TWI287052B - Analysis method of accelerator for copper electroplating - Google Patents

Analysis method of accelerator for copper electroplating Download PDF

Info

Publication number
TWI287052B
TWI287052B TW95100630A TW95100630A TWI287052B TW I287052 B TWI287052 B TW I287052B TW 95100630 A TW95100630 A TW 95100630A TW 95100630 A TW95100630 A TW 95100630A TW I287052 B TWI287052 B TW I287052B
Authority
TW
Taiwan
Prior art keywords
copper
accelerator
ppm
concentration
analyzing
Prior art date
Application number
TW95100630A
Other languages
Chinese (zh)
Other versions
TW200726860A (en
Inventor
Wei-Ping Dow
Ming-Yao Yen
Hsiao-Chun Huang
Original Assignee
Rockwood Electrochemicals Asia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rockwood Electrochemicals Asia filed Critical Rockwood Electrochemicals Asia
Priority to TW95100630A priority Critical patent/TWI287052B/en
Publication of TW200726860A publication Critical patent/TW200726860A/en
Application granted granted Critical
Publication of TWI287052B publication Critical patent/TWI287052B/en

Links

Abstract

An analysis method of accelerator for copper electroplating includes a selective adsorption step and an electrochemical deposition step. First, put a gold electrode into a plating solution, which contains the organic additives. Then dip the gold electrode into the plating solution for a while to adsorb the sulfur-containing accelerator in the plating solution. Following the sulfur-containing compounds are adsorbed on the gold electrode, and wash the gold electrode by Milli-Q ultra pure water. Then, put the gold electrode into an electrolyte which contains the PEG and chloride ions to carry out a cathodic cyclic voltammetry (CCV) for copper deposition on the gold electrode. A calibration curve for accelerator analysis can be obtained by integrating the polarization curve measured from the CCV.

Description

1287052 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種電鍍銅加速劑分析方法,且特別 是有關於一種利用黃金與加速劑中所含之含硫化合物的 選擇性吸附作用,以及銅金屬的電化學還原沉積所產生之 電化學反應訊號來分析電鍍液中加速劑濃度的方法。 【先前技術】 隨著電子元件朝向微小化及複雜化發展,隨之而來的 是接線數量增加,接點間距縮短等問題,皆需要藉由高密 度線路配置及微孔技術來達成,因此多層電路板的運用隨 之普遍,且由於線路密度的提高及層數的增加,電鍍技術 所擔負的角色越來越重要,已成為電路板製造的必要技 術。 利用電鍍銅塞孔是多數填孔技術中最有效的方式,由 於電化學鍍銅技術具有低溫製程、低成本、高沉積速率及 製程簡單等優點,只要在電鍍過程中選擇適當的有機添加 劑,即可得到良好的填充效果。然而,在電鍍過程中往往 會因為電鍍時間的增加,使得電鍍液中的添加劑產生失衡 現象或產生副產物,導致電鍍液喪失填孔的能力。為了改 善添加劑失衡及喪失填孔能力的問題,許多添加劑濃度分 析方法應運而生。 目月υ較被廣/乏使用的分析方法為利用加速劑(光澤劑) 中含有的有機硫醇類化合物(alkanethiols)能在金、銀、銅 5 1287052 等表面形成自組分子薄膜(self-assembly monolayers; SAMs)的特性來進行一選擇性吸附,例如,含硫化合物可 在黃金表面形成略帶極性的硫-金鍵結,再將此吸附含硫化 合物的黃金電極置於鹼性(例如含KOH或NaOH)的電解液 中進行電化學還原脫附,即此吸附的硫化物分子會因為還 原性電壓而獲得電子,繼而脫離此黃金電極,因此便產生 一還原性脫附的電化學訊號剝離峰(stripping peak),再以 此剝離峰之面積進行積分,積分所得之庫儉量可用來定量 硫化物分子的含量,藉以分析電鍍槽液中加速劑的濃度。 由於此方法僅形成單層(monolayer)的硫化物分子吸附,故 其還原性脫附所產生的電流訊號非常微弱,一般都在每平 方公分微安培(//A/cm2)的範圍,容易造成誤差。 因此需要一種有效的加速劑濃度分析方法,具有高靈 敏度及便利性,以便用於監控電鍍過程中之加速劑的濃 度0 【發明内容】 因此本發明的目的就是在提供一種可應用於還原性 沉積銅金屬步驟之沉積電解液,用以使銅金屬沉積於黃金 電極上,並密集成長覆蓋於黃金電極,可解決傳統還原性 脫附方法僅能得到微弱之電化學訊號,靈敏度不高的缺 點。 本發明的另一目的就是在提供一種電鍍銅加速劑分 析方法,用以精確分析電鍍液中之加速劑濃度,藉由結合 6 1287052 黃金-硫之選擇性吸附步驟及一電化學還原性沉積銅金屬 步驟,放大電化學反應訊號,可改善傳統分析方法產生的 電流訊號極為微弱,相對誤差較大之問題。 根據本發明之上述目的,提出一種電鍍鋼加速劑分析 方法,包含提供一具有特定組成的沉積電解液,及利用此 沉積電解液進行一電化學還原沉積步驟的方法。 根據本發明之較佳實施例,此沉積電解液至少包含銅 離子、酸、第一添加物及第二添加物。 其中,銅離子係由含銅化合物提供,例如五水合硫酸 鋼(CuS〇4 · 5H2〇),酸可為硫酸;第一添加物為聚二醇類 化合物;第二添加物可為一齒素離子,例如氣離子或溴離 子。 根據本發明之較佳實施例,此電鍍銅加速劑分析方法 包含選擇性吸附步驟、電化學還原性沉積銅金屬步驟及電 位掃描步驟。 首先’將!金電極放入含有有機添加劑之電鑛液中, 電鍍液至少包含銅離子、酸、平整劑、聚二醇類化合物、 _素離子及加速劑;接著,調高此黃金電極之轉速達3〇〇〇 rpm,以去除附著在電極上之氣泡後再將轉速歸零,隨後 將此貫金電極浸置於此電鍍液中一段時間進行選擇性吸 附。 之後,以超純水沖洗此已吸附含硫化合物之黃金電極 並吸乾其表面之水分後,再將此黃金電極浸入沉積電解液 中進行陰極循環伏安電位掃描(cathodic cyclic 7 1287052 voltammetry; CCV),其間黃金電極表面慢慢的因銅離子還 原沉積而轉變成為銅’因而產生一電流峰(current peak), 其電流密度訊號強度可達每平方公分毫安培(mA/cm2)的 範圍;最後再將由CCV所得到的極化曲線進行積分並且定 量,以便得到一具線性且準確的濃度檢量線,可用來定量 電鍍液中之含硫化合物的含量以分析電鍍槽液中加速劑 的濃度。 因此’由上述可知本發明具有以下優點: 1·本發明提供之沉積電解液,可使銅金屬初期以顆粒 模式沉積於黃金電極上,並密集成長覆蓋黃金電極,由於 鋼顆粒的沉積使黃金電極表面慢慢的轉變成為銅而產生 一電流峰,其電流密度訊號可放大至每平方公分毫安培的 範圍,因此具有減少相對誤差,達到更準確定量含硫化合 物含量的效果。 2·本發明之電鍍銅加速劑分析方法,係結合選擇性吸 附步驟與電化學還原性沉積步驟,在現有之分析基礎上, 藉由增加一電化學還原性沉積步驟來放大電流反應訊 號,可得到準確的濃度檢量線,達到精確分析電鍍液中加 速劑濃度之要求,更可與現有之技術銜接,達到高便利性 及準確性的目的。 為了使本發明之構成特徵、操作方法、目的及優點更 加容易了解’故於下文中配合圖示及文字敘述,說明本發 明之實施例。 8 1287052 【實施方式】 4參照第1圖,其繪示依照本發明之一種電鍍銅加速 劑分析方法的步驟流程圖。如步驟11〇所示,先將經過預 處理之黃金電極放入含有有機添加劑之電鍍液中,並調高 此黃金電極之轉速達3000 rpm,以去除附著在電極上之氣 泡後再將轉速歸零,接著將黃金電極浸置於此電鍍液中一 段時間以進行選擇性吸附。根據本發明之較佳實施例,此 電鍍液之溫度約控制在20〜30°C之間;黃金電極浸置於電 鍍液中之選擇性吸附時間約為15〜45分鐘。 根據本發明之較佳實施例,電鍍液之組成可至少包含 銅離子、酸、平整劑、聚二醇類化合物、齒素離子及加速 劑0 其中’銅離子係由一含銅化合物提供,例如無水硫酸 銅(CuS04)、含水硫酸銅、碳酸銅(CuC〇3)、氧化銅(CuO)、 硝酸銅(Cu(N〇3)2)或其所組成之族群,根據本發明之較佳 實施例,銅離子係由五水合硫酸銅(CuS04· 5H20)所提供, 電鍍液中銅離子之濃度可為介於150〜250 g/L之間。 酸可為硫酸,濃度為介於30〜100 g/L之間;平整劑 可依實際需要選擇不同之平整劑,其濃度係介於0.5〜5 ppm之間。 聚二醇類化合物可選自於由聚乙二醇(polyethylene glycol; PEG)、聚丙二醇(polypropylene glycol; PPG)、聚氧 化乙烯(polyethylene oxide; PEO)、聚乙二醇第三辛基苯基 醚(polyethylene glycol tert-octylphenyl ether; Triton X-405) 9 1287052 或其所組成之族群,且聚二醇類化合物之濃度為介於50 至400 ppm之間。 鹵素離子可為氣離子或溴離子,其濃度係介於20至 100 ppm 之間。 加速劑係選自於由雙(3-續酸丙基)二硫化物 (Bis(3-Sulfopropyl) Disulfide; SPS)、3-硫醇基-1-丙烧石黃酸 (3-Mercapto-l_Propane Sulfonate; MPS)、3-硫-異硫脲丙基 績酸鹽(3-S_Isothiuronium propyl Sulfonate; UPS)、N,N-二 甲基硫代氫基甲醯基丙烷磺酸鈉(队1^以11^化71-dithiocarbamyl propyl sulfonic acid; DPS)、3-(苯並嗟哇基 -2- 硫醇)-丙基石黃酸鈉 ([1-Propanesulfonic acid,3-(2-benzoathiazolylthio)]; ZPS)及其任意組合所組成 之族群,加速劑之濃度約為0.5〜5 ppm之間。 接著,如步驟120所示,此黃金電極會與電鍍液中之 含硫化合物進行一選擇性吸附,在黃金電極表面形成一自 組分子薄膜,且黃金表面吸附含硫化合物的量會與浸泡時 間及含硫化合物的濃度成正比。 之後,如步驟130所示,以超純水沖洗已吸附含硫化 合物之黃金電極並吸乾其表面之水分後,再依照步驟140 所示,將黃金電極浸入沉積電解液中沉積銅金屬。 此沉積電解液之組成可至少包含銅離子、酸、第一添 加劑及第二添加劑。 其中,銅離子係由一含銅化合物提供,例如無水硫酸 銅(CuS04)、含水硫酸銅、碳酸銅(CuC03)、氧化銅(CuO)、 1287052 硝酸銅(Cu(N〇3)2)或其所組成之族群,择據本發明之較佳 實施例,銅離子係由五水合硫酸鋼(CuS〇4 · 5H2〇)所提供, 沉積電解液中之銅離子濃度可為介於150〜250 g/L之間; 酸可為硫酸,其濃度為介於30〜100 g/L之間;第一添加 物可為分子量介於1000至20000之間的聚二醇類化合 物,例如聚乙二醇(PEG)、聚丙二醇(PPG)、聚氧化乙烯 (PEO)、聚乙二醇第三辛基苯基鱗(Triton X-405),此聚二 醇類化合物之濃度為介於50至400 ppm之間;第二添加 物可為一鹵素離子,例如氯或溴離子,其濃度係介於3〇 至100 ppm之間。 接著如步驟150,於沉積電解液中進行CCV,以便將 銅沉積於此黃金電極上,電位掃描之速度為每秒1至2〇 毫伏特(mV/s)。由於銅初期會以顆粒模式沉積於黃金電極 表面’因而產生一電流訊號強度達毫安培之電流峰;最後 再如步驟160所示,將所得到的極化曲線進行積分並且定 量,以得到一具線性且準確的濃度檢量線,可用來定量含 硫化合物的量以分析電鍍槽液中加速劑的濃度。 極化曲線的積分及定孴 將吸附含硫加速劑後的黃金電極置入沉積電解液中 進行電位掃描時,所得到的極化曲線包含有鋼的沉積、含 硫化合物的脫附(還原電位下)以及銅的剝離(氧化電位 下)。以MPS為例’其還原部分的反應式如下所示: 11 1287052 ·· M-S-R + e- -^ M + R-S- ⑴ • . Cu2+ + 2e- —^ Cu° (2) 其中,式⑴和⑺分別為電化學實驗過程中含硫化合物的脫 附及銅的沉積,其兩種反應都必須消耗電子才能產生, • 此在對極化曲線進行積分時,必須同時考相此兩= • 應。傳統分析方法係將氧化部分的極化曲線進行積分,做 為分析電鍍添加劑濃度的依據。本發明在分析過程中同時 _ 冑還原及氧化部分的極化曲線進行積分,以便確認何者適 合用來作為加速劑之定量分析,然後再進行定量分 驗。 耳 請參照第2圖,為黃金電極吸附不同濃度sps後進行 循環伏安之極化曲線圖,將此極化曲線之還原及氧化部份 分別進行積分後,其積分結果則繪示於第3圖。從積分的 f果發現,還原(沉積)部份及氧化(剝離)部份所得到的庫倫 $皆會隨著SPS的濃度增加而增加,且成線性關係(反平方 _ 值0.9976)’但若將還原部份和氧化部份做比較,則可發 現還原部份積分所得到的庫侖量會比氧化部份的庫命量 來的大,也就是1¾,在還原電位下所產生之電流所代表的 不僅僅是鋼的沉積,其中還包含了電鑛液中其他添加劑之 間的父互作用,如含硫化合物的脫附。因此,在進行 /辰度刀析時,應以還原部份積分所得到的庫侖量做為分析 的依據以製作較為準確的加速劑濃度檢量線。 12 1287052 沉積電解液之细# 利用觀察本發明之沉積電解液的組成不同時其極化 曲線的改變’來研發最佳之沉積電解液組成配方,可加強 電流訊號且得到具有良好線性關係的濃度檢量線。 實例一 請參照第4圖,係將吸附SPS的黃金電極放入僅含有 硫酸和硫酸銅的電解液中進行循環伏安掃描,並將所得的 極化曲線進行積分所製成之檢量線圖。利用改變sps的濃 度,觀察極化曲線積分所得的庫侖量是否會隨著sps濃度 的增加而改變,如第4圖所示,於僅含有硫酸和硫酸銅的 電解液中進行電位掃描時,庫侖量並未隨著sps濃度不同 而產生明顯的改變,亦不具有線性的效果(R平方值= 〇·〇291),因此無法作為加速劑濃度分析時的電解液。 實例二 請參照第5圖,係將吸附SPS的黃金電極放入含有硫 酉夂、硫酸銅及氯離子的電解液巾進行電位掃描,並將所得 的,曲線進行積分所製成之檢量線圖。如第5圖所示, 在:加入氣離子的電解液中得到的實驗結果亦和無添加 鼠離子時相同,不具有線性的效果(R平方值= G 6369),因 此一樣無法作為加速劑濃度分析時的電解液。 實例三 13 1287052 請參照第6圖,係將吸附SPS之黃金電極放入含有硫 酸、硫酸銅及PEG的電解液中進行電位掃描,以觀察添加 PEG的電解液產生的電流訊號改變情形。如第6圖所示, 隨著SPS濃度增加,極化曲線積分所得的庫侖量會隨之減 少且呈一線性關係(R平方值=0.985),但庫侖量的改變量 並不明顯,所以當電鍍液中加入pEG時雖然具有線性關 係,可是庫侖量改變不大,還是無法作為加速劑濃度分析 時的電解液,因為若是庫侖量改變不大,則當加速劑濃度 改變時所測得的極化曲線會有準確度不夠的問題,也就是 說,不同濃度間的庫侖改變量有可能為實驗誤差所造成 的,進而在分析時產生加速劑濃度誤判的情況發生。 實例四1287052 IX. Description of the Invention: [Technical Field of the Invention] The present invention relates to an analysis method for an electroplating copper accelerator, and more particularly to a selective adsorption effect of a sulfur-containing compound contained in gold and an accelerator. And an electrochemical reaction signal generated by electrochemical reduction deposition of copper metal to analyze the concentration of the accelerator in the plating solution. [Prior Art] With the development of miniaturization and complication of electronic components, problems such as an increase in the number of wires and a shortened contact pitch are required to be achieved by high-density line configuration and micro-hole technology, so that multiple layers are required. The use of circuit boards is common, and due to the increase in line density and the increase in the number of layers, the role of electroplating technology has become more and more important, and has become a necessary technology for circuit board manufacturing. The use of electroplated copper plug holes is the most effective way of most hole filling technology. Because electrochemical copper plating technology has the advantages of low temperature process, low cost, high deposition rate and simple process, as long as the appropriate organic additives are selected during the electroplating process, A good filling effect can be obtained. However, in the electroplating process, the plating solution may be unbalanced or produce by-products due to an increase in plating time, resulting in the loss of the filling ability of the plating solution. In order to improve the problem of additive imbalance and loss of hole filling ability, many methods for additive concentration analysis have emerged. The analysis method used for the spectroscopy is to use the organic thiol compound (alkanethiols) contained in the accelerator (gloss agent) to form a self-assembled molecular film on the surface of gold, silver, copper 5 1287052 (self- The characteristics of assembly monolayers; SAMs) for selective adsorption, for example, sulfur-containing compounds can form a slightly polar sulfur-gold bond on the gold surface, and then the gold electrode adsorbing the sulfur-containing compound is alkaline (for example) Electrochemical reduction desorption in an electrolyte containing KOH or NaOH), that is, the adsorbed sulfide molecules acquire electrons due to a reducing voltage, and then exit the gold electrode, thereby generating a reductive desorption electrochemical signal The stripping peak is integrated, and the area of the stripping peak is integrated, and the amount of the obtained tantalum can be used to quantify the content of the sulfide molecules, thereby analyzing the concentration of the accelerator in the plating bath. Since this method only forms a monolayer of sulfide molecules, the current signal generated by the reductive desorption is very weak, generally in the range of microamperes per square centimeter (//A/cm2), which is easy to cause. error. Therefore, there is a need for an effective accelerator concentration analysis method with high sensitivity and convenience for monitoring the concentration of an accelerator in an electroplating process. [Invention] It is therefore an object of the present invention to provide a reductive deposition. The deposition of electrolyte in the copper metal step is used to deposit copper metal on the gold electrode and densely grow on the gold electrode, which can solve the disadvantage that the traditional reductive desorption method can only obtain weak electrochemical signals and has low sensitivity. Another object of the present invention is to provide an electroplating copper accelerator analysis method for accurately analyzing the accelerator concentration in a plating solution by combining a 6 1287052 gold-sulfur selective adsorption step and an electrochemically reducing deposition copper. The metal step, amplifying the electrochemical reaction signal, can improve the problem that the current signal generated by the traditional analysis method is extremely weak and the relative error is large. In accordance with the above objects of the present invention, an electroplating steel accelerator analysis method is provided, comprising providing a deposition electrolyte having a specific composition, and a method of performing an electrochemical reduction deposition step using the deposition electrolyte. According to a preferred embodiment of the invention, the deposition electrolyte comprises at least copper ions, an acid, a first additive and a second additive. Wherein, the copper ion is provided by a copper-containing compound, such as sulfuric acid steel pentahydrate (CuS〇4 · 5H2〇), the acid may be sulfuric acid; the first additive is a polyglycol compound; and the second additive may be a dentate Ions, such as gas ions or bromide ions. In accordance with a preferred embodiment of the present invention, the electroplated copper accelerator analysis method comprises a selective adsorption step, an electrochemically reductive copper metal deposition step, and a potential scanning step. First, 'will! The gold electrode is placed in an electric ore liquid containing an organic additive, and the plating solution contains at least copper ions, an acid, a leveling agent, a polyglycol compound, an ion, and an accelerator; and then, the rotation speed of the gold electrode is increased by 3〇. 〇〇 rpm to remove the bubbles attached to the electrodes and then zero the rotation speed, and then the gold electrode is immersed in the plating solution for a certain period of time for selective adsorption. Thereafter, the gold electrode adsorbing the sulfur-containing compound is washed with ultrapure water and the water on the surface is absorbed, and then the gold electrode is immersed in the deposition electrolyte for cathodic cyclic voltammetric scanning (cathodic cyclic 7 1287052 voltammetry; CCV) ), during which the surface of the gold electrode is slowly converted to copper by copper ion reduction deposition, thus producing a current peak with a current density signal strength in the range of milliamperes per square centimeter (mA/cm2); The polarization curve obtained by CCV is then integrated and quantified to obtain a linear and accurate concentration calibration line which can be used to quantify the content of sulfur compounds in the plating solution to analyze the concentration of the accelerator in the plating bath. Therefore, it can be seen from the above that the present invention has the following advantages: 1. The deposition electrolyte provided by the present invention enables the copper metal to be initially deposited in a particle mode on a gold electrode and densely grown to cover the gold electrode, and the gold electrode is deposited due to deposition of the steel particles. The surface slowly transforms into copper to produce a current peak, and its current density signal can be amplified to a range of milliamperes per square centimeter, thus reducing the relative error and achieving a more accurate quantitative determination of the sulfur content. 2. The electroplating copper accelerator analysis method of the present invention combines a selective adsorption step and an electrochemical reductive deposition step, and based on the existing analysis, the current reaction signal is amplified by adding an electrochemical reductive deposition step. Obtain an accurate concentration calibration line to meet the requirements of accurately analyzing the accelerator concentration in the plating solution, and it can be connected with the existing technology to achieve high convenience and accuracy. In order to make the features, operation, objects, and advantages of the present invention easier to understand, the embodiments of the present invention are described below in conjunction with the drawings. 8 1287052 [Embodiment] 4 Referring to Figure 1, there is shown a flow chart of the steps of an electroplating copper accelerator analysis method in accordance with the present invention. As shown in step 11〇, the pretreated gold electrode is first placed in a plating solution containing an organic additive, and the rotation speed of the gold electrode is increased to 3000 rpm to remove the bubbles attached to the electrode, and then the rotation speed is returned. Zero, then the gold electrode is immersed in this plating solution for a period of time for selective adsorption. According to a preferred embodiment of the present invention, the temperature of the plating solution is controlled to be between about 20 and 30 ° C; the selective adsorption time of the gold electrode to be immersed in the plating solution is about 15 to 45 minutes. According to a preferred embodiment of the present invention, the composition of the plating solution may include at least copper ions, an acid, a leveling agent, a polyglycol compound, a dentate ion, and an accelerator 0 wherein 'the copper ion is provided by a copper-containing compound, for example Anhydrous copper sulfate (CuS04), aqueous copper sulfate, copper carbonate (CuC〇3), copper oxide (CuO), copper nitrate (Cu(N〇3)2) or a group thereof, according to a preferred embodiment of the present invention For example, the copper ion is provided by copper sulfate pentahydrate (CuS04·5H20), and the concentration of copper ions in the plating solution may be between 150 and 250 g/L. The acid may be sulfuric acid, and the concentration is between 30 and 100 g/L; the leveling agent may select different leveling agents according to actual needs, and the concentration thereof is between 0.5 and 5 ppm. The polyglycol compound may be selected from polyethylene glycol (PEG), polypropylene glycol (PPG), polyethylene oxide (PEO), polyethylene glycol, third octylphenyl Polyethylene glycol tert-octylphenyl ether; Triton X-405 9 1287052 or a group thereof, and the concentration of the polyglycol compound is between 50 and 400 ppm. The halide ion can be a gas ion or a bromide ion with a concentration between 20 and 100 ppm. The accelerator is selected from the group consisting of Bis(3-Sulfopropyl) Disulfide (SPS), 3-thiol-1-propenolone (3-Mercapto-l_Propane) Sulfonate; MPS), 3-S-Isothiuronium propyl Sulfonate; UPS, sodium N,N-dimethylthiohydrogenylmethylpropane sulfonate (team 1 ^ 11-dithiocarbamyl propyl sulfonic acid; DPS), 3-(benzocylin-2-thiol)-propylselenate ([1-Propanesulfonic acid, 3-(2-benzoathiazolylthio)]; ZPS And the group of any combination thereof, the concentration of the accelerator is between about 0.5 and 5 ppm. Then, as shown in step 120, the gold electrode is selectively adsorbed with the sulfur-containing compound in the plating solution to form a self-assembled molecular film on the surface of the gold electrode, and the amount of the sulfur-containing compound adsorbed on the gold surface is compared with the soaking time. It is proportional to the concentration of sulfur compounds. Thereafter, as shown in step 130, the gold electrode having adsorbed the sulfide is adsorbed with ultrapure water and the moisture of the surface is absorbed, and then the gold electrode is immersed in the deposition electrolyte to deposit copper metal as shown in step 140. The composition of the deposited electrolyte may comprise at least copper ions, an acid, a first additive, and a second additive. Wherein, the copper ion is provided by a copper-containing compound, such as anhydrous copper sulfate (CuS04), aqueous copper sulfate, copper carbonate (CuC03), copper oxide (CuO), 1287052 copper nitrate (Cu(N〇3)2) or According to a preferred embodiment of the present invention, the copper ion is provided by sulfuric acid pentahydrate steel (CuS〇4·5H2〇), and the concentration of copper ions in the deposition electrolyte may be between 150 and 250 g. Between /L; the acid may be sulfuric acid at a concentration of between 30 and 100 g/L; the first additive may be a polyglycol compound having a molecular weight of between 1000 and 20,000, such as polyethylene glycol (PEG), polypropylene glycol (PPG), polyethylene oxide (PEO), polyethylene glycol trioctylphenyl scale (Triton X-405), the concentration of this polyglycol compound is between 50 and 400 ppm The second additive may be a halogen ion, such as chlorine or bromide, in a concentration between 3 Å and 100 ppm. Next, as in step 150, CCV is performed in the deposition electrolyte to deposit copper on the gold electrode at a potential scan rate of 1 to 2 millivolts per second (mV/s). Since the copper is initially deposited in the particle mode on the surface of the gold electrode, a current peak with a current signal intensity of up to mA is generated; finally, as shown in step 160, the obtained polarization curve is integrated and quantified to obtain a A linear and accurate concentration calibration line that can be used to quantify the amount of sulfur compounds to analyze the concentration of accelerator in the plating bath. Integration and characterization of the polarization curve. When the gold electrode adsorbing the sulfur-containing accelerator is placed in the deposition electrolyte for potential scanning, the polarization curve obtained includes the deposition of steel and the desorption of sulfur-containing compounds (reduction potential). B) and the peeling of copper (under oxidation potential). Taking MPS as an example, the reaction formula of the reduced portion is as follows: 11 1287052 ·· MSR + e- -^ M + RS- (1) • . Cu2+ + 2e- —^ Cu° (2) where, equations (1) and (7) are respectively For the desorption of sulfur-containing compounds and the deposition of copper during electrochemical experiments, both reactions must consume electrons to produce. • When integrating the polarization curve, the two must be tested simultaneously. The traditional analytical method integrates the polarization curve of the oxidized portion as a basis for analyzing the concentration of the plating additive. The present invention integrates the polarization curves of the _ 胄 reduction and oxidized portions during the analysis to confirm which one is suitable for quantitative analysis as an accelerator, and then perform quantitative analysis. Please refer to Figure 2 for the polarization curve of cyclic voltammetry after adsorption of different concentrations of sps on the gold electrode. After the reduction and oxidation of the polarization curve are integrated, the integration results are shown in the third. Figure. From the results of the integral, it is found that the reduction (deposited) part and the oxidized (peeled) part of the Coulomb $ increase with the increase of the SPS concentration, and a linear relationship (inverse square _ value 0.9976) 'but Comparing the reduced portion with the oxidized portion, it can be found that the amount of coulomb obtained by the integral of the reduced portion is larger than the amount of the oxidized portion, that is, 13⁄4, which is represented by the current generated at the reducing potential. It is not only the deposition of steel, but also the inter-reaction between other additives in the electro-mineral liquid, such as the desorption of sulfur-containing compounds. Therefore, in the process of performing / Chen knife analysis, the Coulomb amount obtained by reducing the partial integral should be used as the basis for the analysis to produce a more accurate accelerator concentration calibration line. 12 1287052 Deposition of electrolytes # By observing the change of the polarization curve of the composition of the deposition electrolyte of the present invention, the optimal deposition electrolyte composition formula is developed to enhance the current signal and obtain a concentration with a good linear relationship. Check line. For example 1, please refer to Fig. 4, which is a calibration curve diagram prepared by placing a gold electrode adsorbing SPS into an electrolyte containing only sulfuric acid and copper sulfate for cyclic voltammetry scanning and integrating the obtained polarization curves. . By changing the concentration of sps, observe whether the coulomb amount obtained by integration of the polarization curve changes with the increase of sps concentration. As shown in Fig. 4, when performing potential scanning in an electrolyte containing only sulfuric acid and copper sulfate, Coulomb The amount does not change significantly with the sps concentration, nor does it have a linear effect (R square value = 〇·〇291), so it cannot be used as an electrolyte for the accelerator concentration analysis. Example 2, please refer to Figure 5, which is a calibration curve made by placing the gold electrode adsorbing SPS into an electrolyte towel containing sulfur, copper sulfate and chloride ions for potential scanning and integrating the obtained curve. Figure. As shown in Fig. 5, the experimental results obtained in the electrolyte with the addition of gas ions are the same as those without the addition of the mouse ions, and have no linear effect (R square value = G 6369), so the same cannot be used as the accelerator concentration. The electrolyte at the time of analysis. Example 3 13 1287052 Referring to Figure 6, the gold electrode adsorbing SPS is placed in an electrolyte containing sulfuric acid, copper sulfate and PEG for potential scanning to observe the change of current signal generated by the electrolyte added with PEG. As shown in Fig. 6, as the concentration of SPS increases, the amount of coulomb obtained by integration of polarization curves decreases and is linear (R square value = 0.985), but the amount of change in Coulomb is not obvious, so when Although there is a linear relationship when adding pEG to the plating solution, the Coulomb amount does not change much, and it cannot be used as the electrolyte in the accelerator concentration analysis, because if the Coulomb amount does not change much, the measured pole when the accelerator concentration changes. The curve will have insufficient accuracy. That is to say, the Coulomb change between different concentrations may be caused by experimental errors, and the occurrence of misidentification of the accelerator concentration may occur during the analysis. Example four

凊參照第7圖,為本發明之沉積電解液與其他電解液 在不同SPS /辰度時之積分庫命量的比較圖。本發明之特色 在於沉積電解液中包含兩種添加物,第一添加物為聚乙二 醇(PEG),第二添加物為氯離子。 一如第7圖所示’⑷為當電解液的組成中同時含有聚乙 旦=(PEG)及氣離子時,隨著sps濃度增加所得到的庫命 、曲曰艮著增加,(b)為無添加PEG及氯離子時,則隨著SPS 、、^所得到的庫命量並無明顯增加;(c)為電解液中僅 姆加⑽子或⑷僅添加聚乙二醇(pEG)時,隨著sps濃度 二口所得到的庫侖量亦無明顯增加。因此,只有當電解液 成中同時含有第一添加物聚乙二醇(PEG)及第二添加 14 1287052 物氣離子時,則隨著SPS濃度增加所得到的庫侖量會跟著 增加’且和其它不同組成之電解液(b)、(c)及(d)所得到的 庫侖量相比,本發明之沉積電解液在SPS濃度改變時其庫 命改變量會較明顯且線性化。因此,在進行電鍍液加速劑 濃度分析時,吸附SPS後的黃金電極必須在含有聚乙二醇 (PEG)及氣離子之沉積電解液中進行電位掃描才會有明顯 的電流峰產生。 實例五 請參照第8圖,係根據上述操作條件,改變電解液 中S P S的濃度所作出的極化曲線圖。結果顯示,隨著電^ 液中SPS濃度增加,其所產生的電流峰會跟著變大,此電 流峰變大代表黃金電極上所吸附的SPS量增加,因為從極 化曲線圖來看,當所浸泡的電鍍液中SPS濃度增加時,除 了電流峰會變大外,其極化曲線相較之下也會有更去極化 的隋形發生。接著,第9圖係緣示進一步將不同濃度下的 極化曲線進行積分的結果。如第9圖所示,可發現隨著sps 濃度增加,其積分所得的庫侖量也會隨之增加且呈一線性 關係,故可將此線性關係用來作為sps濃度分析時的濃度 檢量線。 由上述本發明較佳實施例可知,應用本發明具有下列 優點: 首先,本發明提供之沉積電解液,利用特定的電解 液組成配方,藉由加入聚二醇類化合物及_素離子兩種添Referring to Fig. 7, a comparison chart of the integral reservoir life of the deposited electrolyte and other electrolytes at different SPS/times of the present invention is shown. The invention is characterized in that the deposition electrolyte contains two additives, the first additive being polyethylene glycol (PEG) and the second additive being chloride ions. As shown in Fig. 7, '(4) is that when the composition of the electrolyte contains both poly(ethylene) = (PEG) and gas ions, the life and the increase in the concentration of sps increase, (b) In the absence of adding PEG and chloride ions, there is no significant increase in the amount of life obtained with SPS, and ^; (c) only in the electrolyte (10) or (4) only polyethylene glycol (pEG) At the same time, there was no significant increase in the amount of coulomb obtained with the concentration of sps. Therefore, only when the electrolyte solution contains both the first additive polyethylene glycol (PEG) and the second addition 14 1287052 gas ions, the amount of coulomb obtained with increasing SPS concentration will increase 'and other Compared with the coulomb amount obtained by the electrolytes (b), (c) and (d) of different compositions, the amount of change in the life of the deposited electrolyte of the present invention when the SPS concentration is changed is more obvious and linearized. Therefore, in the analysis of the concentration of the plating solution accelerator, the gold electrode after the adsorption of SPS must be subjected to potential scanning in a deposition electrolyte containing polyethylene glycol (PEG) and gas ions to have a significant current peak. Example 5 Referring to Figure 8, the polarization curve is obtained by changing the concentration of S P S in the electrolyte according to the above operating conditions. The results show that as the concentration of SPS in the liquid increases, the current peak will increase, and the peak of this current will increase the amount of SPS adsorbed on the gold electrode, because from the polarization curve, When the concentration of SPS in the immersion plating solution increases, in addition to the current peak becomes larger, the polarization curve will have a more depolarized 隋 shape. Next, Fig. 9 shows the result of further integrating the polarization curves at different concentrations. As shown in Fig. 9, it can be found that as the concentration of sps increases, the amount of coulomb obtained by the integral increases and increases linearly. Therefore, this linear relationship can be used as the concentration check line for the analysis of sps concentration. . It will be apparent from the above-described preferred embodiments of the present invention that the application of the present invention has the following advantages: First, the present invention provides a deposition electrolyte which utilizes a specific electrolyte composition formulation by adding a polyglycol compound and a ionic ion.

15 1287052 加劑,可促使銅金屬於黃金電極上初期以顆粒模式沉積, 並密集成長覆蓋黃金電極,銅的沉積使黃金電極表面慢慢 的轉變成為銅,而產生一電流峰。由於銅原子在黃金電極 上的沉積行為會與含硫化合物吸附量成正比,且其訊號放 大的行為與預浸的含硫化合物濃度及沉積的銅顆粒大小 成正比,因此電流訊號可放大至毫安培的範圍,且其積分 後的庫侖量更可明顯表現出黃金電極吸附不同濃度的含 硫化合物之差異,可運用於加速劑的分析上,具有減少相 對誤差’達到更準確定量含硫化合物含量的效果。 再者,根據上述實例,本發明之電鍍銅加速劑分析方 法結合選擇性吸附步驟與電化學還原性沉積步驟,在現有 之分析基礎上,藉由增加一電化學還原性沉積步驟來放大 電流反應訊號,可得到準確的濃度檢量線,達到精確分析 電鍍液中加速劑濃度之要求,更可與現有之技術銜接,達 到高便利性及準確性的目的。 雖然本發明已以一較佳實施例揭露如上,然其並非用 以限定本發明,任何熟習此技藝者,在不脫離本發明之精 神和範圍内,當可作各種之更動與潤飾,因此本發明之保 護範圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 為讓本發明之上述和其他目的、特徵、優點與實施例 能更明顯易懂,所附圖式之詳細說明如下: 1287052 第i圖係緣示依照本發明之一種電魏銅加速劑分析方 法的步驟流程圖。 第2圖是黃金電極吸附不同濃度sps後進行循環伏安 知描之還原及氧化部份的極化曲線圖。 第3圖為黃金電極吸附不同濃度sps後進行循環伏安 掃描的極化曲線圖之還原及氧化部份分別進行積分後的 比較圖。 第4圖為添加硫酸及硫酸銅的電解液在不同sps濃度 時之庫侖量標準曲線圖。 &amp; 第5圖為添加氣離子之電解液在不同sps濃度時之庫 侖量的標準曲線圖。 第6圖為添加peg之電解液與在不同sps濃度時之庫 侖量的標準曲線圖。 第7圖為本發明之沉積電解液與其他電解液在不同濃 度的SPS濃度時之庫命量的比較圖。 第8圖為本發明之沉積電解液在不同濃度的SPS濃度 下進行陰極循環伏安掃描的極化曲線圖。 第9圖係纟會示進一步將不同濃度下的極化曲線進行積 分後製成的標準曲線圖。 120 :步驟 140 :步驟 160 :步驟 【主要元件符號說明】 110 ·β步驟 130 :步驟 150 =步驟 1715 1287052 Additive, which promotes the initial deposition of copper metal in the particle mode on the gold electrode, and densely grows to cover the gold electrode. The deposition of copper slowly transforms the surface of the gold electrode into copper, which produces a current peak. Since the deposition behavior of copper atoms on the gold electrode is proportional to the adsorption amount of the sulfur-containing compound, and the signal amplification behavior is proportional to the concentration of the pre-dipped sulfur compound and the size of the deposited copper particles, the current signal can be amplified to millimeter. The range of amperes, and the amount of coulomb after integration can obviously show the difference of different concentrations of sulfur compounds adsorbed by gold electrodes, which can be applied to the analysis of accelerators, with reduced relative error' to achieve more accurate quantitative determination of sulfur compounds. Effect. Furthermore, according to the above examples, the electroplating copper accelerator analysis method of the present invention combines a selective adsorption step and an electrochemical reductive deposition step to amplify the current reaction by adding an electrochemical reductive deposition step based on the existing analysis. The signal can obtain an accurate concentration calibration line to meet the requirements of accurately analyzing the accelerator concentration in the plating solution, and can be connected with the existing technology to achieve high convenience and accuracy. Although the present invention has been described above in terms of a preferred embodiment, it is not intended to limit the invention, and it is obvious to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS The above and other objects, features, advantages and embodiments of the present invention will become more <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; Flow chart of the steps of the Wei copper accelerator analysis method. Fig. 2 is a graph showing the polarization of the reduction and oxidation of the cyclic voltammetry after the gold electrode is adsorbed at different concentrations of sps. Figure 3 is a comparison of the polarization curves of the cyclic voltammetry scan after the gold electrode is adsorbed at different concentrations of sps and the oxidation of the oxidized fractions. Figure 4 is a graph showing the coulomb amount standard for electrolytes with sulfuric acid and copper sulfate at different sps concentrations. &amp; Figure 5 is a standard plot of the amount of coulombic at the different sps concentrations of the electrolyte added with the gas ion. Figure 6 is a standard plot of the amount of electrolyte added to peg and the amount of coulomb at different sps concentrations. Fig. 7 is a graph comparing the lifespan of the deposited electrolyte of the present invention with other electrolytes at different concentrations of SPS. Figure 8 is a graph showing the polarization curves of the cathodic cyclic voltammetry scan of the deposited electrolyte of the present invention at different concentrations of SPS. Figure 9 is a standard graph showing the further integration of polarization curves at different concentrations. 120: Step 140: Step 160: Step [Description of main component symbols] 110 · β Step 130: Step 150 = Step 17

Claims (1)

1287052 十、申請專利範圍: 1 · 一種電鑛銅加速劑分析方法,該方法包含: 將一黃金電極放入含有機添加劑之一電鍍液中,該電 鍍液之組成物至少包含: 一銅離子; 一酸; 一平整劑; 一聚二醇類化合物; 一鹵素離子;以及 一加速劑; 將該黃金電極浸置於該電鍍液中’進行一選擇性吸 附; 該沉積電解液之 沖洗該黃金電極並吸乾表面之水分 將該黃金電極放入一沉積電解液中 組成至少包含: 一銅離子;1287052 X. Patent Application Range: 1 · An analytical method for an electrowinning copper accelerator, the method comprising: placing a gold electrode into a plating solution containing an organic additive, the composition of the plating solution comprising at least: a copper ion; a flattening agent; a leveling agent; a polyglycol compound; a halogen ion; and an accelerator; the gold electrode is immersed in the plating solution to perform a selective adsorption; the deposition of the electrolyte to rinse the gold electrode And absorbing the moisture of the surface to place the gold electrode in a deposition electrolyte to comprise at least: a copper ion; 一酸; 一聚一醇類化合物;以及 一鹵素離子; 於該電解液中進行—陰極循環伏安掃描 將所得之極化曲線進行積分以製 , 儉蕙線。 法 2·如申請專利範圍第i項所述之電 其中該電鍍液溫度約為2〇〜3〇〇c 錄鋼加逮劑分析方 1287052 、3·如申睛專利範圍第1項所述之電鍍銅加速劑分析方 去其中该選擇性吸附之時間約為15〜45分鐘。 、4·如申請專利範圍第1項所述之電鍍銅加速劑分析方 法\其中該銅離子係由一含銅化合物提供,且該含銅化合 物係選自於由無水硫酸銅、含水硫酸銅、碳酸銅、氧化銅、 硝酸銅或其組合所組成之族群。 5·如申請專利範圍第4項所述之電鍍銅加速劑分析方 法’其中該含水硫酸銅為五水合硫酸銅(CuS〇4 · 5h2〇), 且該硫酸銅之濃度係介於150 g/L〜250 g/L之間。 6·如申請專利範圍第1項所述之電鍍銅加速劑分析方 法’其中該酸為硫酸,且該硫酸之濃度係介於3〇 g/L〜1〇〇 g/L之間。 7·如申請專利範圍第1項所述之電鍍銅加速劑分析方 法’其中該聚二醇類化合物係選自於由聚乙二醇(PEG)、 聚丙二醇(PPG)、聚氧化乙烯(PEO)及聚乙二醇第三辛基苯 基醚(Triton X-405)所組成之族群。 8.如申請專利範圍第1項所述之電鍍銅加速劑分析方 法,其中該聚二醇類化合物之分子量係介於1000至20000 之間。An acid; a polyalcohol compound; and a halogen ion; carried out in the electrolyte - cathodic cyclic voltammetric scanning. The resulting polarization curve is integrated to make a ruthenium line. Method 2: The electric power as described in item i of the patent application, wherein the temperature of the plating solution is about 2 〇~3 〇〇c, and the analysis of the steel is as shown in the first item of claim 1 The electroplating copper accelerator analyzes the time during which the selective adsorption is about 15 to 45 minutes. 4. The method for analyzing an electroplated copper accelerator according to claim 1, wherein the copper ion is provided by a copper-containing compound, and the copper-containing compound is selected from the group consisting of anhydrous copper sulfate, aqueous copper sulfate, a group consisting of copper carbonate, copper oxide, copper nitrate or a combination thereof. 5. The method for analyzing an electroplated copper accelerator according to item 4 of the patent application, wherein the aqueous copper sulfate is copper sulfate pentahydrate (CuS〇4 · 5h2〇), and the concentration of the copper sulfate is 150 g/ L ~ 250 g / L between. 6. The electroplating copper accelerator analysis method according to claim 1, wherein the acid is sulfuric acid, and the concentration of the sulfuric acid is between 3 〇 g/L and 1 〇〇 g/L. 7. The method for analyzing an electroplating copper accelerator according to claim 1, wherein the polyglycol compound is selected from the group consisting of polyethylene glycol (PEG), polypropylene glycol (PPG), and polyethylene oxide (PEO). And a group of polyethylene glycol tert-octylphenyl ether (Triton X-405). 8. The electroplating copper accelerator analysis method according to claim 1, wherein the polyglycol compound has a molecular weight of from 1,000 to 20,000. 19 1287052 9_如申請專利範圍第1項所述之電鍍銅加速劑分析方 法’其中該聚二醇類化合物之濃度係介於50 ppm至400 PPm之間。 1〇·如申請專利範圍第1項所述之電鍍銅加速劑分析方 法’其中該齒素離子為氣離子。 U·如申請專利範圍第1項所述之電鍍銅加速劑分析方 法’其中該_素離子為溴離子。 12.如申請專利範圍第1項所述之電鍍銅加速劑分析方 法’其中該鹵素離子之濃度係介於20 ppm至100 ppm之 間。 13.如申請專利範圍第1項所述之電鍍銅加速劑分析方 法’其中該平整劑之濃度係介於 1 ppm至5 ppm之間。 14·如申請專利範圍第1項所述之電鍍銅加速劑分析方 法,其中該加速劑係選自於由雙(3-磺酸丙基)二硫化物 (SPS)、3_硫醇基-1·丙烷磺酸(MPS)、3-(苯並噻唑基-2-硫 醇)_丙基磺酸鈉(ZPS)、3-硫-異硫脲丙基磺酸鹽(UPS)、N,N- 二甲基-二硫代氨甲醯丙基磺酸鈉(DPS)及其任意組合所組 成之族群。19 1287052 9_ The electroplating copper accelerator analysis method according to claim 1, wherein the concentration of the polyglycol compound is between 50 ppm and 400 ppm. 1) The method of analyzing an electroplated copper accelerator as described in claim 1 wherein the dentate ion is a gas ion. U. The electroplating copper accelerator analysis method according to item 1 of the patent application, wherein the _ element ion is a bromide ion. 12. The method of analyzing an electroplated copper accelerator according to claim 1 wherein the concentration of the halogen ion is between 20 ppm and 100 ppm. 13. The method of analyzing an electroplated copper accelerator according to claim 1 wherein the concentration of the leveling agent is between 1 ppm and 5 ppm. 14. The method of analyzing an electroplating copper accelerator according to claim 1, wherein the accelerator is selected from the group consisting of bis(3-sulfonylpropyl) disulfide (SPS), 3-thiol group- 1. Propane sulfonic acid (MPS), sodium 3-(benzothiazolyl-2-thiol)-propyl sulfonate (ZPS), 3-sulfur-isothiourea propyl sulfonate (UPS), N, A group consisting of sodium N-dimethyl-dithiocarbamyl propyl sulfonate (DPS) and any combination thereof. 20 !287〇52 15.如申請專利範圍第14項所述之電鍍銅加速劑分析 方法’其中該雙(3-磺酸丙基)二硫化物(SPS)之濃度約為〇·5 ppm〜5·〇 ppm 之間。 16·如申請專利範圍第η項所述之電鍍銅加速劑分析 方法’其中該3-硫醇基-1-丙烷磺酸(MPS)之濃度約為〇·1 PPm 〜2.0 ppm 之間。 P·如申請專利範圍第μ項所述之電鍍銅加速劑分析 方法’其中該3-(苯並噻唑基-2-硫醇)_丙基磺酸鈉(ZPS)之 /農度約介於3〇 ppm〜50 ppm之間。 18·如申請專利範圍第14項所述之電鍍銅加速劑分析 方法’其中該3-硫-異硫脲丙基磺酸鹽(UPS)之濃度約介於 100 ppm〜15〇 ppm 之間。 19.如申請專利範圍第14項所述之電鍍銅加速劑分析 方法,其中該N,N-二曱基_二硫代氨甲醯丙基磺酸鈉(Dps) 之濃度約介於〇」卯瓜〜丨〇 ppm之間。 20·如申請專利範圍第丨項所述之電鍍銅加速劑分析方 法,其中該鋼離子係由一含銅化合物提供,且該含銅化合 物係選自於由無水硫酸鋼、含水硫酸銅、碳酸銅、氧化銅、 石肖酸鋼或其組合所組成之族群。20 !287〇52 15. The method for analyzing an electroplated copper accelerator according to claim 14 of the patent application, wherein the concentration of the bis(3-sulfonylpropyl) disulfide (SPS) is about 〇·5 ppm~ Between 5 and 〇ppm. 16. The method for analyzing an electroplated copper accelerator as described in claim n, wherein the concentration of the 3-thiol-1-propanesulfonic acid (MPS) is between about PP1 PPm and 2.0 ppm. P·A method for analyzing an electroplated copper accelerator as described in the scope of the patent application, wherein the concentration of the 3-(benzothiazolyl-2-thiol)-propylsulfonate (ZPS) is approximately 3〇ppm~50 ppm. 18. The method of analyzing an electroplated copper accelerator according to claim 14 wherein the concentration of the 3-sulfur-isothiourea sulfonate (UPS) is between about 100 ppm and 15 ppm. 19. The method of analyzing an electroplated copper accelerator according to claim 14, wherein the concentration of the N,N-dimercapto-dithiocarbamate sulfonate (Dps) is about 〇"卯 melon ~ 丨〇 ppm between. 20. The method of analyzing an electroplated copper accelerator according to the invention of claim 2, wherein the steel ion is provided by a copper-containing compound, and the copper-containing compound is selected from the group consisting of anhydrous sulfuric acid steel, aqueous copper sulfate, and carbonic acid. A group of copper, copper oxide, sulphuric acid steel or a combination thereof. 21 1287052 21·如申請專利範圍第20項所述之電鍍銅加速劑分析 方法’其中該含水硫酸銅為五水合硫酸銅(CuS〇4 · 5H20), 且該硫酸銅之濃度係介於150 g/L〜250 g/L。 22·如申請專利範圍第1項所述之電鍍銅加速劑分析方 法’其中該酸為硫酸,且該硫酸之濃度係介於3〇 g/L〜1〇〇 g/L之間。 23·如申請專利範圍第1項所述之電鍍銅加速劑分析方 法’其中該聚二醇類化合物選自於由聚乙二醇、聚丙二 醇、聚氧化乙烯及聚乙二醇第三辛基苯基醚所組成之族 群。 24·如申請專利範圍第1項所述之電鍍銅加速劑分析方 法’其中該聚二醇類化合物之分子量係介於丨〇〇〇至2〇〇〇〇 Φ 之間。 25·如申睛專利範圍第1項所述之電鍍銅加速劑分析方 ^ 其中該聚二醇類化合物之濃度係介於50 ppm至400 ppm之間。 26·如申請專利範圍第1項所述之電鍍銅加速劑分析方 法’其中該齒素離子為氣離子。 (S) 22 1287052 27·如申請專利範圍第1項所述之電鍍銅加速劑分析方 去’其中該齒素離子為溴離子。 28.如申請專利範圍第1項所述之電鍍銅加速劑分析方 去其中该鹵素離子之濃度係介於30 ppm至100 ppm之 間。21 1287052 21. The method for analyzing an electroplated copper accelerator according to claim 20, wherein the aqueous copper sulfate is copper sulfate pentahydrate (CuS〇4 · 5H20), and the concentration of the copper sulfate is 150 g. /L~250 g/L. 22. The electroplating copper accelerator analysis method according to claim 1, wherein the acid is sulfuric acid, and the concentration of the sulfuric acid is between 3 〇 g/L and 1 〇〇 g/L. 23. The method for analyzing an electroplated copper accelerator according to claim 1, wherein the polyglycol compound is selected from the group consisting of polyethylene glycol, polypropylene glycol, polyethylene oxide, and polyethylene glycol third octyl group. a group of phenyl ethers. 24. The electroplating copper accelerator analysis method according to claim 1, wherein the polyglycol compound has a molecular weight of from 丨〇〇〇 to 2〇〇〇〇 Φ. 25. The electroplated copper accelerator according to item 1 of the scope of the patent application, wherein the concentration of the polyglycol compound is between 50 ppm and 400 ppm. 26. The method of analyzing an electroplated copper accelerator according to claim 1 wherein the dentate ion is a gas ion. (S) 22 1287052 27. The electroplated copper accelerator as described in claim 1 of the patent application is wherein the dentate ion is a bromide ion. 28. The electroplated copper accelerator according to claim 1, wherein the concentration of the halogen ion is between 30 ppm and 100 ppm. 23twenty three
TW95100630A 2006-01-06 2006-01-06 Analysis method of accelerator for copper electroplating TWI287052B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95100630A TWI287052B (en) 2006-01-06 2006-01-06 Analysis method of accelerator for copper electroplating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95100630A TWI287052B (en) 2006-01-06 2006-01-06 Analysis method of accelerator for copper electroplating

Publications (2)

Publication Number Publication Date
TW200726860A TW200726860A (en) 2007-07-16
TWI287052B true TWI287052B (en) 2007-09-21

Family

ID=39460204

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95100630A TWI287052B (en) 2006-01-06 2006-01-06 Analysis method of accelerator for copper electroplating

Country Status (1)

Country Link
TW (1) TWI287052B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009041097A (en) * 2007-08-10 2009-02-26 Rohm & Haas Electronic Materials Llc Copper plating method
CN114778640A (en) * 2022-05-24 2022-07-22 福州大学 Method for measuring chloride ion concentration in acidic copper plating solution

Also Published As

Publication number Publication date
TW200726860A (en) 2007-07-16

Similar Documents

Publication Publication Date Title
CN100529750C (en) Method for analyzing accelerating agent of electro coppering, and deposited electrolyte
Dow et al. Microvia filling by copper electroplating using diazine black as a leveler
US20070215490A1 (en) Method of analyzing accelerator for copper electroplating
US6645364B2 (en) Electroplating bath control
KR101082416B1 (en) Method of analyzing electrolytic copper plating solution and analyzing device therefor and production method for semi-conductor product
JP2009532586A (en) Electrolytic copper plating method
Dow et al. Enhancement of filling performance of a copper plating formula at low chloride concentration
JPS59137853A (en) Method for determining concentration of organic additive in copper electroplating bath
TWI287590B (en) Non-cyanogen type electrolytic solution for plating gold
JP4857317B2 (en) Through-hole filling method
CN102131962A (en) Hard gold plating solution
US7591911B2 (en) Plated film of gold-cobalt amorphous alloy, electroplating bath, and method for electroplating
KR101270770B1 (en) Electroplating method for printed circuit board
Tadesse et al. The effect of thiourea, l (−) cysteine and glycine additives on the mechanisms and kinetics of copper electrodeposition
TWI275790B (en) Analysis method
TWI287052B (en) Analysis method of accelerator for copper electroplating
Sone et al. Electroless copper plating using FeII as a reducing agent
Xiao et al. Electrochemical studies and molecular dynamics simulation of the interaction between accelerators and Cu surface during the electroplating process
JP2001073183A (en) Method for measuring leveler concentration in copper sulfate plating liquid
Kim et al. Influence of reducing agent on chemical decomposition of bis (3-sulfopropyl) disulfide (SPS) in Cu plating bath
TWI537432B (en) Microporous filled electroplating copper system
Van Phuong et al. Mechanistic study on the effect of PEG molecules in a trivalent chromium electrodeposition process
JP5028575B2 (en) Method for measuring nitrogen-containing organic compound concentration in copper sulfate plating solution
JP2009132982A (en) Method of manufacturing copper wiring
TWI298751B (en) Composition for copper electroplating solution

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees