US20080196504A1 - Methods and apparatus for detecting cracks in welds - Google Patents

Methods and apparatus for detecting cracks in welds Download PDF

Info

Publication number
US20080196504A1
US20080196504A1 US10/750,417 US75041703A US2008196504A1 US 20080196504 A1 US20080196504 A1 US 20080196504A1 US 75041703 A US75041703 A US 75041703A US 2008196504 A1 US2008196504 A1 US 2008196504A1
Authority
US
United States
Prior art keywords
weld
probe
housing
phased array
ultrasonic phased
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US10/750,417
Other versions
US7412890B1 (en
Inventor
Paul Johnson
David Galbally
Walter Anthony Mitchell
Trevor James Davis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Priority to US10/750,417 priority Critical patent/US7412890B1/en
Assigned to GENERAL ELECTRIC COMPANY reassignment GENERAL ELECTRIC COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MITCHELL, III, WALTER ANTHONY, DAVIS, TREVOR JAMES, JOHNSON, PAUL, GALBALLY, DAVID
Priority to JP2004380344A priority patent/JP4981250B2/en
Priority to SE0403189A priority patent/SE0403189L/en
Application granted granted Critical
Publication of US7412890B1 publication Critical patent/US7412890B1/en
Publication of US20080196504A1 publication Critical patent/US20080196504A1/en
Adjusted expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C17/00Monitoring; Testing ; Maintaining
    • G21C17/003Remote inspection of vessels, e.g. pressure vessels
    • G21C17/007Inspection of the outer surfaces of vessels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • G01N29/262Arrangements for orientation or scanning by relative movement of the head and the sensor by electronic orientation or focusing, e.g. with phased arrays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/025Change of phase or condition
    • G01N2291/0258Structural degradation, e.g. fatigue of composites, ageing of oils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/269Various geometry objects
    • G01N2291/2695Bottles, containers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • This invention relates generally to inspection of nuclear reactors, and more particularly to ultrasonic examination of welds within a nuclear reactor pressure vessel (RPV).
  • RSV nuclear reactor pressure vessel
  • a typical boiling water reactor includes a RPV containing a nuclear fuel core immersed in circulating coolant water which removes heat from the nuclear fuel.
  • the water is boiled to generate steam for driving a steam turbine-generator for generating electric power.
  • the steam is then condensed and the water is returned to the pressure vessel in a closed loop system.
  • Piping circuits carry steam to the turbines and carry re-circulated water or feed-water back to the RPV that contains the nuclear fuel.
  • BWRs have numerous piping systems, and such piping systems are utilized, for example, to transport water throughout the RPV.
  • core spray piping is used to deliver water from outside the RPV to core spargers inside the RPV and to cool the core.
  • the core spray piping is coupled to a thermal sleeve that is welded to a RPV nozzle and a safe-end is welded to the nozzle.
  • Stress corrosion cracking is a known phenomenon that may occur in reactor components, such as structural members, piping, fasteners, and welds.
  • the reactor components are subject to a variety of stresses associated with, for example, differences in thermal expansion, the operating pressure needed for the containment of the reactor cooling water, and other sources such as residual stresses from welding, cold working and other inhomogeneous metal treatments.
  • water chemistry, welding, heat treatment and radiation can increase the susceptibility of metal in a component to SCC.
  • Reactor internal piping, such as thermal sleeves and core spray lines occasionally require replacement as a result of SCC, the replacement may require welding a new pipe member onto an old pipe member.
  • phased arrays include a group of transducer elements used together with relative time, or phase shifts between the elements. The combined elements act as a single instrument that can be steered to distinct points in space. Typically, known methods average ten hours to scan a thirty-centimeter weld.
  • a method of inspecting a portion of a weld between at least two materials includes mounting at least one ultrasonic phased array probe including at least one transducer having a plurality of elements within a housing containing a liquid therein, attaching the housing adjacent to an outer surface of the portion of the weld such that the liquid is adjacent to the outer surface of the portion of the weld, and scanning the weld with at least one ultrasonic phased array probe.
  • an apparatus configured to inspect a portion of a weld between at least two materials.
  • the apparatus includes a housing containing liquid and at least one ultrasonic phased array probe mounted within said housing.
  • a method of inspecting a portion of at least two pipes coupled by a weld within a nuclear reactor pressure vehicle includes mounting at least one ultrasonic phased array probe within a housing partially containing a liquid therein, wherein at least one ultrasonic phased array probe includes at least one transducer having a plurality of elements, and wherein the housing is configured to position at least one ultrasonic phased array probe at a predetermined location on the weld, attaching the housing adjacent to an outer surface of the at least two pipes such that the portion of the weld to be inspected is positioned therein and the liquid is adjacent to the outer surface of the weld, and scanning the portion of the weld with at least one ultrasonic phased array probe, wherein the probe emits a steerable ultrasonic beam.
  • FIG. 1 is a sectional view, with parts cut away, of a boiling water nuclear reactor pressure vessel.
  • FIG. 2 is a top sectional view of the boiling water nuclear reactor pressure vessel shown in FIG. 1 .
  • FIG. 3 is a sectional view, with parts cut away, of a T-box assembly and nozzle/safe end configuration shown in FIG. 2 .
  • FIG. 4 is a side view of a SE-Noz weld shown in FIG. 3 .
  • FIG. 5 is a side view of an ultrasonic phased array assembly mounted on the surface of the weld shown in FIG. 4 and shows a cross-sectional view of the pipe in accordance with an embodiment of the present invention.
  • FIG. 6 is a schematic top view of an ultrasonic phased array transducer shown in FIG. 5 .
  • FIG. 7 is a flow chart of a method of inspecting a portion of a weld between at least two dissimilar materials in accordance with an embodiment of the present invention.
  • FIG. 1 is a sectional view, with parts cut away, of a boiling water nuclear reactor pressure vessel (RPV) 10 .
  • RPV 10 has a generally cylindrical shape and is closed at one end by a bottom head 12 and at its other end by a removable top head 14 .
  • a side wall 16 extends from bottom head 12 to top head 14 .
  • Side wall 16 includes a top flange 18 .
  • Top head 14 is attached to top flange 18 .
  • a cylindrically shaped core shroud 20 surrounds a reactor core 22 .
  • Shroud 20 is supported at one end by a shroud support 24 and includes a removable shroud head 26 at the other end.
  • An annulus 28 is formed between shroud 20 and side wall 16 .
  • a pump deck 30 which has a ring shape, extends between shroud support 24 and RPV side wall 16 .
  • Pump deck 30 includes a plurality of circular openings 32 , with each opening housing a jet pump 34 .
  • Jet pumps 34 are circumferentially distributed around core shroud 20 .
  • An inlet riser pipe 36 is coupled to two jet pumps 34 by a transition assembly 38 .
  • Each jet pump 34 includes an inlet mixer 40 , and a diffuser 42 . Inlet riser 36 and two connected jet pumps 34 form a jet pump assembly 44 .
  • Heat is generated within core 22 , which includes fuel bundles 46 of fissionable material. Water circulated up through core 22 is at least partially converted to steam. Steam separators 48 separate steam from water, which is re-circulated. Steam dryers 50 remove residual water from the steam. The steam exits RPV 10 through a steam outlet 52 near vessel top head 14 .
  • control rods 54 of neutron absorbing material, such as for example, hafnium.
  • control rod 54 absorbs neutrons that would otherwise be available to promote the chain reaction which generates heat in core 22 .
  • Control rod guide tubes 56 maintain the vertical motion of control rods 54 during insertion and withdrawal.
  • Control rod drives 58 effect the insertion and withdrawal of control rods 54 .
  • Control rod drives 58 extend through bottom head 12 .
  • Fuel bundles 46 are aligned by a core plate 60 located at the base of core 22 .
  • a top guide 62 aligns fuel bundles 46 as they are lowered into core 22 .
  • Core plate 60 and top guide 62 are supported by core shroud 20 .
  • FIG. 2 is a top sectional view of RPV 10 including annulus 28 formed between vessel wall 16 and shroud 20 . Space inside annulus 28 is limited with most reactor support piping located inside annulus 28 . Cooling water is delivered to the reactor core during a loss of coolant accident through core spray distribution header pipes 70 and 72 which are connected to downcomer pipes 74 and 76 respectively. Downcomer pipes 74 and 76 are connected to shroud 20 through lower T-boxes 78 and 80 respectively, which are attached to shroud 20 and internal spargers 82 . Distribution header pipes 70 and 72 diverge from an upper T-box assembly 84 . Particularly, T-box assembly 84 is coupled to a core spray nozzle 86 by a thermal sleeve (shown in FIG. 3 ). Core spray nozzle 86 is coupled to a safe-end 88 .
  • FIG. 3 is a side sectional view with parts cut away of T-box assembly 84 .
  • T-box assembly 84 includes a T-box housing 90 that is welded to thermal sleeve 92 inside core spray nozzle 86 .
  • Core spray nozzle 86 is coupled to safe-end 88 by a weld 100 , sometimes referred to as a core spray safe-end-to-nozzle (SE-Noz) weld.
  • SE-Noz core spray safe-end-to-nozzle
  • FIG. 4 is a sectional side view with parts cut away of SE-Noz weld 100 positioned between safe-end 88 and core spray nozzle 86 .
  • weld 100 is a recirculation nozzle-to-safe-end weld.
  • weld 100 is a safe-end thermal sleeve weld.
  • Weld 100 is a circumferential weld.
  • SE-Noz weld 100 couples a new safe-end 88 manufactured from SS304 to an existing core spray nozzle 86 manufactured from SA508.
  • weld 100 is a dissimilar metal weld.
  • weld 100 contains Inconel® 600 series base materials, alloy 82 and 182 weld butter.
  • Inconel® is a registered trademark of Special Materials, Huntington, W.Va.
  • weld 100 includes a new Inconel® weld 102 , an old Inconel® weld 104 , and a portion of an old Inconel® safe-end weld 106 all positioned between an Inconel® butter 108 .
  • Weld 100 has a weld width 114 and a weld thickness 116 .
  • Weld width 114 is between approximately fifteen centimeters and seventy centimeters.
  • Weld thickness 116 is between approximately 1.75 centimeters and 6.25 centimeters.
  • weld location, material, width 114 , and thickness 116 described above are examples of weld 100 . It can be appreciated that the instant invention may apply to any welds between similar or dissimilar materials, as well as weld materials that are similar or dissimilar to the materials being coupled. Additionally, the application applies to welds of varying thicknesses, widths, and locations.
  • FIG. 5 is a side view of a phased array probe assembly 120 adjacent an outer surface 122 of weld 100 in accordance with an exemplary embodiment of the present invention.
  • Probe assembly 120 includes a fixture or housing 124 configured to receive and mount a probe 126 therein.
  • Housing 124 is fabricated from a known water-impermeable material according to known techniques. Housing 124 is substantially rectangular shaped and surrounds a cavity 128 . Housing 124 includes a first wall 130 , a second wall 132 , and a pair of side walls (not shown) extending substantially perpendicular to and adjacent first wall 130 and second wall 132 .
  • Housing 124 has a width 134 and length (not shown). Additionally, housing width 134 is sized greater than weld width 114 (shown in FIG. 4 ).
  • first wall 130 , second wall 132 , and the pair of side walls include a top end 140 , a bottom end 142 , and a body 144 extending therebetween.
  • Housing top end 140 is open such that a liquid 146 may be positioned within housing cavity 128 .
  • Housing bottom end 142 is open such that an ultrasonic beam 148 is not obstructed during emission toward weld 100 .
  • each housing bottom end 142 is shaped to cooperate with the geometry of the item or material being inspected. In one embodiment, bottom end 142 is substantially concave. In an alternative embodiment, bottom end 142 is substantially flat.
  • Housing cavity 128 is filled with liquid 146 .
  • liquid 146 is water.
  • liquid 146 is a combination of liquids that facilitate the transmission and reception of ultrasonic sound beams 148 .
  • Housing 128 is releasably attached to outer surface 122 by a seal 152 .
  • Housing 128 can be incrementally moved axially or circumferentially along outer surface 122 .
  • housing 128 is continuously moved axially or circumferentially along surface 122 in predetermined increments.
  • Seal 152 is water-tight such that liquid 146 cannot drain out of housing cavity 128 .
  • seal 152 is an elastomer.
  • seal 152 is a material selected from the group including rubber, silicone, and butyl.
  • FIG. 6 is a schematic top view of an array transducer 160 shown in FIG. 5 .
  • probe 126 contains at least one array transducer 160 having a plurality of elements 162 that emit ultrasonic beam 148 .
  • An important aspect of probe 126 usage is the ability to dynamically synthesize ultrasonic beam 148 and create a “Virtual Probe” of any angle within the overall beam spread of an individual element.
  • beam 148 is created by sequentially firing each element 162 to create a wave front 166 following a desired angle 164 .
  • Angle 164 is selected and set up electronically by control instrumentation (not shown) which controls an actuator 168 , and can if necessary be changed pulse by pulse.
  • This “Virtual Probe” can also be “swept” through weld 100 by firing groups of elements in a large array. This effect can be used to dynamically focus or “electrically steer” ultrasonic beam 148 by selecting the probe firing order and pulse delays. This can be changed on a pulse by pulse basis to effectively “sweep” a focal point through weld 100 . Beam steering and dynamic focusing can be combined to enable resultant beam 148 to be both focused and angled in predetermined increments.
  • Ultrasonic phased array probes 126 are commercially available from Krautkramer Ultrasonic Systems Group of Agfa NDT, Inc., Lewistown, Pa.
  • transducer 160 the basic parameters of transducer 160 are defined as frequency, aperture A, element size X, element width Y, pitch P, and number of elements 162 .
  • a suitable frequency is 1.0 to 5.0 MHz for the material type and thickness 116 of weld 100 .
  • other transducer frequencies can be used for pipes and pipe welds manufactured from other materials.
  • Element pitch P is determined by calculating the acoustic aperture A needed to focus beam 148 at the required sound path and dividing this value by the total number of elements 162 and the amount of steering needed to create the desired angles.
  • the size X of elements 162 is set as the maximum possible pitch.
  • the width Y of elements 162 is determined by calculating the effective diameter for a near field of fifteen centimeters to give the smallest beam profile in the y-plane. The physical restrictions of the scanning surface must also be considered in determining the basic parameter values of probe 126 .
  • FIG. 7 is a flowchart depicting an exemplary embodiment of a method 200 of inspecting a portion of weld 100 that includes mounting 210 at least one ultrasonic phased array probe 126 within housing 124 containing liquid 146 therein such that at least a portion of probe 126 contacts liquid 146 .
  • Probe 126 is configured to rotate about a plurality of angles 164 using actuator 168 .
  • Attaching 220 housing 124 adjacent to outer surface 122 of weld 100 facilitates inspection of weld 100 .
  • Liquid 146 is positioned adjacent outer surface 122 of weld 100 such that a water-tight seal 152 exists between housing 124 and surface 122 .
  • seal 152 is removably attached.
  • seal 52 is fixedly attached.
  • Housing 124 is configured to be moveably attached to surface 122 such that housing 124 may be rotated circumferentially about weld 100 incrementally.
  • Probe 126 is configured to scan weld 100 between at least two dissimilar materials of nozzle 86 and safe-end 88 . In another embodiment, probe 126 is configured to scan weld 100 between at least two similar materials. Particularly, attaching 220 housing 124 to outer surface 122 and scanning 230 weld 100 with probe 126 , facilitates an ultrasonic examination of materials of nozzle 86 and safe-end 88 , for example, an outer surface 170 , a body 172 , and an inner surface 174 , as well as weld 100 . As shown in FIG. 5 , the volume 176 of beam 148 that is examined includes weld 100 and nozzle 86 extending from outer surface 170 towards inner surface 174 .
  • beam 148 can be oriented or steered in plurality of angles 164 .
  • beam 148 can be steered along a substantially axial path across weld 100 in a linear path perpendicular to the orientation of weld 100 .
  • beam 148 can be steered along a substantially axial path across weld 100 in a linear path perpendicular to the orientation of weld 100 in predetermined increments.
  • beam 148 can be steered along a substantially circular path across weld 100 .
  • the above described method 200 of inspecting a portion of weld 100 between at least two dissimilar materials of nozzle 86 and safe-end 88 permits the inspection with less personnel, with less exposure, and with less time. Additionally, the inspection results in a more complete and more reliable examination of welds between dissimilar or similar materials.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

A method of inspecting a portion of a weld between at least two materials includes mounting at least one ultrasonic phased array probe including at least one transducer having a plurality of elements within a housing containing a liquid therein, attaching the housing adjacent to an outer surface of the portion of the weld such that the liquid is adjacent to the outer surface of the portion of the weld, and scanning the weld with the at least one ultrasonic phased array probe.

Description

    BACKGROUND OF THE INVENTION
  • This invention relates generally to inspection of nuclear reactors, and more particularly to ultrasonic examination of welds within a nuclear reactor pressure vessel (RPV).
  • A typical boiling water reactor (BWR) includes a RPV containing a nuclear fuel core immersed in circulating coolant water which removes heat from the nuclear fuel. The water is boiled to generate steam for driving a steam turbine-generator for generating electric power. The steam is then condensed and the water is returned to the pressure vessel in a closed loop system. Piping circuits carry steam to the turbines and carry re-circulated water or feed-water back to the RPV that contains the nuclear fuel. BWRs have numerous piping systems, and such piping systems are utilized, for example, to transport water throughout the RPV. For example, core spray piping is used to deliver water from outside the RPV to core spargers inside the RPV and to cool the core. Typically, the core spray piping is coupled to a thermal sleeve that is welded to a RPV nozzle and a safe-end is welded to the nozzle.
  • Stress corrosion cracking (SCC) is a known phenomenon that may occur in reactor components, such as structural members, piping, fasteners, and welds. The reactor components are subject to a variety of stresses associated with, for example, differences in thermal expansion, the operating pressure needed for the containment of the reactor cooling water, and other sources such as residual stresses from welding, cold working and other inhomogeneous metal treatments. In addition, water chemistry, welding, heat treatment and radiation can increase the susceptibility of metal in a component to SCC. Reactor internal piping, such as thermal sleeves and core spray lines, occasionally require replacement as a result of SCC, the replacement may require welding a new pipe member onto an old pipe member.
  • Some known methods of inspecting welds for SCC utilize a phased array probe. Known phased arrays include a group of transducer elements used together with relative time, or phase shifts between the elements. The combined elements act as a single instrument that can be steered to distinct points in space. Typically, known methods average ten hours to scan a thirty-centimeter weld.
  • BRIEF DESCRIPTION OF THE INVENTION
  • In one aspect, a method of inspecting a portion of a weld between at least two materials is provided. The method includes mounting at least one ultrasonic phased array probe including at least one transducer having a plurality of elements within a housing containing a liquid therein, attaching the housing adjacent to an outer surface of the portion of the weld such that the liquid is adjacent to the outer surface of the portion of the weld, and scanning the weld with at least one ultrasonic phased array probe.
  • In another aspect, an apparatus configured to inspect a portion of a weld between at least two materials is provided. The apparatus includes a housing containing liquid and at least one ultrasonic phased array probe mounted within said housing.
  • In a further aspect, a method of inspecting a portion of at least two pipes coupled by a weld within a nuclear reactor pressure vehicle is provided. The method includes mounting at least one ultrasonic phased array probe within a housing partially containing a liquid therein, wherein at least one ultrasonic phased array probe includes at least one transducer having a plurality of elements, and wherein the housing is configured to position at least one ultrasonic phased array probe at a predetermined location on the weld, attaching the housing adjacent to an outer surface of the at least two pipes such that the portion of the weld to be inspected is positioned therein and the liquid is adjacent to the outer surface of the weld, and scanning the portion of the weld with at least one ultrasonic phased array probe, wherein the probe emits a steerable ultrasonic beam.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a sectional view, with parts cut away, of a boiling water nuclear reactor pressure vessel.
  • FIG. 2 is a top sectional view of the boiling water nuclear reactor pressure vessel shown in FIG. 1.
  • FIG. 3 is a sectional view, with parts cut away, of a T-box assembly and nozzle/safe end configuration shown in FIG. 2.
  • FIG. 4 is a side view of a SE-Noz weld shown in FIG. 3.
  • FIG. 5 is a side view of an ultrasonic phased array assembly mounted on the surface of the weld shown in FIG. 4 and shows a cross-sectional view of the pipe in accordance with an embodiment of the present invention.
  • FIG. 6 is a schematic top view of an ultrasonic phased array transducer shown in FIG. 5.
  • FIG. 7 is a flow chart of a method of inspecting a portion of a weld between at least two dissimilar materials in accordance with an embodiment of the present invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • FIG. 1 is a sectional view, with parts cut away, of a boiling water nuclear reactor pressure vessel (RPV) 10. RPV 10 has a generally cylindrical shape and is closed at one end by a bottom head 12 and at its other end by a removable top head 14. A side wall 16 extends from bottom head 12 to top head 14. Side wall 16 includes a top flange 18. Top head 14 is attached to top flange 18. A cylindrically shaped core shroud 20 surrounds a reactor core 22. Shroud 20 is supported at one end by a shroud support 24 and includes a removable shroud head 26 at the other end. An annulus 28 is formed between shroud 20 and side wall 16. A pump deck 30, which has a ring shape, extends between shroud support 24 and RPV side wall 16. Pump deck 30 includes a plurality of circular openings 32, with each opening housing a jet pump 34. Jet pumps 34 are circumferentially distributed around core shroud 20. An inlet riser pipe 36 is coupled to two jet pumps 34 by a transition assembly 38. Each jet pump 34 includes an inlet mixer 40, and a diffuser 42. Inlet riser 36 and two connected jet pumps 34 form a jet pump assembly 44.
  • Heat is generated within core 22, which includes fuel bundles 46 of fissionable material. Water circulated up through core 22 is at least partially converted to steam. Steam separators 48 separate steam from water, which is re-circulated. Steam dryers 50 remove residual water from the steam. The steam exits RPV 10 through a steam outlet 52 near vessel top head 14.
  • The amount of heat generated in core 22 is regulated by inserting and withdrawing control rods 54 of neutron absorbing material, such as for example, hafnium. To the extent that control rod 54 is inserted into fuel bundle 46, it absorbs neutrons that would otherwise be available to promote the chain reaction which generates heat in core 22. Control rod guide tubes 56 maintain the vertical motion of control rods 54 during insertion and withdrawal. Control rod drives 58 effect the insertion and withdrawal of control rods 54. Control rod drives 58 extend through bottom head 12.
  • Fuel bundles 46 are aligned by a core plate 60 located at the base of core 22. A top guide 62 aligns fuel bundles 46 as they are lowered into core 22. Core plate 60 and top guide 62 are supported by core shroud 20.
  • FIG. 2 is a top sectional view of RPV 10 including annulus 28 formed between vessel wall 16 and shroud 20. Space inside annulus 28 is limited with most reactor support piping located inside annulus 28. Cooling water is delivered to the reactor core during a loss of coolant accident through core spray distribution header pipes 70 and 72 which are connected to downcomer pipes 74 and 76 respectively. Downcomer pipes 74 and 76 are connected to shroud 20 through lower T- boxes 78 and 80 respectively, which are attached to shroud 20 and internal spargers 82. Distribution header pipes 70 and 72 diverge from an upper T-box assembly 84. Particularly, T-box assembly 84 is coupled to a core spray nozzle 86 by a thermal sleeve (shown in FIG. 3). Core spray nozzle 86 is coupled to a safe-end 88.
  • FIG. 3 is a side sectional view with parts cut away of T-box assembly 84. T-box assembly 84 includes a T-box housing 90 that is welded to thermal sleeve 92 inside core spray nozzle 86. Core spray nozzle 86 is coupled to safe-end 88 by a weld 100, sometimes referred to as a core spray safe-end-to-nozzle (SE-Noz) weld.
  • FIG. 4 is a sectional side view with parts cut away of SE-Noz weld 100 positioned between safe-end 88 and core spray nozzle 86. In another embodiment, weld 100 is a recirculation nozzle-to-safe-end weld. In yet another embodiment, weld 100 is a safe-end thermal sleeve weld. Weld 100 is a circumferential weld. In the exemplary embodiment, SE-Noz weld 100 couples a new safe-end 88 manufactured from SS304 to an existing core spray nozzle 86 manufactured from SA508. In one embodiment, weld 100 is a dissimilar metal weld. In another embodiment, weld 100 contains Inconel® 600 series base materials, alloy 82 and 182 weld butter. Inconel® is a registered trademark of Special Materials, Huntington, W.Va. In the exemplary embodiment, weld 100 includes a new Inconel® weld 102, an old Inconel® weld 104, and a portion of an old Inconel® safe-end weld 106 all positioned between an Inconel® butter 108. Weld 100 has a weld width 114 and a weld thickness 116. Weld width 114 is between approximately fifteen centimeters and seventy centimeters. Weld thickness 116 is between approximately 1.75 centimeters and 6.25 centimeters.
  • The weld location, material, width 114, and thickness 116 described above are examples of weld 100. It can be appreciated that the instant invention may apply to any welds between similar or dissimilar materials, as well as weld materials that are similar or dissimilar to the materials being coupled. Additionally, the application applies to welds of varying thicknesses, widths, and locations.
  • FIG. 5 is a side view of a phased array probe assembly 120 adjacent an outer surface 122 of weld 100 in accordance with an exemplary embodiment of the present invention. Probe assembly 120 includes a fixture or housing 124 configured to receive and mount a probe 126 therein. Housing 124 is fabricated from a known water-impermeable material according to known techniques. Housing 124 is substantially rectangular shaped and surrounds a cavity 128. Housing 124 includes a first wall 130, a second wall 132, and a pair of side walls (not shown) extending substantially perpendicular to and adjacent first wall 130 and second wall 132. Housing 124 has a width 134 and length (not shown). Additionally, housing width 134 is sized greater than weld width 114 (shown in FIG. 4).
  • Each of first wall 130, second wall 132, and the pair of side walls include a top end 140, a bottom end 142, and a body 144 extending therebetween. Housing top end 140 is open such that a liquid 146 may be positioned within housing cavity 128. Housing bottom end 142 is open such that an ultrasonic beam 148 is not obstructed during emission toward weld 100. Additionally, each housing bottom end 142 is shaped to cooperate with the geometry of the item or material being inspected. In one embodiment, bottom end 142 is substantially concave. In an alternative embodiment, bottom end 142 is substantially flat.
  • Housing cavity 128 is filled with liquid 146. In one embodiment, liquid 146 is water. In another embodiment, liquid 146 is a combination of liquids that facilitate the transmission and reception of ultrasonic sound beams 148.
  • Housing 128 is releasably attached to outer surface 122 by a seal 152. Housing 128 can be incrementally moved axially or circumferentially along outer surface 122. In one embodiment, housing 128 is continuously moved axially or circumferentially along surface 122 in predetermined increments. Seal 152 is water-tight such that liquid 146 cannot drain out of housing cavity 128. In one embodiment, seal 152 is an elastomer. In another embodiment, seal 152 is a material selected from the group including rubber, silicone, and butyl.
  • FIG. 6 is a schematic top view of an array transducer 160 shown in FIG. 5. Referring to FIGS. 5 and 6, probe 126 contains at least one array transducer 160 having a plurality of elements 162 that emit ultrasonic beam 148. An important aspect of probe 126 usage is the ability to dynamically synthesize ultrasonic beam 148 and create a “Virtual Probe” of any angle within the overall beam spread of an individual element. During operation, beam 148 is created by sequentially firing each element 162 to create a wave front 166 following a desired angle 164. Angle 164 is selected and set up electronically by control instrumentation (not shown) which controls an actuator 168, and can if necessary be changed pulse by pulse. This “Virtual Probe” can also be “swept” through weld 100 by firing groups of elements in a large array. This effect can be used to dynamically focus or “electrically steer” ultrasonic beam 148 by selecting the probe firing order and pulse delays. This can be changed on a pulse by pulse basis to effectively “sweep” a focal point through weld 100. Beam steering and dynamic focusing can be combined to enable resultant beam 148 to be both focused and angled in predetermined increments. Ultrasonic phased array probes 126 are commercially available from Krautkramer Ultrasonic Systems Group of Agfa NDT, Inc., Lewistown, Pa.
  • Referring to FIG. 6, the basic parameters of transducer 160 are defined as frequency, aperture A, element size X, element width Y, pitch P, and number of elements 162. A suitable frequency is 1.0 to 5.0 MHz for the material type and thickness 116 of weld 100. However, other transducer frequencies can be used for pipes and pipe welds manufactured from other materials.
  • Element pitch P is determined by calculating the acoustic aperture A needed to focus beam 148 at the required sound path and dividing this value by the total number of elements 162 and the amount of steering needed to create the desired angles. The size X of elements 162 is set as the maximum possible pitch. The width Y of elements 162 is determined by calculating the effective diameter for a near field of fifteen centimeters to give the smallest beam profile in the y-plane. The physical restrictions of the scanning surface must also be considered in determining the basic parameter values of probe 126.
  • FIG. 7 is a flowchart depicting an exemplary embodiment of a method 200 of inspecting a portion of weld 100 that includes mounting 210 at least one ultrasonic phased array probe 126 within housing 124 containing liquid 146 therein such that at least a portion of probe 126 contacts liquid 146. Probe 126 is configured to rotate about a plurality of angles 164 using actuator 168.
  • Attaching 220 housing 124 adjacent to outer surface 122 of weld 100 facilitates inspection of weld 100. Liquid 146 is positioned adjacent outer surface 122 of weld 100 such that a water-tight seal 152 exists between housing 124 and surface 122. In one embodiment, seal 152 is removably attached. In another embodiment, seal 52 is fixedly attached. Housing 124 is configured to be moveably attached to surface 122 such that housing 124 may be rotated circumferentially about weld 100 incrementally.
  • Probe 126 is configured to scan weld 100 between at least two dissimilar materials of nozzle 86 and safe-end 88. In another embodiment, probe 126 is configured to scan weld 100 between at least two similar materials. Particularly, attaching 220 housing 124 to outer surface 122 and scanning 230 weld 100 with probe 126, facilitates an ultrasonic examination of materials of nozzle 86 and safe-end 88, for example, an outer surface 170, a body 172, and an inner surface 174, as well as weld 100. As shown in FIG. 5, the volume 176 of beam 148 that is examined includes weld 100 and nozzle 86 extending from outer surface 170 towards inner surface 174. Just as probe 126 can be oriented in a plurality of angles 164, as discussed above, beam 148 can be oriented or steered in plurality of angles 164. In one embodiment, beam 148 can be steered along a substantially axial path across weld 100 in a linear path perpendicular to the orientation of weld 100. In another embodiment, beam 148 can be steered along a substantially axial path across weld 100 in a linear path perpendicular to the orientation of weld 100 in predetermined increments. In yet another embodiment, beam 148 can be steered along a substantially circular path across weld 100.
  • The above described method 200 of inspecting a portion of weld 100 between at least two dissimilar materials of nozzle 86 and safe-end 88 permits the inspection with less personnel, with less exposure, and with less time. Additionally, the inspection results in a more complete and more reliable examination of welds between dissimilar or similar materials.
  • While the invention has been described in terms of various specific embodiments, those skilled in the art will recognize that the invention can be practiced with modification within the spirit and scope of the claims.

Claims (17)

1. A method of inspecting a portion of a weld between at least two materials, said method comprising:
pivotably mounting at least one ultrasonic phased array probe within a probe housing, the probe housing comprising a plurality of sides, an open top end and an open bottom end, the plurality of sides defining a housing cavity, each ultrasonic phased array probe comprising at least one transducer having a plurality of elements, the at least one ultrasonic phased array probe pivotable within the probe housing;
attaching the probe housing to an outer surface of the portion of the weld so that the outer surface of the portion of the weld acts as a bottom end of the housing cavity;
filling at least a portion of the housing cavity with a liquid so that the liquid is in contact with the outer surface of the portion of the weld; and
scanning the weld with the at least one ultrasonic phased array probe.
2. A method in accordance with claim 1 wherein the weld is between at least two similar materials.
3. A method in accordance with claim 1 wherein the weld is between at least two dissimilar materials.
4. A method in accordance with claim 1 wherein mounting at least one ultrasonic phased array probe within the probe housing further comprises rotating the at least one ultrasonic phased array probe within the probe housing about a plurality of angles using an actuator.
5. A method in accordance with claim 1 wherein mounting at least one ultrasonic phased array probe within the probe housing comprises positioning at least one ultrasonic phased array probe partially within the liquid and at a predetermined location along the weld.
6. A method in accordance with claim 1 wherein the probe housing comprises a seal attached to a bottom edge of the plurality of sides, and attaching the probe housing to the surface of the weld comprises releasably attaching the probe housing such that a water-tight seal exists between the housing and the surface of the portion of the weld, wherein the seal is an elastomer.
7. A method in accordance with claim 1 wherein scanning the weld with the at least one ultrasonic phased array probe comprises electrically steering at least one of the elements such that an ultrasonic beam is emitted at a plurality of steering angles.
8. A method in accordance with claim 7 wherein electrically steering at least one of the transducer elements comprises actuating and deactuating at least one of the transducer elements along a path in a predetermined order.
9. A method in accordance with claim 7 wherein electronically steering the emitted ultrasonic beam comprises actuating at least one of the elements along a substantially axial path across the portion of the weld in a linear path in predetermined increments from an outer surface toward an inner surface.
10. A method in accordance with claim 7 wherein electronically steering the emitted ultrasonic beam comprises actuating at least one of the elements along a substantially circular path across the portion of the weld from an outer surface toward an inner surface.
11-14. (canceled)
15. A method of inspecting a portion of at least two pipes coupled by a weld within a nuclear reactor pressure vehicle, said method comprising:
pivotably mounting at least one ultrasonic phased array probe within a probe housing, the probe housing comprising a plurality of sides, an open top end and an open bottom end, the plurality of sides defining a housing cavity, the at least one ultrasonic phased array probe includes at least one transducer having a plurality of elements, and the probe housing is configured to position the at least one ultrasonic phased array probe at a predetermined location on the weld, the at least one ultrasonic phased array probe pivotable within the probe housing;
attaching the probe housing to an outer surface of the at least two pipes such that the portion of the weld to be inspected is positioned therein, the outer surface of the of the at least two pipes acts as a bottom end of the housing cavity;
filling at least a portion of the housing cavity with a liquid so that the liquid is in contact with the outer surface of the of the at least two pipes; and
scanning the portion of the weld with the at least one ultrasonic phased array probe, wherein the probe emits a steerable ultrasonic beam.
16. A method in accordance with claim 15 wherein mounting at least one ultrasonic phased array probe within the probe housing further comprises rotating the at least one ultrasonic phased array probe within the probe housing about a plurality of angles using an actuator.
17. A method in accordance with claim 15 wherein the probe housing comprises a seal attached to a bottom edge of the plurality of sides, and attaching the probe housing to the surface of the at least two pipes comprises releasably attaching the probe housing such that a water-tight seal exists between the probe housing and the surface of the portion of the weld, wherein the seal is an elastomer.
18. A method in accordance with claim 15 wherein scanning the weld with the at least one ultrasonic phased array probe comprises electrically steering at least one of the transducer elements at a plurality of steering angles.
19. A method in accordance with claim 18 wherein electrically steering further comprises actuating and deactuating at least one of the transducer elements along a substantially axial path across the portion of the weld in a linear path in a predetermined order from an outer surface toward an inner surface.
20. A method in accordance with claim 18 wherein electrically steering further comprises actuating and deactuating at least one of the transducer elements along a substantially circular path across the portion of the weld from the outer surface toward the inner surface.
US10/750,417 2003-12-31 2003-12-31 Methods and apparatus for detecting cracks in welds Expired - Fee Related US7412890B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/750,417 US7412890B1 (en) 2003-12-31 2003-12-31 Methods and apparatus for detecting cracks in welds
JP2004380344A JP4981250B2 (en) 2003-12-31 2004-12-28 Weld inspection method
SE0403189A SE0403189L (en) 2003-12-31 2004-12-29 Methods and devices for welding crack detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/750,417 US7412890B1 (en) 2003-12-31 2003-12-31 Methods and apparatus for detecting cracks in welds

Publications (2)

Publication Number Publication Date
US7412890B1 US7412890B1 (en) 2008-08-19
US20080196504A1 true US20080196504A1 (en) 2008-08-21

Family

ID=34104877

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/750,417 Expired - Fee Related US7412890B1 (en) 2003-12-31 2003-12-31 Methods and apparatus for detecting cracks in welds

Country Status (3)

Country Link
US (1) US7412890B1 (en)
JP (1) JP4981250B2 (en)
SE (1) SE0403189L (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080087113A1 (en) * 2006-01-04 2008-04-17 General Electric Company Junior Ultrasonic Miniature Air Gap Inspection Crawler
US20090049916A1 (en) * 2005-12-16 2009-02-26 Bae Systems Pic Detection of defects in welded structures
CN101916599A (en) * 2010-08-19 2010-12-15 中广核检测技术有限公司 Probe frame of supersonic inspection device for weld joint at safe end of nuclear reactor pressure vessel
CN101916600A (en) * 2010-08-19 2010-12-15 中广核检测技术有限公司 Supersonic inspection equipment of safe end welding line of nuclear reactor pressure vessel
CN102509566A (en) * 2011-10-17 2012-06-20 中广核检测技术有限公司 Nuclear rector pressure vessel nozzle safe end welding joint automatic ray inspection device
WO2012154954A2 (en) * 2011-05-10 2012-11-15 Edison Welding Institute, Inc. Three-dimensional matrix phased array spot weld inspection system
US20120287756A1 (en) * 2011-05-10 2012-11-15 Bp Corporation North America Inc. Pivoting ultrasonic probe mount and methods for use
US20150253288A1 (en) * 2011-05-10 2015-09-10 Ewi, Inc. Automated weld inspection system
KR102370930B1 (en) * 2020-10-30 2022-03-08 앤츠이엔씨 주식회사 Bitumen moisture content measuring device

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2888327B1 (en) * 2005-07-05 2008-07-04 Saipem S A Sa METHOD AND DEVICE FOR CONTROLLING ULTRASOUND PROBE CONNECTION WELDING CONNECTION
DE102006020352A1 (en) * 2006-04-28 2007-10-31 Intelligendt Systems & Services Gmbh & Co Kg Method and device for testing a weld located on the inner surface of a reactor pressure vessel
JP4827670B2 (en) * 2006-09-20 2011-11-30 株式会社日立製作所 Ultrasonic inspection equipment
JP4908250B2 (en) * 2007-02-02 2012-04-04 株式会社東芝 Ultrasonic flaw detector and flaw detection method
US8071907B2 (en) * 2007-05-12 2011-12-06 Honeywell International Inc. Button attachment method for saw torque sensor
DE102007039325B4 (en) * 2007-08-20 2014-03-27 Ge Inspection Technologies Gmbh Ultrasonic tester with cluster housing
DE102007039326B4 (en) * 2007-08-20 2014-03-27 Ge Inspection Technologies Gmbh Ultrasonic tester with improved alignment
JP4839333B2 (en) * 2008-03-19 2011-12-21 日立Geニュークリア・エナジー株式会社 Ultrasonic inspection method and ultrasonic inspection apparatus
JP5112261B2 (en) * 2008-11-12 2013-01-09 三菱重工業株式会社 Phased array probe and method for determining its specifications
US8166823B2 (en) * 2009-09-29 2012-05-01 National Oilwell Varco, L.P. Membrane-coupled ultrasonic probe system for detecting flaws in a tubular
US8196472B2 (en) * 2009-09-29 2012-06-12 National Oilwell Varco, L.P. Ultrasonic probe apparatus, system, and method for detecting flaws in a tubular
WO2011092718A1 (en) * 2010-01-28 2011-08-04 Indian Institute Of Technology Ht P.O. Technique for imaging using array of focused virtual sources using phased excitation
MX348843B (en) 2010-06-16 2017-06-26 Mueller Int Llc * Infrastructure monitoring devices, systems, and methods.
US8453508B2 (en) 2010-12-10 2013-06-04 Ihi Southwest Technologies, Inc. Testing of swing type check valves using phased array sequence scanning
US9557303B2 (en) 2010-12-10 2017-01-31 Ihi Southwest Technologies, Inc. Visualization of tests on swing type check valves using phased array sequence scanning
US10352477B2 (en) 2010-12-10 2019-07-16 Ihi Southwest Technologies, Inc. Visualization of tests on globe-type valves using phased array sequence scanning
US9952182B2 (en) 2010-12-10 2018-04-24 Ihi Southwest Technologies Visualization of tests on lift-type check valves using phased array sequence scanning
US8485036B2 (en) 2011-02-14 2013-07-16 Ge-Hitachi Nuclear Energy Americas Llc Circumferential weld scanner with axial drift prevention
US9772250B2 (en) 2011-08-12 2017-09-26 Mueller International, Llc Leak detector and sensor
CN103946719B (en) * 2011-09-26 2017-06-13 安大略发电有限公司 Ultrasonic matrix check
US10319484B1 (en) 2011-11-17 2019-06-11 Nuscale Power, Llc Method for imaging a nuclear reactor
US9939344B2 (en) 2012-10-26 2018-04-10 Mueller International, Llc Detecting leaks in a fluid distribution system
KR101780049B1 (en) 2013-07-01 2017-09-19 한국전자통신연구원 Apparatus and method for monitoring laser welding
EP3084419B1 (en) 2013-12-17 2024-06-12 Ontario Power Generation Inc. Improved ultrasound inspection
US9528903B2 (en) 2014-10-01 2016-12-27 Mueller International, Llc Piezoelectric vibration sensor for fluid leak detection
US9678043B2 (en) * 2015-11-12 2017-06-13 Bp Corporation North America Inc. Methods, systems, and fixtures for inspection of gasket welds
US10305178B2 (en) 2016-02-12 2019-05-28 Mueller International, Llc Nozzle cap multi-band antenna assembly
US10283857B2 (en) 2016-02-12 2019-05-07 Mueller International, Llc Nozzle cap multi-band antenna assembly
US10859462B2 (en) 2018-09-04 2020-12-08 Mueller International, Llc Hydrant cap leak detector with oriented sensor
US11342656B2 (en) 2018-12-28 2022-05-24 Mueller International, Llc Nozzle cap encapsulated antenna system
US11473993B2 (en) 2019-05-31 2022-10-18 Mueller International, Llc Hydrant nozzle cap
CN110579536B (en) * 2019-09-28 2020-08-04 西安交通大学 Multi-probe ultrasonic flaw detection device suitable for large ring piece
CN111272878A (en) * 2020-03-17 2020-06-12 浙江省特种设备科学研究院 Automatic internal detection device for high-pressure hydrogen storage container end socket welding seam
US11542690B2 (en) 2020-05-14 2023-01-03 Mueller International, Llc Hydrant nozzle cap adapter
GB2599644A (en) * 2020-10-05 2022-04-13 Creid 7 Ltd Transducer for ultrasonic testing

Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3202218A (en) * 1962-06-18 1965-08-24 Gray Tool Co Submergible apparatus for underwater operations
US3616684A (en) * 1969-11-20 1971-11-02 Bethlehem Steel Corp Ultrasonic inspection carriage
US3938372A (en) * 1973-09-07 1976-02-17 Videoson Limited Variable angle ultrasonic transducer for shear waves
US3988922A (en) * 1975-01-13 1976-11-02 General Electric Company Vessel examination system
US4368644A (en) * 1981-05-26 1983-01-18 Combustion Engineering, Inc. Tool for inspecting defects in irregular weld bodies
US4455872A (en) * 1978-03-03 1984-06-26 Commonwealth Of Australia, The Department Of Health Rotating ultrasonic scanner
US4641532A (en) * 1984-12-27 1987-02-10 Westinghouse Electric Corp. Apparatus for adjustably mounting ultrasonic testing devices
US4785816A (en) * 1985-01-14 1988-11-22 Johnson & Johnson Ultrasound Inc. Ultrasonic transducer probe assembly
US4966746A (en) * 1989-01-03 1990-10-30 General Electric Company Ultrasonic examination of BWR shroud access cover plate retaining welds
US5009105A (en) * 1989-01-03 1991-04-23 General Electric Company Apparatus for ultrasonic examination of BWR shroud access cover plate retaining welds
US5156803A (en) * 1991-02-25 1992-10-20 Niagara Mohawk Power Corporation Apparatus for inspection of a reactor vessel
US5228343A (en) * 1990-08-17 1993-07-20 Mannesmann Ag Ultrasound testing device for the non-destructive testing of workpieces
US5377237A (en) * 1993-04-05 1994-12-27 General Electric Company Method of inspecting repaired stub tubes in boiling water nuclear reactors
US5460179A (en) * 1992-05-27 1995-10-24 Aloka Co., Ltd. Ultrasonic transducer assembly and method of scanning
US5460045A (en) * 1992-04-09 1995-10-24 General Electric Company Ultrasonic probes for inspection of reactor pressure vessel bottom head and weld buildup thereon
US5568527A (en) * 1995-02-14 1996-10-22 General Electric Company Method and apparatus for remote ultrasonic inspection of core spray T-box welds
US5571968A (en) * 1992-07-18 1996-11-05 Rolls-Royce And Associates, Limited Apparatus for mounting a plurality of ultrasonic probes for movement in specified directions for detecting defects in a body
US5784425A (en) * 1997-03-27 1998-07-21 Westinghouse Electric Corporation Apparatus for inspecting a boiling water reactor core shroud
US6076407A (en) * 1998-05-15 2000-06-20 Framatome Technologies, Inc. Pipe inspection probe
US6120452A (en) * 1998-07-10 2000-09-19 Guided Therapy Systems, Inc. Apparatus for three dimensional imaging
US6169776B1 (en) * 1998-09-15 2001-01-02 General Electric Company Methods and apparatus for examining a nuclear reactor shroud
US6332011B1 (en) * 2000-02-22 2001-12-18 General Electric Company Ultrasonic examination of shroud weld from top of shroud flange ring
US6865243B2 (en) * 2002-10-25 2005-03-08 General Electric Company Method of detecting cracks in jet pump beams of a nuclear reactor
US6886407B1 (en) * 2003-08-22 2005-05-03 Westinghouse Electric Company Llc Nondestructive examination of high pressure turbine cylinders
US20050124889A1 (en) * 2003-12-05 2005-06-09 Aime Flesch Array transducer for 3D tilting probes
US6904817B2 (en) * 2002-11-04 2005-06-14 General Electric Company Method and apparatus for examining obstructed welds
US20050288587A1 (en) * 2004-06-25 2005-12-29 Yongrae Roh Drive machanism for mechanically scanned ultrasound transducers
US7134352B2 (en) * 2004-05-13 2006-11-14 General Electric Company Method and apparatus for examining obstructed welds

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0451940A (en) * 1990-06-18 1992-02-20 Toshiba Corp Ultrasonic doppler diagnostic device
JPH08184583A (en) * 1994-12-28 1996-07-16 Kawasaki Steel Corp Welded part flaw detection apparatus
JP2003130859A (en) * 2001-10-24 2003-05-08 Mitsubishi Heavy Ind Ltd Phased array driving device

Patent Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3202218A (en) * 1962-06-18 1965-08-24 Gray Tool Co Submergible apparatus for underwater operations
US3616684A (en) * 1969-11-20 1971-11-02 Bethlehem Steel Corp Ultrasonic inspection carriage
US3938372A (en) * 1973-09-07 1976-02-17 Videoson Limited Variable angle ultrasonic transducer for shear waves
US3988922A (en) * 1975-01-13 1976-11-02 General Electric Company Vessel examination system
US4455872A (en) * 1978-03-03 1984-06-26 Commonwealth Of Australia, The Department Of Health Rotating ultrasonic scanner
US4368644A (en) * 1981-05-26 1983-01-18 Combustion Engineering, Inc. Tool for inspecting defects in irregular weld bodies
US4641532A (en) * 1984-12-27 1987-02-10 Westinghouse Electric Corp. Apparatus for adjustably mounting ultrasonic testing devices
US4785816A (en) * 1985-01-14 1988-11-22 Johnson & Johnson Ultrasound Inc. Ultrasonic transducer probe assembly
US4966746A (en) * 1989-01-03 1990-10-30 General Electric Company Ultrasonic examination of BWR shroud access cover plate retaining welds
US5009105A (en) * 1989-01-03 1991-04-23 General Electric Company Apparatus for ultrasonic examination of BWR shroud access cover plate retaining welds
US5228343A (en) * 1990-08-17 1993-07-20 Mannesmann Ag Ultrasound testing device for the non-destructive testing of workpieces
US5156803A (en) * 1991-02-25 1992-10-20 Niagara Mohawk Power Corporation Apparatus for inspection of a reactor vessel
US5460045A (en) * 1992-04-09 1995-10-24 General Electric Company Ultrasonic probes for inspection of reactor pressure vessel bottom head and weld buildup thereon
US5460179A (en) * 1992-05-27 1995-10-24 Aloka Co., Ltd. Ultrasonic transducer assembly and method of scanning
US5571968A (en) * 1992-07-18 1996-11-05 Rolls-Royce And Associates, Limited Apparatus for mounting a plurality of ultrasonic probes for movement in specified directions for detecting defects in a body
US5377237A (en) * 1993-04-05 1994-12-27 General Electric Company Method of inspecting repaired stub tubes in boiling water nuclear reactors
US5568527A (en) * 1995-02-14 1996-10-22 General Electric Company Method and apparatus for remote ultrasonic inspection of core spray T-box welds
US5784425A (en) * 1997-03-27 1998-07-21 Westinghouse Electric Corporation Apparatus for inspecting a boiling water reactor core shroud
US6076407A (en) * 1998-05-15 2000-06-20 Framatome Technologies, Inc. Pipe inspection probe
US6120452A (en) * 1998-07-10 2000-09-19 Guided Therapy Systems, Inc. Apparatus for three dimensional imaging
US6169776B1 (en) * 1998-09-15 2001-01-02 General Electric Company Methods and apparatus for examining a nuclear reactor shroud
US6332011B1 (en) * 2000-02-22 2001-12-18 General Electric Company Ultrasonic examination of shroud weld from top of shroud flange ring
US6865243B2 (en) * 2002-10-25 2005-03-08 General Electric Company Method of detecting cracks in jet pump beams of a nuclear reactor
US6904817B2 (en) * 2002-11-04 2005-06-14 General Electric Company Method and apparatus for examining obstructed welds
US6886407B1 (en) * 2003-08-22 2005-05-03 Westinghouse Electric Company Llc Nondestructive examination of high pressure turbine cylinders
US20050124889A1 (en) * 2003-12-05 2005-06-09 Aime Flesch Array transducer for 3D tilting probes
US7134352B2 (en) * 2004-05-13 2006-11-14 General Electric Company Method and apparatus for examining obstructed welds
US20050288587A1 (en) * 2004-06-25 2005-12-29 Yongrae Roh Drive machanism for mechanically scanned ultrasound transducers

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090049916A1 (en) * 2005-12-16 2009-02-26 Bae Systems Pic Detection of defects in welded structures
US7926349B2 (en) * 2005-12-16 2011-04-19 Bae Systems Plc Detection of defects in welded structures
US20080087113A1 (en) * 2006-01-04 2008-04-17 General Electric Company Junior Ultrasonic Miniature Air Gap Inspection Crawler
US7681452B2 (en) * 2006-01-04 2010-03-23 General Electric Company Junior ultrasonic miniature air gap inspection crawler
CN101916599A (en) * 2010-08-19 2010-12-15 中广核检测技术有限公司 Probe frame of supersonic inspection device for weld joint at safe end of nuclear reactor pressure vessel
CN101916600A (en) * 2010-08-19 2010-12-15 中广核检测技术有限公司 Supersonic inspection equipment of safe end welding line of nuclear reactor pressure vessel
US20120287756A1 (en) * 2011-05-10 2012-11-15 Bp Corporation North America Inc. Pivoting ultrasonic probe mount and methods for use
WO2012154954A2 (en) * 2011-05-10 2012-11-15 Edison Welding Institute, Inc. Three-dimensional matrix phased array spot weld inspection system
US20120310551A1 (en) * 2011-05-10 2012-12-06 Edison Welding Institute, Inc. Three-dimensional matrix phased array spot weld inspection system
WO2012154954A3 (en) * 2011-05-10 2014-05-08 Edison Welding Institute, Inc. Three-dimensional matrix phased array spot weld inspection system
US8995225B2 (en) * 2011-05-10 2015-03-31 Bp Corporation North America Inc. Pivoting ultrasonic probe mount and methods for use
US9063059B2 (en) * 2011-05-10 2015-06-23 Edison Welding Institute, Inc. Three-dimensional matrix phased array spot weld inspection system
US20150253288A1 (en) * 2011-05-10 2015-09-10 Ewi, Inc. Automated weld inspection system
US9733219B2 (en) * 2011-05-10 2017-08-15 Cumberland & Western Resources, Llc Automated weld inspection system with weld acceptability pass or fail indications
CN102509566A (en) * 2011-10-17 2012-06-20 中广核检测技术有限公司 Nuclear rector pressure vessel nozzle safe end welding joint automatic ray inspection device
KR102370930B1 (en) * 2020-10-30 2022-03-08 앤츠이엔씨 주식회사 Bitumen moisture content measuring device

Also Published As

Publication number Publication date
SE0403189D0 (en) 2004-12-29
US7412890B1 (en) 2008-08-19
JP4981250B2 (en) 2012-07-18
SE0403189L (en) 2005-08-09
JP2005195596A (en) 2005-07-21

Similar Documents

Publication Publication Date Title
US7412890B1 (en) Methods and apparatus for detecting cracks in welds
US6332011B1 (en) Ultrasonic examination of shroud weld from top of shroud flange ring
Poguet et al. Phased array technology: Concepts, probes and applications
US6865243B2 (en) Method of detecting cracks in jet pump beams of a nuclear reactor
KR100724819B1 (en) Apparatus and method for ultrasonically cleaning irradiated nuclear fuel assemblies
JP2544074B2 (en) How to repair a nuclear reactor
EP3108236A2 (en) Ultrasonic phased array transducer for the nde inspection of the jet pump riser welds and welded attachments
US5078954A (en) Method and apparatus for carrying out the in situ inspection of the shafts of pumps
JP6109510B2 (en) Abutment repair method and reactor vessel
US10416122B2 (en) Ultrasonic phased array transducer apparatus for the nondestructive inspection of a component under test
KR100936551B1 (en) Apparatus and method for repairing reactor vessel cladding using a seal plate
Yoda et al. Development and application of laser peening system for PWR power plants
US6639959B1 (en) Guide tube camera inspection fixture and method of use
US5995574A (en) Integral forged shroud flange for a boiling water reactor
JP6029466B2 (en) Abutment repair method and reactor vessel
Ando et al. Study on in-service inspection program and inspection technologies for commercialized Sodium-Cooled Fast Reactor
Baqué et al. Generation IV nuclear reactors-R&D program to improve sodium-cooled systems inspection
JP3425217B2 (en) Sealing device for repairing pressure vessel penetration housing
JPS5946597A (en) Atomic power plant pipeline system
Diaz et al. An evaluation of ultrasonic phased array testing for reactor piping system components containing dissimilar metal welds
Kim et al. Development of a ranging inspection technique in a sodium-cooled fast reactor using a plate-type ultrasonic waveguide sensor
JP2013231722A (en) Control rod driving pipe, and manufacturing method therefor and installing method therefor
Glass et al. Robotics and manipulators for reactor pressure vessel head inspection
Kovalyk Technologies for non-destructive testing and repair of NPP components
Miyasaka et al. Laser Peening Technology as the SCC Mitigation for Reactor Internals

Legal Events

Date Code Title Description
AS Assignment

Owner name: GENERAL ELECTRIC COMPANY, NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:JOHNSON, PAUL;GALBALLY, DAVID;MITCHELL, III, WALTER ANTHONY;AND OTHERS;REEL/FRAME:014929/0127;SIGNING DATES FROM 20040129 TO 20040707

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

REMI Maintenance fee reminder mailed
FPAY Fee payment

Year of fee payment: 8

SULP Surcharge for late payment

Year of fee payment: 7

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20200819