US20080193322A1 - Hpdc Magnesium Alloy - Google Patents

Hpdc Magnesium Alloy Download PDF

Info

Publication number
US20080193322A1
US20080193322A1 US11/915,215 US91521506A US2008193322A1 US 20080193322 A1 US20080193322 A1 US 20080193322A1 US 91521506 A US91521506 A US 91521506A US 2008193322 A1 US2008193322 A1 US 2008193322A1
Authority
US
United States
Prior art keywords
alloy
alloys
content
yttrium
magnesium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/915,215
Inventor
Mark Antony Gibson
Colleen Joyce Bettles
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cast Centre Pty Ltd
Original Assignee
Cast Centre Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2005902694A external-priority patent/AU2005902694A0/en
Application filed by Cast Centre Pty Ltd filed Critical Cast Centre Pty Ltd
Publication of US20080193322A1 publication Critical patent/US20080193322A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/04Alloys based on magnesium with zinc or cadmium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/06Alloys based on magnesium with a rare earth metal as the next major constituent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F7/00Casings, e.g. crankcases or frames
    • F02F7/0085Materials for constructing engines or their parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/02Light metals
    • F05C2201/028Magnesium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/04Heavy metals
    • F05C2201/043Rare earth metals, e.g. Sc, Y
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/90Alloys not otherwise provided for

Definitions

  • the present invention relates to magnesium alloys and, more particularly, to magnesium alloys which can be cast by high pressure die casting (HPDC).
  • HPDC high pressure die casting
  • HPDC is a highly productive process for mass production of light alloy components. While the casting integrity of sand casting and low pressure/gravity permanent mould castings is generally higher than HPDC, HPDC is a less expensive technology for higher volume mass production.
  • the most common magnesium based HPDC alloys are AM50 (95% Mg, 5% Al), AM60 (94% Mg, 6% Al) and AZ91 (90% Mg, 9% Al and 1% Zn). Unfortunately, none of these alloys are suitable for use at elevated temperatures.
  • HPDC is gaining popularity among automobile manufacturers in North America and is the predominant process used for casting aluminium alloy engine blocks in Europe and Asia. In recent years, the search for an elevated temperature magnesium alloy has focused primarily on the HPDC processing route and several alloys have been developed. HPDC is considered to be a good option for achieving high productivity rates and thus reducing the cost of manufacture.
  • U.S. Pat. No. 3,718,460 which claims a priority date of 4 Dec. 1967 relates to a magnesium-aluminium-silicon alloy which is “particularly adaptable to die casting”.
  • the alloy consists “essentially of magnesium containing by weight from about 0.4 to 1.5 percent silicon, from about 3.5 to about 7 percent aluminium, up to about 1 percent manganese and up to about 2 percent zinc”.
  • U.S. Pat. No. 3,718,460 makes no mention of yttrium.
  • U.S. Pat. No. 6,322,644 which claims a priority date of 15 Dec. 1999 relates to a magnesium-based diecast alloy having improved elevated temperature performance which consists of 2-9% aluminium, 0.5-7% strontium, 0-0.6% manganese, 0-0.35% zinc and the balance magnesium. No mention of yttrium is made in U.S. Pat. No. 6,322,644.
  • GB 1067915 which claims a priority date of 26 Oct. 1963 notes that “it has now been discovered that an addition of yttrium brings about a further refinement of the grain of a zirconium-containing magnesium alloy.”
  • the patent is broadly directed to magnesium alloys containing 0.1-1% zirconium (Zr), 0.1-10% yttrium (Y), and up to 10% of at least one additional alloying element selected from beryllium (Be), lead (Pb), cadmium (Cd), calcium (Ca), cerium (Ce), copper (Cu), silver (Ag), thallium (Tl), thorium (Th), bismuth (Bi) and zinc (Zn).
  • the magnesium alloy ML10 developed in the former USSR, has been used for many years for cast parts intended for use in aircraft at temperatures up to 250° C.
  • ML10 is a high strength Mg—Nd—Zn—Zr alloy.
  • ML19 alloy is similarly based on the Mg—Nd—Zn—Zr system but additionally contains Y.
  • ML10 and ML19 are both sand casting alloys and neither has found commercial acceptance as a HPDC alloy.
  • GB 1378281 which claims a priority date of 14 Mar. 1973 “relates to magnesium-based light structural alloys, particularly those for the production of parts subject to heating in service.”
  • the alloy contains 0.8-6.0% Y, 0.5-4.0% Nd, 0.1-2.2% Zn, 0.31-1.1% Zr, up to 0.05% Cu, up to 0.2% manganese (Mn) and the balance Mg.
  • a related US patent, U.S. Pat. No. 4,116,731 claims an alloy of identical composition which is a “heat-treated and aged” alloy in which “no less than 50% of the total amount of neodymium and yttrium additions enters the solid solution after heat treatment” and the alloy, having been heat treated at approximately 535° C. for 4-8 hours, is cooled in air and then aged at approximately 200° C. for 12 hours.
  • neodymium component consisting of at least 60% by weight of neodymium, not more than 25% by weight of lanthanum and substantially all the balance, if any, of praseodymium
  • Mg-RE-Y alloys tend to be used as gravity and sand casting alloys which can be heat treated to achieve desired properties. They tend to have rather high additions of both RE and Y with the aim of having a phase at grain boundaries which is of the Mg-RE type and two precipitating phases, namely Mg 12 Nd and Mg 24 Y 5 . Y has a high solubility in Mg even at room temperature and so high levels of Y are necessary to achieve any significant level of precipitation. As far as the present inventors are aware, no Y containing Mg-based alloy has found commercial acceptance as a HPDC alloy.
  • the present invention provides a magnesium-rare earth-yttrium-zinc alloy consisting of:
  • A is 1.8% RE-0.05% Y
  • B is 1.0% RE-0.05% Y
  • zirconium (Zr) 0-0.2% zirconium (Zr);
  • rare earth is to be understood to mean any element or combination of elements with atomic numbers 57 to 71, ie. lanthanum (La) to lutetium (Lu).
  • FIG. 1 is a plot of total rare earth content versus yttrium content.
  • alloys of the present invention contain:
  • alloys according to the present invention More preferably, alloys according to the present invention:
  • (a) contain less than 0.1% titanium, more preferably less than 0.05% titanium, more preferably less than 0.01% titanium, and most preferably substantially no titanium;
  • (b) contain less than 0.1% hafnium, more preferably less than 0.05% hafnium, more preferably less than 0.01% hafnium, and most preferably substantially no hafnium;
  • (c) contain less than 0.05% copper, more preferably less than 0.02% copper, more preferably less than 0.01% copper, and most preferably substantially no copper;
  • (d) contain less than 0.05% nickel, more preferably less than 0.02% nickel, more preferably less than 0.01% nickel, and most preferably substantially no nickel;
  • (e) contain less than 0.05% silicon, more preferably less than 0.02% silicon, more preferably less than 0.01% silicon, and most preferably substantially no silicon;
  • (f) contain less than 0.05% silver, more preferably less than 0.02% silver, more preferably less than 0.01% silver, and most preferably substantially no silver;
  • (g) contain less than 0.05% thorium, more preferably less than 0.02% thorium, more preferably less than 0.01% thorium, and most preferably substantially no thorium;
  • (h) contain less than 0.05% strontium, more preferably less than 0.02% strontium, more preferably less than 0.01% strontium, and most preferably substantially no strontium.
  • alloys of the present invention contain rare earth(s) and yttrium in amounts which fall within a quadrangle defined by lines EF, FG, GH and HE wherein:
  • E is 1.5% RE-0.3% Y
  • F is 1.0% RE-0.3% Y
  • G is 1.0% RE-0.8% Y
  • H is 1.5% RE-0.8% Y.
  • FIG. 1 is a plot of total rare earth content versus yttrium content.
  • alloys according to the present invention contain at least 96.7% magnesium, more preferably 97-98.5% magnesium, and most preferably about 98% magnesium.
  • the rare earth component of alloys according to the first or second aspects of the present invention are selected from neodymium (Nd), cerium (Ce), lanthanum (La), or any mixture thereof.
  • the neodymium content is greater than 0.2%, more preferably greater than 0.4%, more preferably 0.4-1.8% and most preferably 0.4-1.0%, although alloys of the present invention may contain no neodymium.
  • the neodymium content may be derived from pure neodymium, neodymium contained within a mixture of rare earths such as a misch metal, or a combination thereof.
  • the content of rare earth(s) other than neodymium is 0-1.6%, more preferably 0.5-1.0%, although alloys of the present invention may contain no rare earths other than neodymium.
  • any rare earth(s) other than neodymium are cerium, lanthanum, or a mixture thereof.
  • Rare earth(s) other than neodymium may be derived from pure rare earths, a mixture of rare earths such as a misch metal or a combination thereof.
  • rare earths other than neodymium are derived from a cerium misch metal containing cerium, lanthanum, optionally neodymium, a modest amount of praseodymium (Pr) and trace amounts of other rare earths.
  • yttrium is believed to be beneficial to melt protection, ductility and creep resistance.
  • the zinc content is 0.2-0.7%, more preferably 0.3-0.5%, more preferably 0.4-0.6%.
  • Zirconium is an optional component of alloys of the present invention. Reduction in iron content can be achieved by addition of zirconium which precipitates iron from molten alloy. Desirably, the alloys contain a minimum of iron. Preferably, alloys of the present invention contain less than 0.005% iron and, most preferably, substantially no iron. Accordingly, the zirconium contents specified herein are residual zirconium contents. However, it is to be noted that zirconium may be incorporated at two different stages. Firstly, on manufacture of the alloy and secondly, following melting of the alloy just prior to casting. Preferably, the zirconium content will be the minimum amount required to achieve satisfactory iron removal. Typically, the zirconium content will be about 0.1% or less.
  • Manganese is an optional component of the alloy. When present, the manganese content will typically be about 0.1%.
  • Elements which prevent or at least inhibit oxidation of molten alloy such as beryllium (Be) and calcium (Ca) are optional components which may be included especially in circumstances where adequate melt protection through cover gas atmosphere control is not possible. This is particularly the case when the casting process does not involve a closed system.
  • the beryllium content is preferably less than 50 ppm, more preferably 4-25 ppm, more preferably 4-20 ppm, more preferably 4-15 ppm, more preferably 6-13 ppm, such as 8-12 ppm.
  • Beryllium would typically be introduced by way of an aluminium-beryllium master alloy, such as Al-5% Be, and thus aluminium may be present in small amounts up to 0.25%.
  • the aluminium content is less than 0.2%, more preferably less than 0.1%.
  • the inclusion of beryllium and/or calcium is believed to improve the die castability of the alloy.
  • the incidental impurity content is zero but it is to be appreciated that this is essentially impossible. Accordingly, it is preferred that the incidental impurity content is less than 0.15%, more preferably less than 0.1%, more preferably less than 0.01%, and still more preferably less than 0.001%.
  • At least some alloys of the present invention can benefit from heat treatments, such as a T6 heat treatment which would typically involve solution treatment at 450-550° C. for up to 6 hours, followed by a quench, and then an artificial aging at 150-300° C. for up to 24 hours.
  • heat treatments such as a T6 heat treatment which would typically involve solution treatment at 450-550° C. for up to 6 hours, followed by a quench, and then an artificial aging at 150-300° C. for up to 24 hours.
  • the present invention provides a component of an internal combustion engine formed from an alloy according to the first aspect of the present invention.
  • the component of the internal combustion engine may be the engine block or a portion thereof such as a shroud.
  • Alloys according to a first aspect of the present invention may be cast by processes other than HPDC, such as sand casting or low pressure/gravity permanent mould casting.
  • the present invention provides an engine block for an internal combustion engine produced by high pressure die casting an alloy according to the first aspect of the present invention.
  • alloys of the present invention may find use in other elevated temperature applications such as may be found in automotive power trains as well as in low temperature applications.
  • FIG. 2 shows the creep results for 177° C. and 90 MPa for Alloys A and B in the as-cast condition. From FIG. 2 it can be seen that, although the two alloys have similar secondary creep rates, Alloy A is considerably more resistant than Alloy B to instantaneous strain upon loading under these conditions.
  • FIG. 3 shows the creep results for 177° C. and 90 MPa for Alloys A and B in a T6 heat treated condition. Alloys A and B were solution treated for 8 hours at 525° C., followed by a cold water quench, and then were aged at 215° C. for 4 hours. Under these conditions Alloy A is also considerably more creep resistant than Alloy B.
  • T6 heat treatment The influence of a T6 heat treatment on the creep behaviour of HPDC test specimens for Alloy A and Alloy B of the present invention is illustrated by a comparison of FIG. 2 with FIG. 3 . It can be seen that a T6 heat treatment provides little advantage to low Y content alloys ( ⁇ 0.4 wt. % Y). However, for compositions that contain 0.5 wt. % Y or greater, a T6 heat treatment can have a significant beneficial influence on the creep performance of the alloy.
  • test specimens were produced by the high pressure die casting (HPDC) of these alloys on a 250 tonne Toshiba cold chamber machine.
  • HPDC high pressure die casting
  • the alloy properties that were evaluated include casting quality, as-cast microstructure, tensile strength at room temperature and 177° C. and creep behaviour at 177° C. and 200° C.
  • FIG. 4 A typical example of the microstructure of an alloy according to the present invention (Alloy N), in the as-cast condition, is shown in FIG. 4 . Due to the nature of HPDC there is a transition from a fine grain structure, close to the surface of the cast specimen (the ‘skin’), to a coarser grain structure in the central region (the ‘core’). However, both regions consist of primary magnesium-rich grains or dendrites with a Mg-RE intermetallic phase in the inter-granular and interdendritic regions.
  • Alloys of the present invention are non-burning and highly resistant to oxidation as shown in FIG. 5 .
  • FIGS. 5( d ), 5 ( e ) and 5 ( f ) relate to an alloy of composition very similar to that of Alloy H and FIGS. 5( a ), 5 ( b ) and 5 ( c ) relate to an alloy of equivalent composition save for it containing no yttrium.
  • FIGS. 5( b ) and 5 ( e ) are macro images of polished sections through the centre of the castings shown in FIGS. 5( a ) and 5 ( d ) respectively which give an indication of the depth of penetration of the oxides that are formed on the surface into the interior of the castings.
  • FIGS. 5( c ) and 5 ( f ) are equivalent higher magnification images of FIGS.
  • compositions are therefore better suited to less demanding applications in the powertrain than the engine block.
  • the creep performance is very good as shown by Alloy A, Alloy C and Alloy T (see FIG. 9 , FIG. 11 and FIG. 12 respectively).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Forging (AREA)
  • Hard Magnetic Materials (AREA)
  • Physical Vapour Deposition (AREA)
  • Continuous Casting (AREA)

Abstract

A magnesium-rare earth-yttrium-zinc alloy consists of 0.2-1.5% by weight zinc and rare earth(s) (RE) and yttrium in amounts which fall within a quadrangle defined by lines AB, BC, CD and DA wherein: A is 1.8% RE-0.05% Y, B is 1.0% RE-0.05% Y, C is 0.2% RE-0.8% Y, and D is 1.8% RE-0.8% Y.

Description

    FIELD OF THE INVENTION
  • The present invention relates to magnesium alloys and, more particularly, to magnesium alloys which can be cast by high pressure die casting (HPDC).
  • BACKGROUND TO THE INVENTION
  • With the increasing need to limit fuel consumption and reduce harmful emissions into the atmosphere, automobile manufacturers are seeking to develop more fuel efficient vehicles. Reducing the overall weight of the vehicles is a key to achieving this goal. Major contributors to the weight of any vehicle are the engine and other components of the power train. The most significant component of the engine is the cylinder block, which makes up 20-25% of the total engine weight. In the past significant weight savings were made by introducing aluminium alloy cylinder blocks to replace traditional grey iron blocks, and further weight reductions of the order of 40% could be achieved if a magnesium alloy that could withstand the temperatures and stresses generated during engine operation was used. Development of such an alloy, which combines the desired elevated temperature mechanical properties with a cost effective production process, is necessary before viable magnesium engine block manufacturing can be considered.
  • HPDC is a highly productive process for mass production of light alloy components. While the casting integrity of sand casting and low pressure/gravity permanent mould castings is generally higher than HPDC, HPDC is a less expensive technology for higher volume mass production. The most common magnesium based HPDC alloys are AM50 (95% Mg, 5% Al), AM60 (94% Mg, 6% Al) and AZ91 (90% Mg, 9% Al and 1% Zn). Unfortunately, none of these alloys are suitable for use at elevated temperatures.
  • HPDC is gaining popularity among automobile manufacturers in North America and is the predominant process used for casting aluminium alloy engine blocks in Europe and Asia. In recent years, the search for an elevated temperature magnesium alloy has focused primarily on the HPDC processing route and several alloys have been developed. HPDC is considered to be a good option for achieving high productivity rates and thus reducing the cost of manufacture.
  • U.S. Pat. No. 3,718,460 which claims a priority date of 4 Dec. 1967 relates to a magnesium-aluminium-silicon alloy which is “particularly adaptable to die casting”. The alloy consists “essentially of magnesium containing by weight from about 0.4 to 1.5 percent silicon, from about 3.5 to about 7 percent aluminium, up to about 1 percent manganese and up to about 2 percent zinc”. U.S. Pat. No. 3,718,460 makes no mention of yttrium.
  • PCT/GB96/00261 (WO 96/24701) which claims a priority date of 6 Feb. 1995 relates to a magnesium-zinc-rare earth (Mg—Zn-RE) alloy for HPDC in which the expression rare earth is specifically defined in terms of a range of elements but “is not intended to include elements such as yttrium.” Yttrium is thus specifically excluded as an alloy component of this HPDC alloy.
  • U.S. Pat. No. 6,322,644 which claims a priority date of 15 Dec. 1999 relates to a magnesium-based diecast alloy having improved elevated temperature performance which consists of 2-9% aluminium, 0.5-7% strontium, 0-0.6% manganese, 0-0.35% zinc and the balance magnesium. No mention of yttrium is made in U.S. Pat. No. 6,322,644.
  • Various magnesium based alloys which contain yttrium have been proposed over the years.
  • GB 1067915 which claims a priority date of 26 Oct. 1963 notes that “it has now been discovered that an addition of yttrium brings about a further refinement of the grain of a zirconium-containing magnesium alloy.” The patent is broadly directed to magnesium alloys containing 0.1-1% zirconium (Zr), 0.1-10% yttrium (Y), and up to 10% of at least one additional alloying element selected from beryllium (Be), lead (Pb), cadmium (Cd), calcium (Ca), cerium (Ce), copper (Cu), silver (Ag), thallium (Tl), thorium (Th), bismuth (Bi) and zinc (Zn).
  • The magnesium alloy ML10, developed in the former USSR, has been used for many years for cast parts intended for use in aircraft at temperatures up to 250° C. ML10 is a high strength Mg—Nd—Zn—Zr alloy. ML19 alloy is similarly based on the Mg—Nd—Zn—Zr system but additionally contains Y.
  • A paper by Mukhina et al entitled “Investigation of the Microstructure and Properties of Castable Neodymium and Yttrium-Bearing Magnesium Alloys at Elevated Temperatures” published in Science and Heat Treatment” Vol 39, 1997, indicates typical compositions (% by weight) of ML10 and ML19 alloys are:
  • ML10 ML19
    Neodymium (Nd) 2.2-2.8 1.6-2.3
    Yttrium (Y) Nil 1.4-2.2
    Zirconium (Zr) 0.4-1.0 0.4-1.0
    Zinc (Zn) 0.1-0.7 0.1-0.6
    Magnesium (Mg) Balance Balance

    with impurity levels of:
  • Iron (Fe) <0.01
    Silicon (Si) <0.03
    Copper (Cu) <0.03
    Nickel (Ni) <0.005
    Aluminium (Al) <0.02
    Beryllium (Be) <0.01
  • ML10 and ML19 are both sand casting alloys and neither has found commercial acceptance as a HPDC alloy.
  • GB 1378281 which claims a priority date of 14 Mar. 1973 “relates to magnesium-based light structural alloys, particularly those for the production of parts subject to heating in service.” The alloy contains 0.8-6.0% Y, 0.5-4.0% Nd, 0.1-2.2% Zn, 0.31-1.1% Zr, up to 0.05% Cu, up to 0.2% manganese (Mn) and the balance Mg. A related US patent, U.S. Pat. No. 4,116,731, claims an alloy of identical composition which is a “heat-treated and aged” alloy in which “no less than 50% of the total amount of neodymium and yttrium additions enters the solid solution after heat treatment” and the alloy, having been heat treated at approximately 535° C. for 4-8 hours, is cooled in air and then aged at approximately 200° C. for 12 hours.
  • U.S. Pat. No. 4,401,621 which claims a priority date of 25 May 1981 relates to magnesium alloys consisting of:
  • “(a) from 1.5 to 10% by weight of an yttrium component consisting of at least 60% by weight of yttrium and the balance, if any, of heavy rare earth metals, and
  • (b) from 1 to 6% by weight of a neodymium component consisting of at least 60% by weight of neodymium, not more than 25% by weight of lanthanum and substantially all the balance, if any, of praseodymium,
  • the remainder of the alloy consisting of magnesium.”
  • U.S. Pat. No. 6,767,506 which claims a priority date of 10 Jan. 2002 “relates to magnesium-based alloys suitable for applications at temperatures as high as 250-300° C.”. Alloys according to U.S. Pat. No. 6,767,506 contain 2.7-3.3% Nd, Y in amounts up to 2.6%, 0.2-0.8% Zr, 0.2-0.8% Zn, 0.03-0.25% Ca, 0-0.001% Be and at least 92% Mg. The alloys are said to be well adapted for sand casting, permanent mould casting and direct chill casting with subsequent extrusion and/or forging. There is no suggestion in U.S. Pat. No. 6,767,506 that the alloys are suitable for HPDC.
  • Mg-RE-Y alloys tend to be used as gravity and sand casting alloys which can be heat treated to achieve desired properties. They tend to have rather high additions of both RE and Y with the aim of having a phase at grain boundaries which is of the Mg-RE type and two precipitating phases, namely Mg12Nd and Mg24Y5. Y has a high solubility in Mg even at room temperature and so high levels of Y are necessary to achieve any significant level of precipitation. As far as the present inventors are aware, no Y containing Mg-based alloy has found commercial acceptance as a HPDC alloy.
  • SUMMARY OF THE INVENTION
  • In a first aspect, the present invention provides a magnesium-rare earth-yttrium-zinc alloy consisting of:
  • rare earth(s) (RE) and yttrium (Y) in amounts which fall within a quadrangle defined by lines AB, BC, CD and DA wherein:
  • A is 1.8% RE-0.05% Y,
  • B is 1.0% RE-0.05% Y,
  • C is 0.2% RE-0.8% Y, and
  • D is 1.8% RE-0.8% Y;
  • 0.2-1.5% zinc (Zn);
  • 0-0.25% aluminium (Al);
  • 0-0.2% zirconium (Zr);
  • 0-0.3% manganese (Mn);
  • 0-0.1% oxidation inhibiting element(s), and
  • the balance being magnesium (Mg) except for incidental impurities. Unless otherwise stated, all percentages in this document are % by weight.
  • Throughout this specification the expression “rare earth” is to be understood to mean any element or combination of elements with atomic numbers 57 to 71, ie. lanthanum (La) to lutetium (Lu).
  • The quadrangle defined by lines AB, BC, CD and DA is illustrated in FIG. 1 which is a plot of total rare earth content versus yttrium content.
  • Preferably, alloys of the present invention contain:
  • no more than 0.15% titanium,
  • no more than 0.15% hafnium,
  • no more than 0.1% copper,
  • no more than 0.1% nickel,
  • no more than 0.1% silicon,
  • no more than 0.1% silver,
  • no more than 0.1% thorium,
  • no more than 0.1% strontium, and
  • no more than 0.01% iron.
  • More preferably, alloys according to the present invention:
  • (a) contain less than 0.1% titanium, more preferably less than 0.05% titanium, more preferably less than 0.01% titanium, and most preferably substantially no titanium;
  • (b) contain less than 0.1% hafnium, more preferably less than 0.05% hafnium, more preferably less than 0.01% hafnium, and most preferably substantially no hafnium;
  • (c) contain less than 0.05% copper, more preferably less than 0.02% copper, more preferably less than 0.01% copper, and most preferably substantially no copper;
  • (d) contain less than 0.05% nickel, more preferably less than 0.02% nickel, more preferably less than 0.01% nickel, and most preferably substantially no nickel;
  • (e) contain less than 0.05% silicon, more preferably less than 0.02% silicon, more preferably less than 0.01% silicon, and most preferably substantially no silicon;
  • (f) contain less than 0.05% silver, more preferably less than 0.02% silver, more preferably less than 0.01% silver, and most preferably substantially no silver;
  • (g) contain less than 0.05% thorium, more preferably less than 0.02% thorium, more preferably less than 0.01% thorium, and most preferably substantially no thorium; and
  • (h) contain less than 0.05% strontium, more preferably less than 0.02% strontium, more preferably less than 0.01% strontium, and most preferably substantially no strontium.
  • Preferably, alloys of the present invention contain rare earth(s) and yttrium in amounts which fall within a quadrangle defined by lines EF, FG, GH and HE wherein:
  • E is 1.5% RE-0.3% Y,
  • F is 1.0% RE-0.3% Y,
  • G is 1.0% RE-0.8% Y, and
  • H is 1.5% RE-0.8% Y.
  • The quadrangle defined by lines EF, FG, GH and HE is illustrated in FIG. 1 which is a plot of total rare earth content versus yttrium content.
  • Preferably, alloys according to the present invention contain at least 96.7% magnesium, more preferably 97-98.5% magnesium, and most preferably about 98% magnesium.
  • Preferably, the rare earth component of alloys according to the first or second aspects of the present invention are selected from neodymium (Nd), cerium (Ce), lanthanum (La), or any mixture thereof.
  • Preferably, the neodymium content is greater than 0.2%, more preferably greater than 0.4%, more preferably 0.4-1.8% and most preferably 0.4-1.0%, although alloys of the present invention may contain no neodymium. The neodymium content may be derived from pure neodymium, neodymium contained within a mixture of rare earths such as a misch metal, or a combination thereof.
  • Preferably, the content of rare earth(s) other than neodymium is 0-1.6%, more preferably 0.5-1.0%, although alloys of the present invention may contain no rare earths other than neodymium. Preferably, any rare earth(s) other than neodymium are cerium, lanthanum, or a mixture thereof. Rare earth(s) other than neodymium may be derived from pure rare earths, a mixture of rare earths such as a misch metal or a combination thereof. Preferably, rare earths other than neodymium are derived from a cerium misch metal containing cerium, lanthanum, optionally neodymium, a modest amount of praseodymium (Pr) and trace amounts of other rare earths.
  • Without wishing to be bound by theory, the inclusion of yttrium is believed to be beneficial to melt protection, ductility and creep resistance.
  • Preferably, the zinc content is 0.2-0.7%, more preferably 0.3-0.5%, more preferably 0.4-0.6%.
  • Zirconium is an optional component of alloys of the present invention. Reduction in iron content can be achieved by addition of zirconium which precipitates iron from molten alloy. Desirably, the alloys contain a minimum of iron. Preferably, alloys of the present invention contain less than 0.005% iron and, most preferably, substantially no iron. Accordingly, the zirconium contents specified herein are residual zirconium contents. However, it is to be noted that zirconium may be incorporated at two different stages. Firstly, on manufacture of the alloy and secondly, following melting of the alloy just prior to casting. Preferably, the zirconium content will be the minimum amount required to achieve satisfactory iron removal. Typically, the zirconium content will be about 0.1% or less.
  • Manganese is an optional component of the alloy. When present, the manganese content will typically be about 0.1%.
  • Elements which prevent or at least inhibit oxidation of molten alloy, such as beryllium (Be) and calcium (Ca), are optional components which may be included especially in circumstances where adequate melt protection through cover gas atmosphere control is not possible. This is particularly the case when the casting process does not involve a closed system.
  • When present, the beryllium content is preferably less than 50 ppm, more preferably 4-25 ppm, more preferably 4-20 ppm, more preferably 4-15 ppm, more preferably 6-13 ppm, such as 8-12 ppm. Beryllium would typically be introduced by way of an aluminium-beryllium master alloy, such as Al-5% Be, and thus aluminium may be present in small amounts up to 0.25%. Preferably, the aluminium content is less than 0.2%, more preferably less than 0.1%. Without wishing to be bound by theory, the inclusion of beryllium and/or calcium is believed to improve the die castability of the alloy.
  • Ideally, the incidental impurity content is zero but it is to be appreciated that this is essentially impossible. Accordingly, it is preferred that the incidental impurity content is less than 0.15%, more preferably less than 0.1%, more preferably less than 0.01%, and still more preferably less than 0.001%.
  • Surprisingly for HPDC alloys, at least some alloys of the present invention can benefit from heat treatments, such as a T6 heat treatment which would typically involve solution treatment at 450-550° C. for up to 6 hours, followed by a quench, and then an artificial aging at 150-300° C. for up to 24 hours.
  • In a second aspect, the present invention provides a component of an internal combustion engine formed from an alloy according to the first aspect of the present invention. The component of the internal combustion engine may be the engine block or a portion thereof such as a shroud.
  • Alloys according to a first aspect of the present invention may be cast by processes other than HPDC, such as sand casting or low pressure/gravity permanent mould casting.
  • In a third aspect, the present invention provides an engine block for an internal combustion engine produced by high pressure die casting an alloy according to the first aspect of the present invention.
  • Specific reference is made above to engine blocks but it is to be noted that alloys of the present invention may find use in other elevated temperature applications such as may be found in automotive power trains as well as in low temperature applications. Specific reference is also made above to HPDC but it is to be noted that alloys of the present invention may be cast by techniques other than HPDC including thixomoulding, thixocasting, permanent moulding and sand casting.
  • DESCRIPTION OF PREFERRED EMBODIMENTS OF THE INVENTION Example 1
  • Two alloys according to the present invention were prepared and chemical analyses of the alloys are set out in Table 1 below. The rare earths other than neodymium were added as a Ce-based misch metal which contained cerium, lanthanum and some neodymium. The extra neodymium and the zinc were added in their elemental forms. Standard melt handling procedures were used throughout preparation of the alloys.
  • TABLE 1
    Alloys Prepared
    Element Alloy A Alloy B
    Nd (wt %) 0.6 0.54
    Ce (wt %) 0.37 0.36
    La (wt %) 0.32 0.31
    Zn (wt %) 0.4 0.41
    Y (wt %) 0.5 0.18
    Mg (wt %) Balance Balance
    except for except for
    incidental incidental
    impurities impurities
  • The tensile properties of Alloys A and B at room temperature and at 177° C. are set out below in Table 2.
  • TABLE 2
    Tensile Properties
    21° C. 177° C.
    0.2% Proof 0.2% Proof
    Stress UTS Elong. Stress UTS Elong.
    Alloy A 120 146 4.0 106 132 6.6
    Alloy B 114 164 5.7 102 133 9.0
  • Creep tests were carried out on Alloys-A and B at a constant load of 90 MPa and at a temperature of 177° C. in the as-cast condition and in a T6 heat treated condition and at 75 MPa and 200° C. for Alloy A in the as-cast condition. The steady state creep rates are listed in Table 3.
  • TABLE 3
    Steady State Creep Rates
    As Cast Steady State Creep
    Rates (s−1)
    90 Mpa 177° C. 75 Mpa 200° C.
    Alloy A 2.5 × 10−10 4.3 × 10−10
    Alloy B 3.0 × 10−10
  • FIG. 2 shows the creep results for 177° C. and 90 MPa for Alloys A and B in the as-cast condition. From FIG. 2 it can be seen that, although the two alloys have similar secondary creep rates, Alloy A is considerably more resistant than Alloy B to instantaneous strain upon loading under these conditions.
  • FIG. 3 shows the creep results for 177° C. and 90 MPa for Alloys A and B in a T6 heat treated condition. Alloys A and B were solution treated for 8 hours at 525° C., followed by a cold water quench, and then were aged at 215° C. for 4 hours. Under these conditions Alloy A is also considerably more creep resistant than Alloy B.
  • The influence of a T6 heat treatment on the creep behaviour of HPDC test specimens for Alloy A and Alloy B of the present invention is illustrated by a comparison of FIG. 2 with FIG. 3. It can be seen that a T6 heat treatment provides little advantage to low Y content alloys (<0.4 wt. % Y). However, for compositions that contain 0.5 wt. % Y or greater, a T6 heat treatment can have a significant beneficial influence on the creep performance of the alloy.
  • Example 2
  • A series of alloys according to the present invention were produced and their compositions are listed in Table 4 which includes Alloys A and B referred to in Example 1.
  • TABLE 4
    Chemical composition of Alloys A-V
    Zr Zr
    Nd Ce La Y Zn Be Al Fe (wt. %, (wt. %,
    Alloy (wt. %) (wt. %) (wt. %) (wt. %) (wt. %) (ppm) (wt. %) (ppm) soluble) total)
    A 0.60 0.37 0.32 0.50 0.40
    B 0.54 0.36 0.31 0.18 0.41
    C 0.63 0.41 0.36 1.06 0.43 15 0.10 <0.005 0.02
    D 0.64 0.42 0.38 1.52 0.45 18 0.10 0.005 0.035
    E 1.18 0.41 0.38 0.75 0.42 19 0.10 0.005 0.03
    F 0.53 0.63 0.18 0.95 0.43 26 0.11 0.008 0.08
    G 0.54 1.11 0.18 0.95 0.42 40 0.11 0.018 0.15
    H 0.62 0.48 0.37 0.27 0.54 15 0.07 17 <0.005 <0.005
    I 0.56 0.44 0.33 0.26 0.57 15 0.07 16 <0.005 <0.005
    J 0.46 0.36 0.28 0.25 0.57 16 0.07 14 <0.005 <0.005
    K 0.65 0.49 0.38 0.37 0.56 15 0.07 25 <0.005 0.009
    L 0.58 0.44 0.34 0.39 0.57 18 0.08 27 0.005 0.010
    M 0.49 0.37 0.28 0.40 0.54 17 0.08 20 0.005 0.010
    N 0.67 0.50 0.37 0.54 0.58 16 0.07 26 <0.005 0.006
    O 0.58 0.42 0.33 0.57 0.54 18 0.07 22 0.005 0.008
    P 0.48 0.34 0.27 0.60 0.54 18 0.07 27 0.005 0.008
    Q 0.48 0.35 0.28 0.64 0.80 20 0.07 34 0.006 0.010
    R 0.46 0.34 0.27 0.61 1.12 19 0.07 28 0.005 0.010
    S 0.68 0.51 0.39 1.17 0.57 <1 0.01 34 <0.005 <0.005
    T 0.71 0.51 0.40 1.10 0.56 5 0.04 33 <0.005 <0.005
    U 0.70 0.51 0.39 0.99 0.54 9 0.10 27 <0.005 <0.005
    V 0.68 0.49 0.38 0.89 0.54 13 0.22 23 <0.005 <0.005
  • For the purposes of mechanical property evaluation, test specimens were produced by the high pressure die casting (HPDC) of these alloys on a 250 tonne Toshiba cold chamber machine. The alloy properties that were evaluated include casting quality, as-cast microstructure, tensile strength at room temperature and 177° C. and creep behaviour at 177° C. and 200° C.
  • A typical example of the microstructure of an alloy according to the present invention (Alloy N), in the as-cast condition, is shown in FIG. 4. Due to the nature of HPDC there is a transition from a fine grain structure, close to the surface of the cast specimen (the ‘skin’), to a coarser grain structure in the central region (the ‘core’). However, both regions consist of primary magnesium-rich grains or dendrites with a Mg-RE intermetallic phase in the inter-granular and interdendritic regions.
  • Alloys of the present invention are non-burning and highly resistant to oxidation as shown in FIG. 5.
  • FIGS. 5( d), 5(e) and 5(f) relate to an alloy of composition very similar to that of Alloy H and FIGS. 5( a), 5(b) and 5(c) relate to an alloy of equivalent composition save for it containing no yttrium. FIGS. 5( b) and 5(e) are macro images of polished sections through the centre of the castings shown in FIGS. 5( a) and 5(d) respectively which give an indication of the depth of penetration of the oxides that are formed on the surface into the interior of the castings. FIGS. 5( c) and 5(f) are equivalent higher magnification images of FIGS. 5( b) and 5(e) respectively. It can be seen in FIG. 5( c) that the yttrium free alloy displays extensive penetration of oxide stringers; whereas, there is minimal penetration evident in FIG. 5( f) of the alloy of the present invention.
  • The degree of surface oxidation and the depth of penetration of oxide stringers into the bulk of the casting are both greatly reduced for alloys with compositions typical of the present invention. This non-burning behaviour is very advantageous in all practical casting operations.
  • A summary of the tensile test data for the alloys of the present invention are given in Table 5 and it can be seen that the tensile behaviour is reasonable at both test temperatures considered. Examples of the stress-strain curves for Alloy N, Alloy 0 and Alloy P are shown in FIG. 6 and FIG. 7 for tests conducted at room temperature and 177° C. respectively. The influence of the Y content of the composition on the tensile stress-strain behaviour is shown in FIG. 8, where it can be seen that the tensile strength is improved with increasing Y content.
  • TABLE 5
    Typical tensile properties for the range of
    example alloys of the present invention at both room
    temperature and 177° C.
    RT − 21° C. 177° C.
    0.2% proof, 0.2% proof, UTS,
    Alloy (MPa) UTS, (MPa) % E (MPa) (MPa) % E
    A 120.1 ± 2.1 146.3 ± 2.8 4.0 ± 0.3 106.2 ± 2.7 131.6 ± 7.1 6.6 ± 1.0
    B 114.0 ± 7.0  163.6 ± 11.2 5.7 ± 0.9 102.5 ± 2.9 133.4 ± 1.4 9.9 ± 0.6
    C 122.4 ± 1.7 167.6 ± 4.6 5.2 ± 0.7 112.5 ± 0.5 150.2 ± 8.1 8.8 ± 1.6
    D 127.5 ± 4.4 176.1 ± 5.9 5.6 ± 0.6 117.2 ± 1.6 151.7 ± 3.0 7.0 ± 0.3
    E 128.6 ± 1.6  164.8 ± 12.6 4.5 ± 1.1 117.6 ± 1.5 146.0 ± 3.5 6.4 ± 0.9
    F 120.7 ± 2.0 153.1 ± 6.2 4.3 ± 0.5 111.0 ± 1.8 137.0 ± 4.0 6.5 ± 0.8
    G 130.7 ± 2.7 159.2 ± 7.2 4.2 ± 0.6 113.5 ± 1.9 142.1 ± 4.1 6.5 ± 0.9
    H 118.1 ± 1.4 158.1 ± 4.7 4.6 ± 0.5 104.7 ± 1.6 131.8 ± 3.4 6.9 ± 0.2
    I 115.0 ± 2.2  152.9 ± 11.6 4.5 ± 1.0  96.8 ± 1.9 130.4 ± 5.2 7.6 ± 0.8
    J 110.5 ± 1.0 148.3 ± 7.5 4.5 ± 0.6  97.8 ± 3.0 127.5 ± 7.9 7.7 ± 1.8
    K 126.3 ± 0.9 159.0 ± 6.1 4.65 ± 0.6  104.6 ± 6.9 130.7 ± 7.9 5.8 ± 1.1
    L 120.6 ± 1.0 152.8 ± 4.8 4.2 ± 0.5 101.6 ± 5.5 126.7 ± 5.3 6.1 ± 0.7
    M 114.5 ± 1.8 137.9 ± 2.1 3.34 ± 0.1  100.2 ± 1.9 123.5 ± 4.6 5.9 ± 0.3
    N 127.3 ± 2.0  151.8 ± 11.1 3.67 ± 0.95 109.0 ± 3.5 137.7 ± 4.8 6.1 ± 0.3
    O 126.1 ± 0.9 155.2 ± 1.7 4.1 ± 0.2 107.8 ± 2.1 133.0 ± 2.1 5.9 ± 0.9
    P 116.8 ± 2.8 133.8 ± 4.2 2.7 ± 0.4 103.7 ± 2.4 120.3 ± 6.5 4.5 ± 0.9
    Q 123.3 ± 1.3 150.8 ± 2.6 4.2 ± 0.3 105.8 ± 2.5 127.4 ± 4.9 5.2 ± 0.8
    R 119.7 ± 2.2 147.9 ± 1.2 3.8 ± 0.3 102.9 ± 2.0 122.0 ± 4.0 4.8 ± 0.7
    S 131.5 ± 4.5 159.8 ± 6.6 4.5 ± 0.5 121.1 ± 4.3 145.7 ± 2.3 5.2 ± 0.5
    T 131.3 ± 3.7 155.3 ± 6.9 3.9 ± 0.7 118.9 ± 2.4 142.0 ± 4.7 5.0 ± 0.8
    U 129.6 ± 4.0 151.1 ± 5.3 3.3 ± 0.5 114.6 ± 2.8 134.0 ± 9.0 4.6 ± 1.0
    V 132.3 ± 4.2 155.3 ± 7.3 3.4 ± 0.7 115.1 ± 2.4 131.6 ± 6.6 3.9 ± 0.7
  • The steady-state creep rates for an alloy of the present invention (Alloy A, in the as-cast condition) under a number of different test conditions are contained in Table 6 and examples of the associated creep curves are also shown in FIG. 9.
  • TABLE 6
    Steady-state creep rates for Alloy A of the
    present invention under various test conditions and under
    the same test condition for different heat treatment.
    Steady-state Creep Rates (s−1)
    90 MPa 177° C.
    As- 55 MPa 200° C. 75 MPa 200° C.
    Alloy cast T6 (As-cast) (As-cast)
    A 2.5 × 10−10 3.6 × 10−11 1.1 × 10−10 4.3 × 10−10
  • A summary of the steady-state creep rate under the same conditions of 177° C. and 90 MPa for all the composition variations measured in the as-cast condition is contained in Table 7.
  • TABLE 7
    Steady-state creep rate for a number of alloy
    variants of the present invention.
    As-cast Steady-state Creep Rate (s−1)
    Alloy 90 MPa 177° C.
    A 2.5 × 10−10
    B 3.0 × 10−10
    C 2.1 × 10−10
    D 1.9 × 10−11
    E 3.4 × 10−10
    F 3.0 × 10−10
    G 2.6 × 10−10
    H 1.3 × 10−9 
    I 6.3 × 10−10
    J 4.6 × 10−8 
    K 2.6 × 10−10
    L 2.0 × 10−10
    M 2.5 × 10−10
    N 1.4 × 10−10
    O 9.0 × 10−11
    P 2.3 × 10−11
    Q 4.0 × 10−11
    R 1.6 × 10−10
    S 4.2 × 10−10
    T 1.7 × 10−10
    U 3.1 × 10−10
    V 2.0 × 10−10
  • Selected creep curves, for alloys with increasing Y content, are shown in FIG. 10, FIG. 11 and FIG. 12 for compositions that contain a low total rare earth (TRE) content (in the range 1.1-1.2 wt. %), a medium TRE content (in the range 1.3-1.4 wt. %) and a high TRE content (in the range 1.5-1.6 wt. %). It is a general observation that increasing the Y content of the alloys of the present invention results in a significant improvement to the creep behaviour observed under these test conditions (177° C. and 90 MPa). Alloy compositions with both a low TRE content and a low Y content display poorer creep performance under these stringent test conditions, as indicated by the curve for Alloy J in FIG. 10. Such compositions are therefore better suited to less demanding applications in the powertrain than the engine block. For compositions that contain in excess of 0.45 wt. % Y the creep performance is very good as shown by Alloy A, Alloy C and Alloy T (see FIG. 9, FIG. 11 and FIG. 12 respectively).
  • It is to be clearly understood that although prior art publications are referred to herein, this reference does not constitute an admission that any of these documents forms part of the common general knowledge in the art in Australia or in any other country.

Claims (18)

1. A magnesium-rare earth-yttrium-zinc alloy consisting of:
rare earth(s) (RE) and yttrium in amounts which fall within a quadrangle defined by lines AB, BC, CD, and DA wherein:
A is 1.8% RE-0.05% Y,
B is 1.0% RE-0.05% Y,
C is 0.2% RE-0.8% Y, and
D is 1.8% RE-0.8% Y;
0.2-1.5% zinc;
0-0.25% aluminium;
0-0.2% zirconium;
0-0.3% manganese;
0-0.1% oxidation inhibiting element(s), and the balance being magnesium (Mg) except for incidental impurities.
2. An alloy as claimed in claim 1 which contains rare earth(s) and yttrium in amounts which fall within a quadrangle defined by lined EF, FG, GH, and HE wherein:
E is 1.5% RE-0.3% Y,
F is 1.0% RE-0.3% Y,
G is 1.0% RE-0.8% Y, and
H is 1.5% RE-0.8% Y.
3. An alloy as claimed in claim 1 containing at least 96.7% magnesium.
4. An alloy as claimed in claim 1 wherein the rare earth element(s) are selected from neodymium, cerium, lanthanum, praseodymium, or any combination thereof.
5. An alloy as claimed in claim 1 having a neodymium content of 0.4%-1.0%
6. An alloy as claimed in claim 1 wherein the content of rare earth(s) other than neodymium is 0.5-1.0%.
7. An alloy as claimed in claim 1 having a yttrium content of 0.1-1.6%.
8. An alloy as claimed in claim 7 having a yttrium content of 0.25%-1.25%.
9. An alloy as claimed in claim 8 having a yttrium content of 0.5-1.0%.
10. An alloy as claimed in claim 1 having a zinc content of 0.2%-0.7%.
11. An alloy as claimed in claim 10 having a zinc content of 0.4%-0.6%.
12. An alloy as claimed in claim 1 containing aluminium in an amount less than 0.25%.
13. An alloy as claimed in any claim 1 containing zirconium in an amount less than 0.2%.
14. An alloy as claimed in claim 1 containing manganese in an amount less than 0.3%.
15. An alloy as claimed in claim 1 containing beryllium in an amount less than 50 ppm.
16. An alloy as claimed in claim 1 containing calcium in an amount less than 0.1%
17. A component of an internal combustion engine or automotive power train formed from an alloy as claimed in claim 1.
18. An engine block or portion thereof produced by high pressure die casting an alloy as claimed in claim 1.
US11/915,215 2005-05-26 2006-05-26 Hpdc Magnesium Alloy Abandoned US20080193322A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
AU2005902694A AU2005902694A0 (en) 2005-05-26 HPDC alloy
AU2005902694 2005-05-26
PCT/AU2006/000712 WO2006125278A1 (en) 2005-05-26 2006-05-26 Hpdc magnesium alloy

Publications (1)

Publication Number Publication Date
US20080193322A1 true US20080193322A1 (en) 2008-08-14

Family

ID=37451584

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/915,215 Abandoned US20080193322A1 (en) 2005-05-26 2006-05-26 Hpdc Magnesium Alloy

Country Status (5)

Country Link
US (1) US20080193322A1 (en)
CN (1) CN101228286A (en)
DE (1) DE112006001375T5 (en)
TW (1) TW200643188A (en)
WO (1) WO2006125278A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050266041A1 (en) * 2004-05-25 2005-12-01 Restate Patent Ag Implant for vessel ligature
US20060052863A1 (en) * 2004-09-07 2006-03-09 Biotronik Vi Patent Ag Endoprosthesis comprising a magnesium alloy
US20060246107A1 (en) * 2002-11-13 2006-11-02 Claus Harder Use of one or more elements from the group containing yttrium, neodymium and zirconium and pharmaceutical compositions containing said elements
CN101824572A (en) * 2010-03-09 2010-09-08 扬州宏福铝业有限公司 High-intensity and anti-corrosion Mg-Al-Zn-RE extruded magnesium alloy rich in Y-base rare earth alloy as well as production method and application thereof
CN102108466B (en) * 2009-12-23 2012-07-11 中国科学院金属研究所 Anticorrosion magnesium alloy
US20130144290A1 (en) * 2010-07-06 2013-06-06 Ait Austrian Institute Of Technology Gmbh Magnesium alloy
CN107190192A (en) * 2017-07-10 2017-09-22 太原理工大学 A kind of absorbable biological medicinal high-strength anticorrosion magnesium alloy material and preparation method thereof
CN107236886A (en) * 2017-07-10 2017-10-10 太原理工大学 A kind of polynary Mg Zn Y Ca Zr alloys of medical degradable high-strength anticorrosion and preparation method thereof
JP2018521213A (en) * 2015-05-07 2018-08-02 デッド シー マグネシウム リミテッド Creep-resistant, ductile magnesium alloy for die casting
GB2583482A (en) * 2019-04-29 2020-11-04 Univ Brunel A casting magnesium alloy for providing improved thermal conductivity
WO2024086251A1 (en) * 2022-10-20 2024-04-25 Divergent Technologies, Inc. Crashworthy alloy

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009039581A1 (en) * 2007-09-28 2009-04-02 Cast Crc Limited Permanent mould cast magnesium alloy
US8435444B2 (en) 2009-08-26 2013-05-07 Techmag Ag Magnesium alloy
ES2423354T3 (en) * 2011-02-01 2013-09-19 Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung GmbH Magnesium alloy containing rare earth metals
DE102012108089A1 (en) 2012-08-31 2014-05-15 Gottfried Wilhelm Leibniz Universität Hannover Magnesium alloy used for formation of work samples used as medical device e.g. implant and suture, comprises magnesium and zinc, and rare-earth metal in specified weight ratio
CN105525178A (en) * 2014-10-22 2016-04-27 上海交通大学深圳研究院 High-thermal-conductivity die-castable Mg-Y-Zr series multielement magnesium alloy and preparation method thereof
CN106319312B (en) * 2016-08-29 2017-11-03 宁波胜景传动科技有限公司 A kind of high-performance worm-gear speed reducer
SE543126C2 (en) 2019-02-20 2020-10-13 Husqvarna Ab A magnesium alloy, a piston manufactured by said magnesium alloy and a method for manufacturing said piston
CN112458349A (en) * 2020-11-06 2021-03-09 重庆大学 Low-rare earth high-strength wrought magnesium alloy containing neodymium and yttrium and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5077138A (en) * 1989-05-30 1991-12-31 Nissan Motor Company, Limited Fiber reinforced magnesium alloy
US6193817B1 (en) * 1995-02-06 2001-02-27 Luxfer Group Limited Magnesium alloys
US20070102072A1 (en) * 2003-11-26 2007-05-10 Yoshihito Kawamura High strength and high toughness magnesium alloy and method of producing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004099941A (en) * 2002-09-05 2004-04-02 Japan Science & Technology Corp Magnesium-base alloy and production method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5077138A (en) * 1989-05-30 1991-12-31 Nissan Motor Company, Limited Fiber reinforced magnesium alloy
US6193817B1 (en) * 1995-02-06 2001-02-27 Luxfer Group Limited Magnesium alloys
US20070102072A1 (en) * 2003-11-26 2007-05-10 Yoshihito Kawamura High strength and high toughness magnesium alloy and method of producing the same

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100119576A1 (en) * 2002-11-13 2010-05-13 Biotronik Vi Patent Ag Use of one or more of the elements from the group yttrium, neodymium and zirconium, and pharmaceutical compositions which contain those elements
US20060246107A1 (en) * 2002-11-13 2006-11-02 Claus Harder Use of one or more elements from the group containing yttrium, neodymium and zirconium and pharmaceutical compositions containing said elements
US20100034899A1 (en) * 2002-11-13 2010-02-11 Biotronik Vi Patent Ag Use of one or more of the elements from the group yttrium, neodymium and zirconium, and pharmaceutical compositions which contain those elements
US20050266041A1 (en) * 2004-05-25 2005-12-01 Restate Patent Ag Implant for vessel ligature
US8840736B2 (en) 2004-09-07 2014-09-23 Biotronik Vi Patent Ag Endoprosthesis comprising a magnesium alloy
US20060052863A1 (en) * 2004-09-07 2006-03-09 Biotronik Vi Patent Ag Endoprosthesis comprising a magnesium alloy
CN102108466B (en) * 2009-12-23 2012-07-11 中国科学院金属研究所 Anticorrosion magnesium alloy
CN101824572A (en) * 2010-03-09 2010-09-08 扬州宏福铝业有限公司 High-intensity and anti-corrosion Mg-Al-Zn-RE extruded magnesium alloy rich in Y-base rare earth alloy as well as production method and application thereof
US20130144290A1 (en) * 2010-07-06 2013-06-06 Ait Austrian Institute Of Technology Gmbh Magnesium alloy
US9775647B2 (en) * 2010-07-06 2017-10-03 Ait Austrian Institute Of Technology Gmbh Magnesium alloy
JP2018521213A (en) * 2015-05-07 2018-08-02 デッド シー マグネシウム リミテッド Creep-resistant, ductile magnesium alloy for die casting
CN107190192A (en) * 2017-07-10 2017-09-22 太原理工大学 A kind of absorbable biological medicinal high-strength anticorrosion magnesium alloy material and preparation method thereof
CN107236886A (en) * 2017-07-10 2017-10-10 太原理工大学 A kind of polynary Mg Zn Y Ca Zr alloys of medical degradable high-strength anticorrosion and preparation method thereof
GB2583482A (en) * 2019-04-29 2020-11-04 Univ Brunel A casting magnesium alloy for providing improved thermal conductivity
WO2020221752A1 (en) 2019-04-29 2020-11-05 Brunel University London A casting magnesium alloy for providing improved thermal conductivity
WO2024086251A1 (en) * 2022-10-20 2024-04-25 Divergent Technologies, Inc. Crashworthy alloy

Also Published As

Publication number Publication date
CN101228286A (en) 2008-07-23
TW200643188A (en) 2006-12-16
WO2006125278A1 (en) 2006-11-30
DE112006001375T5 (en) 2008-04-10

Similar Documents

Publication Publication Date Title
US20080193322A1 (en) Hpdc Magnesium Alloy
US7942986B2 (en) Magnesium alloy
US7718118B2 (en) Creep resistant magnesium alloy with improved ductility and fracture toughness for gravity casting applications
US20080060723A1 (en) Aluminum alloy for engine components
CN109868393B (en) High temperature cast aluminum alloy for cylinder heads
US20170101703A1 (en) Aluminum Die-Casting Alloys
WO2011090451A1 (en) CASTING ALLOY OF THE AIMgSI TYPE
US11713500B2 (en) Advanced cast aluminum alloys for automotive engine application with superior high-temperature properties
US10801095B2 (en) Aluminum alloy and method of manufacturing
JP2002327231A (en) Cast article of heat-resistant magnesium alloy, and manufacturing method therefor
JP2004162090A (en) Heat resistant magnesium alloy
CN109852859B (en) High-strength-toughness heat-resistant Mg-Y-Er alloy suitable for gravity casting and preparation method thereof
RU2313594C1 (en) Aluminum-based alloy
US20120070331A1 (en) Magnesium alloy and method for making the same
JP4285188B2 (en) Heat-resistant magnesium alloy for casting, casting made of magnesium alloy and method for producing the same
JP4526769B2 (en) Magnesium alloy
US4149882A (en) Magnesium alloys
JP2006176873A (en) Magnesium alloy and method for manufacturing magnesium alloy member
CN110004343B (en) High-strength high-toughness heat-resistant Mg-Gd-Er alloy suitable for gravity casting and preparation method thereof
JPH1017975A (en) Aluminum alloy for casting
CN109930044B (en) High-strength-toughness heat-resistant Mg-Gd-Y alloy suitable for gravity casting and preparation method thereof
JPH06330216A (en) Magnesium alloy
AU2006230799B2 (en) Magnesium alloy
CN117867349A (en) Creep-resistant die-casting rare earth magnesium alloy with high strength and high fluidity, and preparation method and application thereof
KR20230060362A (en) High strength and high corrosion resistant aluminum die casting alloy

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION