JPS5946597A - Atomic power plant pipeline system - Google Patents

Atomic power plant pipeline system

Info

Publication number
JPS5946597A
JPS5946597A JP58071881A JP7188183A JPS5946597A JP S5946597 A JPS5946597 A JP S5946597A JP 58071881 A JP58071881 A JP 58071881A JP 7188183 A JP7188183 A JP 7188183A JP S5946597 A JPS5946597 A JP S5946597A
Authority
JP
Japan
Prior art keywords
straight pipe
piping
tee
pipe member
bent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58071881A
Other languages
Japanese (ja)
Inventor
藤本 弘次
根目沢 勲
渉 佐川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58071881A priority Critical patent/JPS5946597A/en
Publication of JPS5946597A publication Critical patent/JPS5946597A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Pipeline Systems (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、原子カプラントの配管系に係り、特に、沸騰
水型原子炉において炉心に供給する冷却材流量の調整を
行なう系統である原子炉再循環系の配管系(以後、再循
環系配管という)に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a piping system for a nuclear couplant, and in particular to a piping system for a nuclear reactor, which is a system for adjusting the flow rate of coolant supplied to the reactor core in a boiling water reactor. This relates to a circulation piping system (hereinafter referred to as recirculation piping).

〔発明の背景〕[Background of the invention]

従来技術による再循環系配管を、第1図に示す。 A recirculation system piping according to the prior art is shown in FIG.

1は、原子炉圧力容器を示す。以下、原子炉圧力容器1
に取付けられる再循環系配管は、次のような構成となっ
ている。直管2、エルボ3、ティー4、入口弁5、エル
ボ6、原子炉圧力容器1内に水を強制循環させるための
ポンプ7、ポンプ7を駆動するためのモーター8、出口
弁9、他系統との接続用管台10、クロス11、ヘッダ
曲管12、レジューサ13、直管14、エルボ15、管
台16の各配管部材構成部品をそれぞれ突合わせ溶接に
より第1図に示すような形状に組立てて構成されている
1 indicates the reactor pressure vessel. Below, reactor pressure vessel 1
The recirculation system piping installed in the system has the following configuration. Straight pipe 2, elbow 3, tee 4, inlet valve 5, elbow 6, pump 7 for forced circulation of water in reactor pressure vessel 1, motor 8 for driving pump 7, outlet valve 9, other systems The piping component components of the nozzle stub 10 for connection with the pipe, the cross 11, the header bent pipe 12, the reducer 13, the straight pipe 14, the elbow 15, and the nozzle stub 16 are butt welded into the shape shown in Fig. 1. It is assembled and configured.

以下、上記に示す主要な配管部材の構造を説明する。The structure of the main piping members shown above will be explained below.

第2図にティー4.を示すR再循環系配管に限らず一般
に配管に用いられるティーはJIS、ANSI(米国規
格)等の規格により第2図中のM及びC寸法が定められ
、市販のティーはこれに従って製造されている。
Figure 2 shows tee 4. For tees used not only for recirculation system piping but also for piping in general, the M and C dimensions in Figure 2 are determined by standards such as JIS and ANSI (American standards), and commercially available tees are manufactured according to these standards. There is.

第3図に前記エルボ3と配管2の突合わせ溶接部の詳細
を示す。第3図において40は配管2とエルボ3との溶
接部、41は超音波探触子を示す。
FIG. 3 shows details of the butt weld between the elbow 3 and the pipe 2. In FIG. 3, 40 indicates a welded portion between the pipe 2 and the elbow 3, and 41 indicates an ultrasonic probe.

第3図の1..12で示す寸法は、溶接のために配管2
およびティー4の端部内面を機械切削する範囲を示した
ものである。
1 in Figure 3. .. The dimensions indicated by 12 are for welding pipe 2.
and shows the range in which the inner surface of the end portion of the tee 4 is mechanically cut.

一般産業用配管は別として、原子力発lLプラントの配
管系のように高度の安全性と信頼性を要求される配管系
においては、建設時のみならず、使用期間中長期に渡り
、定期的に溶接部を超音波探傷等により検査し、健全性
を確認することが要求されている。
Aside from general industrial piping, piping systems that require a high degree of safety and reliability, such as those for nuclear power plants, require regular maintenance not only during construction, but also over a long period of time during use. It is required to inspect welded parts using ultrasonic flaw detection or the like to confirm their soundness.

このような各配管部材からなる従来の再循環系配管は、
保守点検時における溶接部の超音波探傷検査が困難であ
り、その点検作業に長時間を要することになる。再循環
系配管等の原子カプラントの配管系の保守点検は、原子
炉の運転停止後に行なわれる。原子カプラントの配管内
には放射性物質を含む液体が存在する。特に、再循環系
配管は多数の燃料集合体が装荷される炉心部を内蔵する
原子炉圧力容器1に両端が接続されるので、多針の放射
性物質を含む冷炉水が再循環系配管内に存在する。した
がって、前述した溶接部の超音波探傷検査が困難であれ
ば、それだけ、作業員の被ばくの危険性が増大する。ま
た、放射性雰囲気中における保守点検作業は、作業員の
交替が必要となり、極めて困難である。
Conventional recirculation system piping consisting of such piping members is
Ultrasonic flaw detection of welded parts during maintenance inspections is difficult, and inspection work takes a long time. Maintenance and inspection of the nuclear couplant piping system, such as the recirculation system piping, is carried out after the reactor is shut down. A liquid containing radioactive substances exists within the piping of the atomic couplant. In particular, since both ends of the recirculation system piping are connected to the reactor pressure vessel 1, which houses the reactor core where many fuel assemblies are loaded, cold reactor water containing multi-needle radioactive materials flows into the recirculation system piping. exists in Therefore, the more difficult it is to perform the above-mentioned ultrasonic flaw detection of the welded portion, the greater the risk of radiation exposure to workers. Furthermore, maintenance and inspection work in a radioactive atmosphere requires replacement of workers, which is extremely difficult.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記した従来技術の欠点に基づきなさ
れたもので、原子炉圧力容器に取付けられる再循環系配
管において、配管に応力腐食割れが発生する可能性を低
減して原子カプラントの信頼性を向上することにある。
The object of the present invention has been made based on the above-mentioned drawbacks of the prior art, and it is an object of the present invention to reduce the possibility of stress corrosion cracking occurring in the recirculation system piping installed in the reactor pressure vessel, thereby increasing the reliability of the nuclear couplant. The aim is to improve sexuality.

〔発明の概要〕[Summary of the invention]

本発明の特徴は、原子炉圧力容器に取付けられる再循環
系配管において、ティ一部と直管部を一体に形成したテ
ィー付直管部材に血管部材を一体に形成してティー付曲
管部材とし、かつ該ティー付曲管部材の両端および枝部
には他の配管部材と接合される直管部を一体に形成し、
該直管部を他の配管部材に形成された直管部の一端に溶
接にて取付けた点にある。
A feature of the present invention is that in a recirculation system piping installed in a reactor pressure vessel, a straight pipe member with a tee is integrally formed with a tee part and a straight pipe part, and a blood vessel member is integrally formed with a bent pipe member with a tee. and integrally forming straight pipe parts to be joined to other piping members at both ends and branch parts of the bent pipe member with a tee,
The straight pipe section is attached by welding to one end of a straight pipe section formed on another piping member.

〔発明の実施例〕[Embodiments of the invention]

第3図に示す溶接部40及びその近傍を検査するには、
超音波探触子41を接触、1移動探傷させるため、ある
範囲に渡り平滑な面が要求される。
To inspect the welded part 40 shown in FIG. 3 and its vicinity,
In order to perform one-movement flaw detection with the ultrasonic probe 41, a smooth surface is required over a certain range.

この範囲を第3図にLl、L2で示す。同時に溶接部4
0の内面も超音波が一様に反射するようある範囲に渡り
平滑に機械加工されていることが要求される。この範囲
を第3図に71 + t2で示す。
This range is indicated by Ll and L2 in FIG. At the same time welding part 4
The inner surface of the 0 is also required to be machined to be smooth over a certain range so that the ultrasonic waves are uniformly reflected. This range is shown in FIG. 3 as 71 + t2.

本来、超音波探傷検査を十分に行うには、Ll *L2
は板厚Tの5倍程度、11 * 72はTの3倍程度が
必要である。しかし、ティー4の場合は、第2図に示す
ように、曲げ半径の端部が溶接部になるよう規格で寸法
が定められているため、形状的にLlおよび2+の長さ
は上記寸法に満たず、供用期間中検査(以下ISIとい
う。)として超音波探傷検査を行う際、探傷範囲に制約
を受け、十分な探傷が出来ないのである。
Originally, in order to perform ultrasonic flaw detection sufficiently, Ll *L2
For 11*72, approximately 5 times the plate thickness T is required, and for 11*72, approximately 3 times the thickness T is required. However, in the case of tee 4, as shown in Figure 2, the dimensions are determined by the standard so that the end of the bending radius is the welded part, so the lengths of Ll and 2+ are not the same as the above dimensions. Therefore, when performing ultrasonic flaw detection as an in-service inspection (hereinafter referred to as ISI), the flaw detection range is limited and sufficient flaw detection cannot be performed.

このような検討に基づいてなされた好適な一実施例を、
第4図に示し、以下、その詳細を説明する。
A preferred embodiment based on such considerations is as follows:
It is shown in FIG. 4, and its details will be explained below.

第4図は、本発明による好適な一実施例である再循環系
配管である。従来例と同一構成は、同一符号で示す。再
循環系配管は、曲げ部の端部に直管部を設けた曲管部材
20,24,36および37、曲げ部の両端に直管部を
設は更にこの直管部に他系統へ接続する枝部を一体に設
けたティー付曲管部材21、入口弁5、ボ′ンプ7、モ
ーター8、直管2、出口弁9、他系統との接続用の枝部
を設けたティー付直管部材22、クロスにレジューサを
一体に設けたレジューサ付クロスの配管部材23および
直管部を設けた管台25がら構成され、各々の配管部材
はそれぞれ突合わせ溶接にょハ第4図に示すような形状
に組立てられる。
FIG. 4 shows a recirculation system piping according to a preferred embodiment of the present invention. Components that are the same as those of the conventional example are indicated by the same reference numerals. The recirculation system piping includes bent pipe members 20, 24, 36, and 37, each having a straight pipe section at the end of the bent part, and straight pipe parts provided at both ends of the bent part, and further connecting this straight pipe part to other systems. A bent pipe member 21 with a tee integrally provided with a branch for connection, an inlet valve 5, a pump 7, a motor 8, a straight pipe 2, an outlet valve 9, a straight pipe with a tee provided with a branch for connection to other systems. It is composed of a pipe member 22, a cross pipe member 23 with a reducer integrally provided with a reducer, and a nozzle holder 25 provided with a straight pipe part, and each pipe member is butt welded as shown in Fig. 4. It can be assembled into a shape.

第5図は、ティー付直管部材22の拡大図である。ティ
ー付直管部材22は、ティ一部28および直管部29A
、29Bおよび29Cからなる。
FIG. 5 is an enlarged view of the straight pipe member 22 with a tee. The straight pipe member 22 with a tee includes a tee part 28 and a straight pipe part 29A.
, 29B and 29C.

ティ一部28、直管部29 A、 29 Bオヨヒ29
cば、一体に構成される。直管部29A、29Bおよび
29Cは、第5図に示すように、ティ一部28が延長さ
れて形成される。直管部29Cは、前述した枝部となる
。枝部は、斜めに取伺けてもよい。各直管部の長さt5
 + t6およびt7は、直管部の肉厚の5倍以上が必
要である。これを満足すれば、直管部29A、29Bお
よび29Cの長さは、必要に応じて調節することができ
る。
Tee part 28, straight pipe part 29 A, 29 B Oyohi 29
c, it is constructed in one piece. The straight pipe portions 29A, 29B, and 29C are formed by extending the tee portion 28, as shown in FIG. The straight pipe portion 29C becomes the branch portion described above. The branches may be removed diagonally. Length t5 of each straight pipe part
+ t6 and t7 must be at least 5 times the wall thickness of the straight pipe section. If this is satisfied, the lengths of the straight pipe portions 29A, 29B, and 29C can be adjusted as necessary.

ティー付曲管部材21の拡大図を第6図に示す。An enlarged view of the bent pipe member 21 with a tee is shown in FIG.

ティー付曲管部材21は、曲管部材20とティー付直管
部材22を一体構造にしたものである。すなわち、曲管
部材20の直管部27Aとティー付直管部材22の直管
部29Aを共用した構造であシ、枝部28および曲管部
29が存在し、枝部28および曲管部29の一部を延長
した直管部30Aおよび30Bが存在する。枝部28は
、直管部であり、第5図の直管部29Cに対応するもの
である。
The bent pipe member 21 with a tee is an integral structure of the bent pipe member 20 and the straight pipe member 22 with a tee. That is, the structure is such that the straight pipe part 27A of the bent pipe member 20 and the straight pipe part 29A of the straight pipe member 22 with tees are shared, and the branch part 28 and the bent pipe part 29 are present, and the branch part 28 and the bent pipe part There are straight pipe portions 30A and 30B which are extensions of a portion of 29. The branch portion 28 is a straight pipe portion, and corresponds to the straight pipe portion 29C in FIG.

第4図において、曲管部材20の直管部が、原子炉圧力
容器1のノズル部(図示せず)に突合せ溶接される。こ
のノズル部にも、当然、直管部が形成される。曲管部材
20の直管部とティー付曲管部材21の直管部30Aと
が突合せ溶接される。
In FIG. 4, the straight pipe section of the bent pipe member 20 is butt-welded to a nozzle section (not shown) of the reactor pressure vessel 1. Naturally, a straight pipe portion is also formed in this nozzle portion. The straight pipe part of the bent pipe member 20 and the straight pipe part 30A of the bent pipe member 21 with a tee are butt welded.

パルプ5が、ティー付曲管部材21の直管部30Bに突
合せ溶接される。曲管部材36の1つの直管部がパルプ
5に、他の直管部がポンプ7にそれぞれ突合せにて溶接
される。直管2の両端は、ポンプ7およびパルプ9にそ
れぞれ突合せ溶接される。
The pulp 5 is butt-welded to the straight pipe portion 30B of the bent pipe member 21 with a tee. One straight pipe part of the bent pipe member 36 is welded to the pulp 5, and the other straight pipe part is welded to the pump 7, respectively. Both ends of the straight pipe 2 are butt welded to the pump 7 and pulp 9, respectively.

曲管部材37の一方の直管部はパルプ9に、またその他
方の直管部はティー付直管部材22の直管部29Aにそ
れぞれ突合せ溶接される。ティー付直管部材22の直管
部29Bと配管部材23の直管部が突合せ溶接される。
One straight pipe part of the bent pipe member 37 is butt welded to the pulp 9, and the other straight pipe part is butt welded to the straight pipe part 29A of the straight pipe member 22 with a tee. The straight pipe portion 29B of the straight pipe member 22 with a tee and the straight pipe portion of the piping member 23 are butt welded.

ヘッダ曲管12が、配管部材23の直管部にそれぞれ突
合せ溶接される。
The header bent pipes 12 are butt-welded to the straight pipe portions of the piping member 23, respectively.

1つの曲管部材24の一方の直管部が、配管部材23の
直管部33Eに突合せ溶接される。管台25は、ヘッダ
曲管12に設けられた複数の開口部に突合せ溶接される
。管台25の直管部35に、曲管部材24の一方の直管
部が突合せ溶接される。
One straight pipe portion of one bent pipe member 24 is butt-welded to the straight pipe portion 33E of the piping member 23. The nozzle stub 25 is butt-welded to a plurality of openings provided in the header curved pipe 12. One straight pipe part of the bent pipe member 24 is butt-welded to the straight pipe part 35 of the nozzle stub 25 .

各々の曲管部材24の他方の直管部は、原子炉圧力容器
1のノズル部(図示せず)に溶接される。
The other straight pipe portion of each bent pipe member 24 is welded to a nozzle portion (not shown) of the reactor pressure vessel 1.

曲管部材24は、原子炉圧力容器1内で図示されていな
いが、ジェットポンプの上部に配置される噴出ノズルに
連絡されている。前述した各々の配管部材間の溶接は、
直管部どうしの突合せ溶接となるために、超音波探傷検
査が極めて容易に行なえる。これは、溶接部付近におい
て、探触子41を接触させて移動することが容易であり
、十分な範囲で探傷を行なうことが可能となる。
Although not shown in the figure, the bent pipe member 24 is connected to an ejection nozzle located at the top of the jet pump. The welding between each piping member mentioned above is
Since the straight pipe parts are butt welded together, ultrasonic flaw detection can be performed extremely easily. This allows the probe 41 to touch and move easily in the vicinity of the welded portion, making it possible to perform flaw detection over a sufficient range.

管台25の直管部および配管部材23の直管部と曲管部
材24との接合は、曲管部材36.37、ティー付直管
部材22、配管部材23およびヘッダ曲管12からなる
領域の耐圧試験を行なった後、なされている。前述した
領域の耐圧試験は、ポンプ7の吐出圧力によりこの領域
の圧力が、原子炉圧力容器1内の圧力およびポンプ7の
吸込側の配管内の圧力よりも最高使用圧力が高くなって
いるために、別途、行なわれる。この耐圧試験は、管台
25の直管部および配管部材23の直管部の端面に盲蓋
を溶接して直管部の端部を密封し、さらにパルプ5を閉
じて行なわれる。耐圧試験後、管台25および配管部材
23に取付けられた盲蓋が取除かれ、その部分に曲管部
材24の一方の直管(9) 部が前述したように取付けられる。曲管部材24を最後
に取付けることによって、各配管部材の接合に基づいて
生じた誤差を吸収することができる。
The straight pipe portion of the nozzle stub 25 and the straight pipe portion of the piping member 23 are joined to the bent pipe member 24 in an area consisting of the bent pipe members 36, 37, the straight pipe member 22 with a tee, the piping member 23, and the header bent pipe 12. This was done after conducting a pressure test. The pressure test in the above-mentioned area was conducted because the pressure in this area due to the discharge pressure of the pump 7 is higher than the pressure in the reactor pressure vessel 1 and the pressure in the suction side piping of the pump 7. This will be done separately. This pressure test is performed by welding blind lids to the end faces of the straight pipe portion of the nozzle stub 25 and the straight pipe portion of the piping member 23 to seal the ends of the straight pipe portions, and further closing the pulp 5. After the pressure test, the blind cover attached to the nozzle stub 25 and the piping member 23 is removed, and one straight pipe (9) of the bent pipe member 24 is attached to that part as described above. By attaching the curved pipe member 24 last, it is possible to absorb errors caused by joining of each piping member.

沸騰水型原子炉の運転時において、再循環系配管内を原
子炉圧力容器1内の冷却水が流れる。すなわち、ポンプ
7が駆動され、原子炉圧力容器1内の冷却水は、曲管部
材20、ティー付曲管部材21、パルプ5、曲管部材3
6、ポンプ7、直管2、パルプ9、曲管部材37および
ティー付直管部材22を、順次、通過して、配管部材2
3内に流入する。冷却水は、配管部材23によって流動
系路が分けられ、その一部は配管部材23から、直接、
曲管部材24全通して原子炉圧力容器1内のジェットポ
ンプ内に噴出される。大部分である残りの冷却水は、配
管部材23からヘッダ曲管12、管台25および曲管部
材24を経てジェットポンプ内に吐出される。
During operation of a boiling water reactor, cooling water within the reactor pressure vessel 1 flows through the recirculation system piping. That is, the pump 7 is driven, and the cooling water in the reactor pressure vessel 1 is supplied to the bent pipe member 20, the bent pipe member with tee 21, the pulp 5, and the bent pipe member 3.
6, the piping member 2 passes through the pump 7, the straight pipe 2, the pulp 9, the bent pipe member 37, and the straight pipe member 22 with a tee in order.
It flows into 3. The flow path of the cooling water is divided by the piping member 23, and a part of the cooling water flows directly from the piping member 23.
The liquid is ejected through the entire curved pipe member 24 into the jet pump inside the reactor pressure vessel 1. The remaining cooling water, which is the majority, is discharged from the piping member 23 into the jet pump via the header bent pipe 12, the nozzle stub 25, and the bent pipe member 24.

沸騰水型原子炉の運転停止後、ISIが実施されるが、
本実施例の再循環系配管の溶接部付近は前述したように
すべて単純な形状である直管部と(10) なるため、超音波探傷検査が極めて容易となる。
ISI will be carried out after the boiling water reactor is shut down, but
As described above, the areas around the welded portions of the recirculation system piping in this embodiment are all straight pipe portions having a simple shape (10), making ultrasonic flaw detection extremely easy.

ISIの検査時間も、著しく短縮される。したがって、
検査を行なう作業員の被ばくの危険性が著しく減少され
ると同時に原子炉の稼動率を向上させる。特に、溶接部
の形状が単純化されることによって、自動超音波探傷装
置を用いるととが可能となり、超音波探傷検査を遠隔で
自動的に行なうことができる。これは、作業員の被ばく
の解消に著しく貢献する。
ISI inspection time is also significantly reduced. therefore,
The risk of radiation exposure for workers conducting inspections is significantly reduced, while at the same time improving the operating efficiency of the reactor. In particular, by simplifying the shape of the welded part, it becomes possible to use an automatic ultrasonic flaw detection device, and ultrasonic flaw detection can be performed remotely and automatically. This will significantly contribute to eliminating radiation exposure for workers.

特にこの実施例では、ティー刊直管部材と曲管部材全一
体化したティー付曲管部材を使用しているので、配管系
の溶接箇所の数を減らすことが可能となる。これは、I
SIの対象箇所を減らすことができ、ISIの所要時間
を減らせると同時に、応力腐食割れ発生の可能性のある
部分を減らすことができ、原子カプラントの信頼性を著
しく向上できる。
Particularly in this embodiment, since a teeed bent pipe member is used, in which the teeed straight pipe member and the bent pipe member are completely integrated, it is possible to reduce the number of welding points in the piping system. This is I
The number of locations subject to SI can be reduced, the time required for ISI can be reduced, and at the same time, the areas where stress corrosion cracking may occur can be reduced, and the reliability of the atomic couplant can be significantly improved.

〔発明の効果〕〔Effect of the invention〕

本発明は以上説明したように、ティー付直管部材と曲管
部材を一体化したティー付曲管部材を使(11) 用しているので、配管系の溶接箇所を減らすことができ
、これによって配管に応力腐食割れが発生する可能性を
低減できるから、原子カプラントの信頼性を著しく向上
できる効果がある。
As explained above, the present invention uses a bent pipe member with a tee that is an integrated straight pipe member with a tee and a bent pipe member (11), so the number of welded parts in the piping system can be reduced. As a result, the possibility of stress corrosion cracking occurring in the piping can be reduced, which has the effect of significantly improving the reliability of the atomic couplant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は沸騰水型原子炉の従来の再循環系配管の構造図
、第2図は第1図に示されるティーの構造図、第3図は
エルボの溶接部付近の超音波探傷の状態を示す説明図、
第4図は本発明の好適な一実施例である再循環系配管の
構造図、第5図は第4図に示すティー付直管部材の構造
図、第6図は第4図に示すティー付曲管部材の構造図で
ある。 1・・・原子炉圧力容器、7・・・ポンプ、12・・・
ヘッダ曲管、20,24,36.37・・・曲管部材、
21・・・ティー付曲管部材、22・・・ティー付直管
部材、25・・・管台、28・・・ティ一部(枝部)、
29・・・曲管部、29A、29B、29C,30A、
30B・・・直管部。 代理人 弁理士 高橋明夫 (12) 冶4霞 −589− ?7
Figure 1 is a structural diagram of the conventional recirculation system piping for a boiling water reactor, Figure 2 is a structural diagram of the tee shown in Figure 1, and Figure 3 is the state of ultrasonic flaw detection near the elbow weld. An explanatory diagram showing
Fig. 4 is a structural diagram of a recirculation system piping according to a preferred embodiment of the present invention, Fig. 5 is a structural diagram of a straight pipe member with a tee shown in Fig. 4, and Fig. 6 is a structural diagram of a straight pipe member with a tee shown in Fig. 4. It is a structural diagram of a bent pipe member. 1... Reactor pressure vessel, 7... Pump, 12...
Header bent pipe, 20, 24, 36.37... bent pipe member,
21... Bent pipe member with tee, 22... Straight pipe member with tee, 25... Nozzle stand, 28... Part of tee (branch),
29... Bent pipe section, 29A, 29B, 29C, 30A,
30B... Straight pipe section. Agent Patent Attorney Akio Takahashi (12) Ji4 Kasumi-589-? 7

Claims (1)

【特許請求の範囲】[Claims] 1、原子炉圧力容器に取付けられる再循環系配管におい
て、ティ一部と直管部を一体に形成したティー付直管部
材に血管部材を一体に形成してティー付曲管部材とし、
かつ該ティー付曲管部材の両端および枝部には他の配管
部材と接合される直管部を一体に形成し、該直管部を他
の配管部材に形成された直管部の一端に溶接にて取付け
た原子カプラントの配管系。
1. In the recirculation system piping installed in the reactor pressure vessel, a straight pipe member with a tee is integrally formed with a part of the tee and a straight pipe part, and a blood vessel member is integrally formed with the straight pipe member with a tee to form a curved pipe member with a tee,
Further, a straight pipe part to be joined to another piping member is integrally formed at both ends and branch parts of the bent pipe member with a tee, and the straight pipe part is connected to one end of the straight pipe part formed on the other piping member. Atomic couplant piping system installed by welding.
JP58071881A 1983-04-22 1983-04-22 Atomic power plant pipeline system Pending JPS5946597A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58071881A JPS5946597A (en) 1983-04-22 1983-04-22 Atomic power plant pipeline system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58071881A JPS5946597A (en) 1983-04-22 1983-04-22 Atomic power plant pipeline system

Publications (1)

Publication Number Publication Date
JPS5946597A true JPS5946597A (en) 1984-03-15

Family

ID=13473305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58071881A Pending JPS5946597A (en) 1983-04-22 1983-04-22 Atomic power plant pipeline system

Country Status (1)

Country Link
JP (1) JPS5946597A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63212893A (en) * 1987-03-02 1988-09-05 株式会社東芝 Piping for nuclear-reactor coolant recirculation system
JP2012108006A (en) * 2010-11-18 2012-06-07 Hitachi-Ge Nuclear Energy Ltd Structure of main steam pipe of nuclear power plant

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5347612B2 (en) * 1971-10-25 1978-12-22

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5347612B2 (en) * 1971-10-25 1978-12-22

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63212893A (en) * 1987-03-02 1988-09-05 株式会社東芝 Piping for nuclear-reactor coolant recirculation system
JP2012108006A (en) * 2010-11-18 2012-06-07 Hitachi-Ge Nuclear Energy Ltd Structure of main steam pipe of nuclear power plant

Similar Documents

Publication Publication Date Title
US7412890B1 (en) Methods and apparatus for detecting cracks in welds
US6375130B1 (en) Core spray upper T-box clamp
US5377237A (en) Method of inspecting repaired stub tubes in boiling water nuclear reactors
JPS5946597A (en) Atomic power plant pipeline system
JPS5942497A (en) Atomic power plant pipeline system
US5995574A (en) Integral forged shroud flange for a boiling water reactor
Sollier Nuclear steam generator inspection and testing
JP2003207592A (en) Radioactive substance housing vessel and its bottom plate structure
JPS6410799B2 (en)
Peng et al. Study on the inspection technique and maintenance solution for BOSS welds
JPS608594A (en) Distributing pipe of recirculating piping for nuclear reactor
JPS60141368A (en) Water cooled welding method
JPS59220685A (en) Pipeline for recirculation circulation of reactor
Edelmann Ultrasonic examination of austenitic welds at reactor pressure vessels
Doctor et al. Assessing primary water stress corrosion crack morphology and nondestructive evaluation reliability
Ioki et al. Fabrication Preparation of ITER Vacuum Vessel—Material Considerations, Regulatory Requirements, and Fabrication Plans
Prot et al. Interaction between periodic in-service inspection requirements and design
JPH07119885A (en) Repairing method of container penetrating piping
Sharma Aging management of Cirus
JPH07318681A (en) Sealing unit for repairing housing penetrating pressure vessel
Dundulis et al. Ageing of austenitic pipes in Ingnalina NPP
MIYA et al. Electromagnetic Nondestructive Evaluation (VII) 3 G. Dobmann (Ed.) IOS Press, 2006© 2006 The authors. All rights reserved.
Bamford et al. Technical Basis for Revision of Inspection Requirements for Regenerative and Residual Heat Exchangers
Lautzenheiser Review of the technology of inservice inspection
Shah et al. Review of industry efforts to manage pressurized water reactor feedwater nozzle, piping, and feedring cracking and wall thinning