US20080209930A1 - Heat Pump with Pulse Width Modulation Control - Google Patents
Heat Pump with Pulse Width Modulation Control Download PDFInfo
- Publication number
- US20080209930A1 US20080209930A1 US12/088,879 US8887908A US2008209930A1 US 20080209930 A1 US20080209930 A1 US 20080209930A1 US 8887908 A US8887908 A US 8887908A US 2008209930 A1 US2008209930 A1 US 2008209930A1
- Authority
- US
- United States
- Prior art keywords
- refrigerant
- heat pump
- set forth
- compressor
- pulse width
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B13/00—Compression machines, plants or systems, with reversible cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/20—Disposition of valves, e.g. of on-off valves or flow control valves
- F25B41/22—Disposition of valves, e.g. of on-off valves or flow control valves between evaporator and compressor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B1/00—Compression machines, plants or systems with non-reversible cycle
- F25B1/04—Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2313/00—Compression machines, plants or systems with reversible cycle not otherwise provided for
- F25B2313/027—Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
- F25B2313/02741—Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2313/00—Compression machines, plants or systems with reversible cycle not otherwise provided for
- F25B2313/027—Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
- F25B2313/02742—Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using two four-way valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/13—Economisers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/23—Separators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/02—Compressor control
- F25B2600/026—Compressor control by controlling unloaders
- F25B2600/0261—Compressor control by controlling unloaders external to the compressor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/25—Control of valves
- F25B2600/2521—On-off valves controlled by pulse signals
Definitions
- This invention relates to a heat pump that is operable in both a cooling and a heating mode, and wherein at least one component is controlled by pulse width modulation techniques to vary the capacity of the heat pump.
- Refrigerant systems are utilized to control the temperature and humidity of air in various indoor environments to be conditioned.
- a refrigerant is compressed in a compressor and delivered to a condenser (or an outdoor heat exchanger in this case).
- heat is exchanged between outside ambient air and the refrigerant.
- the refrigerant passes to an expansion device, at which the refrigerant is expanded to a lower pressure and temperature, and then to an evaporator (or an indoor heat exchanger).
- the evaporator heat is exchanged between the refrigerant and the indoor air, to condition the indoor air.
- the evaporator cools the air that is being supplied to the indoor environment.
- the above description is of a refrigerant system being utilized in the cooling mode of operation.
- the refrigerant flow through the system is essentially reversed.
- the indoor heat exchanger becomes the condenser and releases heat into the environment to be conditioned (heated in this case) and the outdoor heat exchanger serves the purpose of the evaporator and exchanges heat with a relatively cold outdoor air.
- Heat pumps are known as the systems that can reverse the refrigerant flow through the refrigerant cycle, in order to operate in both heating and cooling modes. This is usually achieved by incorporating a four-way reversing valve (or an equivalent device) into the system design, with the valve located downstream of the compressor discharge port.
- the four-way reversing valve selectively directs the refrigerant flow through the indoor or outdoor heat exchanger when the system is in the heating or cooling mode of operation, respectively. Furthermore, if the expansion device cannot handle the reversed flow, than, for example, a pair of expansion devices, each along with a check valve, can be employed instead.
- a technique known as a pulse width modulation control has been provided.
- various components are provided with a pulse width modulation control that rapidly cycles the component “on” and “off” to change the capacity.
- a suction pulse width modulation valve may be rapidly opened and closed to restrict the amount of refrigerant delivered to a compressor. While such pulse width modulation controls provide sufficient performance variability for air conditioning systems, they have not been incorporated into heat pumps to date.
- a four-way reversing valve selectively controls the flow of refrigerant from a compressor discharge to either an outdoor heat exchanger in a cooling mode, or to an indoor heat exchanger in a heating mode.
- the refrigerant flows through a complete cycle under either mode, and returns to the compressor.
- At least one component within the heat pump system is equipped with a pulse width modulation control.
- this component may be a suction pulse width modulation valve controlling the amount of refrigerant flowing through a suction line to the compressor.
- the component which is provided with a pulse width modulation control may be a compressor pump unit.
- a pair of scroll members is selectively held into contact, or allowed to move away from each other in a pulse width modulated manner, thus controlling the amount of refrigerant compressed by the compressor and delivered to other system components.
- the present invention is able to tailor the delivered capacity to meet desired capacity requirements for the refrigerant heat pump system.
- heat pumps are provided that are better able to match the delivered system capacity and the conditioned environment demanded capacity (and its latent and sensible components) either in the heating or cooling mode of operation.
- an economizer cycle is incorporated into the heat pump schematic to provide additional capacity control.
- the economizer cycle essentially taps a portion of the refrigerant flow through an auxiliary expansion device. That portion of the refrigerant flow is passed through an economizer heat exchanger along with the main refrigerant flow. Heat is exchanged between the two refrigerant flows, with the tapped refrigerant cooling the main refrigerant. The tapped refrigerant exits the economizer heat exchanger typically in a vapor state. This vapor is returned to the compressor at some intermediate point in the compression process.
- the main refrigerant flow passes to a main expansion device and then to a downstream heat exchanger (evaporator), having a greater cooling potential due to additional cooling obtained by passing through the economizer heat exchanger.
- a downstream heat exchanger evaporator
- an unloader function allows for at least a portion of the partially compressed refrigerant to be diverted to the compressor suction to reduce capacity.
- control also has access to the unloader function and the economizer function in combination with a modulation of one of the components to further control system capacity.
- FIG. 1A is a schematic of a first view.
- FIG. 1B shows an alternative method.
- FIG. 2 shows an alternative schematic
- FIG. 3 shows an alternative schematic
- FIG. 4 shows an alternative schematic
- FIG. 5 shows an alternative for a standard economizer heat exchanger.
- FIG. 1A shows a heat pump refrigerant system 20 incorporating a compressor 22 having a discharge line 23 supplying a compressed refrigerant to a four-way reversing valve 26 .
- the four-way reversing valve 26 selectively communicates the refrigerant from the discharge line 23 either to an outdoor heat exchanger 24 , when the system is operating in a cooling mode, or to an indoor heat exchanger 30 , when the system is operating in a heating mode. In either case, the refrigerant passes from the heat exchanger it first encounters after leaving the compressor to a main expansion device 28 . From the main expansion device 28 , the refrigerant passes through to the second heat exchanger, and back to the four-way reversing valve 26 .
- the four-way reversing valve 26 routes the refrigerant into a suction line 31 leading back to the compressor 22 .
- This is a very simplified schematic for a heat pump system. It should be understood that much more complex systems are feasible.
- a pulse width modulation valve 40 is positioned on the suction line 31 . As is known, the pulse width modulation suction valve 40 can be rapidly cycled to control the amount of refrigerant flowing through the compressor. In this manner, the capacity of the refrigerant system can be controlled. As mentioned, such controls are known for use in the air conditioning systems, but have not been utilized in the heat pumps.
- the capacity (and power) of the heat pump in either heating or cooling mode of operation can be precisely tailored to a demanded capacity in a very efficient manner.
- cycling times on the order of 3 seconds to 30 seconds are utilized.
- FIG. 1B shows an embodiment 301 , schematically. It is known that the orbiting scroll member 302 and the non-orbiting scroll member 304 of a scroll compressor may be biased together by means of gas pressure in a chamber 306 . Opening and closing the valve 310 can control pressure in the chamber 306 . As shown, the valve 310 communicates via a refrigerant line 308 with another pressure source that is at different pressure than pressure in the chamber 306 , when the valve 310 is closed. When the pressure in the chamber 306 is reduced below a certain level, the scroll members will separate from each other, and the amount of refrigerant pumped by the compressor is then reduced.
- the valve 310 can be controlled by a pulse width modulation control 312 .
- the two scroll members 302 and 304 can be allowed to periodically move away from, and come into contact with, each other.
- FIG. 1B the schematic shown in FIG. 1B is presented for an illustration purpose only.
- the scroll 302 can be allowed to move axially while the scroll 304 remains essentially stationary in the axial direction.
- the valve 312 can be located internal or external to the compressor.
- the control 42 (or 312 ) is operated to provide variation in the amount of refrigerant delivered by the compressor based upon any number of factors. As the capacity demand on the system 20 changes, then the pulse width modulation control can change the amount of refrigerant flowing through the compressor. Moreover, it may well be that less refrigerant would be desirably passed through the compressor in one of the cooling or heating operating modes. Again, the inventive control easily allows such a modification. In addition, as will be discussed below, the unloader bypass feature (if available) provides further variation in the capacity of the entire system, and the ability to better tailor the control to either the heating or cooling modes of operation.
- FIG. 2 shows another embodiment system 100 wherein a second routing valve 102 is positioned to selectively route refrigerant from the heat exchangers 24 and 30 either into a main liquid line 103 .
- Refrigerant flows through the routing valve 102 from either of the heat exchangers 24 or 30 into the liquid line 103 .
- the refrigerant passes from the heat exchanger 30 or the heat exchanger 24 to the liquid line 103 initially, through an economizer heat exchanger 104 and then through the main expansion device 28 .
- This refrigerant then flows back through the routing valve 102 downstream to the heat exchanger 24 or the heat exchanger 30 accordingly.
- a tap line 106 selectively taps a portion of the refrigerant from the liquid line 103 and passes that tapped refrigerant to an economizer expansion device 108 .
- This refrigerant flows through the economizer heat exchanger 104 and cools the main refrigerant flow.
- a vapor injection line 110 returns the tapped refrigerant back to an intermediate compression point in the compressor 22 .
- the flow of the tapped refrigerant and the main refrigerant flow through the economizer heat exchanger 104 are shown in the same direction, in practice, it is typically preferable that they be in counter-flow relationship. However, for simplicity of illustration, they are shown flowing in the same direction.
- the auxiliary expansion device 108 and the economizer flow diversion point can be located downstream of the economizer heat exchanger 104 .
- an economizer function allows the provision of increased capacity (and efficiency) by additional cooling of the refrigerant in the main liquid line.
- the pulse width modulation valve 40 positioned on a suction line 31 may be controlled using pulse width modulation techniques to tailor the provided capacity with the demanded capacity.
- the economizer feature, along with the optional unloader feature, and the pulse width modulation control, allows the system to operate with minimal amount of cycling to meet particular cooling/heating capacity demands.
- FIG. 3 shows another embodiment, wherein the economizer function is achieved somewhat differently.
- tapped refrigerant having passed through a cooling mode economizer expansion device 204 located on a tap line is returned through a vapor injection line 110 to the compressor 22 .
- the refrigerant from the main liquid line passes through a cooling mode economizer heat exchanger 202 , the main expansion device 28 , and a heating mode economizer heat exchanger 206 to the indoor heat exchanger 30 and back to the compressor 22 . Since the tapped refrigerant would not be flowing through the heating mode economizer expansion device 208 in this mode of operation, there is no heat exchanged in the heating mode economizer heat exchanger 206 .
- the refrigerant flow direction throughout the system is essentially reversed, and the tapped refrigerant flows through the heating mode economizer heat exchanger 206 but not through the cooling mode economizer heat exchanger 202 .
- a control controls the economizer expansion devices 204 and 208 such that they also provide a shutoff valve function.
- the expansion device 204 is open and the expansion device 208 is closed.
- the economizer function along with the suction pulse width modulation valve 40 controlled by the control 42 allows for precise matching of the capacity provided by the heat pump system in either heating or cooling mode of operation to the demanded capacity.
- FIG. 4 shows another embodiment 220 wherein a single economizer heat exchanger 230 is provided.
- a pair of main expansion devices 224 is provided on each side of the economizer heat exchanger.
- a bypass line 202 and a check valve 226 are also provided around each main expansion device 224 .
- the refrigerant will pass through one of the selective main expansion devices 224 depending on the mode of operation (cooling or heating) and the refrigerant flow direction, since the flow of the refrigerant around this expansion device will be blocked by the respective check valve 226 .
- the refrigerant flow will be allowed around another expansion device but not through it.
- An economizer expansion device 228 and heat exchanger 230 operate in a manner similar to the FIG.
- valve 40 positioned on the suction line 31 and controlled by the control 42 using pulse width modulation techniques, along with the economizer function, allows tailoring the provided capacity to the demanded capacity.
- FIG. 5 shows an embodiment 260 wherein the economizer heat exchanger is replaced with a flash tank 262 .
- an inlet line 264 is the main liquid line. It passes into the flash tank 262 , where a refrigerant liquid 266 is separated away from a vapor. The vapor is returned through the vapor injection line 268 back to the compressor intermediate port.
- a return liquid line 270 passes downstream to a heat exchanger or additional expansion device.
- the unloader function may also be incorporated as shown in the FIG. 2 embodiment.
- the present invention thus provides the ability to not only control capacity with an unloader function, and the economizer function, as known. However, the present invention also provides the increased ability to control capacity by operating either the suction pulse width modulation valve 40 , or modulating the scroll members by separating them from each other, to control the amount of refrigerant pumped by the compressor (see FIG. 1B ) to further control the delivered capacity.
- a worker of ordinary skill in the art would recognize when such control over capacity would be desirable.
- the invention allows reduction in system “on” and “off” cycling and thus enhance its performance and improve comfort in the conditioned space.
- the pulse width modulation duty of the refrigerant system component is rapid enough not to cause substantial temperature fluctuations in the conditioned environment.
- the pulse width modulation cycle is between 3 and 30 seconds.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
- Air Conditioning Control Device (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US2005/045810 WO2007070060A1 (en) | 2005-12-16 | 2005-12-16 | Heat pump with pulse width modulation control |
Publications (1)
Publication Number | Publication Date |
---|---|
US20080209930A1 true US20080209930A1 (en) | 2008-09-04 |
Family
ID=38163235
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/088,879 Abandoned US20080209930A1 (en) | 2005-12-16 | 2005-12-16 | Heat Pump with Pulse Width Modulation Control |
Country Status (4)
Country | Link |
---|---|
US (1) | US20080209930A1 (de) |
EP (1) | EP1996875A4 (de) |
CN (1) | CN101341367A (de) |
WO (1) | WO2007070060A1 (de) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090013701A1 (en) * | 2006-03-10 | 2009-01-15 | Alexander Lifson | Refrigerant system with control to address flooded compressor operation |
US20110079032A1 (en) * | 2008-07-09 | 2011-04-07 | Taras Michael F | Heat pump with microchannel heat exchangers as both outdoor and reheat exchangers |
US20120031112A1 (en) * | 2010-08-03 | 2012-02-09 | Whirlpool Corporation | Turbo-chill chamber with air-flow booster |
US20120031111A1 (en) * | 2010-08-03 | 2012-02-09 | Whirlpool Corporation | Direct contact turbo-chill chamber using secondary coolant |
US20160091236A1 (en) * | 2014-09-26 | 2016-03-31 | Waterfurnace International, Inc. | Air conditioning system with vapor injection compressor |
US10126032B2 (en) | 2015-12-10 | 2018-11-13 | TestEquity LLC | System for cooling and methods for cooling and for controlling a cooling system |
US10866002B2 (en) | 2016-11-09 | 2020-12-15 | Climate Master, Inc. | Hybrid heat pump with improved dehumidification |
US10871314B2 (en) | 2016-07-08 | 2020-12-22 | Climate Master, Inc. | Heat pump and water heater |
US10935260B2 (en) | 2017-12-12 | 2021-03-02 | Climate Master, Inc. | Heat pump with dehumidification |
SE544732C2 (en) * | 2017-05-22 | 2022-10-25 | Swep Int Ab | A reversible refrigeration system |
US11480367B2 (en) | 2017-05-22 | 2022-10-25 | Swep International Ab | Refrigeration system |
US11506430B2 (en) | 2019-07-15 | 2022-11-22 | Climate Master, Inc. | Air conditioning system with capacity control and controlled hot water generation |
US11592215B2 (en) | 2018-08-29 | 2023-02-28 | Waterfurnace International, Inc. | Integrated demand water heating using a capacity modulated heat pump with desuperheater |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103717985B (zh) | 2009-12-18 | 2016-08-03 | 开利公司 | 运输制冷系统和用于运输制冷系统以解决动态条件的方法 |
EP2977691B1 (de) * | 2013-09-30 | 2021-09-08 | Guangdong Meizhi Compressor Co., Ltd. | Kälteanlage und heizsystem |
CN108679868B (zh) * | 2018-05-23 | 2020-10-09 | 广州大学 | 一种自力式多功能热泵系统及其控制方法 |
Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4856286A (en) * | 1987-12-02 | 1989-08-15 | American Standard Inc. | Refrigeration compressor driven by a DC motor |
US5174123A (en) * | 1991-08-23 | 1992-12-29 | Thermo King Corporation | Methods and apparatus for operating a refrigeration system |
US5247989A (en) * | 1991-11-15 | 1993-09-28 | Lab-Line Instruments, Inc. | Modulated temperature control for environmental chamber |
US5303562A (en) * | 1993-01-25 | 1994-04-19 | Copeland Corporation | Control system for heat pump/air-conditioning system for improved cyclic performance |
US5337574A (en) * | 1990-07-20 | 1994-08-16 | Alberni Thermodynamics Ltd. | Heating and cooling system for a building |
JPH11230596A (ja) * | 1998-02-17 | 1999-08-27 | Hitachi Ltd | 室内機追加型空気調和機 |
US6047556A (en) * | 1997-12-08 | 2000-04-11 | Carrier Corporation | Pulsed flow for capacity control |
US6206652B1 (en) * | 1998-08-25 | 2001-03-27 | Copeland Corporation | Compressor capacity modulation |
US6385981B1 (en) * | 2000-03-16 | 2002-05-14 | Mobile Climate Control Industries Inc. | Capacity control of refrigeration systems |
US6449972B2 (en) * | 1995-06-07 | 2002-09-17 | Copeland Corporation | Adaptive control for a refrigeration system using pulse width modulated duty cycle scroll compressor |
US6474087B1 (en) * | 2001-10-03 | 2002-11-05 | Carrier Corporation | Method and apparatus for the control of economizer circuit flow for optimum performance |
US20030213254A1 (en) * | 2002-05-17 | 2003-11-20 | Samsung Electronics Co., Ltd. | Air conditioner and control method thereof |
US20040187504A1 (en) * | 2002-07-15 | 2004-09-30 | Healy John Joseph | Cooling system with isolation valve |
US6817205B1 (en) * | 2003-10-24 | 2004-11-16 | Carrier Corporation | Dual reversing valves for economized heat pump |
US20050086970A1 (en) * | 2003-10-24 | 2005-04-28 | Alexander Lifson | Combined expansion device and four-way reversing valve in economized heat pumps |
US20060086110A1 (en) * | 2004-10-21 | 2006-04-27 | Manole Dan M | Method and apparatus for control of carbon dioxide gas cooler pressure by use of a two-stage compressor |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10201741A1 (de) * | 2002-01-18 | 2003-08-07 | Daimler Chrysler Ag | Fahrzeug mit einer Klimatisierung und einer Wärmequelle |
-
2005
- 2005-12-16 US US12/088,879 patent/US20080209930A1/en not_active Abandoned
- 2005-12-16 EP EP05854510A patent/EP1996875A4/de not_active Withdrawn
- 2005-12-16 WO PCT/US2005/045810 patent/WO2007070060A1/en active Application Filing
- 2005-12-16 CN CNA2005800523179A patent/CN101341367A/zh active Pending
Patent Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4856286A (en) * | 1987-12-02 | 1989-08-15 | American Standard Inc. | Refrigeration compressor driven by a DC motor |
US5337574A (en) * | 1990-07-20 | 1994-08-16 | Alberni Thermodynamics Ltd. | Heating and cooling system for a building |
US5174123A (en) * | 1991-08-23 | 1992-12-29 | Thermo King Corporation | Methods and apparatus for operating a refrigeration system |
US5247989A (en) * | 1991-11-15 | 1993-09-28 | Lab-Line Instruments, Inc. | Modulated temperature control for environmental chamber |
US5303562A (en) * | 1993-01-25 | 1994-04-19 | Copeland Corporation | Control system for heat pump/air-conditioning system for improved cyclic performance |
US6449972B2 (en) * | 1995-06-07 | 2002-09-17 | Copeland Corporation | Adaptive control for a refrigeration system using pulse width modulated duty cycle scroll compressor |
US6047556A (en) * | 1997-12-08 | 2000-04-11 | Carrier Corporation | Pulsed flow for capacity control |
JPH11230596A (ja) * | 1998-02-17 | 1999-08-27 | Hitachi Ltd | 室内機追加型空気調和機 |
US6206652B1 (en) * | 1998-08-25 | 2001-03-27 | Copeland Corporation | Compressor capacity modulation |
US6385981B1 (en) * | 2000-03-16 | 2002-05-14 | Mobile Climate Control Industries Inc. | Capacity control of refrigeration systems |
US6474087B1 (en) * | 2001-10-03 | 2002-11-05 | Carrier Corporation | Method and apparatus for the control of economizer circuit flow for optimum performance |
US20030213254A1 (en) * | 2002-05-17 | 2003-11-20 | Samsung Electronics Co., Ltd. | Air conditioner and control method thereof |
US20040187504A1 (en) * | 2002-07-15 | 2004-09-30 | Healy John Joseph | Cooling system with isolation valve |
US6931867B2 (en) * | 2002-07-15 | 2005-08-23 | Copeland Corporation | Cooling system with isolation valve |
US6817205B1 (en) * | 2003-10-24 | 2004-11-16 | Carrier Corporation | Dual reversing valves for economized heat pump |
US20050086970A1 (en) * | 2003-10-24 | 2005-04-28 | Alexander Lifson | Combined expansion device and four-way reversing valve in economized heat pumps |
US20060086110A1 (en) * | 2004-10-21 | 2006-04-27 | Manole Dan M | Method and apparatus for control of carbon dioxide gas cooler pressure by use of a two-stage compressor |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9494352B2 (en) * | 2006-03-10 | 2016-11-15 | Carrier Corporation | Refrigerant system with control to address flooded compressor operation |
US20090013701A1 (en) * | 2006-03-10 | 2009-01-15 | Alexander Lifson | Refrigerant system with control to address flooded compressor operation |
US20110079032A1 (en) * | 2008-07-09 | 2011-04-07 | Taras Michael F | Heat pump with microchannel heat exchangers as both outdoor and reheat exchangers |
US20120031112A1 (en) * | 2010-08-03 | 2012-02-09 | Whirlpool Corporation | Turbo-chill chamber with air-flow booster |
US20120031111A1 (en) * | 2010-08-03 | 2012-02-09 | Whirlpool Corporation | Direct contact turbo-chill chamber using secondary coolant |
US20130319035A1 (en) * | 2010-08-03 | 2013-12-05 | Whirlpool Corporation | Turbo-chil chamber using secondary coolant |
US9448006B2 (en) * | 2010-08-03 | 2016-09-20 | Whirlpool Corporation | Turbo-chill chamber using secondary coolant |
US11480372B2 (en) * | 2014-09-26 | 2022-10-25 | Waterfurnace International Inc. | Air conditioning system with vapor injection compressor |
US20160091236A1 (en) * | 2014-09-26 | 2016-03-31 | Waterfurnace International, Inc. | Air conditioning system with vapor injection compressor |
US10753661B2 (en) * | 2014-09-26 | 2020-08-25 | Waterfurnace International, Inc. | Air conditioning system with vapor injection compressor |
US11927377B2 (en) * | 2014-09-26 | 2024-03-12 | Waterfurnace International, Inc. | Air conditioning system with vapor injection compressor |
US10119738B2 (en) * | 2014-09-26 | 2018-11-06 | Waterfurnace International Inc. | Air conditioning system with vapor injection compressor |
US20230055507A1 (en) * | 2014-09-26 | 2023-02-23 | Waterfurnace International, Inc. | Air conditioning system with vapor injection compressor |
US10126032B2 (en) | 2015-12-10 | 2018-11-13 | TestEquity LLC | System for cooling and methods for cooling and for controlling a cooling system |
US10871314B2 (en) | 2016-07-08 | 2020-12-22 | Climate Master, Inc. | Heat pump and water heater |
US11448430B2 (en) | 2016-07-08 | 2022-09-20 | Climate Master, Inc. | Heat pump and water heater |
US11435095B2 (en) | 2016-11-09 | 2022-09-06 | Climate Master, Inc. | Hybrid heat pump with improved dehumidification |
US10866002B2 (en) | 2016-11-09 | 2020-12-15 | Climate Master, Inc. | Hybrid heat pump with improved dehumidification |
SE544732C2 (en) * | 2017-05-22 | 2022-10-25 | Swep Int Ab | A reversible refrigeration system |
US11480367B2 (en) | 2017-05-22 | 2022-10-25 | Swep International Ab | Refrigeration system |
US10935260B2 (en) | 2017-12-12 | 2021-03-02 | Climate Master, Inc. | Heat pump with dehumidification |
US11592215B2 (en) | 2018-08-29 | 2023-02-28 | Waterfurnace International, Inc. | Integrated demand water heating using a capacity modulated heat pump with desuperheater |
US11953239B2 (en) | 2018-08-29 | 2024-04-09 | Waterfurnace International, Inc. | Integrated demand water heating using a capacity modulated heat pump with desuperheater |
US11506430B2 (en) | 2019-07-15 | 2022-11-22 | Climate Master, Inc. | Air conditioning system with capacity control and controlled hot water generation |
Also Published As
Publication number | Publication date |
---|---|
EP1996875A4 (de) | 2011-01-19 |
EP1996875A1 (de) | 2008-12-03 |
WO2007070060A1 (en) | 2007-06-21 |
CN101341367A (zh) | 2009-01-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20080209930A1 (en) | Heat Pump with Pulse Width Modulation Control | |
US7272948B2 (en) | Heat pump with reheat and economizer functions | |
US20230092215A1 (en) | Air conditioning system with capacity control and controlled hot water generation | |
US7275384B2 (en) | Heat pump with reheat circuit | |
US20090288432A1 (en) | Tandem compressors with pulse width modulation suction valve | |
US7137270B2 (en) | Flash tank for heat pump in heating and cooling modes of operation | |
US20080223057A1 (en) | Refrigerant System with Pulse Width Modulated Components and Variable Speed Compressor | |
AU2005268197A1 (en) | Refrigeration apparatus | |
EP2525170B1 (de) | Steuerverfahren für eine Klimaanlage | |
US6817205B1 (en) | Dual reversing valves for economized heat pump | |
EP1498668B1 (de) | Wärmequelleneinheit von klimaanlage und klimaanlage | |
CN114061168A (zh) | 热泵系统及其控制方法 | |
EP2321593B1 (de) | Verbesserter betrieb eines kühlsystems | |
KR20070065709A (ko) | 냉난방 동시형 멀티공기조화기의 제어방법 | |
JPH1114177A (ja) | 空気調和装置 | |
AU2020360865B2 (en) | A heat pump | |
GB2533041A (en) | Air conditioner | |
EP1471316A1 (de) | Umkehrbare Wärmepumpenanlage | |
JP3617742B2 (ja) | スクロールコンプレッサ及び空調装置 | |
KR100626757B1 (ko) | 공기조화기 | |
KR20050105743A (ko) | 공기조화기의 압축기 제어 장치 및 제어 방법 | |
JPH10339508A (ja) | 冷凍装置 | |
JPH11337231A (ja) | エンジンヒートポンプ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: CARRIER CORPORATION, NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TARAS, MICHAEL F.;LIFSON, ALEXANDER;REEL/FRAME:020734/0956 Effective date: 20051215 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |