US20080185220A1 - Method of using syntactic foam to reduce noise and machine using same - Google Patents
Method of using syntactic foam to reduce noise and machine using same Download PDFInfo
- Publication number
- US20080185220A1 US20080185220A1 US11/985,220 US98522007A US2008185220A1 US 20080185220 A1 US20080185220 A1 US 20080185220A1 US 98522007 A US98522007 A US 98522007A US 2008185220 A1 US2008185220 A1 US 2008185220A1
- Authority
- US
- United States
- Prior art keywords
- syntactic foam
- engine
- microballoons
- machine
- foam
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000006260 foam Substances 0.000 title claims abstract description 75
- 238000000034 method Methods 0.000 title claims abstract description 10
- 239000011159 matrix material Substances 0.000 claims abstract description 21
- 239000012530 fluid Substances 0.000 claims abstract description 20
- 229920000642 polymer Polymers 0.000 claims description 7
- 238000002485 combustion reaction Methods 0.000 abstract description 4
- 230000005540 biological transmission Effects 0.000 abstract description 2
- 230000003247 decreasing effect Effects 0.000 abstract 1
- 230000037361 pathway Effects 0.000 abstract 1
- 239000000835 fiber Substances 0.000 description 12
- 239000004593 Epoxy Substances 0.000 description 10
- 239000000463 material Substances 0.000 description 9
- 239000000945 filler Substances 0.000 description 8
- 238000009472 formulation Methods 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 239000000654 additive Substances 0.000 description 5
- 239000002131 composite material Substances 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000003921 oil Substances 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 239000003431 cross linking reagent Substances 0.000 description 4
- 239000003822 epoxy resin Substances 0.000 description 4
- 230000005484 gravity Effects 0.000 description 4
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 4
- 229920000647 polyepoxide Polymers 0.000 description 4
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 3
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 3
- 239000012765 fibrous filler Substances 0.000 description 3
- XPFVYQJUAUNWIW-UHFFFAOYSA-N furfuryl alcohol Chemical compound OCC1=CC=CO1 XPFVYQJUAUNWIW-UHFFFAOYSA-N 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 229920003986 novolac Polymers 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920000049 Carbon (fiber) Polymers 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- 240000007594 Oryza sativa Species 0.000 description 2
- 235000007164 Oryza sativa Nutrition 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- PXKLMJQFEQBVLD-UHFFFAOYSA-N bisphenol F Chemical compound C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 description 2
- 239000004917 carbon fiber Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000010881 fly ash Substances 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 235000009566 rice Nutrition 0.000 description 2
- 229920001169 thermoplastic Polymers 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- 239000004416 thermosoftening plastic Substances 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 1
- IBOFVQJTBBUKMU-UHFFFAOYSA-N 4,4'-methylene-bis-(2-chloroaniline) Chemical compound C1=C(Cl)C(N)=CC=C1CC1=CC=C(N)C(Cl)=C1 IBOFVQJTBBUKMU-UHFFFAOYSA-N 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920002748 Basalt fiber Polymers 0.000 description 1
- 244000025254 Cannabis sativa Species 0.000 description 1
- 235000012766 Cannabis sativa ssp. sativa var. sativa Nutrition 0.000 description 1
- 235000012765 Cannabis sativa ssp. sativa var. spontanea Nutrition 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 240000000491 Corchorus aestuans Species 0.000 description 1
- 235000011777 Corchorus aestuans Nutrition 0.000 description 1
- 235000010862 Corchorus capsularis Nutrition 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 240000000797 Hibiscus cannabinus Species 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- 241001112258 Moca Species 0.000 description 1
- 240000007182 Ochroma pyramidale Species 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 229920006311 Urethane elastomer Polymers 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- 229920006231 aramid fiber Polymers 0.000 description 1
- 150000004982 aromatic amines Chemical class 0.000 description 1
- 239000010425 asbestos Substances 0.000 description 1
- 239000002956 ash Substances 0.000 description 1
- CDQSJQSWAWPGKG-UHFFFAOYSA-N butane-1,1-diol Chemical compound CCCC(O)O CDQSJQSWAWPGKG-UHFFFAOYSA-N 0.000 description 1
- 235000009120 camo Nutrition 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 235000005607 chanvre indien Nutrition 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 229930003836 cresol Natural products 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 239000004643 cyanate ester Substances 0.000 description 1
- -1 dicyclopentadiene diamines Chemical class 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 210000003746 feather Anatomy 0.000 description 1
- 235000013312 flour Nutrition 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 210000004209 hair Anatomy 0.000 description 1
- 239000011487 hemp Substances 0.000 description 1
- 239000010903 husk Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 239000002557 mineral fiber Substances 0.000 description 1
- 239000011490 mineral wool Substances 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 239000010451 perlite Substances 0.000 description 1
- 235000019362 perlite Nutrition 0.000 description 1
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 1
- 229920003192 poly(bis maleimide) Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 229920005906 polyester polyol Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920000151 polyglycol Polymers 0.000 description 1
- 239000010695 polyglycol Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 229910052895 riebeckite Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000010907 stover Substances 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 238000001721 transfer moulding Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B77/00—Component parts, details or accessories, not otherwise provided for
- F02B77/11—Thermal or acoustic insulation
- F02B77/13—Acoustic insulation
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10K—SOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
- G10K11/00—Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
- G10K11/16—Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
- G10K11/162—Selection of materials
- G10K11/165—Particles in a matrix
Definitions
- the present disclosure relates generally to substituting equivalent syntactic foam for metal in engine component(s) to reduce noise, and more specifically to replacing metallic engine components such as oil pans or valve covers with comparable pieces made from syntactic foam in order to reduce noise.
- This disclosure is directed toward one or more of the problems set forth above.
- a machine comprises a plurality of machine components being attached to one another, where at least one of the components is comprised of syntactic foam.
- the syntactic foam includes a polymer matrix and a plurality of fluid-filled microballoons which have a density of 0.5 g/cm 3 or greater and a hardness of at least about Shore D 74.
- a majority of the microballoons are out of contact with one another, and each microballoon is composed of a shell more rigid than the surrounding matrix, and contains a fluid comprising a majority of the volume of the microballoon.
- an engine comprises a plurality of engine components which are attached to one another.
- a portion of the engine components are metallic components and the other portion of the engine components comprise syntactic foam.
- a method of reducing sound emitted from a machine is accomplished by substituting a syntactic foam machine component for a metallic machine component.
- FIG. 1 is an enlarged cross section of the syntactic foam according to the present disclosure
- FIG. 2 is an enlarged cross section of another syntactic foam according to the present disclosure.
- FIG. 3 is a diagrammatic side view of engine components which could be constructed of syntactic foam according to the present disclosure.
- a syntactic foam 10 comprised of a plurality of microballoons 11 a, b in a foam matrix 14 , where the majority of microballoons are out of contact with one another.
- a production method for such a syntactic foam is shown in U.S. Pat. No. 4,788,230, which teaches a specific method for making a lightweight foam.
- the focus of this disclosure is to make a foam with sound deadening properties.
- Each microballoon 11 a, b has an outer shell 13 a, b which is of greater hardness than the surrounding foam matrix 14 .
- microballoon shell 13 a, b may be roughly 10% of the total diameter of the microballoon 11 a, b so that the microballoons 11 a, b can withstand the pressure put on them during the manufacturing process, and other expected forces and stresses.
- Each microballoon 11 a, b encloses a volume 12 a, b , wherein the majority of said volume 12 a, b is filled with some fluid, such as any suitable gas.
- the microballoons may range from 1 micron to 1000 microns in diameter, as will be known to one skilled in the art. It will further be understood that though FIG.
- FIG. 1 shows microballoons of two different diameters 11 a, b the scope of this disclosure is intended to include syntactic foam containing solely one size of microballoons or any combination of microballoons of different sizes, dependant upon the specific heat, electric and sound reduction properties and other criteria required for the specific component to be manufactured as will be known by one skilled in the art.
- FIG. 1 only shows the syntactic foam 10 and microballoons 11 a, b , there may or may not be any one of a number of filler materials or crosslink additives in accordance with the desired characteristics of the foam.
- FIG. 2 another syntactic foam 110 magnified cross section has a formulation similar to that of the foam 10 of FIG. 1 , but also includes fibers 118 for increased strength.
- the FIG. 2 embodiment also differs in that the relative ratio of microballoons to polymeric matrix is greater than that of the syntactic foam of FIG. 1 .
- One set of materials proposed as components of the syntactic foam 10 are bisphenol A epoxy as a matrix resin, aromatic amine as a crosslink additive, glass fluid-filled microballoons and carbon fiber as a fiber filler as necessary.
- a second example of the syntactic foam 10 includes bisphenol F epoxy as a matrix resin, aliphatic amine as a crosslink additive, ceramic fluid-filled microballoons and basalt fiber as a fiber filler as necessary.
- matrix resin examples include but are not limited to: epoxy phenolic, epoxy cresol, epoxy BPA, aromatic epoxy, acrylic resins, bismaleimides maleic acid, isophthalic acid, orthophthalic acid, terephthalic acid, furfuryl alcohol, dicyclopentadiene diamines, or aromatic cyanate ester, or any appropriate combination or accepted equivalent.
- crosslink additives include but are not limited to: novolac polyamine, novolac fumaric acid, novolac glycols, polyacrylate polyglycols, styrene, acrylic acid, methacrylic acid, 1-4 butanediol, MOCA or UV and EB cure systems, or any appropriate combination or accepted equivalent.
- syntactic foam 10 necessarily involves the use of microballoons 11 a, b , however other fillers may be used to change the specifications or properties of the foam as desired for the specific application.
- Possible materials that could be used as fillers include but are not limited to: expanded clay prills, glass fiber, perlite, wood flour/fiber, expanded fly ash, corn stover/husk/cob, fly ash cenospheres, rice hull, rice hull ash, expandable starch granules, cotton wool/linters, hair or feather fiber, expanded thermoset such as phenolic granules, hemp/jute/kenaf fiber, rock wool, graphite fiber, aramid fiber, nylon fiber, other cellulosic or crop fiber, thermoplastic fiber, thermoset fiber or other mineral fibers such as asbestos, or any appropriate combination or accepted equivalent.
- syntactic foam 10 could also be composed of: phenolic (phenol mixed with formaldehyde), polyether polyols, polyester polyols, polyimide resins or high heat-distortion thermoplastic resins, or any appropriate combination or accepted equivalent.
- FIG. 3 with continued reference to FIGS. 1 and 2 there is shown an engine housing 22 including valve cover components 20 a - c as well as an oil pan 21 , amongst various other components.
- any number of components of the engine housing 22 including the valve cover components 20 a - c or the oil pan 21 could be composed of syntactic foam 10 as described above with a minimum hardness at least equal to that of an equivalent metallic component which it is replacing.
- the specific examples of FIGS. 1 and 2 have hardness ranges of about Shore D 74 to about Shore D 80, respectively.
- the term “about” means that when the number is rounded off to the same number of significant digits, the numbers are equal. For instance, 73.5 is about 74.
- valve cover or oil pan components is intended to be exemplary only and other parts or components of the engine or engine housing 22 can be constructed from syntactic foam 10 in order to reduce noise.
- the present disclosure might be especially applicable to covers and the like that protect other machine components and include fastener bores for receiving suitable fasteners, such as bolts or screws.
- the foam matrix 14 itself will have inherent sound reduction properties, but these properties can be improved by adding fluid filled microballoons 11 a, b .
- These microballoons 11 a, b increase sound reduction in two ways. The first is that they increase the complexity of the sound path through the foam by adding internal reflection barriers into the path once the sound enters the fluid-filled microballoons. Additionally, each time the sound goes through a barrier into a different medium, such as air to foam matrix 14 , foam matrix 14 to microballoon shell 13 a, b , and microballoon shell 13 a, b to microballoon internal fluid 12 a, b a portion of the sound is scattered. By increasing the barrier changes in the sound path the sound will be increasingly scattered throughout the foam, and the sound emerging from the foam ultimately reduced.
- syntactic foam 10 made of fluid filled microballoons 11 a, b in a foam matrix 14 in order to reduce noise from the engine.
- Methods of part forming are various. These could include compression molding, transfer molding and injection molding. Since the syntactic foam composite material is relatively incompressible, unlike most common foams, it may be processed in normal pressure forming equipment. It may be necessary to process the part like a similar solid composite material (based upon the polymer content of the formulation), which may allow early demolding, but also a relatively long open cure time.
- One preferred low cost formulation of the foam involves a foam comprised of 57% epoxy resin, 9% epoxy crosslinking agent, 22% fibrous filler, 6% microballoons and 6% long-fiber filler.
- This composite foam is roughly 30% lower density than comparable foam involving glass-filled spheres, and has desirable acoustical and physical properties for the intended application.
- This foam has a specific gravity of roughly 1.04 g/cm 3 and a Durometer hardness of 80D (Shore D 80).
- Another formulation involves a foam comprised of 59% epoxy resin, 9% epoxy crosslinking agent, 23% fibrous filler, 6% microballoons and 3% long-fiber filler as described above.
- This compound is roughly 40% lower density than a comparable foam involving glass-filled spheres, and also has desirable acoustical and physical properties for the intended application.
- This foam has a specific gravity of roughly 0.88 g/cm 3 and a Durometer hardness of 75D (Shore D 74).
- Still another formulation for the foam involves a foam comprised of 65% epoxy resin, 10% epoxy crosslinking agent, 13% carbon fiber filler and 13% microballoons.
- This formulation may be higher cost, but is 40% lower density than a comparable foam and has excellent acoustical and physical properties.
- This formulation of the foam has a Durometer hardness of 75D (Shore D 75) and a specific gravity of 0.88 g/cm 3 .
- Another formulation involves a syntactic foam comprised of 81% epoxy resin, 12% epoxy cross linking agent, 3% fibrous filler and 4% microballoons. This foam has a specific gravity of roughly 1.94 g/cm 3 and a durometer hardness of about Shore 74 D.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
Abstract
A method of decreasing engine noise in machines, such as internal combustion engines, by replacing metallic engine components that serve as noise transmission pathways such as oil pans, valve covers, gear covers with similar components made of syntactic foam with a density of at least 0.5 g/cm3 and a hardness at least about equal to that of an equivalent metallic engine part which it is replacing. The syntactic foam is comprised of fluid-filled microballoons in a foam matrix. The microballoons have an outer shell harder than that of the surrounding foam matrix, and a majority of the microballoons are out of contact with one another.
Description
- This application claims priority from provisional application No. 60/858,885, filed Nov. 14, 2006, with the same title.
- The present disclosure relates generally to substituting equivalent syntactic foam for metal in engine component(s) to reduce noise, and more specifically to replacing metallic engine components such as oil pans or valve covers with comparable pieces made from syntactic foam in order to reduce noise.
- Internal combustion engines necessarily involve moving parts and explosive combustion events, and these things necessarily involve noise output. Governmental regulations require that this noise output be below a certain level. This has led to complex structures and “add-ons” to engines to try to reduce the noise output from components that act as the prime transmission path of sound such as valve covers, engine blocks, front and rear gear covers, oil pans and other engine components known to those skilled in the art. These add-ons can have the drawback of being bulky and increasing total cost of production.
- One solution to this problem that has been considered is metallic components with isolation seals, however these have the drawback in that they can increase total engine cost and can leak. Another possible solution is laminated metal components such as QuietSteel. Components using this material, however, are hard to form and become quite difficult to weld. A related solution was proposed in U.S. Pat. No. 5,566,721 which involved coating a component, such as a driveshaft tube, with a sound deadening material such as a urethane elastomer. This method adds an extra production step and cost in terms of both capital and time. Other solutions have included the use of polymeric composite components with low density such as balsa wood, pvc foam or honeycomb inserts, but these can suffer from the problem of low strength and be damaged easily, which would make them difficult to use effectively in engine components. A final solution has been to use gas-assisted injection molded composite components, but this technology requires very specific parameters in terms of the heat and pressure of the surrounding environment. Thus it becomes difficult to achieve a uniform density/size of voids in the foam, so thus far this technology is only used in manufacturing relatively small pieces such as car door handles.
- This disclosure is directed toward one or more of the problems set forth above.
- In one aspect, a machine comprises a plurality of machine components being attached to one another, where at least one of the components is comprised of syntactic foam. The syntactic foam includes a polymer matrix and a plurality of fluid-filled microballoons which have a density of 0.5 g/cm3 or greater and a hardness of at least about Shore D 74. A majority of the microballoons are out of contact with one another, and each microballoon is composed of a shell more rigid than the surrounding matrix, and contains a fluid comprising a majority of the volume of the microballoon.
- In another aspect, an engine comprises a plurality of engine components which are attached to one another. A portion of the engine components are metallic components and the other portion of the engine components comprise syntactic foam.
- In still another aspect, a method of reducing sound emitted from a machine is accomplished by substituting a syntactic foam machine component for a metallic machine component.
-
FIG. 1 is an enlarged cross section of the syntactic foam according to the present disclosure; -
FIG. 2 is an enlarged cross section of another syntactic foam according to the present disclosure; and -
FIG. 3 is a diagrammatic side view of engine components which could be constructed of syntactic foam according to the present disclosure. - Referring to
FIG. 1 , there is shown asyntactic foam 10 comprised of a plurality of microballoons 11 a, b in afoam matrix 14, where the majority of microballoons are out of contact with one another. One example of a production method for such a syntactic foam is shown in U.S. Pat. No. 4,788,230, which teaches a specific method for making a lightweight foam. In contrast, the focus of this disclosure is to make a foam with sound deadening properties. Each microballoon 11 a, b has anouter shell 13 a, b which is of greater hardness than the surroundingfoam matrix 14. It will be understood that themicroballoon shell 13 a, b may be roughly 10% of the total diameter of the microballoon 11 a, b so that the microballoons 11 a, b can withstand the pressure put on them during the manufacturing process, and other expected forces and stresses. Each microballoon 11 a, b encloses avolume 12 a, b, wherein the majority of saidvolume 12 a, b is filled with some fluid, such as any suitable gas. The microballoons may range from 1 micron to 1000 microns in diameter, as will be known to one skilled in the art. It will further be understood that thoughFIG. 1 shows microballoons of two different diameters 11 a, b the scope of this disclosure is intended to include syntactic foam containing solely one size of microballoons or any combination of microballoons of different sizes, dependant upon the specific heat, electric and sound reduction properties and other criteria required for the specific component to be manufactured as will be known by one skilled in the art. Finally, it will be understood that thoughFIG. 1 only shows thesyntactic foam 10 and microballoons 11 a, b, there may or may not be any one of a number of filler materials or crosslink additives in accordance with the desired characteristics of the foam. - Referring to
FIG. 2 , anothersyntactic foam 110 magnified cross section has a formulation similar to that of thefoam 10 ofFIG. 1 , but also includesfibers 118 for increased strength. TheFIG. 2 embodiment also differs in that the relative ratio of microballoons to polymeric matrix is greater than that of the syntactic foam ofFIG. 1 . - One set of materials proposed as components of the
syntactic foam 10 are bisphenol A epoxy as a matrix resin, aromatic amine as a crosslink additive, glass fluid-filled microballoons and carbon fiber as a fiber filler as necessary. A second example of thesyntactic foam 10 includes bisphenol F epoxy as a matrix resin, aliphatic amine as a crosslink additive, ceramic fluid-filled microballoons and basalt fiber as a fiber filler as necessary. - Other options for the matrix resin include but are not limited to: epoxy phenolic, epoxy cresol, epoxy BPA, aromatic epoxy, acrylic resins, bismaleimides maleic acid, isophthalic acid, orthophthalic acid, terephthalic acid, furfuryl alcohol, dicyclopentadiene diamines, or aromatic cyanate ester, or any appropriate combination or accepted equivalent.
- Some possible materials that could be used as crosslink additives include but are not limited to: novolac polyamine, novolac fumaric acid, novolac glycols, polyacrylate polyglycols, styrene, acrylic acid, methacrylic acid, 1-4 butanediol, MOCA or UV and EB cure systems, or any appropriate combination or accepted equivalent.
- One skilled in the art will understand that
syntactic foam 10 necessarily involves the use of microballoons 11 a, b, however other fillers may be used to change the specifications or properties of the foam as desired for the specific application. Possible materials that could be used as fillers include but are not limited to: expanded clay prills, glass fiber, perlite, wood flour/fiber, expanded fly ash, corn stover/husk/cob, fly ash cenospheres, rice hull, rice hull ash, expandable starch granules, cotton wool/linters, hair or feather fiber, expanded thermoset such as phenolic granules, hemp/jute/kenaf fiber, rock wool, graphite fiber, aramid fiber, nylon fiber, other cellulosic or crop fiber, thermoplastic fiber, thermoset fiber or other mineral fibers such as asbestos, or any appropriate combination or accepted equivalent. - It is finally envisioned that the
syntactic foam 10 could also be composed of: phenolic (phenol mixed with formaldehyde), polyether polyols, polyester polyols, polyimide resins or high heat-distortion thermoplastic resins, or any appropriate combination or accepted equivalent. - One skilled in the art will understand that the above examples are merely listed as exemplary options and are in no way intended to specifically limit the scope of the materials used and equivalent substitutes as defined by the current art may be used as desired. Further, one skilled in the art will understand that some combinations of the materials above may involve less ingredients, such as thermoplastics which do not require a cross-linking additive. The specific combinations of the materials listed above will be recognized by one skilled in the art.
- Referring to
FIG. 3 with continued reference toFIGS. 1 and 2 there is shown anengine housing 22 including valve cover components 20 a-c as well as anoil pan 21, amongst various other components. It is envisioned that according to the present disclosure any number of components of theengine housing 22 including the valve cover components 20 a-c or theoil pan 21 could be composed ofsyntactic foam 10 as described above with a minimum hardness at least equal to that of an equivalent metallic component which it is replacing. The specific examples ofFIGS. 1 and 2 have hardness ranges of about Shore D 74 to about Shore D 80, respectively. The term “about” means that when the number is rounded off to the same number of significant digits, the numbers are equal. For instance, 73.5 is about 74. Although syntactic foam components having these hardness parameters may be suitable for the identified engine compressions, higher and lower harnesses would be attainable without difficulty. However, parts made at lower durometers would likely not be as durable for engine component applications, but higher durometers might be attractive, and would certainly be attainable with a suitable polymer content. Further, one skilled in the art will recognize that the description of the valve cover or oil pan components is intended to be exemplary only and other parts or components of the engine orengine housing 22 can be constructed fromsyntactic foam 10 in order to reduce noise. The present disclosure might be especially applicable to covers and the like that protect other machine components and include fastener bores for receiving suitable fasteners, such as bolts or screws. - One skilled in the art will recognize that the
foam matrix 14 itself will have inherent sound reduction properties, but these properties can be improved by adding fluid filled microballoons 11 a, b. These microballoons 11 a, b increase sound reduction in two ways. The first is that they increase the complexity of the sound path through the foam by adding internal reflection barriers into the path once the sound enters the fluid-filled microballoons. Additionally, each time the sound goes through a barrier into a different medium, such as air tofoam matrix 14,foam matrix 14 tomicroballoon shell 13 a, b, and microballoon shell 13 a, b to microballoon internal fluid 12 a, b a portion of the sound is scattered. By increasing the barrier changes in the sound path the sound will be increasingly scattered throughout the foam, and the sound emerging from the foam ultimately reduced. - As described above, it is envisioned that any number of metallic engine parts may be replaced by
syntactic foam 10 made of fluid filled microballoons 11 a, b in afoam matrix 14 in order to reduce noise from the engine. Methods of part forming are various. These could include compression molding, transfer molding and injection molding. Since the syntactic foam composite material is relatively incompressible, unlike most common foams, it may be processed in normal pressure forming equipment. It may be necessary to process the part like a similar solid composite material (based upon the polymer content of the formulation), which may allow early demolding, but also a relatively long open cure time. - One preferred low cost formulation of the foam involves a foam comprised of 57% epoxy resin, 9% epoxy crosslinking agent, 22% fibrous filler, 6% microballoons and 6% long-fiber filler. This composite foam is roughly 30% lower density than comparable foam involving glass-filled spheres, and has desirable acoustical and physical properties for the intended application. This foam has a specific gravity of roughly 1.04 g/cm3 and a Durometer hardness of 80D (Shore D 80).
- Another formulation involves a foam comprised of 59% epoxy resin, 9% epoxy crosslinking agent, 23% fibrous filler, 6% microballoons and 3% long-fiber filler as described above. This compound is roughly 40% lower density than a comparable foam involving glass-filled spheres, and also has desirable acoustical and physical properties for the intended application. This foam has a specific gravity of roughly 0.88 g/cm3 and a Durometer hardness of 75D (Shore D 74).
- Still another formulation for the foam involves a foam comprised of 65% epoxy resin, 10% epoxy crosslinking agent, 13% carbon fiber filler and 13% microballoons. This formulation may be higher cost, but is 40% lower density than a comparable foam and has excellent acoustical and physical properties. This formulation of the foam has a Durometer hardness of 75D (Shore D 75) and a specific gravity of 0.88 g/cm3.
- Another formulation involves a syntactic foam comprised of 81% epoxy resin, 12% epoxy cross linking agent, 3% fibrous filler and 4% microballoons. This foam has a specific gravity of roughly 1.94 g/cm3 and a durometer hardness of about Shore 74 D.
- It should be understood that the above description is intended for illustrative purposes only, and is not intended to limit the scope of the present invention in any way. One skilled in the art will recognize that although this disclosure focuses on replacing metallic engine parts, especially non-structural components, with syntactic foam to reduce noise, the scope includes other machines with internal combustion engines such as lawn mowers, leaf blowers, on-highway trucks and tractors, amongst other examples which will be known to one skilled in the art. Thus, those skilled in the art will appreciate that other aspects of the invention can be obtained from a study of the drawings, the disclosure and the appended claims.
Claims (16)
1. A machine comprising:
a plurality of machine components being attached to one another, and at least one of the components being comprised of syntactic foam;
the syntactic foam including a polymer matrix and a plurality of fluid-filled microballoons, a density of 0.5 g/cm3 or greater, and a hardness of at least about Shore D 74; and
a majority of the microballoons being out of contact with one another, and each microballoon including fluid surrounded by a shell more rigid than the matrix, and the fluid being a majority of a volume of each microballoon.
2. The machine of claim 1 wherein the machine being an engine, and the at least one component includes a valve cover.
3. The machine of claim 1 wherein the at least one component includes a gear cover.
4. The machine of claim 1 wherein the at least one component includes an oil pan.
5. An engine comprising:
a plurality of engine components being attached to one another and including a portion being metallic components and a portion being comprised of a syntactic foam component.
6. The engine of claim 5 wherein the syntactic foam component includes a valve cover.
7. The engine of claim 5 wherein the syntactic foam component includes a gear cover.
8. The engine of claim 5 wherein the syntactic foam component includes an oil pan.
9. The engine of claim 5 wherein the syntactic foam includes a density of 0.5 g/cm3 or greater.
10. The engine of claim 5 wherein the syntactic foam includes a hardness of at least about Shore D 74.
11. The engine of claim 5 wherein the syntactic foam includes a polymer matrix and a plurality of fluid-filled microballoons, and a majority of the microballoons being out of contact with one another.
12. The engine of claim 5 wherein the syntactic foam includes a polymer matrix and a plurality of fluid-filled microballoons, and each microballoon includes a fluid surrounded by a shell more rigid than the matrix and the fluid being a majority of a volume of each microballoon.
13. The engine of claim 12 wherein the syntactic foam components include at least one of a valve cover, a gear cover, and an oil pan; and
the syntactic foam includes a density of 0.5 g/cm3 or greater, a hardness of at least about Shore D 74, and a majority of the microballoons being out of contact with one another.
14. A method of reducing sound emitted from a machine comprising a step of:
substituting a syntactic foam machine component for a metallic machine component.
15. The method of claim 14 wherein the machine being an engine, and the machine component including at least one of a valve cover, a gear cover, and an oil pan.
16. The method of claim 14 wherein the syntactic foam component includes a polymer matrix and a plurality of fluid-filled microballoons, a density of 0.5 g/cm3 or greater, and a hardness of at least about Shore D 74; and
a majority of the microballoons being out of contact with one another, and each microballoon including fluid surrounded by a shell more rigid than the matrix, and the fluid being a majority of a volume of each microballoon.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US11/985,220 US20080185220A1 (en) | 2006-11-14 | 2007-11-14 | Method of using syntactic foam to reduce noise and machine using same |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US85888506P | 2006-11-14 | 2006-11-14 | |
| US11/985,220 US20080185220A1 (en) | 2006-11-14 | 2007-11-14 | Method of using syntactic foam to reduce noise and machine using same |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20080185220A1 true US20080185220A1 (en) | 2008-08-07 |
Family
ID=39675213
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/985,220 Abandoned US20080185220A1 (en) | 2006-11-14 | 2007-11-14 | Method of using syntactic foam to reduce noise and machine using same |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US20080185220A1 (en) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20070119651A1 (en) * | 2005-11-30 | 2007-05-31 | Toyota Boshoku Kabushiki Kaisha | Soundproof material |
| WO2010046707A1 (en) * | 2008-10-24 | 2010-04-29 | Marine Systems Technology Limited | Ducted air system with syntactic material placed adjacent an outlet for noise attenuation and associated method |
| FR3001324A1 (en) * | 2013-01-24 | 2014-07-25 | Aircelle Sa | ACOUSTICAL ATTENUATION PANEL WITH ALVEOLAR SOUL |
| CN114008367A (en) * | 2019-04-23 | 2022-02-01 | 佐治亚技术研究公司 | System and method for fluid noise suppressor |
Citations (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US1751652A (en) * | 1926-01-08 | 1930-03-25 | Henry W Nieman | Synchronous amplifying control mechanism |
| US4398527A (en) * | 1980-08-22 | 1983-08-16 | Chevron Research Company | Internal combustion engine having manifold and combustion surfaces coated with a foam |
| US4788230A (en) * | 1985-09-30 | 1988-11-29 | The Boeing Company | Process for making a low density syntactic foam product and the resultant product |
| US5114982A (en) * | 1989-11-20 | 1992-05-19 | Westinghouse Electric Corp. | Acoustic scattering and high reflection loss compositions |
| USRE34614E (en) * | 1980-07-24 | 1994-05-24 | Gentiluomo Joseph A | Bowling ball |
| US5422380A (en) * | 1994-06-07 | 1995-06-06 | Westinghouse Electric Corporation | Sound absorbing and decoupling syntactic foam |
| US5566721A (en) * | 1995-07-20 | 1996-10-22 | Dana Corporation | Driveshaft tube having sound deadening coating |
| US6022066A (en) * | 1998-10-15 | 2000-02-08 | Ricon Corporation | Door extension for vehicle doors |
| US6455606B1 (en) * | 1997-04-02 | 2002-09-24 | Sanyo Chemical Industries, Ltd. | Polyurethane foam, process for producing the same, and foam forming composition |
| US6541534B2 (en) * | 2000-02-25 | 2003-04-01 | Essex Specialty Products, Inc. | Rigid polyurethane foams |
| US6582633B2 (en) * | 2001-01-17 | 2003-06-24 | Akzo Nobel N.V. | Process for producing objects |
| US7093337B1 (en) * | 2000-05-25 | 2006-08-22 | Taylor Zachary R | Integrated tankage for propulsion vehicles and the like |
-
2007
- 2007-11-14 US US11/985,220 patent/US20080185220A1/en not_active Abandoned
Patent Citations (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US1751652A (en) * | 1926-01-08 | 1930-03-25 | Henry W Nieman | Synchronous amplifying control mechanism |
| USRE34614E (en) * | 1980-07-24 | 1994-05-24 | Gentiluomo Joseph A | Bowling ball |
| US4398527A (en) * | 1980-08-22 | 1983-08-16 | Chevron Research Company | Internal combustion engine having manifold and combustion surfaces coated with a foam |
| US4788230A (en) * | 1985-09-30 | 1988-11-29 | The Boeing Company | Process for making a low density syntactic foam product and the resultant product |
| US5114982A (en) * | 1989-11-20 | 1992-05-19 | Westinghouse Electric Corp. | Acoustic scattering and high reflection loss compositions |
| US5422380A (en) * | 1994-06-07 | 1995-06-06 | Westinghouse Electric Corporation | Sound absorbing and decoupling syntactic foam |
| US5566721A (en) * | 1995-07-20 | 1996-10-22 | Dana Corporation | Driveshaft tube having sound deadening coating |
| US6455606B1 (en) * | 1997-04-02 | 2002-09-24 | Sanyo Chemical Industries, Ltd. | Polyurethane foam, process for producing the same, and foam forming composition |
| US6022066A (en) * | 1998-10-15 | 2000-02-08 | Ricon Corporation | Door extension for vehicle doors |
| US6541534B2 (en) * | 2000-02-25 | 2003-04-01 | Essex Specialty Products, Inc. | Rigid polyurethane foams |
| US7093337B1 (en) * | 2000-05-25 | 2006-08-22 | Taylor Zachary R | Integrated tankage for propulsion vehicles and the like |
| US6582633B2 (en) * | 2001-01-17 | 2003-06-24 | Akzo Nobel N.V. | Process for producing objects |
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20070119651A1 (en) * | 2005-11-30 | 2007-05-31 | Toyota Boshoku Kabushiki Kaisha | Soundproof material |
| US7690480B2 (en) * | 2005-11-30 | 2010-04-06 | Toyota Boshoku Kabushiki Kaisha | Soundproof material |
| WO2010046707A1 (en) * | 2008-10-24 | 2010-04-29 | Marine Systems Technology Limited | Ducted air system with syntactic material placed adjacent an outlet for noise attenuation and associated method |
| FR3001324A1 (en) * | 2013-01-24 | 2014-07-25 | Aircelle Sa | ACOUSTICAL ATTENUATION PANEL WITH ALVEOLAR SOUL |
| WO2014114893A1 (en) * | 2013-01-24 | 2014-07-31 | Aircelle | Acoustic attenuation panel with a honeycomb core |
| CN114008367A (en) * | 2019-04-23 | 2022-02-01 | 佐治亚技术研究公司 | System and method for fluid noise suppressor |
| CN114008368A (en) * | 2019-04-23 | 2022-02-01 | 佐治亚技术研究公司 | System and method for water hammer arrestor |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Marsh | Next step for automotive materials | |
| US20080185220A1 (en) | Method of using syntactic foam to reduce noise and machine using same | |
| US6764754B1 (en) | Composite material with improved damping characteristics and method of making same | |
| Taj et al. | Natural fiber-reinforced polymer composites | |
| KR20160051727A (en) | Sandwich structure and integrated molded article using same, as well as production methods therefor | |
| JP2008248866A (en) | Soundproof cover | |
| CN101925724A (en) | Composite muffler system of heat curable polymer | |
| JPH09217818A (en) | Resin pulley | |
| US20180169977A1 (en) | Buoyancy module | |
| US6550440B1 (en) | Acoustic suppression arrangement for a component undergoing induced vibration | |
| EP1430215A1 (en) | Engine intake manifold made of noise barrier composite material | |
| WO2005010863A1 (en) | Acoustic window | |
| Gedif et al. | Recycling of 100% cotton fabric waste to produce unsaturated polyester‐based composite for false ceiling board application | |
| US4997705A (en) | Window for acoustic wave form and method for making | |
| BH et al. | Prominence of quantitative fiber loading on free vibration, damping behavior, inter‐laminar shear strength, fracture toughness, thermal conductivity, and flammability properties of jute–banana hybrid fiber phenol‐formaldehyde composites | |
| CN114806034A (en) | A casing and sound generating mechanism for sound generating mechanism | |
| Chandrika et al. | Natural fiber incorporated polymer matrix composites for electronic circuit board applications | |
| JP2021524554A (en) | Fan containment casing | |
| Samuel et al. | Mechanical and vibrational study of raw and surface‐treated ramie fiber hybridized carbon fiber epoxy composites | |
| JP2006044262A (en) | Hollow molded article and its production method | |
| CN115610067B (en) | Underwater light pressure-resistant sound-absorbing multilayer array structure unit | |
| US11578190B2 (en) | Resin composite having excellent soundproofing and mechanical properties | |
| EP2788977A2 (en) | Acoustic reflectors | |
| CN115746497B (en) | Shell of sound generating device, sound generating device with shell and electronic equipment | |
| JP2020075367A (en) | Glass fiber structure |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: CATERPILLAR INC., ILLINOIS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GRABENSTETTER, THOMAS J.;REEL/FRAME:020157/0419 Effective date: 20071114 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |