US20080207911A1 - Alkylidene complexes of ruthenium containing n-heterocyclic carbene ligands; use as highly active, selective catalysts for olefin metathesis - Google Patents

Alkylidene complexes of ruthenium containing n-heterocyclic carbene ligands; use as highly active, selective catalysts for olefin metathesis Download PDF

Info

Publication number
US20080207911A1
US20080207911A1 US12/115,139 US11513908A US2008207911A1 US 20080207911 A1 US20080207911 A1 US 20080207911A1 US 11513908 A US11513908 A US 11513908A US 2008207911 A1 US2008207911 A1 US 2008207911A1
Authority
US
United States
Prior art keywords
carbon atoms
radicals
different
groups
olefins
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/115,139
Inventor
Wolfgang Anton Herrmann
Wolfgang Schattenmann
Thomas Weskamp
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Operations GmbH
Original Assignee
Evonik Degussa GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7863687&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20080207911(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Evonik Degussa GmbH filed Critical Evonik Degussa GmbH
Priority to US12/115,139 priority Critical patent/US20080207911A1/en
Publication of US20080207911A1 publication Critical patent/US20080207911A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0046Ruthenium compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2265Carbenes or carbynes, i.e.(image)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2265Carbenes or carbynes, i.e.(image)
    • B01J31/2269Heterocyclic carbenes
    • B01J31/2273Heterocyclic carbenes with only nitrogen as heteroatomic ring members, e.g. 1,3-diarylimidazoline-2-ylidenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • B01J31/2404Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/04Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation
    • C07C2/06Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation of alkenes, i.e. acyclic hydrocarbons having only one carbon-to-carbon double bond
    • C07C2/08Catalytic processes
    • C07C2/26Catalytic processes with hydrides or organic compounds
    • C07C2/32Catalytic processes with hydrides or organic compounds as complexes, e.g. acetyl-acetonates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C6/00Preparation of hydrocarbons from hydrocarbons containing a different number of carbon atoms by redistribution reactions
    • C07C6/02Metathesis reactions at an unsaturated carbon-to-carbon bond
    • C07C6/04Metathesis reactions at an unsaturated carbon-to-carbon bond at a carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/30Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/313Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by introduction of doubly bound oxygen containing functional groups, e.g. carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/475Preparation of carboxylic acid esters by splitting of carbon-to-carbon bonds and redistribution, e.g. disproportionation or migration of groups between different molecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/04Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms
    • C08G61/06Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds
    • C08G61/08Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds of carbocyclic compounds containing one or more carbon-to-carbon double bonds in the ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/10Polymerisation reactions involving at least dual use catalysts, e.g. for both oligomerisation and polymerisation
    • B01J2231/14Other (co) polymerisation, e.g. of lactides or epoxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/50Redistribution or isomerisation reactions of C-C, C=C or C-C triple bonds
    • B01J2231/54Metathesis reactions, e.g. olefin metathesis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/50Redistribution or isomerisation reactions of C-C, C=C or C-C triple bonds
    • B01J2231/54Metathesis reactions, e.g. olefin metathesis
    • B01J2231/543Metathesis reactions, e.g. olefin metathesis alkene metathesis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0261Complexes comprising ligands with non-tetrahedral chirality
    • B01J2531/0263Planar chiral ligands, e.g. derived from donor-substituted paracyclophanes and metallocenes or from substituted arenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/821Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • C07C2531/22Organic complexes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • C07C2531/24Phosphines

Definitions

  • the invention relates to alkylidene complexes of ruthenium containing N-heterocyclic carbene ligands and a process for preparing olefins by olefin metathesis from acyclic olefins having two or more carbon atoms or/and from cyclic olefins having four or more carbon atoms using at least one of these alkylidene complexes as catalyst.
  • olefin metathesis makes a significant contribution, since this reaction enables by-product-free olefins to be synthesized.
  • Olefin metathesis has not only a high potential in the area of preparative, organic synthesis (RCM, ethenolysis, metathesis of acyclic olefins) but also in polymer chemistry (ROMP, ADMET, alkyne polymerization). Since its discovery in the 1950s, a number of industrial processes have been able to be realized. Nevertheless, olefin metathesis has developed into a broadly applicable synthetic method only recently due to the discovery of new catalysts (J. C.
  • X 1 and X 2 are identical or different and are each an anionic ligand
  • R 1 and R 2 are identical or different and can also contain a ring
  • R 1 and R 2 are each hydrogen or/and a hydrocarbon group
  • the hydrocarbon groups are identical or different and are selected independently from among straight-chain, branched, cyclic or/and noncyclic radicals from the group consisting of alkyl radicals having from 1 to 50 carbon atoms, alkenyl radicals having from 1 to 50 carbon atoms, alkynyl radicals having from 1 to 50 carbon atoms, aryl radicals having from 1 to 30 carbon atoms and silyl radicals, where one or more of the hydrogen atoms in the hydrocarbon or/and silyl groups can be replaced independently by identical or different alkyl, aryl, alkenyl, alkynyl, metallocenyl, halogen, nitro, nitroso, hydroxy, alkoxy, aryloxy, amino, amido, carboxyl,
  • R 1 , R 2 , R 3 and R 4 in the formulae II, III, IV and V are identical or different and are each hydrogen or/and a hydrocarbon group, where the hydrocarbon groups comprise identical or different, cyclic, noncyclic, straight-chain or/and branched radicals selected from the group consisting of alkyl radicals having from 1 to 50 carbon atoms, alkenyl radicals having from 1 to 50 carbon atoms, alkynyl radicals having from 1 to 50 carbon atoms and aryl radicals having from 1 to 30 carbon atoms, in which at least one hydrogen may be replaced by functional groups, and where one or both of R 3 and R 4 may be identical or different halogen, nitro, nitroso, alkoxy, aryloxy, amido, carboxyl, carbonyl, thio or/and sulfonyl groups.
  • alkyl radicals, alkenyl radicals or allynyl radicals in the formulae I to V preferably have from 1 to 20 carbon atoms, particularly preferably from 1 to 12 carbon atoms.
  • FIG. 1 illustrates the yield % versus t/min for compounds A and B in a ring-opening metathesis polymerization of 1,5-cyclooctadiene and
  • FIG. 2 illustrates the yield % versus t/min for compounds A and B in a ring-opening metathesis polymerization of cyclooctene.
  • the anionic ligands X 1 and X 2 of the complex of the of invention are preferably each halide, pseudohalide, tetraphenylborate, perhalogenated, tetraphenylborate, tetrahaloborate, hexahalophosphate, hexahaloantimonate, trihalomnethanesulfonate, alkoxide, carboxylate, tetrahaloaluminate, tetracarbonylcobaltate, hexahaloferrate (ITT), tetrahaloferrate (III) or/and tetrahalopalladate (II), with preference being given to halide, pseudohalide, tetraphenylborate, perfluorinated tetraphenylborate, tetrafluoroborate, hexafluorophosphate, hexafluoroantimonate, trifluorotnethanesulfon
  • R 1 and R 2 are preferably hydrogen, substituted or/and unsubstituted alkyl, alkenyl or/and aryl radicals, X 1 and X 2 are preferably halide, alkoxide or/and carboxylate ions and L 1 and L 2 are preferably each an N-heterocyclic carbene of the formula II.
  • the complexes are usually synthesized by ligand replacement in corresponding phosphine complexes.
  • Two phosphine ligands can be replaced selectively in accordance with the reaction equation (1) or only one can be replaced in accordance with reaction equation (2).
  • the second phosphine can be replaced selectively by another electron donor, e.g. pyridine, phosphine, N-heterocyclic carbene, phosphate, stibene, arsine, in accordance with reaction equation (3).
  • this route makes it possible for the first time to prepare chiral, metathesis-active catalysts based on ruthenium (example complexes 2 and 3).
  • the object of the invention is also achieved by a process for preparing acyclic olefins having two or more carbon atoms or/and cyclic olefins having four or more carbon atoms, in each case of the formula VII
  • R′ 1 , R′ 2 , R′ 3 and R′ 4 in the formula VII are hydrogen or/and hydrocarbon groups, where the hydrocarbon group is each selected independently from among straight-chain, branched, cyclic or/and noncyclic radicals of the group consisting of alkyl radicals having from 1 to 50 carbon atoms, alkenyl radicals having from 1 to 50 carbon atoms, alkynyl radicals having from 1 to 50 carbon atoms, aryl radicals having from 1 to 30 carbon atoms, metallocenyl or/and silyl radicals, in which one or more hydrogens may be replaced by a functional group, where one or more of R′ 1
  • the olefins used preferably contain one or more double bonds.
  • R′ 1 , R′ 2 , R′ 3 and R′ 4 in the olefins of the formula VII to be prepared form, in pairs, one or more identical or different rings.
  • some or all of the hydrogen atoms in the hydrocarbon groups R′ 1 , R′ 2 , R′ 3 and R′ 4 of the olefins of the formula VII to be prepared are replaced independently by identical or different halogen, silyl, nitro, nitroso, hydroxy, alkoxy, aryloxy, amino, amido, carboxyl, carbonyl, thio, sulfonyl or/and metallocenyl groups.
  • the process of the invention can be carried out in the presence or absence of solvents, but preferably in the presence of organic solvents.
  • the process of the invention can advantageously be carried out with addition of a Brönsted acid, preferably HCl, HBr, HI, HBF 4 , HPF 6 or/and trifluoroacetic acid, or/and with addition of a Lewis acid, preferably BF 3 , AlCl 3 or/and ZnI 2 .
  • the formula VIII shows the basic skeleton of the norbornene derivatives used in Table 2.
  • ROMP of cyclooctene ROMP of cyclooctadiene.
  • NMR Kinetics of a ruthenium-dicarbene complex compared to a ruthenium-carbene phosphine complex. (T 25° C.; 2.50 ⁇ mol of catalyst in 0.50 ml of CD 2 Cl 2 ; [cyclooctadiene]/[catalyst]—250:1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

The invention relates to a complex of ruthenium of the structural formula I,
Figure US20080207911A1-20080828-C00001
  • where X1 and X2 are identical or different and are each an anionic ligand,
  • R1 and R2 are identical or different and can also contain a ring, and R1 and R2 are each hydrogen or/and a hydrocarbon group,
  • the ligand L1 is an N-heterocyclic carbene and the ligand L2 is an uncharged electron donor, in particular an N-heterocyclic carbene or an amine, imine, phosphine, phosphate, stibine, arsine, carbonyl compound, carboxyl compound, nitrile, alcohol, ether, thiol or thioether,
  • where R1, R2, R3 and R4 are hydrogen or/and hydrocarbon groups.
The invention further relates to a process for preparing acyclic olefins having two or more carbon atoms or/and cyclic olefins having four or more carbon atoms from acyclic olefins having two or more carbon atoms or/and from cyclic olefins having four or more carbon atoms by an olefin metathesis reaction in the presence of at least one catalyst, wherein a complex is used as catalyst and R′1, R′2, R′3 and R′4 are hydrogen or/and hydrocarbon groups.

Description

    RELATED APPLICATIONS
  • This application is also a divisional of U.S. patent application Ser. No. 11/021,967, filed Dec. 23, 2004, which is a divisional of U.S. patent application Ser. No. 10/630,552, filed Jul. 29, 2003, which is a divisional of U.S. patent application Ser. No. 09/647,742, filed on Nov. 27, 2000, now U.S. Pat. No. 6,635,768, which was filed as a National stage (under 35 USC 371) application of PCT/EP99/01785, filed on Mar. 18, 1999, which claims benefit to German Application Number 198 15 275.2, filed Apr. 6, 1998.
  • The invention relates to alkylidene complexes of ruthenium containing N-heterocyclic carbene ligands and a process for preparing olefins by olefin metathesis from acyclic olefins having two or more carbon atoms or/and from cyclic olefins having four or more carbon atoms using at least one of these alkylidene complexes as catalyst.
  • C-C coupling reactions catalyzed by transition metals are among the most important reactions of organic synthetic chemistry. In this context, olefin metathesis makes a significant contribution, since this reaction enables by-product-free olefins to be synthesized. Olefin metathesis has not only a high potential in the area of preparative, organic synthesis (RCM, ethenolysis, metathesis of acyclic olefins) but also in polymer chemistry (ROMP, ADMET, alkyne polymerization). Since its discovery in the 1950s, a number of industrial processes have been able to be realized. Nevertheless, olefin metathesis has developed into a broadly applicable synthetic method only recently due to the discovery of new catalysts (J. C. Mol in: B. Cornils, W. A. Herfmann: Applied Homogeneous Catalysis with Organometallic Compounds, VCH, Weinheim, 1996, p. 318-332; M. Schuster, S. Blechert, Angew. Chem. 1997, 109, 2124-2144; Angew, Chem. Int. Ed. Engl. 1997, 36, 2036-2056).
  • Numerous, fundamental studies have made important contributions to the understanding of this transition metal-catalyzed reaction in which an exchange of alkylidene units between olefins occurs. The generally accepted mechanism involves metal-alkylidene complexes as active species. These react with olefins to form metallacyclobutane intermediates which undergo cycloreversion to once again form olefins and alkylidene complexes. The isolation of metathesis-active alkylidene and metallacyclobutane complexes supports these mechanistic hypotheses.
  • Numerous examples may be found, in particular, in the coordination chemistry of molybdenum and tungsten. Specifically the work of Schrock gave well-defined alkylidene complexes whose reactivity can be controlled (J. S. Murdzek, R. R. Schrock, Organometallics 1987, 6, 1373-1374). The introduction of a chiral ligand sphere in these complexes made possible the synthesis of polymers having a high tacticity (K. M. Totland, T. J. Boyd, G. C. Lavoie, W. M. Davis, R. R. Schrock, Macromolecules 1996, 29, 6114-6125). Chiral complexes of the same structural type have also been used successfully in ring-closing metathesis (O. Fujimura, F. J. d. L. Mata, R. H. Grubbs, Organometallics 1996, 15, 1865-1871). However, the high sensitivity toward functional groups, air and water is a drawback.
  • Recently, phosphine-containing complexes of ruthenium have become established (R. H. Grubbs, S. T. Nguyen, L. K. Johnson, M. A. Hillmyer, G. C. Fu, WO 96/04289, 1994; P. Schwab, M. B. France, J. W. Ziller, R. H. Grubbs, Angew. Chem., 1995, 107, 2119-2181; Angew. Chem. Int. Ed. Engl. 1995, 34, 2039-2041). Owing to the electron-rich, “soft” character of later transition metals, these complexes have a high tolerance toward hard, functional groups. This is demonstrated, for example, by their use in natural product chemistry (RCM of dienes) (Z. Yang, Y. He, D. Vourloumis, H. Vallberg, K. C. Nicolaou, Angew. Chem. 1997, 109, 170-172; Angew. Chem., Int, Ed. Engl. 1997, 36, 166-168; D. Meng, P. Bertinato, A. Balog, D. S. Su, T. Kamenecka, E. J. Sorensen, S. J. Danishefsky, J. Am. Chem. Soc. 1997, 119, 2733-2734; D. Schinzer, A. Limberg, A. Bauer, O. M. Bohm, M. Cordes, Angew. Chem. 1997, 109, 543-544; Angew. Chem., Int. Ed. Engl. 1997, 36, 523-524; A; Fürstner, K. Langemann, J. Am. Chem. Soc. 1997, 119, 9130-9136).
  • However, the range of variation of the phosphine ligands used is very restricted due to steric and electronic factors. Only strongly basic, bulky alkylphosphines such as tricyclohexylphosphine, triisopropylphosphine and tricyclopentylphosphine are suitable for the metathesis of acyclic olefins and relatively unstrained ring systems. Accordingly, the reactivity of these catalysts cannot be adjusted. Chiral complexes of this structural type have also not been able to be obtained.
  • For these reasons, it is an object of the invention to develop tailored metathesis catalysts which have a high tolerance toward functional groups as a result of a variable ligand sphere and which allow fine adjustment of the catalyst for specific properties of different olefins.
  • This object is achieved according to the invention by a complex of ruthenium of the structural formula I,
  • Figure US20080207911A1-20080828-C00002
  • where X1 and X2 are identical or different and are each an anionic ligand,
    R1 and R2 are identical or different and can also contain a ring, and R1 and R2 are each hydrogen or/and a hydrocarbon group, where the hydrocarbon groups are identical or different and are selected independently from among straight-chain, branched, cyclic or/and noncyclic radicals from the group consisting of alkyl radicals having from 1 to 50 carbon atoms, alkenyl radicals having from 1 to 50 carbon atoms, alkynyl radicals having from 1 to 50 carbon atoms, aryl radicals having from 1 to 30 carbon atoms and silyl radicals,
    where one or more of the hydrogen atoms in the hydrocarbon or/and silyl groups can be replaced independently by identical or different alkyl, aryl, alkenyl, alkynyl, metallocenyl, halogen, nitro, nitroso, hydroxy, alkoxy, aryloxy, amino, amido, carboxyl, carbonyl, thio or/and sulfonyl groups,
    the ligand L1 is an N-heterocyclic carbene of the formulae II-V and the ligand L2 is an uncharged electron donor, in particular an N-heterocyclic carbene of the formulae II-V or an amine, imine, phosphine, phosphite, stibine, arsine, carbonyl compound, carboxyl compound, nitrile, alcohol, ether, thiol or thioether,
  • Figure US20080207911A1-20080828-C00003
  • where R1, R2, R3 and R4 in the formulae II, III, IV and V are identical or different and are each hydrogen or/and a hydrocarbon group,
    where the hydrocarbon groups comprise identical or different, cyclic, noncyclic, straight-chain or/and branched radicals selected from the group consisting of alkyl radicals having from 1 to 50 carbon atoms, alkenyl radicals having from 1 to 50 carbon atoms, alkynyl radicals having from 1 to 50 carbon atoms and aryl radicals having from 1 to 30 carbon atoms, in which at least one hydrogen may be replaced by functional groups, and where one or both of R3 and R4 may be identical or different halogen, nitro, nitroso, alkoxy, aryloxy, amido, carboxyl, carbonyl, thio or/and sulfonyl groups.
  • The alkyl radicals, alkenyl radicals or allynyl radicals in the formulae I to V preferably have from 1 to 20 carbon atoms, particularly preferably from 1 to 12 carbon atoms.
  • BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 illustrates the yield % versus t/min for compounds A and B in a ring-opening metathesis polymerization of 1,5-cyclooctadiene and
  • FIG. 2 illustrates the yield % versus t/min for compounds A and B in a ring-opening metathesis polymerization of cyclooctene.
  • The complexes of the invention are highly active catalysts for olefin metathesis. They are particularly inexpensive. In olefin metathesis, the catalysts of the invention display not only a high tolerance toward a variety of functional groups but also a wide range of possible variations in the ligand sphere. Variation of the preparatively readily obtainable N-heterocyclic carbene ligands enables activity and selectivity to be controlled in a targeted manner and, in addition, chirality can be introduced in a simple way.
  • The anionic ligands X1 and X2 of the complex of the of invention, which are identical or different, are preferably each halide, pseudohalide, tetraphenylborate, perhalogenated, tetraphenylborate, tetrahaloborate, hexahalophosphate, hexahaloantimonate, trihalomnethanesulfonate, alkoxide, carboxylate, tetrahaloaluminate, tetracarbonylcobaltate, hexahaloferrate (ITT), tetrahaloferrate (III) or/and tetrahalopalladate (II), with preference being given to halide, pseudohalide, tetraphenylborate, perfluorinated tetraphenylborate, tetrafluoroborate, hexafluorophosphate, hexafluoroantimonate, trifluorotnethanesulfonate, alkoxide, carboxylate, tetrachloroaluminate, tetracarbonylcobaltate, hexafluoroferrate (III) tetrachloroferrate (III) or/and tetrachloropalladate (II) and preferred pseudohalides being cyanide, thiocyanate, cyanate, isocyanate and isothiocyanate.
  • In the formulae II, III, IV and V, some or all of the hydrogen in the hydrocarbon groups R1, R2, R3 and R4 can be replaced independently by identical or different halogen, nitro, nitroso, hydroxy, alkoxy, aryloxy, amino, amido, carboxyl, carbonyl, thio, sulfonyl or/and metallocenyl groups. In these formulae, R3 and R4 can form a fused-on ring system.
  • The ligands L1 and L2 of the complex of the structural formula I can form a chelating ligand of the formula VI

  • L1-Y-L2  VI
  • where the bridges Y can comprise cyclic, noncyclic, straight-chain or/and branched radicals selected from the group consisting of alkylene radicals having from 1 to 50 carbon atoms, alkenylene radicals having from 1 to 50 carbon atoms, alkynylene radicals having from 1 to 50 carbon atoms, arylene radicals having from 1 to 30 carbon atoms, metallocenylene, borylene and silylene radicals in which one or more hydrogens may be replaced independently by identical or different alkyl, aryl, alkenyl, alkynyl, metallocenyl, halo, nitro, nitroso, hydroxy, alkoxy, aryloxy, amino, amido, carboxyl, carbonyl, thio or/and sulfonyl groups, preferably alkyl, aryl or/and metallocenyl groups.
  • The ligands of the formulae II, III, IV, V or/and VI can have central, axial or/and planar chirality.
  • In the structural formula I of the complex, R1 and R2 are preferably hydrogen, substituted or/and unsubstituted alkyl, alkenyl or/and aryl radicals, X1 and X2 are preferably halide, alkoxide or/and carboxylate ions and L1 and L2 are preferably each an N-heterocyclic carbene of the formula II.
  • The complexes are usually synthesized by ligand replacement in corresponding phosphine complexes. Two phosphine ligands can be replaced selectively in accordance with the reaction equation (1) or only one can be replaced in accordance with reaction equation (2). In the case of single replacement, the second phosphine can be replaced selectively by another electron donor, e.g. pyridine, phosphine, N-heterocyclic carbene, phosphate, stibene, arsine, in accordance with reaction equation (3).
  • In particular, this route makes it possible for the first time to prepare chiral, metathesis-active catalysts based on ruthenium (example complexes 2 and 3).
  • Figure US20080207911A1-20080828-C00004
  • The complexes of the invention are found to be extremely efficient catalysts in olefin metathesis. The excellent metathesis activity is demonstrated in the examples by means of a number of examples of different metathesis reactions.
  • The present invention therefore also encompasses processes for all olefin metathesis reactions such as ring-opening metathesis polymerization (ROMP), metathesis of acyclic olefins, ethenolysis, ring-closing metathesis (RCM), acyclic diene metathesis polymerization (ADMET) and depolymerization of olefin polymers. The high stability and tolerance of the complexes of the invention toward functional groups; in particular alcohol, amine, thiol, ketone, aldehyde, carboxylic acid, ester, amide, ether, silane, sulfide and halogen groups, makes it possible for such functional groups to be present during the metathesis reaction.
  • The object of the invention is also achieved by a process for preparing acyclic olefins having two or more carbon atoms or/and cyclic olefins having four or more carbon atoms, in each case of the formula VII
  • Figure US20080207911A1-20080828-C00005
  • VII
  • from acyclic olefins having two or more carbon atoms or/and from cyclic olefins having four or more carbon atoms, in each case corresponding to the formula VII by an olefin metathesis reaction in the presence of at least one catalyst, wherein
    a catalyst as claimed in any one of claims 1 to 7 is used and R′1, R′2, R′3 and R′4 in the formula VII are hydrogen or/and hydrocarbon groups,
    where the hydrocarbon group is each selected independently from among straight-chain, branched, cyclic or/and noncyclic radicals of the group consisting of alkyl radicals having from 1 to 50 carbon atoms, alkenyl radicals having from 1 to 50 carbon atoms, alkynyl radicals having from 1 to 50 carbon atoms, aryl radicals having from 1 to 30 carbon atoms, metallocenyl or/and silyl radicals, in which one or more hydrogens may be replaced by a functional group, where one or more of R′1, R′2, R′3 and R′4 may independently be identical or different halogen, nitro, nitroso, hydroxy, alkoxy, aryloxy, amino, amido, carboxyl, carbonyl, thio, sulfonyl or/and metallocenyl groups.
  • The olefins used preferably contain one or more double bonds. In particular, R′1, R′2, R′3 and R′4 in the olefins of the formula VII to be prepared form, in pairs, one or more identical or different rings.
  • Preferably, some or all of the hydrogen atoms in the hydrocarbon groups R′1, R′2, R′3 and R′4 of the olefins of the formula VII to be prepared are replaced independently by identical or different halogen, silyl, nitro, nitroso, hydroxy, alkoxy, aryloxy, amino, amido, carboxyl, carbonyl, thio, sulfonyl or/and metallocenyl groups.
  • The process of the invention can be carried out in the presence or absence of solvents, but preferably in the presence of organic solvents. The process of the invention can advantageously be carried out with addition of a Brönsted acid, preferably HCl, HBr, HI, HBF4, HPF6 or/and trifluoroacetic acid, or/and with addition of a Lewis acid, preferably BF3, AlCl3 or/and ZnI2.
  • Surprisingly, this makes it possible for the first time to tailor a wide variety of olefins individually to different properties on the basis of small variations in the catalysis conditions or/and the catalysts, since the process of the invention for preparing olefins has an unexpectedly high tolerance toward functional groups.
  • EXAMPLES
  • The following examples illustrate the invention but do not restrict its scope.
  • 1) Preparation of the Complex of the Invention General Procedure:
  • 1 mmol of (PPh3)2Cl2Ru(═CHPh) was dissolved in 20 ml of toluene and admixed with a solution of 2.2 equivalents of the appropriate imidazolin-2-ylidene in 5 ml of toluene. The reaction solution was stirred at room temperature RT for 45 minutes, subsequently evaporated to about 2 ml and the crude product was precipitated using 25 ml of pentane. The crude product was taken up in 2 ml of toluene and precipitated using 25 ml of pentane a number of times. The residue was extracted with toluene, the solution was evaporated to dryness, washed twice with pentane and dried for a number of hours in a high vacuum.
  • The data from low-temperature NMR spectra are mostly reported for characterization, since the spectra at room temperature sometimes did not give all the information because of dynamic effects.
  • The following compounds are prepared by the above described general procedure:
  • 1a) Benzylidenedichlorobis(1,3-diisopropylimidazolin-2-ylidene)ruthenium
      • complex 1:
  • Yield: 487 mg (0.86 mmol=86% of theory)
  • Elemental analysis EA for C25H3Cl2N4Ru (566.58)
  • found C, 53.21; H, 6.83; N, 9.94.
  • calculated C, 53.00; H, 6.76; N, 9.89.
  • 1H-NMR (CD2Cl2/200 K); δ 20.33 (1H, s, Ru═CH), 8.25 (2H, d, 3JHH=7.6 Hz, o-H of C6H5), 7.63 (1H, t, 3JHH=7.6 Hz, p-H of C6H5), 7.34 (2H, t, m-H of C6H5, 3JHH=7.6 Hz), 7.15 (2H, br, NCH), 7.03 (2H, br, NCH), 5.97 (2H, spt, 3JHH=6.4 Hz, NCHMe2), 3.73 (2H, spt, 3JHH=6.4 Hz, NCEMe2), 1.64 (12H, d, 3JHH=6.4 Hz, NCHMe2), 1.11 (6H, d, 3JHH=6.4 Hz, NCHMe2), 0.75 (6H, d, 3JHH=6.4 Hz, NCHMe2).
  • 13C-NMR (CD2Cl2/200 K): δ 295.6 (Ru═CH), 183.5 (NCN), 151.6 (ipso-C of C6H5), 129.5, 128.6 and 128.1 (o-C, m-C and p-C of C6H5), 118.1 and 117.2 (NCH), 52.1 and 50.1 (NCHMe2), 24.5, 23.8, 23.8 and 22.4 (NCHMe2).
  • 1b) Benzylidenedichlorobis(1,3-di((R)-1′-phenylethyl)-imidazolin-2-ylidene)ruthenium
      • complex 2:
  • Yield: 676 mg (0.83 mmol=83% of theory)
  • EA for C45H46Cl2N4Ru(814.86):
  • found C, 66.48; H, 5.90; N, 6.73.
  • calc. C, 66.33; H, 5.69; N, 6.88.
  • 1H-NMR (CD2Cl2/200 K): δ 20.26 (1H, s, Ru═CH), 8.13 (2H, br, o-H C6H5), 7.78-6.67 (29H, of which 2m-H and 1p-H of C6H5, 20H of NCHMePh, 2H of NCHMePh and 4H of NCH), 4.91 (2H, m, NCHMePh) 1.84 (3H, d, 3JHH=6.6 Hz, NCHMePh), 1.81 (3H, d, 3JHH=6.6 Hz, NCHMePh), 1.51 (3H, d, 3JHH=6.6 Hz, NCHMePh), 1.21 (3H, d, 3JHH=6.6 Hz, NCHMePh).
  • 13C-NMR (CD2Cl2/200 K): δ 294.7 (Ru═CH), 186.0 and 185.6 (NCN), 151.2 (ipso-C of C6H5), 141.2, 140.3, 140.1 and 139.9 (ipso-C of NCHMePh), 133.1-125.9 (o-C, m-C, p-C of C6H5 and NCHMePh), 120.5, 119.9, 119.2 and 118.8 (NCH), 57.6, 57.4, 56.7 and 56.1 (NCHMePh), 22.2, 20.6, 20.4 and 20.3 (NCHMePh).
  • 1c) Benzylidenedichlorobis(1,3-di-((R)-1′-naphthyl-ethyl)imidazolin-2-ylidene)ruthenium
      • complex 3:
  • Yield: 792 mg (0.78 mmol=78% of theory)
  • EA for C61H54Cl2N4Ru(1015.1):
  • found C, 72.34; H, 5.46; N, 5.45.
  • calc. C, 72.18; H, 5.36; N, 5.52.
  • 1H-NMR (CD2Cl2/260 K): δ 20.90 (1H, s, Ru═CH), 8.99 (2H, br, o-H of C6H5), 8.2-5.6 (39H, of which 2 nm-H and 1p-H of C6H5, 28H of NCHMeNaph, 41 of NCH and 41 of NCRMeNaph), 2.5-0.8 (12H, m, NCHMeNaph).
  • 13C-NMR (CD2Cl2/260 K): δ 299.9 (Ru═CH), 187.2 and 184.7 (NCN), 152.0 (ipso-C of C6H5), 136.0-124.0 (o-C, m-C, p-C of C6H5 and NCHMeNaph), 121.7, 121.0, 119.9, and 118.9 (NCH), 56.7, 56.1, 55.0 and 54.7 (NCHMeNaph), 24.7, 24.3, 21.0 and 20.0 (NCHMeNaph).
  • For the following complexes, slight deviations from the general procedure are necessary:
  • 1d) (4-Chlorobenzylidene)dichlorobis(1,3-duisopropy-limidazolin-2-ylidene)ruthenium
      • complex 4:
  • 1 mmol of (Ph3)2Cl2Ru[═CH(p-C6H4Cl)] was used as starting material. The further procedure corresponded to the above described general procedure.
  • Yield: 535 mg (0.89 mmol=89% of theory)
  • EA for C24H38Cl3N4Ru (601.03)
  • found C, 48.13; H, 6.33; N, 9.24.
  • calc. C, 47.96; H, 6.37; N, 9.32.
  • 1H-NMR (CD2Cl2/200 K): δ 20.33 (1H, s, Ru═CH), 8.25 (2H, d, 3JHH=7.6 Hz, o-H of C6H4Cl), 7.63 (1H, t, 3JHH=7.6 Hz, m-H of C6H4Cl), 7.15 (2H, br, NCH), 7.03 (2H, br, NCH), 5.97 (2H, spt, 3JHH=6.4 Hz, NCHMe2), 3.73 (2H, spt, 3JHH=6.4 Hz, NCHMe2), 1.64 (12H, d, 3JHH=6.4 Hz, NCHMe2), 1.11 (6H, d, 3JHH=6.4 Hz, NCHMe2), 0.75 (6H, d, 3JHH=6.4 Hz, NCHMe2).
  • 13C-NMR (CD2Cl2/200 K): δ 295.6 (Ru═CH), 183.5 (NCN), 151.6 (ipso-C of C6H4Cl), 134.3 (p-C of C6H4Cl), 128.6 and 128.1 (o-C and m-C of C6H4Cl), 118.1 and 117.2 (NCH), 52.1 and 50.1 (NCHMe2), 24.5, 23.8, 23.8 and 22.4 (NCHMe2).
  • 1e) Benzylidenedichlorobis(1,3-dicyclohexylimidazolin-2-ylidene)ruthenium
      • complex 5:
  • 1 mmol of (PPh3)2Cl2Ru(═CHPh) was dissolved in 25 ml of toluene and admixed with a solution of 2.2 equivalents of 1,3-dicyclohexylimidazolin-2-ylidene in 5 ml of toluene. The reaction solution was stirred at RT for 45 minutes and subsequently freed of the solvent. Unlike the general procedure, the crude product was purified by flash chromatography.
  • Yield: 305 mg (0.42 mmol=42% of theory)
  • EA for C37H54Cl2N4Ru (726.84):
  • found C, 61.23; H, 7.56; N, 7.87.
  • calc. C, 61.14; H, 7.49; N, 7.71.
  • 1H-NMR (CD2Cl2/298 K): a 20.45 (1H, s, Ru═CH), 8.31 (2H, d, 3JHH=7.6 Hz, O—H— of C6H5), 7.63 (1H, t, 3JHH=7.6 Hz, p-H— of C6H5), 7.34 (2H, t, 3JHH=7.6 Hz, m-H— of C6H5), 7.14 (2H, br, NCH), 7.00 (2H, br, NCH), 6.06 (2H, br, CH of NC6H11), 3.82 (2H, br, CH of NC6H11), 1.64 (12H, br, CH2 of NC6H11), 0.93 (12H, br, CH2 of NC6H11).
  • 13C-NMR (CD2Cl2/298 K): δ 299.4 (Ru═CH), 182.9 (NCN), 152.0 (ipso-C of C6H5), 131.1, 129.8 and 129.1 (o-C, m-C and p-C of C6H5), 118.3 and 117.8 (br, NCH), 59.6 and 57.5 (br, CH of NC6H11), 35.7, 26.9 and 25.6 (br, CH2 of NC6H11).
  • 1f) Benzylidenedichloro(1,3-di-tert-butylimidazolin-2-ylidene)(triphenylphosphine)ruthenium
      • complex 6:
  • 1 mmol of (PPh3)2Cl2Ru(═CHPh) was dissolved in 20 ml of toluene and admixed with a solution of 1.1 equivalents of 1,3-di-tert-butylimidazolin-2-ylidene in 5 ml of toluene. The reaction solution was stirred at RT for 30 minutes, subsequently evaporated to about 2 ml and the crude product was precipitated using 25 ml of pentane. The further work-up was carried out as described in the general procedure.
  • Yield. 493 mg (0.70 mmol=70% of theory)
  • EA for C36H41Cl2N2P1Ru (704.69):
  • found C, 61.12; H, 5.55; N, 3.62; P, 4.59.
  • calc. C, 61.36; H, 5.86; N, 3.98; P, 4.38.
  • 1H-NMR (CD2Cl2/200 K): δ 20.70 (1H, s, Ru═CH), 8.03 (2H, d, 3JHH=7.6 Hz, c-H of C6H5), 7.50-6.95 (20H, of which 2m-H and 1p-H of C6H5, 15H of PPh3 and 2H of NCH), 1.86 (9H, s, NCMe3), 1.45 (9H, 5, NCMe3).
  • 13C-NMR (CD2Cl2/200 K): δ 307.4 (br, Ru═CH), 178.3 (d, JPC=86 Hz, NCN), 151.5 (d, JPC=4.5 Hz, ipso-C of C6H5), 135.0 (m, o-C of PPh3), 131.9 (m, ipso-C of PPh3), 130.2 (s, p-C of PPh3), 129.5, 128.6 and 128.1 (s, o-C, m-C and p-C of C6H5), 128.0 (m, m-C of PPh3), 117.7 and 117.6 (NCH), 58.7 and 58.5 (NCMe3), 30.0 and 29.5 (NCMe3).
  • 31P-NMR (CD2Cl2/200 K): δ 40.7 (s, PPh3).
  • 1g) Benzylidenedichloro-(1,3-dicyclohexylimidazolin-2-ylidene)(tricyclohexylphosphine)ruthenium
  • Figure US20080207911A1-20080828-C00006
  • A solution of 1.2 mmol of dicyclohexylimidazolin-2-ylidene is added dropwise at −78° C. to 1 mmol of RuCl2(PCy3)2(CHPh) in 100 ml of THF. The mixture is slowly warmed to room temperature over a period of 5 hours and the solvent is subsequently removed. The crude product is extracted with a mixture of 2 ml of toluene and 25 ml of pentane and the product is precipitated from this solution at −78° C.
  • Yield: 0.80 mmol (80% of theory)
  • EA for C40H63Cl2N2PRu:
  • found C, 61.99; H, 8.20; N, 3.62; calc. C, 61.11; H, 8.29; N, 3.59.
  • 1H NMR (CD2Cl2/25° C.) δ=20.30 (1H, d, 3JPH=7.4 Hz, Ru═CH), 8.33 (2H, d, 3JPH=7.4 Hz, o-H of C6H5), 7.62 (1H, t, 3JHH=7.4 Hz, p-H of C6H5), 7.33 (2H, t, 3JHH=7.4 H2, o-H of C6H5), 7.11 (1H, s, NCH), 6.92 (1H, s, NCH), 5.97 (1H, m, CH of NC6H11), 3.36 (1H, m, CH of NC6H11), 2.42 (3H, m, CH of PCy3), 1.90-0.89 (50H, all m, CH2 of NC6H11 and PCy3).
  • 13C NMR (CD2Cl2/25° C.): d=298.7 (Ru═CH), 181.2 (d, JPC=88 Hz, NCN), 152.5 (ipso-C of C6H5), 130.8, 129.8, and 129.2 (o-C, m-C, and p-C of C6H5), 118.9 and 118.0 (NCH), 59.5 and 57.7 (CH of NC6H11) 33.2 (d, JPC=17 Hz, ipso-C of PCy3), 29.9 (s, m-C of PCy3), 26.8 (d, JPC=3.7 Hz, o-C of PCy3), 25.4 (s, p-C of PCy3) 34.9, 33.3, 33.1, 28.2, 28.1, and 25.7 (CH2 of NC6H11).
  • 31P NMR (CD2Cl2/25° C.) d=28.2.
  • 1h) Benzylidenedichloro(1,3-di-((R)-1′-phenylethyl)-imidazolin-2-ylidene)(tricyclohexylphosphine)ruthenium
  • Figure US20080207911A1-20080828-C00007
  • A solution of 1.2 mmol of di-(R)-1′-phenylethylimidazolin-2-ylidene is added dropwise at −78° C. to 1 mmol of RuCl2(PCy3)2(CHPh) in 100 ml of THF. The mixture is slowly warmed to room temperature over a period of 5 hours and the solvent is subsequently removed. The crude product is extracted with a mixture of 2 ml of toluene and 25 ml of pentane and the product is precipitated from this solution at −78° C.
  • Yield: 0.74 mmol (74% of theory)
  • EA for C44H59Cl2N2PRu:
  • calc. C, 64.53; H, 7.27; N, 3.42. found C, 64.58; H, 7.34; N, 3.44.
  • 1H NMR (CD2Cl2/25° C.): d 20.19 (1H, d, 3JPH=4.5 Hz, Ru═CH), 7.74-7.00 (15H, all m, CH of C6H5), (1H, m, NCHMePh), 6.73 (1H, s, NCH), 6.70 (1H, s, NCH), 2.52 (1H, m, NCHMePh), 2.44 (3H, m, CH of PCy3), 2.11 (3H, d, 3JHH=6.8 Hz, NCHMePh), 1.82-1.12 (3H, all ma, CH of PCy3) 1.35 (3H, d, 3JHH=6.8 Hz, NCHMePh).
  • 13C NMR (CD2Cl2/25° C.): δ=292.7 (Ru═CH), 183.4 (dr JPC=78 Hz, NCN), 151.8 (ipso-C of C6H5), 140.1 and 139.5 (ipso-C of NCHMEPh), 129.5, 128.5, 128.3, 127.9, 127.5, 127.4, 127.2, 126.6, and 126.1 (o-C, m-C and p-C of C6H5) 119.8 and 118.4 (NCH), 57.4 and 56.2 (NCHMePh), 31.3 (d, JPC=17 Hz, ipso-C of PCy3), 29.0 (s, m-C of PCy3), 28.9 (s, m-C of PCy3), 27.2 (d, JPC=3.7 Hz, o-C of PCy3), 27.0 (d, JPC=3.7 Hz, o-C of PCy3), 25.8 (s, p-C of PCy3) 21.7 and 20.3 (NCHMePh).
  • 31P NMR (CD2Cl2/25° C.): δ 38.1.
  • 1i) Benzylidenedichloro(1,3-di-((R)-1′-naphthylethyl)-imidazolin-2-ylidene)(tricyclohexylphosphine)ruthenium
  • Figure US20080207911A1-20080828-C00008
  • A solution of 1.2 mmol of d-(R)-1-naphthylethylimidazolin-2-ylidene is added dropwise at −78° C. to 1 mmol of RuCl2(PCy3)2(CHPh) in 100 ml of THF. The mixture is slowly warmed to room temperature over a period of 5 hours and the solvent is subsequently removed. The crude product is extracted with a mixture of 2 ml of toluene and 25 ml of pentane and the product is precipitated from this solution at −78° C.
  • Yield: 0.72 mmol (72% of theory)
  • EA for C52H63Cl2N2PRu:
  • calc. C, 67.95; H, 6.91; N, 3.05. found C, 68.09; H, 7.02; N, 3.04.
  • 1H NMR (CD2Cl2/25° C.: δ 20.33 (1H, d, 3JHH=5.4 Hz, Ru═CH), 8.88 (2H, d, 3JHH=8.0 Hz, o-H of C6H5) 7.94-6.96 (17 Hr all m, CH of C6H5), 6.70 (1H, s, NCH), 6.61 (1H, s, NCH)r 5.83 (1H, m, NCHMeNaph), 2.59 (1H, m, NCHMeNaph), 2.49 (3H, m, CH of PCy3), 2.44 (3H, d, 3JHH=6.8 Hz, NCHMeNaph), 1.95-1.01 (3H, all m, CH2 of PCy3) 1.54 (3H, d, 3JHH=6.8 Hz, NCHMeNaph).
  • 13C NMR (CD2Cl2/25° C.): δ=298.4 (Ru═CH) 184.0 (d, JPC=87 Hz, NCN), 152.3 (ipso-C of C6H5), 138.3 and 137.6 (ipso-C of NCHMeNaph), 134.3-122.9 (o-C, m-C, and p-C of C6H5, CHMeNaph) 120.6 and 119.5 (NCH), 56.4 and 55.7 (NCHMeNaph), 32.5 (d, JPC=17 Hz, ipso-C of PCy3), 30.1 (s, M-C of PCy3), 30.0 (s, m-C of PCy3), 28.1 (pseudo-t, JPC=7.4 Hz, o-C of PCy3), 26.8 (s, p-C of PCy3) 24.0 and 22.7 (NCHMeNaph).
  • 31P NMR (CD2Cl2/25° C.) δ=31.8.
  • 2) Use of the Complex of the Invention in Olefin Metathesis
  • The following examples demonstrate the potential of the complexes of the invention in olefin metathesis. The advantage of these complexes of the invention compared to phosphine-containing complexes is the targeted and inexpensive variation of the radicals R on the nitrogen atoms of the N-heterocyclic carbene ligands. This tailoring of the catalysts of the invention on the basis of individual properties of the olefins to be subjected to metathesis enables both activity and selectivity of the reaction to be controlled.
  • 2a) Ring-Opening Metathesis Polymerization (ROMP):
  • Norbornene, cyclooctene and functionalized norbornene derivatives serve as examples.
  • Figure US20080207911A1-20080828-C00009
  • Typical Reaction Procedure for the Polymerization of Cyclooctene (or Norbornene):
  • 410 μl (3.13 mmol) of cyclooctene were added to a solution of 3.6 mg (6.3 μmol) of 1 in 0.5 ml of methylene chloride. After about 10 minutes, a highly viscous gel which could no longer be stirred had formed. 1 ml of methylene chloride was added. This procedure was repeated whenever the stirrer was no longer able to operate (a total of 3 ml of methylene chloride). After 1 hour, 5 ml of methylene chloride to which small amounts of tert-butyl ether and 2,6-di-tert-butyl-4-methylphenol had been added were introduced. After a further 10 minutes, the solution was slowly added dropwise to a large excess of methanol, the mixture was filtered and the solid was dried in a high vacuum for a number of hours.
  • Yield: 291 mg (2.64 mmol=84.3% of theory)
  • TABLE 1
    Polymerization of norbornene and cyclooctene
    Ratio of
    [monomer]/ Reaction
    Example Complex Monomer [cat.] time t Yield
    2.1a 1 Norbornene 100:1 1 min 91%
    2.1b 5 Norbornene 100:1 1 min 92%
    2.1c 1 Cyclooctene 500:1 1 h 84%
    2.1d 1 Cyclooctene 500:1 2 h 97%
    2.1e 5 Cyclooctene 500:1 1 h 87%
  • Typical Reaction Procedure for the Polymerization of Functionalized Norbornene Derivatives:
  • The formula VIII shows the basic skeleton of the norbornene derivatives used in Table 2.
  • Figure US20080207911A1-20080828-C00010
  • 0.3 ml of a solution of 432 mg (3.13 mmol) of 5-carboxyl-2-norbornene (formula VIII with R═CO2H) in methylene chloride was added to a solution of 3.6 mg (6.3 μmol) of 1 in 0.2 ml of methylene chloride. After about 10 minutes, a highly viscous gel which could no longer be stirred had formed. A further 0.5 ml of methylene chloride was added. This procedure was repeated whenever the stirrer was no longer able to operate. After 1 hour, 5 ml of methylene chloride to which small amounts of tert-butyl ether and 2,6-di-tert-butyl-4-methylphenol had been added were introduced. After a further 10 minutes, the solution was slowly added dropwise to a large excess of methanol, filtered and the solid was dried in a high vacuum for a number of hours.
  • Yield: 423 mg (3.06 mmol=98.1% of theory)
  • The reactions at 50° C. were carried out in an analogous manner in dichloroethane instead of methylene chloride.
  • TABLE 2
    Polymerization of functionalized norbornene derivatives
    Radical R
    in formula Reaction
    Example Complex VIII T[° C.] time t Yield
    2.1f 1 O2CCH3 25 30 min 99%
    2.1g 1 CH2OH 25 2 h 15%
    2.1h 1 CH2OH 50 2 h 18%
    2.1i 1 CHO 25 2 h 36%
    2.1k 1 CHO 50 2 h 52%
    2.1l 1 COCH3 25 2 h 42%
    2.1m 1 COCH3 50 2 h 67%
    2.1n 1 CO2H 25 2 h 98%
  • The polymerization of norbornene occurred in seconds. In the polymerization of cyclooctene, virtually quantitative conversions were obtained within one hour (Table 1). Differences in activity can be detected by use of various complexes under dilute conditions and demonstrate the dependence of the activity on the substitution pattern of the carbene ligands used. The high stability and tolerance toward functional groups is demonstrated by the polymerization of functionalized norbornene derivatives containing ester, alcohol, aldehyde, ketone or/and carboxylic acid groups (Table 2). Here, monomers of the formula VIII with R═CH2OH, CHO and CO2H were able to be polymerized for the first time.
  • 2.2) Ring-Closing Metathesis (RCM) of 1,7-octadiene:
  • Figure US20080207911A1-20080828-C00011
  • Typical Reaction Procedure for PCM of 1,7-octadiene:
  • A solution of 3.6 mg (6.3 μmol) of 1 in 2 ml of dichloroethane was admixed with 46 μl (0.31 mmol) of 1,7-octadiene, and the reaction mixture was placed in an oil bath at 60° C. After one hour, the reaction mixture was analyzed by GC/MS.
  • TABLE 3
    RCM of 1,7-octadiene (octadiene/catalyst = 50:1)
    Reaction
    Example Complex Solvent T[° C.] time t Yield
    2.2a 1 Methylene chloride 25 5.5 h 51%
    2.2b 1 Methylene chloride 25 24 h 70%
    2.2c 1 Dichloroethane 60 1 h 99%
    2.2d 2 Dichloroethane 60 1 h 99%
    2.2e 3 Dichloroethane 60 1 h 99%
    2.2f 5 Dichloroethane 60 1 h 99%
  • The potential in ring-closing metathesis was illustrated by the reaction of 1,7-octadiene to form cyclohexene with liberation of ethylene (Table 3). 1 gave a yield of 51% after 5.5 hours; at 60° C., all complexes of the invention used gave quantitative conversions.
  • 2.3) Metathesis of Acyclic Olefins
  • A) Metathesis of 1-octene:
  • Figure US20080207911A1-20080828-C00012
  • Typical Reaction Procedure for the Metathesis of 1-octene:
  • A solution of 3.6 mg (6.3 μmol) of 1 in 2 ml of dichloroethane was admixed with 49 μl (0.31 mmol) of 1-octene, and the reaction mixture was placed in an oil bath at 60° C. After 3 hours, the reaction mixture was analyzed by GC/MS.
  • TABLE 4
    Homometathesis of 1-octene (octene/catalyst = 50:1)
    Reaction Conversion
    Example Complex T[° C.] time t of 1-octene Selectivitya
    2.3a 2 60 1 h 31% 98%
    2.3b 2 60 2 h 58% 97%
    2.3c 1 60 1 h 83% 73%
    2.3d 1 60 3 h 97% 63%
    aThe selectivity indicates the proportion of 7-tetradecene compared to other metathesis products
  • B) Metathesis of Methyl Oleate:
  • Figure US20080207911A1-20080828-C00013
  • Typical Reaction Procedure for the Metathesis of Methyl Oleate:
  • A solution of 3.6 mg (6.3 μmol) of 1 in 0.5 ml of dichloroethane was admixed with 1.06 ml (3.13 mmol) of methyl oleate, and the reaction mixture was placed in an oil bath at 60° C. for 15 hours. GC/MS analysis indicated the equilibrium of metathesis products shown in the reaction equation (7).
  • The metathesis of terminal and internal olefins was demonstrated by means of the homometathesis of 1-octene and methyl oleate. In the metathesis of methyl oleate as natural raw material, the thermodynamic equilibrium can virtually be reached within 15 hours using catalyst at an olefin:catalyst ratio of 500:1. In the metathesis of 1-octene, 7-tetradecene was not obtained as sole reaction product in all cases. An isomerization of 1-octene to 2-octene detected by NMR spectroscopy and subsequent olefin metathesis is responsible for this fact. Homometathesis and cross-metathesis of 1-octene and 2-octene gave not only 7-tetradecene but also 6-tridecene as main by-product and small amounts of 6-dodecene, 1-heptene and 2-nonene. The product distribution is strongly dependent on the catalyst used. In the case of 2,7-tetradecene was obtained virtually selectively; in contrast, the more active complex 1 gave 7-tetradecene in a selectivity of only 63% at a high conversion. The by-product obtained was essentially 6-tridecene from the cross-metathesis of 1-octene with 2-octene.
  • Ring-opening metathesis polymerization (ROMP) of 1,5-cyclooctadiene
  • ROMP of 1,5-cyclooctadiene. NMR comparison of a ruthenium-dicarbene complex with a ruthenium-carbene phosphine complex. (T=25° C., 1.70 μmol of catalyst in 0.55 ml of CD2Cl2; [1,5-cyclooctadiene]/[catalyst]—250:1)
  • Figure US20080207911A1-20080828-C00014
  • The same applies to ROMP of cyclooctene: ROMP of cyclooctadiene. NMR Kinetics of a ruthenium-dicarbene complex compared to a ruthenium-carbene phosphine complex. (T=25° C.; 2.50 μmol of catalyst in 0.50 ml of CD2Cl2; [cyclooctadiene]/[catalyst]—250:1.
  • Figure US20080207911A1-20080828-C00015

Claims (10)

1. A complex of ruthenium of the structural formula I,
Figure US20080207911A1-20080828-C00016
where X1 and X2 are identical or different and are each an anionic ligand,
R1 and R2 are identical or different and are each hydrogen of a hydrocarbon group, where the hydrocarbon groups are identical or different and are selected independently from among straight-chain, branched, cyclic or noncyclic radicals from the group consisting of alkyl radicals having from 1 to 50 carbon atoms, alkenyl radicals having up to 50 carbon atoms, alkynyl radicals having up to 50 carbon atoms, aryl radicals having up to 30 carbon atoms and silyl radicals, or R1 and R2 form a ring, where one or more of the hydrogen atoms in the hydrocarbon or silyl groups or both the hydrocarbon and silyl group can be replaced independently by identical or different alkyl, aryl, alkenyl, alkynyl, metallocenyl, halogen, nitro, nitroso, hydroxy, alkoxy, aryloxy, amino, amido, carboxyl, carbonyl, thio or sulfonyl groups, the ligand L1 is an N-heterocyclic carbene of the formulae II-V and the ligand L2 is an N-heterocyclic carbene of the formulae III-V or an amine, imine, phosphine, phosphite, stibine, arsine, carbonyl compound, carboxyl compound, nitrile, alcohol, ether, thiol or thioether,
Figure US20080207911A1-20080828-C00017
where R1, R2, R3 and R4 in the formulae II, III, IV and V are identical or different and are each hydrogen or a hydrocarbon group, where the hydrocarbon groups comprise identical or different, cyclic, noncyclic, straight-chain or/and branched radicals selected from the group consisting of alkyl radicals having from 1 to 50 carbon atoms, alkenyl radicals having up to 50 carbon atoms, alkynyl radicals having 1 up to 50 carbon atoms and aryl radicals having up to 30 carbon atoms, in which at least one hydrogen may be replaced by functional groups, and where one or both of R3 and R4 may be identical or different halogen, nitro, nitroso, alkoxy, aryloxy, amido, carboxyl, carbonyl, thio or sulfonyl groups.
2-3. (canceled)
4. A complex as claimed in claim 1, wherein R3 and R4 in the formulae II, III, IV and V form a fused-on ring system.
5. A complex as claimed in claim 1, wherein L1 and L2 form a chelating ligand of the formula VI

L1-Y-L2  VI
where the bridges Y comprise cyclic, noncyclic, straight-chain or branched radicals selected from the group consisting of alkylene radicals having from 1 to 50 carbon atoms, alkenylene radicals having up to 50 carbon atoms, alkynylene radicals having up to 50 carbon atoms, arylene radicals having up to 30 carbon atoms, metallocenylene, borylene and silylene radicals in which one or more hydrogens may be replaced independently by identical or different alkyl, aryl, alkenyl, alkynyl, metallocenyl, halo, nitro, nitroso, hydroxy, alkoxy, aryloxy, amino, amido, carboxyl, carbonyl, thio or sulfonyl groups.
6. (canceled)
7. (canceled)
8. A process for preparing acyclic olefins having two or more carbon atoms or cyclic olefins having four or more carbon atoms, in each case of the formula VII
Figure US20080207911A1-20080828-C00018
from acyclic olefins having two or more carbon atoms or from cyclic olefins having four or more carbon atoms, in each case corresponding to the formula VII by an olefin metathesis reaction in the presence of at least one catalyst comprising the complex as claimed in claim 1 and R′1, R′2, R′3 and R′4 in the formula VII are hydrogen or hydrocarbon groups, where the hydrocarbon groups are each selected independently from among straight-chain, branched, cyclic or noncyclic radicals of the group consisting of alkyl radicals having from 1 to 50 carbon atoms, alkenyl radicals having up to 50 carbon atoms, alkynyl radicals having up to 50 carbon atoms, aryl radicals having up to 30 carbon atoms, metallocenyl or silyl radicals, in which one or more hydrogens may be replaced by a functional group, where one or more of R′1, R′2, R′3 and R′4 may independently be identical or different halogen, nitro, nitroso, hydroxy, alkoxy, aryloxy, amino, amido, carboxyl, carbonyl, thio, sulfonyl or metallocenyl groups.
9. (canceled)
10. The process as claimed in claim 8, wherein R′1, R′2, R′3 and R′4 in the olefins of the formula VII to be prepared form, in pairs, one or more identical or different rings.
11.-16. (canceled)
US12/115,139 1998-04-06 2008-05-05 Alkylidene complexes of ruthenium containing n-heterocyclic carbene ligands; use as highly active, selective catalysts for olefin metathesis Abandoned US20080207911A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/115,139 US20080207911A1 (en) 1998-04-06 2008-05-05 Alkylidene complexes of ruthenium containing n-heterocyclic carbene ligands; use as highly active, selective catalysts for olefin metathesis

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
DE19815275A DE19815275B4 (en) 1998-04-06 1998-04-06 Alkylidene complexes of ruthenium with N-heterocyclic carbene ligands and their use as highly active, selective catalysts for olefin metathesis
DEDE19815275.2 1998-04-06
PCT/EP1999/001785 WO1999051344A1 (en) 1998-04-06 1999-03-18 Alkylidene complexes of ruthenium with n-heterocyclic carbene ligands and their use as highly active, selective catalysts for olefin metathesis
US09/647,742 US6635768B1 (en) 1998-04-06 1999-03-18 Alkylidene complexes of ruthenium containing N-heterocyclic carbene ligands; use as highly active, selective catalysts for olefin metathesis
US10/630,552 US7294717B2 (en) 1998-04-06 2003-07-29 Alkylidene complexes of ruthenium containing N-heterocyclic carbene ligands; use as highly active, selective catalysts for olefin metathesis
US11/021,967 US7652145B2 (en) 1998-04-06 2004-12-23 Alkylidene complexes of ruthenium containing N-heterocyclic carbene ligands; use as highly active, selective catalysts for olefin metathesis
US11/828,828 US7378528B2 (en) 1998-04-06 2007-07-26 Alkylidene complexes of ruthenium containing N-heterocyclic carbene ligands; use as highly active, selective catalysts for olefin metathesis
US12/115,139 US20080207911A1 (en) 1998-04-06 2008-05-05 Alkylidene complexes of ruthenium containing n-heterocyclic carbene ligands; use as highly active, selective catalysts for olefin metathesis

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/828,828 Division US7378528B2 (en) 1998-04-06 2007-07-26 Alkylidene complexes of ruthenium containing N-heterocyclic carbene ligands; use as highly active, selective catalysts for olefin metathesis

Publications (1)

Publication Number Publication Date
US20080207911A1 true US20080207911A1 (en) 2008-08-28

Family

ID=7863687

Family Applications (7)

Application Number Title Priority Date Filing Date
US09/647,742 Expired - Lifetime US6635768B1 (en) 1998-04-06 1999-03-18 Alkylidene complexes of ruthenium containing N-heterocyclic carbene ligands; use as highly active, selective catalysts for olefin metathesis
US10/630,552 Expired - Lifetime US7294717B2 (en) 1998-04-06 2003-07-29 Alkylidene complexes of ruthenium containing N-heterocyclic carbene ligands; use as highly active, selective catalysts for olefin metathesis
US11/021,967 Expired - Lifetime US7652145B2 (en) 1998-04-06 2004-12-23 Alkylidene complexes of ruthenium containing N-heterocyclic carbene ligands; use as highly active, selective catalysts for olefin metathesis
US11/828,828 Expired - Fee Related US7378528B2 (en) 1998-04-06 2007-07-26 Alkylidene complexes of ruthenium containing N-heterocyclic carbene ligands; use as highly active, selective catalysts for olefin metathesis
US12/115,139 Abandoned US20080207911A1 (en) 1998-04-06 2008-05-05 Alkylidene complexes of ruthenium containing n-heterocyclic carbene ligands; use as highly active, selective catalysts for olefin metathesis
US13/090,688 Expired - Fee Related US8153810B2 (en) 1998-04-06 2011-04-20 Alkylidene complexes of ruthenium containing N-heterocyclic carbene ligands; use as highly active, selective catalysts for olefin metathesis
US14/193,785 Abandoned US20150038723A1 (en) 1998-04-06 2014-02-28 Alkylidene complexes of ruthenium containing n-heterocyclic carbene ligands; use as highly active, selective catalysts for olefin metathesis

Family Applications Before (4)

Application Number Title Priority Date Filing Date
US09/647,742 Expired - Lifetime US6635768B1 (en) 1998-04-06 1999-03-18 Alkylidene complexes of ruthenium containing N-heterocyclic carbene ligands; use as highly active, selective catalysts for olefin metathesis
US10/630,552 Expired - Lifetime US7294717B2 (en) 1998-04-06 2003-07-29 Alkylidene complexes of ruthenium containing N-heterocyclic carbene ligands; use as highly active, selective catalysts for olefin metathesis
US11/021,967 Expired - Lifetime US7652145B2 (en) 1998-04-06 2004-12-23 Alkylidene complexes of ruthenium containing N-heterocyclic carbene ligands; use as highly active, selective catalysts for olefin metathesis
US11/828,828 Expired - Fee Related US7378528B2 (en) 1998-04-06 2007-07-26 Alkylidene complexes of ruthenium containing N-heterocyclic carbene ligands; use as highly active, selective catalysts for olefin metathesis

Family Applications After (2)

Application Number Title Priority Date Filing Date
US13/090,688 Expired - Fee Related US8153810B2 (en) 1998-04-06 2011-04-20 Alkylidene complexes of ruthenium containing N-heterocyclic carbene ligands; use as highly active, selective catalysts for olefin metathesis
US14/193,785 Abandoned US20150038723A1 (en) 1998-04-06 2014-02-28 Alkylidene complexes of ruthenium containing n-heterocyclic carbene ligands; use as highly active, selective catalysts for olefin metathesis

Country Status (6)

Country Link
US (7) US6635768B1 (en)
EP (1) EP1087838B1 (en)
JP (1) JP4531253B2 (en)
DE (2) DE19815275B4 (en)
IL (1) IL138595A (en)
WO (1) WO1999051344A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7622590B1 (en) 1998-09-10 2009-11-24 University Of New Orleans Foundation Catalyst complex with carbene ligand
US8816114B2 (en) 2008-04-08 2014-08-26 Evonik Degussa Gmbh Method for manufacturing ruthenium carbene complexes
WO2017087710A2 (en) 2015-11-18 2017-05-26 Provivi, Inc. Production of fatty olefin derivatives via olefin metathesis
WO2017087846A1 (en) 2015-11-18 2017-05-26 Provivi, Inc. Microorganisms for the production of insect pheromones and related compounds
US9815765B2 (en) 2011-09-28 2017-11-14 University Court Of The University Of St. Andrews Ruthenium polymerisation catalysts
WO2018213554A1 (en) 2017-05-17 2018-11-22 Provivi, Inc. Microorganisms for the production of insect pheromones and related compounds
US11214818B2 (en) 2016-06-06 2022-01-04 Provivi, Inc. Semi-biosynthetic production of fatty alcohols and fatty aldehydes

Families Citing this family (172)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19815275B4 (en) 1998-04-06 2009-06-25 Evonik Degussa Gmbh Alkylidene complexes of ruthenium with N-heterocyclic carbene ligands and their use as highly active, selective catalysts for olefin metathesis
US7285593B1 (en) 1998-05-19 2007-10-23 Advanced Polymer Technologies, Inc. Polyolefin compositions optionally having variable toughness and/or hardness
US6696597B2 (en) 1998-09-01 2004-02-24 Tilliechem, Inc. Metathesis syntheses of pheromones or their components
US7507854B2 (en) 1998-09-01 2009-03-24 Materia, Inc. Impurity reduction in Olefin metathesis reactions
US6900347B2 (en) 1998-09-01 2005-05-31 Tilliechem, Inc. Impurity inhibition in olefin metathesis reactions
JP2002536468A (en) 1999-02-05 2002-10-29 マテリア インコーポレイテッド Metathesis-active adhesive and method for enhancing polymer adhesion to surfaces
JP2002536467A (en) 1999-02-05 2002-10-29 マテリア インコーポレイテッド Polyolefin compositions having various densities and methods of making and using the compositions
DE60022322T2 (en) 1999-02-05 2006-06-29 Advanced Polymer Technologies Inc. POLYOLEFIN COMPOSITIONS WITH IMPROVED UV AND OXIDATION RESISTANCE AND METHOD FOR THE PRODUCTION THEREOF AND USE
US20140088260A1 (en) 1999-02-05 2014-03-27 Materia, Inc. Metathesis-active adhesion agents and methods for enhancing polymer adhesion to surfaces
JP2002540213A (en) * 1999-03-31 2002-11-26 カリフォルニア インスティチュート オブ テクノロジー Novel ruthenium metal alkyldiene complexes coordinated by triazoleylidene ligands exhibiting high olefin metathesis activity
US7329758B1 (en) 1999-05-24 2008-02-12 California Institute Of Technology Imidazolidine-based metal carbene metathesis catalysts
WO2000073366A1 (en) * 1999-05-31 2000-12-07 Nippon Zeon Co., Ltd. Process for producing hydrogenated ring-opening polymerization polymer of cycloolefin
CN100528829C (en) * 1999-11-18 2009-08-19 R·L·佩德森 Metathesis synthesis of pheromones or their components
TW593406B (en) * 1999-12-07 2004-06-21 Zeon Corp Copolymer formed by ring-opening polymerization, hydrogenation product of copolymer formed by ring-opening polymerization, and process for producing these
DE10014297A1 (en) * 2000-03-23 2001-09-27 Merck Patent Gmbh Metathesis reaction of unsaturated organic compound, e.g. cyclization of octa-1,7-diene to cyclohexene, involves mixing and reacting compound and metathesis catalyst in liquid or dissolved form in microreactor
DE10015452A1 (en) 2000-03-29 2001-10-04 Bayer Ag Processes for the polymerization of polar substituted cycloalkenes, useful for optical applications, are carried out in the presence of at least one tungsten carbyne and/or molybdenum carbyne complex.
US7494927B2 (en) 2000-05-15 2009-02-24 Asm International N.V. Method of growing electrical conductors
EP1301458B1 (en) * 2000-06-23 2015-09-09 California Institute Of Technology Synthesis of functionalized and unfunctionalized olefins via cross and ring-closing metathesis
JP2002020395A (en) * 2000-07-04 2002-01-23 Sekisui Chem Co Ltd New organometallic complex having high metathesis activity, metathesis reaction catalyst containing the same, polymerization method by using the catalyst, and resin composition obtained by the polymerization method
DE10064750A1 (en) * 2000-12-22 2002-06-27 Bayer Ag Production of 1,6-hexane diol for use in polyester or polyurethane production involves reacting formaldehyde with propene to form a homo-allyl alcohol, catalytic metathesis to 3-hexene-1,6-diol and catalytic hydrogenation
US6838489B2 (en) 2001-03-23 2005-01-04 Cymetech, Llc High activity metal carbene metathesis catalysts generated using a thermally activated N-heterocyclic carbene precursor
RU2289568C2 (en) * 2001-03-26 2006-12-20 Дау Глобал Текнолоджиз Инк. Metathesis method for unsaturated fatty acid esters or unsaturated fatty acids with lower olefins and heterogeneous catalyst composition designed for metathesis method
EP1373170A4 (en) * 2001-03-30 2007-03-21 California Inst Of Techn Cross-metathesis reaction of functionalized and substituted olefins using group 8 transition metal carbene complexes as metathesis catalysts
DE10137051A1 (en) 2001-07-31 2003-02-20 Bayer Ag New transition metal complexes with 2-alkoxybenzylidene ligands and hydrogenated imidazole ligands, useful as catalysts in metathesis reactions
CN1265882C (en) 2001-08-01 2006-07-26 加州理工学院 Hexacoordinated ruthenium or osmium metal carbene metathesis catalysts
WO2003027079A1 (en) * 2001-09-20 2003-04-03 Zeon Corporation Ruthenium complexes, process for preparation thereof, and processes for producing open-ring polymers of cycloolefins and hydrogenation products thereof by using the complexes as catalyst
AU2002357730A1 (en) * 2001-11-15 2003-06-10 Materia, Inc. Chelating carbene ligand precursors and their use in the synthesis of metathesis catalysts
CN102936536B (en) 2002-04-29 2014-01-29 陶氏环球技术有限责任公司 Intergrated chemical processe for industrial utilization of seed oils
DE10231368A1 (en) * 2002-07-11 2004-02-05 Studiengesellschaft Kohle Mbh Process for the preparation of imidazolium salts
US7002049B2 (en) 2002-08-19 2006-02-21 Eastman Chemical Company Process for α,β-dihydroxyalkenes and derivatives
US7094898B2 (en) * 2003-05-29 2006-08-22 University Of Ottawa Ruthenium compounds, their production and use
US7205424B2 (en) * 2003-06-19 2007-04-17 University Of New Orleans Research And Technology Foundation, Inc. Preparation of ruthenium-based olefin metathesis catalysts
DE602004014958D1 (en) * 2003-10-09 2008-08-21 Dow Global Technologies Inc IMPROVED METHOD FOR SYNTHESIS OF UNSATURATED ALCOHOLS
CA2462011A1 (en) * 2004-02-23 2005-08-23 Bayer Inc. Process for the preparation of low molecular weight nitrile rubber
KR101162394B1 (en) 2004-02-23 2012-07-06 란세스 인크. Process for the preparation of low molecular weight nitrile rubber
EP1735352B1 (en) 2004-03-29 2019-08-21 California Institute Of Technology Latent, high-activity olefin metathesis catalysts containing an n-heterocyclic carbene ligand
EP1765839B1 (en) 2004-06-09 2017-01-25 UTI Limited Partnership Transition metal carbene complexes containing a cationic substituent as catalysts of olefin metathesis reactions
FR2878246B1 (en) 2004-11-23 2007-03-30 Inst Francais Du Petrole PROCESS FOR CO-PRODUCTION OF OLEFINS AND ESTERS BY ETHENOLYSIS OF UNSATURATED FATTY BODIES IN NON-AQUEOUS IONIC LIQUIDS
US20060129013A1 (en) * 2004-12-09 2006-06-15 Abazajian Armen N Specific functionalization and scission of linear hydrocarbon chains
DE102004060247A1 (en) * 2004-12-15 2006-06-29 Studiengesellschaft Kohle Mbh New N-heterocyclic carbene radical compounds useful as e.g. catalysts in organocatalysis; and ligands in transition metal catalysts in homogeneous catalysis
US7666773B2 (en) 2005-03-15 2010-02-23 Asm International N.V. Selective deposition of noble metal thin films
US8025922B2 (en) 2005-03-15 2011-09-27 Asm International N.V. Enhanced deposition of noble metals
US8461223B2 (en) 2005-04-07 2013-06-11 Aspen Aerogels, Inc. Microporous polycyclopentadiene-based aerogels
US7750149B2 (en) 2005-04-11 2010-07-06 Wisconsin Alumni Research Foundation Seven-membered heterocyclic carbenes and their metal complexes
JP2006342212A (en) * 2005-06-07 2006-12-21 Kuraray Co Ltd Method for producing ring-opened metathesis polymer, and the resultant ring-opened metathesis polymer, and molded form obtained from the polymer
US20070014919A1 (en) * 2005-07-15 2007-01-18 Jani Hamalainen Atomic layer deposition of noble metal oxides
CN101460513B (en) 2005-12-16 2014-08-27 马特里亚公司 Organometallic ruthenium complexes and related methods for the preparation of tetra-substituted and other hindered olefins
FR2896500B1 (en) 2006-01-24 2010-08-13 Inst Francais Du Petrole PROCESS FOR CO-PRODUCTION OF OLEFINS AND DIESTERS OR DIACIDES BY HOMOMETATHESIS OF UNSATURATED FATTY BODIES IN NON-AQUEOUS IONIC LIQUIDS
US20070225536A1 (en) * 2006-03-23 2007-09-27 Eugene Frederick Lutz Olefin conversion process and olefin recovery process
US7435484B2 (en) * 2006-09-01 2008-10-14 Asm Japan K.K. Ruthenium thin film-formed structure
AR066191A1 (en) 2007-03-22 2009-08-05 Schering Corp PROCESS AND INTERMEDIARIES FOR THE SYNTHESIS OF COMPOUNDS 8- [(1- (3,5- BIS- (TRIFLUOROMETIL) PHENYL) - ETOXI) - METAL] - 8 PHENYL - 1,7- DIAZA - ESPIRO (4, 5) DECAN - 2 ONA
DE102007018148A1 (en) 2007-04-16 2008-10-23 Evonik Degussa Gmbh Preparation of alkene, which is a polymer compound, preferably homopolymer, copolymer or block-copolymer, comprises metathesis reaction of unsaturated compound containing an alkene or alkyne unit in the presence of an active catalyst
DE102007020694A1 (en) 2007-05-03 2008-11-06 Evonik Degussa Gmbh Sulfur-containing metathesis catalysts
WO2009002427A2 (en) * 2007-06-21 2008-12-31 Amgen Inc. Methods of synthesizing cinacalcet and salts thereof
US20090087339A1 (en) * 2007-09-28 2009-04-02 Asm Japan K.K. METHOD FOR FORMING RUTHENIUM COMPLEX FILM USING Beta-DIKETONE-COORDINATED RUTHENIUM PRECURSOR
US8241575B2 (en) 2008-01-28 2012-08-14 The Johns Hopkins University Molecularly imprinted polymer sensor device
EP2147721A1 (en) * 2008-07-08 2010-01-27 Lanxess Deutschland GmbH Catalyst systems and their use in metathesis reactions
EP2157076A1 (en) * 2008-08-21 2010-02-24 Cognis IP Management GmbH Process for the preparation of unsaturated alpha, omega dicarboxylic acid diesters
US8084104B2 (en) * 2008-08-29 2011-12-27 Asm Japan K.K. Atomic composition controlled ruthenium alloy film formed by plasma-enhanced atomic layer deposition
WO2010028232A1 (en) 2008-09-05 2010-03-11 Schering Corporation Process and intermediates for the synthesis of 8-[{1-(3,5-bis-(trifluoromethyl)phenyl)-ethoxy}-methyl]-8-phenyl-1,7-diaza-spiro[4.5]decan-2-one compounds
EP2342221B1 (en) 2008-09-22 2018-11-07 Aileron Therapeutics, Inc. Methods for preparing purified polypeptide compositions
EP2350159A1 (en) * 2008-10-31 2011-08-03 Dow Global Technologies LLC Olefin metathesis process employing bimetallic ruthenium complex with bridging hydrido ligands
MX2011005525A (en) * 2008-11-26 2011-06-06 Elevance Renewable Sciences Methods of producing jet fuel from natural oil feedstocks through oxygen-cleaved reactions.
CN102227394B (en) * 2008-11-26 2014-09-24 埃莱文斯可更新科学公司 Methods of producing jet fuel from natural oil feedstocks through metathesis reactions
FR2939331B1 (en) 2008-12-10 2012-08-10 Inst Francais Du Petrole CATALYTIC COMPOSITION AND METHOD FOR THE METATHESIS OF UNSATURATED BODY
US9379011B2 (en) 2008-12-19 2016-06-28 Asm International N.V. Methods for depositing nickel films and for making nickel silicide and nickel germanide
DE102009005951A1 (en) 2009-01-23 2010-07-29 Evonik Degussa Gmbh Aldehyde-functional compounds
EP2210870A1 (en) 2009-01-23 2010-07-28 Evonik Degussa GmbH Hydroxy and aldehyde functional connections
CA2760789C (en) * 2009-05-05 2016-07-19 Stepan Company Sulfonated internal olefin surfactant for enhanced oil recovery
US20110020546A1 (en) * 2009-05-15 2011-01-27 Asm International N.V. Low Temperature ALD of Noble Metals
US9175231B2 (en) 2009-10-12 2015-11-03 Elevance Renewable Sciences, Inc. Methods of refining natural oils and methods of producing fuel compositions
US8735640B2 (en) 2009-10-12 2014-05-27 Elevance Renewable Sciences, Inc. Methods of refining and producing fuel and specialty chemicals from natural oil feedstocks
US9382502B2 (en) 2009-10-12 2016-07-05 Elevance Renewable Sciences, Inc. Methods of refining and producing isomerized fatty acid esters and fatty acids from natural oil feedstocks
US9365487B2 (en) 2009-10-12 2016-06-14 Elevance Renewable Sciences, Inc. Methods of refining and producing dibasic esters and acids from natural oil feedstocks
US9169447B2 (en) 2009-10-12 2015-10-27 Elevance Renewable Sciences, Inc. Methods of refining natural oils, and methods of producing fuel compositions
US9051519B2 (en) 2009-10-12 2015-06-09 Elevance Renewable Sciences, Inc. Diene-selective hydrogenation of metathesis derived olefins and unsaturated esters
US9000246B2 (en) 2009-10-12 2015-04-07 Elevance Renewable Sciences, Inc. Methods of refining and producing dibasic esters and acids from natural oil feedstocks
US9222056B2 (en) 2009-10-12 2015-12-29 Elevance Renewable Sciences, Inc. Methods of refining natural oils, and methods of producing fuel compositions
EP2488474B1 (en) 2009-10-12 2017-01-25 Elevance Renewable Sciences, Inc. Methods of refining and producing fuel from natural oil feedstocks
WO2011059803A2 (en) * 2009-10-29 2011-05-19 Board Of Regents, The University Of Texas System Ruthenium-alkylidenes containing acyclic diaminocarbenes for obtaining low e/z ratios in cross metathesis
GB201004732D0 (en) 2010-03-22 2010-05-05 Univ Aberdeen Ruthenium complexes for use in olefin metathesis
WO2011139704A2 (en) * 2010-04-27 2011-11-10 The Regents Of The University Of California Crystalline 1h-1,2,3-triazol-5-ylidenes
SG188274A1 (en) 2010-08-23 2013-04-30 Materia Inc Vartm flow modifications for low viscosity resin systems
EP2428269A1 (en) 2010-09-08 2012-03-14 Bergen Teknologioverføring AS Novel olefin metathesis catalysts
US8871617B2 (en) 2011-04-22 2014-10-28 Asm Ip Holding B.V. Deposition and reduction of mixed metal oxide thin films
US8524930B2 (en) 2011-05-31 2013-09-03 Exxonmobil Chemical Patents Inc. Class of olefin metathesis catalysts, methods of preparation, and processes for the use thereof
WO2012166259A2 (en) * 2011-05-31 2012-12-06 Exxonmobil Chemical Patents Inc. A novel class of olefin metathesis catalysts, methods of preparation, and processes for the use thereof
CA2839757C (en) 2011-06-17 2021-01-19 Materia, Inc. Adhesion promoters and gel-modifiers for olefin metathesis compositions
US8993819B2 (en) 2011-07-12 2015-03-31 Basf Se Process for preparing cycloheptene
EP2731923B1 (en) 2011-07-12 2015-09-09 Basf Se Process for preparing cycloheptene
US9181360B2 (en) 2011-08-12 2015-11-10 Exxonmobil Chemical Patents Inc. Polymers prepared by ring opening / cross metathesis
FR2983475B1 (en) * 2011-12-02 2014-01-17 IFP Energies Nouvelles PROCESS FOR THE METATHESIS OF ALPHA LINEAR OLEFINS USING AN RUTHENIUM COMPLEX COMPRISING A DISSYMETRIC N-HETEROCYCLIC CARBENE
US9139493B2 (en) 2011-12-22 2015-09-22 Elevance Renewable Sciences, Inc. Methods for suppressing isomerization of olefin metathesis products
US9133416B2 (en) 2011-12-22 2015-09-15 Elevance Renewable Sciences, Inc. Methods for suppressing isomerization of olefin metathesis products
US9169174B2 (en) 2011-12-22 2015-10-27 Elevance Renewable Sciences, Inc. Methods for suppressing isomerization of olefin metathesis products
KR20140145960A (en) 2012-03-13 2014-12-24 인비스타 테크놀러지스 에스.에이 알.엘. Nylon polymer and process
IN2014DN08906A (en) 2012-04-24 2015-05-22 Elevance Renewable Sciences
NZ701296A (en) 2012-04-24 2016-02-26 Stepan Co Unsaturated fatty alcohol alkoxylates from natural oil metathesis
ES2833282T3 (en) 2012-04-24 2021-06-14 Stepan Co Unsaturated fatty alcohol derivatives from natural oil metathesis
US8940940B2 (en) 2012-06-13 2015-01-27 Basf Se Process for preparing macrocyclic ketones
AU2013277107B2 (en) 2012-06-20 2018-03-08 Wilmar Trading Pte Ltd Natural oil metathesis compositions
WO2014022482A1 (en) 2012-08-01 2014-02-06 California Institute Of Technology Solvent-free enyne metathesis polymerization
US9234985B2 (en) 2012-08-01 2016-01-12 California Institute Of Technology Birefringent polymer brush structures formed by surface initiated ring-opening metathesis polymerization
WO2014055720A1 (en) * 2012-10-05 2014-04-10 California Institute Of Technology Photoinitiated olefin metathesis polymerization
US9388098B2 (en) 2012-10-09 2016-07-12 Elevance Renewable Sciences, Inc. Methods of making high-weight esters, acids, and derivatives thereof
FR2999185B1 (en) * 2012-12-12 2015-01-02 Ecole Nationale Superieure De Chimie De Rennes PROCESS FOR THE METATHESIS OF ALPHA LINEAR OLEFINS USING AN RUTHENIUM COMPLEX COMPRISING AN UNSATURATED DISSYMETRIC N-HETEROCYCLIC DIAMINOCARBENE
US9527982B2 (en) 2012-12-19 2016-12-27 Materia, Inc. Storage stable adhesion promoter compositions for cyclic olefin resin compositions
FR3002161B1 (en) * 2013-02-21 2015-12-18 IFP Energies Nouvelles FISCHER-TROPSCH CUT OLEFINE METATHESIS METHOD USING RUTHENIUM COMPLEX COMPRISING SYMMETRIC N-HETEROCYCLIC DIAMINOCARBENE
MX2015010583A (en) 2013-02-27 2016-04-07 Materia Inc Metal carbene olefin metathesis two catalyst composition.
US9598531B2 (en) 2013-02-27 2017-03-21 Materia, Inc. Olefin metathesis catalyst compositions comprising at least two metal carbene olefin metathesis catalysts
EP2778154A1 (en) * 2013-03-13 2014-09-17 Evonik Industries AG In situ generation of ruthenium catalysts for olefin metathesis
US9266918B2 (en) 2013-03-14 2016-02-23 Elevance Renewable Sciences, Inc. Alkenyl glycosides and their preparation
BR112015022516A2 (en) 2013-03-15 2017-07-18 Materia Inc coating on romp polymer mold
CN105008320A (en) 2013-03-20 2015-10-28 埃莱万斯可再生能源科学股份有限公司 Acid catalyzed oligomerization of alkyl esters and carboxylic acids
BR112015025850B1 (en) 2013-04-09 2021-11-03 Materia, Inc METHOD TO PRODUCE AT LEAST ONE CROSS METATHESIS PRODUCT
EP3004123B1 (en) * 2013-05-24 2018-03-28 ARLANXEO Deutschland GmbH Ruthenium-based complexes, their preparation and use as catalysts
WO2014198022A1 (en) * 2013-06-09 2014-12-18 Lanxess Deutschland Gmbh Ruthenium- or osmium-based complex catalysts
US20160244632A1 (en) 2013-06-24 2016-08-25 Materia, Inc. Thermal insulation
DK3016991T3 (en) 2013-07-03 2024-08-26 Materia Inc Compositions for forming liquids
EP3041812B1 (en) 2013-09-04 2022-08-10 California Institute of Technology Functionalized linear and cyclic polyolefins
JP6273749B2 (en) * 2013-10-04 2018-02-07 国立大学法人山口大学 Network polymers and polymer gel electrolytes
US10799613B2 (en) 2013-10-30 2020-10-13 California Institute Of Technology Direct photopatterning of robust and diverse materials
WO2015106210A1 (en) 2014-01-10 2015-07-16 Materia, Inc. Method and composition for improving adhesion of metathesis compositions to substrates
WO2015130802A1 (en) 2014-02-27 2015-09-03 Materia, Inc. Adhesion promoter compositions for cyclic olefin resin compositions
US10000601B2 (en) 2014-03-27 2018-06-19 Trent University Metathesized triacylglycerol polyols for use in polyurethane applications and their related properties
WO2015143563A1 (en) 2014-03-27 2015-10-01 Trent University Certain metathesized natural oil triacylglycerol polyols for use in polyurethane applications and their related physical properties
US10000724B2 (en) 2014-03-27 2018-06-19 Trent University Metathesized triacylglycerol green polyols from palm oil for use in polyurethane applications and their related properties
US9592476B2 (en) 2014-05-30 2017-03-14 Pall Corporation Membrane comprising self-assembled block copolymer and process for producing the same by hybrid casting (IIb)
US9328206B2 (en) 2014-05-30 2016-05-03 Pall Corporation Self-assembling polymers—III
US9593218B2 (en) 2014-05-30 2017-03-14 Pall Corporation Self-assembled structure and membrane comprising block copolymer and process for producing the same by spin coating (IIIa)
US9598543B2 (en) 2014-05-30 2017-03-21 Pall Corporation Self-assembled structure and membrane comprising block copolymer and process for producing the same by spin coating (VIa)
US9593217B2 (en) 2014-05-30 2017-03-14 Pall Corporation Self-assembled structure and membrane comprising block copolymer and process for producing the same by spin coating (Va)
US9441078B2 (en) 2014-05-30 2016-09-13 Pall Corporation Self-assembling polymers—I
US9592477B2 (en) 2014-05-30 2017-03-14 Pall Corporation Membrane comprising self-assembled block copolymer and process for producing the same by hybrid casting (Ib)
US9163122B1 (en) 2014-05-30 2015-10-20 Pall Corporation Self-assembling polymers—II
US9469733B2 (en) 2014-05-30 2016-10-18 Pall Corporation Self-assembled structure and membrane comprising block copolymer and process for producing the same by spin coating (IVa)
US9616395B2 (en) 2014-05-30 2017-04-11 Pall Corportaion Membrane comprising self-assembled block copolymer and process for producing the same by spray coating (Ic)
US9593219B2 (en) 2014-05-30 2017-03-14 Pall Corporation Membrane comprising self-assembled block copolymer and process for producing the same by spin coating (IIa)
US9193835B1 (en) 2014-05-30 2015-11-24 Pall Corporation Self-assembling polymers—IV
US9765171B2 (en) 2014-05-30 2017-09-19 Pall Corporation Self-assembling polymers—V
US9604181B2 (en) 2014-05-30 2017-03-28 Pall Corporation Membrane comprising self-assembled block copolymer and process for producing the same by spray coating (IIc)
US9162189B1 (en) 2014-05-30 2015-10-20 Pall Corporation Membrane comprising self-assembled block copolymer and process for producing the same by spin coating (Ia)
US9169361B1 (en) 2014-05-30 2015-10-27 Pall Corporation Self-assembling polymers—VI
US9303133B2 (en) 2014-06-30 2016-04-05 Pall Corporation Hydrophilic membranes and method of preparation thereof (IV)
US9962662B2 (en) 2014-06-30 2018-05-08 Pall Corporation Fluorinated polymer and use thereof in the preparation of hydrophilic membranes (vi)
US9309367B2 (en) 2014-06-30 2016-04-12 Pall Corporation Membranes comprising cellulosic material and hydrophilic block copolymer (V)
US9394407B2 (en) 2014-06-30 2016-07-19 Pall Corporation Hydrophilic block copolymers and membranes prepared therefrom (I)
US9718924B2 (en) 2014-06-30 2017-08-01 Pall Corporation Hydrophilic block copolymers and membranes prepared therefrom (II)
US9260569B2 (en) 2014-06-30 2016-02-16 Pall Corporation Hydrophilic block copolymers and method of preparation thereof (III)
US9254466B2 (en) 2014-06-30 2016-02-09 Pall Corporation Crosslinked cellulosic membranes
KR20170093793A (en) 2014-10-21 2017-08-16 스트라타시스 엘티디. Three-dimensional inkjet printing using ring-opening metathesis polymerization
US9777245B2 (en) 2015-01-30 2017-10-03 Trent University Methods of fractionating metathesized triacylglycerol polyols and uses thereof
WO2016130743A1 (en) 2015-02-12 2016-08-18 Materia, Inc. Cyclic olefin resin compositions comprising functional elastomers
US10344118B2 (en) 2015-02-14 2019-07-09 Materia, Inc. Romp polymers having improved resistance to hydrocarbon fluids
EP3115368A1 (en) 2015-07-10 2017-01-11 Bergen Teknologioverforing AS Improved olefin metathesis catalysts
EP3124580A1 (en) 2015-07-31 2017-02-01 Total Marketing Services Branched diesters for use to reduce the fuel consumption of an engine
EP3124579A1 (en) 2015-07-31 2017-02-01 Total Marketing Services Lubricant composition comprising branched diesters and viscosity index improver
KR20180059489A (en) 2015-09-24 2018-06-04 우미코레 아게 운트 코 카게 Metal carbene olefin metathesis catalyst
US9607842B1 (en) 2015-10-02 2017-03-28 Asm Ip Holding B.V. Methods of forming metal silicides
US11001725B2 (en) 2016-02-05 2021-05-11 Stratasys Ltd. Three-dimensional inkjet printing using ring-opening metathesis polymerization
US11173653B2 (en) 2016-02-05 2021-11-16 Stratasys Ltd. Three-dimensional inkjet printing using polyamide-forming materials
WO2017134673A1 (en) 2016-02-07 2017-08-10 Stratasys Ltd. Three-dimensional printing combining ring-opening metathesis polymerization and free radical polymerization
WO2017187434A1 (en) 2016-04-26 2017-11-02 Stratasys Ltd. Three-dimensional inkjet printing using ring-opening metathesis polymerization
HUE061030T2 (en) 2016-08-15 2023-05-28 Umicore Ag & Co Kg Metathesis catalysts
EP3500557A4 (en) * 2016-08-19 2020-03-18 Umicore Ag & Co. Kg Olefin metathesis catalysts
WO2018038928A1 (en) * 2016-08-24 2018-03-01 Materia, Inc. Synthesis and characterization of metathesis catalysts
CN109982995B (en) 2016-09-23 2022-09-30 优美科股份公司及两合公司 Preparation of amino acids and amino acid derivatives
KR102321960B1 (en) * 2017-06-23 2021-11-08 광주과학기술원 Ligand for ruthenium complex formation, ruthenium complex catalyst, and method and use thereof
FR3075802B1 (en) 2017-12-22 2020-11-20 Demeta CYCLOOLEFIN POLYMERIZATION PROCESS BY METATHESIS WITH CYCLE OPENING
EP3546495A1 (en) 2018-03-29 2019-10-02 Evonik Degussa GmbH Method for producing temperature-stable polyalkenamers
US10995049B2 (en) 2019-07-19 2021-05-04 California Institute Of Technology Total synthesis of prostaglandin J natural products and their intermediates
US20240124809A1 (en) 2022-10-03 2024-04-18 The Goodyear Tire & Rubber Company Reactor cleaning process and composition

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5728839A (en) * 1994-12-29 1998-03-17 Hoechst Aktiengesellschaft Metal complexes with heterocycles carbenes
US6426419B1 (en) * 1999-03-31 2002-07-30 California Institute Of Technology Ruthenium metal alkylidene complexes coordinated with triazolylidene ligands that exhibit high olefin metathesis activity
US6552139B1 (en) * 1999-01-22 2003-04-22 Degussa Ag Process for preparing acyclic olefins using homobimetallic and heterobimetallic alkylidene complexes of ruthenium containing N-heterocyclic carbene ligands
US20050261451A1 (en) * 2004-03-29 2005-11-24 California Institute Of Technology Latent, high-activity olefin metathesis catalysts containing an N-heterocyclic carbene ligand
US20060128912A1 (en) * 2004-06-09 2006-06-15 Uti Limited Partnership Transition metal carbene complexes containing a cationic substituent as catalysts of olefin metathesis reactions
US20060293526A1 (en) * 2003-08-11 2006-12-28 Merk Patent Gmbh Immobilised imidazoles and ruthenium catalysts
US7329758B1 (en) * 1999-05-24 2008-02-12 California Institute Of Technology Imidazolidine-based metal carbene metathesis catalysts

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0773948A4 (en) * 1992-04-03 1998-09-02 California Inst Of Techn High activity ruthenium or osmium metal carbene complexes for olefin metathesis reactions and synthesis thereof
US5312940A (en) 1992-04-03 1994-05-17 California Institute Of Technology Ruthenium and osmium metal carbene complexes for olefin metathesis polymerization
US5831108A (en) * 1995-08-03 1998-11-03 California Institute Of Technology High metathesis activity ruthenium and osmium metal carbene complexes
DE19610908A1 (en) * 1996-03-20 1997-09-25 Hoechst Ag Process for the production of heterocyclic carbenes
DE19815275B4 (en) 1998-04-06 2009-06-25 Evonik Degussa Gmbh Alkylidene complexes of ruthenium with N-heterocyclic carbene ligands and their use as highly active, selective catalysts for olefin metathesis
EP1301458B1 (en) * 2000-06-23 2015-09-09 California Institute Of Technology Synthesis of functionalized and unfunctionalized olefins via cross and ring-closing metathesis
US7241898B2 (en) * 2003-08-02 2007-07-10 Boehringer Ingelheim International Gmbh Metathesis catalysts
WO2005016522A1 (en) * 2003-08-11 2005-02-24 Merck Patent Gmbh Immobilizable ruthenium catalysts having n-heterocyclic carbene ligands

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5728839A (en) * 1994-12-29 1998-03-17 Hoechst Aktiengesellschaft Metal complexes with heterocycles carbenes
US6552139B1 (en) * 1999-01-22 2003-04-22 Degussa Ag Process for preparing acyclic olefins using homobimetallic and heterobimetallic alkylidene complexes of ruthenium containing N-heterocyclic carbene ligands
US6787620B2 (en) * 1999-01-22 2004-09-07 Degussa Ag Homobimetallic and heterobimetallic alkylidene complexes of ruthenium containing N-heterocyclic carbene ligands
US6426419B1 (en) * 1999-03-31 2002-07-30 California Institute Of Technology Ruthenium metal alkylidene complexes coordinated with triazolylidene ligands that exhibit high olefin metathesis activity
US7329758B1 (en) * 1999-05-24 2008-02-12 California Institute Of Technology Imidazolidine-based metal carbene metathesis catalysts
US20060293526A1 (en) * 2003-08-11 2006-12-28 Merk Patent Gmbh Immobilised imidazoles and ruthenium catalysts
US20050261451A1 (en) * 2004-03-29 2005-11-24 California Institute Of Technology Latent, high-activity olefin metathesis catalysts containing an N-heterocyclic carbene ligand
US20060128912A1 (en) * 2004-06-09 2006-06-15 Uti Limited Partnership Transition metal carbene complexes containing a cationic substituent as catalysts of olefin metathesis reactions

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7622590B1 (en) 1998-09-10 2009-11-24 University Of New Orleans Foundation Catalyst complex with carbene ligand
US20100160642A1 (en) * 1998-09-10 2010-06-24 University Of New Orleans Research & Technology Foundation, Inc. Catalyst Complex With Carbene Ligand
US7902389B2 (en) 1998-09-10 2011-03-08 Nolan Steven P Catalyst complex with carbene ligand
US8859779B2 (en) 1998-09-10 2014-10-14 Materia, Inc. Catalyst complex with carbene ligand
US9233365B2 (en) 1998-09-10 2016-01-12 Materia, Inc. Catalyst complex with carbene ligand
US9339805B2 (en) 1998-09-10 2016-05-17 Materia, Inc. Catalyst complex with carbene ligand
US8816114B2 (en) 2008-04-08 2014-08-26 Evonik Degussa Gmbh Method for manufacturing ruthenium carbene complexes
US9815765B2 (en) 2011-09-28 2017-11-14 University Court Of The University Of St. Andrews Ruthenium polymerisation catalysts
WO2017087846A1 (en) 2015-11-18 2017-05-26 Provivi, Inc. Microorganisms for the production of insect pheromones and related compounds
WO2017087710A2 (en) 2015-11-18 2017-05-26 Provivi, Inc. Production of fatty olefin derivatives via olefin metathesis
US10308962B1 (en) 2015-11-18 2019-06-04 Provivi, Inc. Microorganisms for the production of insect pheromones and related compounds
EP3868890A1 (en) 2015-11-18 2021-08-25 Provivi, Inc. Microorganisms for the production of insect pheromones and related compounds
US11109596B2 (en) 2015-11-18 2021-09-07 Provivi, Inc. Microorganisms for the production of insect pheromones and related compounds
EP4234522A2 (en) 2015-11-18 2023-08-30 Provivi, Inc. Production of fatty olefin derivatives via olefin metathesis
US11844353B2 (en) 2015-11-18 2023-12-19 Provivi, Inc. Microorganisms for the production of insect pheromones and related compounds
US11214818B2 (en) 2016-06-06 2022-01-04 Provivi, Inc. Semi-biosynthetic production of fatty alcohols and fatty aldehydes
WO2018213554A1 (en) 2017-05-17 2018-11-22 Provivi, Inc. Microorganisms for the production of insect pheromones and related compounds
US11104921B2 (en) 2017-05-17 2021-08-31 Provivi, Inc. Microorganisms for the production of insect pheromones and related compounds
US11866760B2 (en) 2017-05-17 2024-01-09 Provivi, Inc. Microorganisms for the production of insect pheromones and related compounds

Also Published As

Publication number Publication date
DE59912097D1 (en) 2005-06-30
US20110282068A1 (en) 2011-11-17
US20050107626A1 (en) 2005-05-19
US8153810B2 (en) 2012-04-10
EP1087838A1 (en) 2001-04-04
WO1999051344A1 (en) 1999-10-14
DE19815275A1 (en) 1999-10-07
US7652145B2 (en) 2010-01-26
US20050013150A2 (en) 2005-01-20
US20150038723A1 (en) 2015-02-05
US6635768B1 (en) 2003-10-21
IL138595A0 (en) 2001-10-31
US20080009598A1 (en) 2008-01-10
DE19815275B4 (en) 2009-06-25
US7294717B2 (en) 2007-11-13
JP2002510658A (en) 2002-04-09
US20040095792A1 (en) 2004-05-20
EP1087838B1 (en) 2005-05-25
IL138595A (en) 2004-08-31
JP4531253B2 (en) 2010-08-25
US7378528B2 (en) 2008-05-27

Similar Documents

Publication Publication Date Title
US7378528B2 (en) Alkylidene complexes of ruthenium containing N-heterocyclic carbene ligands; use as highly active, selective catalysts for olefin metathesis
US6552139B1 (en) Process for preparing acyclic olefins using homobimetallic and heterobimetallic alkylidene complexes of ruthenium containing N-heterocyclic carbene ligands
US6590048B1 (en) Highly active cationic ruthenium and osmium complexes for olefin metathesis reactions
CN101205242A (en) Ruthenium alkylidene complex containing N-heterocyclic carbenes and use thereof as high-activity high-selectivity catalyst in olefin duplex decomposition
EP1971616A1 (en) Organometallic ruthenium complexes and related methods for the preparation of tetra-substituted and other hindered olefins
AU2003249331B2 (en) Phosphorus containing ligands for metathesis catalysts
Coutelier et al. Selective terminal alkyne metathesis: synthesis and use of a unique triple bonded dinuclear tungsten alkoxy complex containing a hemilabile ligand
Masoud et al. Novel olefin metathetis catalysts with fluorinated N-alkyl-N´-arylimidazolin-2-ylidene ligands
US6232482B1 (en) Method for producing ruthenium complexes
KR20030022888A (en) Ruthenium Complexes Containing Carbenoid
RU2583790C1 (en) Catalyst for metathesis polymerisation of dicyclopentadiene, containing thiobenzylidene fragment and preparation method thereof
Bai et al. Highly Active Carbene Ruthenium Catalyst for Metathesis of 1‐Hexene
Sauvage et al. Homobimetallic Ruthenium–N-Heterocyclic Carbene Complexes For Olefin Metathesis
MXPA00001400A (en) Method for producing ruthenium complexes

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION