to methods and apparatuses for using a semi-permeable membrane to deliver a reagent to a surface in a topographically selective manner. The methods and apparatuses are particularly useful for removing sulfur-containing electrocatalysts from copper surfaces using a semi-permeable membrane to deliver an oxidizing agent to a catalyst-coated surface.
- Interconnections on integrated circuits are fabricated by the Cu damascene process in which the interconnect circuit pattern is lithographically etched into the surface of a dielectric layer on the surface of the wafer. The etching creates “recessed areas” in the dielectric layer that can be several nanometers to several microns in depth. The remaining surface of the dielectric layer forms “non-recessed areas” that surround the “recessed areas.” The pattern is then coated with thin conformal layers of a barrier metal, such as Ta, followed by Cu. Additional Cu is then electroplated over the entire surface of a wafer to fill completely the recessed areas with Cu.
- In order to assure complete filling of the smallest the recessed areas, the electroplating chemistry incorporates an electrocatalyst, most commonly 3-mercapto-1-propane sulfonic acid (MPS), a salt of MPS, or a corresponding disulfide. These electrocatalysts adsorb to the Cu surface and increase the rate of Cu electrodeposition relative to areas of bare Cu lacking an adsorbed electrocatalyst. This effect is amplified in very small recessed areas because the surface concentration increases during filling. Because the electrocatalyst is present on all surfaces of the wafer, in the course of filling larger recessed areas, excess Cu is deposited everywhere and must be removed. This is typically achieved by chemical mechanical polishing, but may also be accomplished by membrane-mediated electropolishing (MMEP) methods disclosed by S. Mazur et al., (co-pending applications U.S. Ser. No. 10/976,897; U.S. Ser. No. 10/986,048; and U.S. Ser. No. 11/291,697).
- Removing excess Cu introduces significant expense, yield loss and waste disposal problems for the fabrication of integrated circuits. It is therefore desirable to minimize the amount of excess Cu required to fill the circuit features.
- One way to achieve this objective would be to interrupt electrodeposition immediately after filling the small recessed areas with Cu, and to then remove the electrocatalysts in a topographically selective manner from the non-recessed areas, while leaving the electrocatalysts in the recessed areas. In this way, subsequent plating becomes concentrated in the recessed areas and can be stopped with minimal accumulation of Cu on the non-recessed areas.
- MMEP has been shown to be highly effective for topographically selective removal of MPS, but it is accompanied by a significant amount of Cu removal. Typically, in order to completely remove MPS from the surface of the non-recessed areas, several nm of Cu must also be removed. It is therefore desirable to improve the efficiency of MPS removal relative to Cu removal.
- One aspect of this invention is an apparatus comprising:
-
- a) a fully or partially enclosed container;
- b) a semi-permeable membrane having an internal surface and an external surface, wherein the membrane forms a surface of the fully or partially enclosed container; and
- c) a reagent-containing fluid which at least partially fills the fully or partially enclosed container, wherein the reagent-containing fluid contacts at least a portion of the internal surface of the membrane.
- Another aspect of this invention is a process comprising:
-
- a) providing an apparatus comprising:
- i) a fully or partially enclosed container;
- ii) a semi-permeable membrane having an internal surface and an external surface, wherein the membrane forms a surface of the fully or partially enclosed container; and
- iii) a reagent-containing fluid which at least partially fills the fully or partially enclosed container, wherein the reagent-containing fluid contacts at least a portion of the internal surface of the membrane;
- b) providing a workpiece having a surface and optionally an oxidizable or reducible compound adsorbed onto the surface of the workpiece;
- c) contacting the surface of the workpiece with the external surface of the membrane; and
- d) allowing at least a portion of the reagent to diffuse through the membrane to react with the workpiece surface or an oxidizable or reducible compound adsorbed onto the surface of the workpiece.
- a) providing an apparatus comprising:
-
FIG. 1 is a schematic cross-section of an apparatus. - One embodiment of the process of this invention can be used to deliver reagents to the surface of a workpiece. The reagents can react either with the surface of the workpiece, or with an oxidizable or reducible compound that is adsorbed onto the surface of the workpiece. If the surface of the workpiece has topographical features, i.e., recessed areas and non-recessed areas, one embodiment of the process of this invention can be used to deliver reagents selectively to the non-recessed areas. In this way, material can be removed from the non-recessed areas of the workpiece without also removing material from the recessed areas.
- One aspect of this invention is an apparatus comprising:
-
- a) a fully or partially enclosed container;
- b) a semi-permeable membrane having an internal surface and an external surface, wherein the membrane forms a surface of the fully or partially enclosed container; and
- c) a reagent-containing fluid which at least partially fills the fully or partially enclosed container (which can also be referred to as a “vessel”), wherein the reagent-containing fluid contacts at least a portion of the internal surface of the membrane.
- In some embodiments, the apparatus can be used in the membrane-mediated delivery of a reagent to the non-recessed areas of a workpiece having non-recessed areas. For example, in integrated circuit (IC) interconnects, the recessed areas can be about 0.5 micron below the surrounding non-recessed areas. In printed wiring boards, the recessed areas may be 10 to 50 microns below the surrounding areas.
- Suitable reagents include oxidizing agents and reducing agents. Suitable oxidizing agents include ozone, hydrogen peroxide, peracids, and salts of high valent transition metal ions (e.g., Fe(NO3)3 or Ce(NH4)2(NO3)6). Some reagents, for example, hydrogen peroxide, can be used at concentrations as high as 70%. The transition metal salts are more typically used at concentrations of 0.01 M-1.0 M. Peracids can be made in situ by combining a carboxylic acid with hydrogen peroxide.
- Preferably, the reagent-containing fluid is maintained at a hydrostatic pressure greater than ambient atmospheric pressure, and the membrane is sufficiently flexible to expand under the influence of this pressure to establish a convex external surface (a “bulge” or “blister”) to contact the workpiece.
- Suitable semi-permeable membranes for use with oxidizing agents are those which are stable in the presence of the oxidizing agent(s) and which are permeable to the oxidizing agent(s). Suitable membranes include copolymers of fluorinated and/or perfluorinated olefins and monomers containing strong acid groups. Perfluorosulfonate ionomer membranes and perfluorocarboxylate ionomer membranes are suitable. Other semi-permeable membranes can also be used.
-
FIG. 1 shows a schematic of an apparatus in which A represents a reagent-containing fluid, B represents a semi-permeable membrane, C represents a workpiece, and D represents recessed areas in a workpiece. - In the membrane-mediated processes of this invention, a membrane is interposed between the reagent and the workpiece. In some embodiments, the workpiece has small topographic features such as recessed and non-recessed areas. By providing a membrane that is thick and/or stiff enough that it does not conform to the small topographic features of the workpiece, the membrane will not contact the surfaces of the recessed areas. In this way, the reagent is delivered selectively to the non-recessed areas, and the process can selectively remove material that is adsorbed onto the non-recessed areas of the workpiece, without removing material that is in the recessed areas. In one embodiment, the workpiece is a metal-coated substrate, e.g., a damascene wafer.
- One aspect of this invention is a process comprising:
-
- a) providing an apparatus comprising:
- i) a fully or partially enclosed container;
- ii) a semi-permeable membrane having an internal surface and an external surface, wherein the membrane forms a surface of the fully or partially enclosed container; and
- iii) a reagent-containing fluid which at least partially fills the enclosed container, wherein the reagent-containing fluid contacts at least a portion of the internal surface of the membrane;
- b) providing a workpiece having a surface and optionally an oxidizable or reducible compound adsorbed onto the surface of the workpiece;
- c) contacting the surface of the workpiece with the external surface of the membrane; and
- d) allowing at least a portion of the reagent to diffuse through the membrane to react with the workpiece surface or an oxidizable or reducible compound adsorbed onto the surface of the workpiece.
- a) providing an apparatus comprising:
- Suitable reaction temperatures are from 10-80° C. In one embodiment, the reaction temperature is within the range of 15-50° C. Reaction times are from 0.1 sec to several minutes, depending on the concentration and composition of the reagent.
- In one embodiment, a compound is adsorbed onto the workpiece prior to contacting the surface of the workpiece with the external surface of the membrane. In one embodiment, the workpiece has adsorbed onto it a sulfur-containing electrocatalyst (e.g., MPS, 3-mercapto-1-propane sulfonic acid) and the reagent in the reagent-containing fluid is an active oxidizing agent.
- Removal of an adsorbed oxidizable compound is accomplished by oxidizing it to form a soluble species. After the oxidizing agent diffuses through the membrane, it reacts with the adsorbed oxidizable compound, converting it to a form that has less affinity for the workpiece surface and can be washed or rinsed or dissolved away. The soluble species is then removed from the workpiece surface by rinsing with a suitable or solution, i.e., a solvent or solution that will dissolve the soluble species. For example, the oxidized adsorbed oxidizable compound can be removed from the workpiece surface by immersing the workpiece in a suitable solvent (e.g., water) or by periodically rinsing the surface with a suitable solvent.
- Oxidation of the adsorbed oxidizable compound is accomplished when a portion of the external surface of the membrane contacts a portion of the non-recessed areas of the workpiece. As used herein, “contact” (of the membrane and the workpiece) means that preferably the workpiece and the membrane are within close proximity, e.g., between 1 nm and 1 micron. Typically, the apparatus is moved across the surface of workpiece, especially if the area of the surface to be treated is larger than the contact area of the membrane with the surface.
- In one embodiment, the workpiece is coated with a thin layer (less than 1 micron thick) of water-immiscible hydrocarbon or halocarbon before being contacted with the membrane. Suitable hydrocarbons include heptane and toluene. While it is not intended that the invention be bound by any particular mechanism or theory, it is believed the hydrocarbon or halocarbon lubricates the surface and also improves the selectivity of the adsorbed oxidizable compound removal by slowing or stopping diffusion of the oxidizing agent into the recessed areas of the workpiece. In this way, adsorbed oxidizable compound is removed preferentially, preferably only, from those areas in direct contact with the membrane, leaving the electrocatalyst in the recesses. This leads to more copper plating out in the recesses than on the non-recessed areas of the workpiece in a subsequent plating process.
- Removal of an adsorbed reducible compound is carried out in an analogous process, except that the reagent is a reducing agent, for example sodium borohydride.
- Selective oxidation of the adsorbed oxidizable compound can also be accomplished by a membrane-mediated electrochemical process. In such a process, the half-cell is configured as described in U.S. Ser. No. 10/976,897.
- The amount of adsorbed compound removed can be determined by XPS and/or cyclic voltammetry.
- A 12″ silicon wafer pre-plated with approximately 150 nm of Cu (Novellus Systems, Inc., Tualatin, Oreg.) was mounted on a spin-coater (Headway Research, Inc., Garland, Tex., Model PWM32) and treated at 300 rpm with reagents in the following sequence: DI (de-ionized) water; 10 ml of 5% H2SO4; DI water; 10 ml 0.1% MPS (3-mercapto-1-propane sulfonic acid) in 5% H2SO4; and DI water. The MPS-coated wafer was then dried at 1000 rpm. By skipping the treatment with the 0.1% MPS solution, the same procedure was used to prepare wafers free of MPS.
- Cyclic voltammetry measurements (EG&G PARC, Princeton, N.J., Model 173 potentiostat and Model 175 programmer) were made at a scan rate of 10 mV/sec, operating at potentials between −0.40V and −1.00 V versus Hg/HgSO4. For this purpose, selected areas of the wafer were masked by applications of a 2.5 cm square piece of Teflon® tape with a round opening 1 cm in diameter (0.785 cm2). A pyrex flange joint 7 cm long with a 2 cm O-ring was centered over the hole in the tape mask and clamped onto the wafer to form a cylindrical cell with liquid-tight seal. 10 ml of electrolyte solution (medium acid Cu plating solution, Novellus Systems, Inc., Tualatin, Oreg.) was added to the cell. A Hg/HgSO4 reference electrode (Radiometer Analytical SAS, Villeurbanne, France, Model Ref 601) was inserted into the cell along with a Cu foil counter electrode. An electrical connection was made to the surface of the wafer outside the area of the cell and connected to the potentiostat as the working electrode. Measurements on wafers freshly prepared as in Example 1 exhibited currents 20 to 30 mA higher than on MPS-free wafers at potentials from −0.7 to −1.0 V versus Hg/HgSO4 (
FIG. 1 ). This demonstrates the catalytic effect of MPS on cathodic reaction of the Cu surface and provides a means to detect the presence of MPS on a Cu surface. - X-ray photoelectron spectroscopy (XPS) was used to analyze the surfaces. On an MPS-activated Cu surface, the signal from S (2p electrons) represented 4% of all elements detected. In contrast, on MPS-free wafers prepared as in Example 1, the signal from S represented only 0.2% of all elements detected.
- A wafer fragment activated with MPS as in Example 1 was immersed in a solution of 0.5M Fe(NO3)3 for approximately 5 sec and immediately rinsed with DI water. Visual inspection showed that all of the Cu had been removed exposing, the silver-colored Ta sub-layer. One area of a second MPS-activated wafer fragment was exposed to a solution of 0.05M Fe(NO3)6 for 15 sec and immediately rinsed with DI water. Cyclic voltammetry indicated no detectable loss of MPS relative to an un-treacted area of the same wafer fragment.
- A third MPS-activated wafer fragment was exposed to a solution of 0.05M Ce(NH4)2(NO3)6 for 10 sec. Cyclic voltammetry indicated little if any MPS was removed. When this experiment was repeated with 30 sec exposure the thickness of Cu layer was reduced from 147 to 110 nm and cyclic voltammetry showed more than 50% of the MPS had been removed.
- A wafer fragment activated with MPS as in Example 1 was immersed in a 50% solution of hydrogen peroxide in water (Aldrich) for 15 sec and then rinsed with DI water. Discoloration on the surface indicated the formation of copper oxides, but the thickness of Cu was only reduced by 3±2 nm. Cyclic voltammetry showed that more than 50% of the MPS had been removed.
- A membrane cell with a window 1′ in diameter was fitted with a Nafion® PFSA membrane (N1110-H, E. I. du Pont de Nemours and Company, Wilmington, Del.) and filled with a 50% solution of hydrogen peroxide in water (Aldrich) adjusted to a hydrostatic pressure of approximately 1 psi. An MPS-activated wafer was rinsed with DI water, then brought into contact and gently stroked with the external surface of the membrane for 30 sec, and then rinsed in DI water. Cyclic voltammetry showed approximately 50% of the MPS had been removed.
- A wafer fragment activated with MPS as in Example 1 was immersed in water saturated with ozone for 30 sec and then rinsed with DI water. Cyclic voltammetry showed that virtually all of the MPS had been removed. As second wafer fragment activated with MPS as in Example 1 was exposed to a stream of gaseous ozone for 30 sec and then rinsed with DI water. Cyclic voltammetry indicated approximately 20% of the MPS had been removed.
- A wafer with 600 nm deep recessed features was activated with MPS as in Example 1. A drop of heptane was placed on the wafer surface. A membrane cell with a window 3″ in diameter was fitted with a Nafion® PFSA membrane (N1110-H) and filled with a 20% solution of hydrogen peroxide in water (Aldrich) and 0.1 wt % adipic acid and adjusted to a hydrostatic pressure of approximately 1 psi. The membrane was brought down dry onto the surface of the wafer and moved back and forth (2 cm/sec, 2 rpm) on the heptane-wetted area for 60 sec. The heptane was then evaporated and the wafer rinsed with 5% sulfuric acid in de-ionized water.
- After rinsing with dilute sulfuric acid, the adipic acid/H2O2-treated wafer was plated with an additional layer of Cu (constant potential of −0.6 V vs. Hg/HgSO4; area=12.5 cm2; 17 coulombs). Profilometry of the surface indicated that the step height had been reduced from about 600 nm to 200-400 nm.
- This demonstrates that the membrane-mediated oxidation of MPS is topographically selective, removing MPS selectively from the non-recessed area, rather than from the recessed area.
Claims (10)
1. An apparatus comprising:
a) a fully or partially enclosed container;
b) a semi-permeable membrane having an internal surface and an external surface, wherein the membrane forms a surface of the fully or partially enclosed container; and
c) a reagent-containing fluid which at least partially fills the fully or partially enclosed container, wherein the reagent-containing fluid contacts at least a portion of the internal surface of the membrane.
2. The apparatus of claim 1 , wherein the reagent-containing fluid comprises an oxidizing agent.
3. The apparatus of claim 1 , wherein the semi-permeable membrane is selected from the group consisting of perfluorosulfonate ionomer membranes and perfluorocarboxylate ionomer membranes.
4. A process comprising:
a) providing an apparatus comprising:
i) a fully or partially enclosed container;
ii) a semi-permeable membrane having an internal surface and an external surface, wherein the membrane forms a surface of the fully or partially enclosed container; and
iii) a reagent-containing fluid which at least partially fills the enclosed container, wherein the reagent-containing fluid contacts at least a portion of the internal surface of the membrane;
b) providing a workpiece having a surface and optionally an oxidizable or reducible compound adsorbed onto the surface of the workpiece;
c) contacting the surface of the workpiece with the external surface of the membrane; and
d) allowing at least a portion of the reagent to diffuse through the membrane to react with the workpiece surface or an oxidizable or reducible compound adsorbed onto the surface of the workpiece.
5. The process of claim 4 , wherein the reagent is an oxidizing agent.
6. The process of claim 5 , wherein the oxidizing agent is selected from the group consisting of ozone, hydrogen peroxide, peracids, Fe(NO3)3, and Ce(NH4)2(NO3)6).
7. The process of claim 4 , wherein the semi-permeable membrane is a perfluorosulfonate ionomer membrane or a perfluorocarboxylate ionomer membrane.
8. The process of claim 4 , wherein the oxidizable compound is 3-mercapto-1-propane sulfonic acid.
9. The process of claim 4 , further comprising coating the surface of the workpiece with a fluid film of a hydrocarbon or a halocarbon prior to contacting the workpiece with the external surface of the membrane.
10. The process of claim 4 , further comprising:
e) contacting the workpiece with water.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US12/047,970 US20080223826A1 (en) | 2007-03-13 | 2008-03-13 | Reagent Delivery using a Membrane-Mediated Process |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US89448707P | 2007-03-13 | 2007-03-13 | |
| US12/047,970 US20080223826A1 (en) | 2007-03-13 | 2008-03-13 | Reagent Delivery using a Membrane-Mediated Process |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20080223826A1 true US20080223826A1 (en) | 2008-09-18 |
Family
ID=39761589
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/047,970 Abandoned US20080223826A1 (en) | 2007-03-13 | 2008-03-13 | Reagent Delivery using a Membrane-Mediated Process |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US20080223826A1 (en) |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4929607A (en) * | 1981-03-24 | 1990-05-29 | Asta Pharma Aktiengesellshaft | oxazaphosphorin-4-thio alkanesulphonic acids, neutral salts thereof and method to treat cancer diseases and to produce immunosuppression |
| US20020012640A1 (en) * | 2000-06-13 | 2002-01-31 | Fatemeh Mohammadi | Cosmetic composition for stressed skin under extreme conditions |
| US20020031556A1 (en) * | 2000-07-21 | 2002-03-14 | Lindahl Ake R. | Stabilized hydrogen peroxide composition and method of making a stabilized hydrogen peroxide composition |
| US20020076255A1 (en) * | 2000-12-20 | 2002-06-20 | Hoang Minh Q. | Skin disinfectant applicator |
| US20020136756A1 (en) * | 1998-12-29 | 2002-09-26 | Mcadams John B. | Method and article for debridement and detoxification of wounds |
| US20030026848A1 (en) * | 2001-07-06 | 2003-02-06 | Joshi Ashok V. | Beneficial materials for topical or internal use by a human or other animal |
-
2008
- 2008-03-13 US US12/047,970 patent/US20080223826A1/en not_active Abandoned
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4929607A (en) * | 1981-03-24 | 1990-05-29 | Asta Pharma Aktiengesellshaft | oxazaphosphorin-4-thio alkanesulphonic acids, neutral salts thereof and method to treat cancer diseases and to produce immunosuppression |
| US20020136756A1 (en) * | 1998-12-29 | 2002-09-26 | Mcadams John B. | Method and article for debridement and detoxification of wounds |
| US20020012640A1 (en) * | 2000-06-13 | 2002-01-31 | Fatemeh Mohammadi | Cosmetic composition for stressed skin under extreme conditions |
| US20020031556A1 (en) * | 2000-07-21 | 2002-03-14 | Lindahl Ake R. | Stabilized hydrogen peroxide composition and method of making a stabilized hydrogen peroxide composition |
| US20020076255A1 (en) * | 2000-12-20 | 2002-06-20 | Hoang Minh Q. | Skin disinfectant applicator |
| US20030026848A1 (en) * | 2001-07-06 | 2003-02-06 | Joshi Ashok V. | Beneficial materials for topical or internal use by a human or other animal |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US5730890A (en) | Method for conditioning halogenated polymeric materials and structures fabricated therewith | |
| US6194785B1 (en) | Method for circuitizing through-holes by photo-activated seeding | |
| US8500985B2 (en) | Photoresist-free metal deposition | |
| US7560016B1 (en) | Selectively accelerated plating of metal features | |
| US20090056991A1 (en) | Methods of Treating a Surface to Promote Binding of Molecule(s) of Interest, Coatings and Devices Formed Therefrom | |
| JP2768390B2 (en) | Method of conditioning a substrate for electroless metal deposition | |
| DE69717940T2 (en) | Reusable, selectively conductive, Z-axis, elastomer composite substrate | |
| US7405163B1 (en) | Selectively accelerated plating of metal features | |
| EP0320601A2 (en) | Electroplating process | |
| JPH04232278A (en) | Conditioning of substrate for electroless plating onto substrate | |
| US20080029400A1 (en) | Selective electroplating onto recessed surfaces | |
| JP2002294469A (en) | Method for selectively etching sam substrate | |
| US20080223826A1 (en) | Reagent Delivery using a Membrane-Mediated Process | |
| JPH0253945B2 (en) | ||
| US6180524B1 (en) | Metal deposit process | |
| Lu et al. | Anodic oxidation of copper cyanide on graphite anodes in alkaline solution | |
| US8092860B2 (en) | Topographically selective oxidation | |
| US5756146A (en) | Inspecting copper or molybdenum lines on a substrate | |
| JP4628914B2 (en) | Circuit pattern forming method | |
| Sasano et al. | Laser-assisted maskless Cu patterning on porous silicon | |
| KR101493358B1 (en) | Method of fabricating copper plating layer using electroless copper plating solution | |
| KR100532515B1 (en) | Method for electroless deposition and patterning of a metal on a substrate | |
| TWI287052B (en) | Analysis method of accelerator for copper electroplating | |
| RU2778998C1 (en) | METHOD FOR FORMING A LAYER OF GOLD ELECTROCHEMICALLY DEPOSITED FROM ELECTROLYTES WITH pH = 6-7 ON THE SURFACE OF SILICON SEMICONDUCTOR STRUCTURES | |
| CN106255347A (en) | FPC hole metallization technique |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: E. I. DU PONT DE NEMOURS AND COMPANY, DELAWARE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MAZUR, STEPHEN;REEL/FRAME:021178/0072 Effective date: 20080508 |
|
| STCB | Information on status: application discontinuation |
Free format text: EXPRESSLY ABANDONED -- DURING EXAMINATION |