US20080121206A1 - Lubricating Compositions - Google Patents

Lubricating Compositions Download PDF

Info

Publication number
US20080121206A1
US20080121206A1 US11/572,867 US57286708A US2008121206A1 US 20080121206 A1 US20080121206 A1 US 20080121206A1 US 57286708 A US57286708 A US 57286708A US 2008121206 A1 US2008121206 A1 US 2008121206A1
Authority
US
United States
Prior art keywords
oil
lubricating composition
engine
lubricating
tbn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/572,867
Other languages
English (en)
Inventor
Richard Leahy
Alexandra Mayhew
W. Preston Barnes
Stephen J. Cook
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lubrizol Corp
Original Assignee
Lubrizol Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lubrizol Corp filed Critical Lubrizol Corp
Priority to US11/572,867 priority Critical patent/US20080121206A1/en
Assigned to THE LUBRIZOL CORPORATION reassignment THE LUBRIZOL CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BARNES, W. PRESTON, MAYHEW, ALEXANDRA, COOK, STEPHEN J., LEAHY, RICHARD
Publication of US20080121206A1 publication Critical patent/US20080121206A1/en
Priority to US13/622,455 priority patent/US20130019832A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M163/00Lubricating compositions characterised by the additive being a mixture of a compound of unknown or incompletely defined constitution and a non-macromolecular compound, each of these compounds being essential
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M167/00Lubricating compositions characterised by the additive being a mixture of a macromolecular compound, a non-macromolecular compound and a compound of unknown or incompletely defined constitution, each of these compounds being essential
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • C10M169/045Mixtures of base-materials and additives the additives being a mixture of compounds of unknown or incompletely defined constitution and non-macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • C10M169/048Mixtures of base-materials and additives the additives being a mixture of compounds of unknown or incompletely defined constitution, non-macromolecular and macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M171/00Lubricating compositions characterised by purely physical criteria, e.g. containing as base-material, thickener or additive, ingredients which are characterised exclusively by their numerically specified physical properties, i.e. containing ingredients which are physically well-defined but for which the chemical nature is either unspecified or only very vaguely indicated
    • C10M171/02Specified values of viscosity or viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/026Butene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/028Overbased salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/08Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
    • C10M2209/084Acrylate; Methacrylate
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/28Amides; Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/044Sulfonic acids, Derivatives thereof, e.g. neutral salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/046Overbasedsulfonic acid salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/045Metal containing thio derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/04Groups 2 or 12
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/02Viscosity; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/04Molecular weight; Molecular weight distribution
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/02Pour-point; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/04Detergent property or dispersant property
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/52Base number [TBN]
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/252Diesel engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2060/00Chemical after-treatment of the constituents of the lubricating composition
    • C10N2060/14Chemical after-treatment of the constituents of the lubricating composition by boron or a compound containing boron

Definitions

  • the present invention relates to a method of lubricating an internal combustion engine by monitoring engine performance and adding an additive package accordingly.
  • the invention further relates to a composition suitable for the method.
  • 2-stroke engines In many 2-stroke engines, especially marine diesel engines or stationary power diesel engines, there are two lubricating compositions.
  • One composition is a system oil of viscosity generally less than 12 mm 2 /s which is used to lubricate the crankcase of the 2-stroke engines and has a low Total Base Number (TBN).
  • TBN Total Base Number
  • the system oil is normally unsuitable for lubricating cylinder liners and piston rings because of its low TBN and low viscosity.
  • the second lubricating composition used in a 2-stroke engine has a higher viscosity and TBN and is suitable for lubricating cylinder liners and piston rings. This is sometimes referred to as a cylinder oil. (All viscosities reported herein are kinematic viscosity measured at 100° C., unless otherwise specified).
  • typical fully formulated lubricating compositions suitable for lubricating cylinder liners and piston rings have a total base number of 70 to 80.
  • the amount of TBN required varies as amount of base required to neutralise sulphuric acid produced during combustion changes.
  • two or more lubricating compositions with differing TBN are independently available for use.
  • One lubricating composition has TBN of 40 to 50 suitable for low sulphur containing fuel
  • the second lubricating composition has a TBN of 70 or more and is used for higher sulphur containing fuel.
  • US Patent Application 2003/0196632 A1 discloses a method to employ instrumentation to effectuate variation in lubricant flow rate in response to actual engine conditions.
  • the method regularly monitors one or more engine parameters with instruments such as XRF or IR for base number measurement.
  • the measured engine parameters are used to calculate the feed rate of lubricant to the engine.
  • US Patent Application 2003/0159672 A1 discloses a method of regularly monitoring one or more engine parameters of an all-loss lubricating system and calculating from the engine parameters an amount of a secondary fluid that is required to be added to base fluid to create a modified base lubricant that is applied to the engine during operations.
  • US Patent Application 2003/0183188 A1 discloses a device and a process for real time optimizing engine lubricating oil properties in response to actual operating conditions.
  • the process includes on-line modification of lubricant properties by repeatedly measuring a system that recirculates a base lubricant and one or more system condition parameters at a location of interest.
  • the process then calculates an amount of secondary fluid to add to the lubricant followed by mixing the base fluid with the secondary fluid creating a modified base lubricant and applying to a location of interest.
  • International Application WO 99/64543 A1 discloses diesel cylinder oil having a viscosity of 15 to 27 mm 2 /s (or cSt), a viscosity index of at least 95 and a TBN of at least 40 mg KOH/g.
  • the oil is a neutral base stock of no more than 725 SUS viscosity at 100° C. and 2 to 15 wt % of the oil a liquid polyisobutylene with a viscosity of 1500 to 8000 mm 2 /s (cSt) at 100° C.
  • the present invention provides a lubricating composition and a method of imparting a lubricating composition with such properties using a selected additive package to control deposit formation or wear.
  • the present invention provides a method of lubricating an internal combustion engine with a power output of at least 1600 kilowatts, with a lubricating composition, the method comprising:
  • the lubricating composition has a total base number of at least 10 mg KOH/g; and the component comprising the light neutral base oil is supplied from an oil reservoir available to said internal combustion engine.
  • the invention further provides a method of lubricating an internal combustion engine with a power output of at least 1600 kilowatts, with a lubricating composition, the method comprising contacting (that is, lubricating or supplying) the internal combustion engine with a lubricating composition comprising:
  • the present invention provides a method for lubricating an internal combustion engine as described above.
  • the heavy neutral base oil or brightstock has a viscosity of above 12 mm 2 /s to 35 mm 2 /s and in another embodiment a viscosity of above 12 mm 2 /s to 40 mm 2 /s.
  • total viscosity of the lubricating composition is 12 mm 2 /s or 15 mm 2 /s to 26.1 mm 2 /s and in another embodiment 12 mm 2 /s or 15 mm 2 /s to 21.9 mm 2 /s.
  • the lubricating composition with a total viscosity of 12 mm 2 /s or 15 mm 2 /s to 26.1 mm 2 /s is an SAE 60 grade
  • an SAE 50 grade lubricating composition has a viscosity of 12 mm 2 /s or 15 mm 2 /s to 21.9 mm 2 /s.
  • the performance characteristics of an engine which may be monitored include wear, engine load, variation in TBN, deposits, or corrosion, and these may be monitored directly or indirectly. It is to be understood that the term “monitoring performance characteristics of the engine” not only includes mechanical or power output measurements, but it further includes chemical or physical properties of the lubricating oil in the engine. Wear may be measured by a number of techniques including determining the metal or metal oxide particles present in scrape down lubricant from a cylinder liner. Other examples of monitoring engine performance include measuring the sulphur content of the fuel, the load of an engine and TBN of the lubricant. A more detailed description of possible techniques for monitoring performance characteristics of an engine is disclosed in US Patent Application 2003/0159672.
  • the selection of an additive package to provide a desired TBN level to a lubricating composition may be determined by analyzing fuel properties such as sulphur content or other performance characteristics described above.
  • fuel properties such as sulphur content or other performance characteristics described above.
  • the amount of TBN required to neutralise acids produced during combustion, e.g., sulphuric acid is reduced and the additive package may contain less detergent.
  • the TBN provided by the additive package is typically provided in large part by the presence in the package of an overbased detergent, described in greater detail below.
  • the sulphur content of the fuel is high (often over 4 wt % of the fuel) and as a consequence the amount of TBN required from detergent may be higher.
  • the total base number (TBN) of the lubricating composition in one embodiment is 30 or higher, in another embodiment 40 or higher, in another embodiment 50 or higher, in another embodiment 60 or higher, in another embodiment 65 or higher and in another embodiment 70 or higher.
  • TBN of the lubricating composition include 40, 50, 60, 65, 70, 80 or 100.
  • the selected additive package of step (2) is combined with a base oil defined above by known methods such as in a blender.
  • the blender is typically located in situ available relative to an internal combustion engine, which will typically have a power output of at least 1600 kilowatts.
  • the internal combustion engine has a power output of at least 2000 kilowatts, in another embodiment at least 3000 kilowatts and in another embodiment at least 4700 kilowatts.
  • the lubricating composition of step (3) in one embodiment is supplied to the combustion engine directly from a “day tank” (or cylinder oil service tank) and in another embodiment from a storage tank.
  • At least one performance additive comprising: a dispersant, an antiwear agent, a detergent or mixtures thereof;
  • the polymeric thickener has a weight average molecular weight (Mw) of more than 8000 and is present in an amount to provide a total viscosity of the composition of 15 mm 2 /s to 29 mm 2 /s; the dispersant or detergent when present imparts basicity to said lubricating composition; and the composition has a total base number of at least 10 mg KOH/g.
  • Mw weight average molecular weight
  • At least one performance additive comprising: a dispersant, an antiwear agent, a detergent or mixtures thereof;
  • the polymeric thickener has a weight average molecular weight (Mw) of more than 8000 and is present in an amount to provide a total viscosity of the lubricating composition of 15 mm 2 /s to 29 mm 2 /s (or viscosity grade ranging from SAE 30 to SAE 60 (typically SAE 50)); the dispersant or detergent when present imparts basicity to said lubricating composition; and the composition has a total base number of at least 10 mg KOH/g.
  • Mw weight average molecular weight
  • the invention employs oil of lubricating viscosity with a 2 mm 2 /s to 12 mm 2 /s (typically with an SAE 30 grade) light neutral base oil and optionally a heavy neutral base oil or a brightstock with a viscosity above 12 mm 2 /s to 40 mm 2 /s.
  • oils include natural and synthetic oils, oil derived from hydrocracking, hydrogenation, and hydrofinishing, unrefined, refined and re-refined oils and mixtures thereof.
  • Hydrotreated naphthenic oils are also known and can be used, as well as oils prepared by a Fischer-Tropsch gas-to-liquid synthetic procedure as well as other gas-to-liquid oils.
  • the dispersant mixture of the present invention is useful when employed in a gas-to-liquid oil.
  • the source of the light neutral base oil in one embodiment is a new or used crankcase system oil from a 2-stroke engine or fresh from a system oil tank without further processing.
  • the used system oil is additised with an additive package to make it useful as a cylinder lubricant.
  • the used system oil is additised with an additive package to prolong oil life or improve performance of the system oil based on the monitoring data of step (1).
  • the heavy neutral base oil or brightstock in one embodiment, is used oil from a sump used to lubricate the internal combustion engine.
  • the lubricating composition is an SAE 50 grade lubricant.
  • the light neutral base oil is present in one embodiment from 40 to 99.9, in another embodiment 50 to 99.9, in another embodiment 60 to 99.9 and in another embodiment 70 to 99.9 weight percent of the lubricating composition.
  • the heavy neutral base oil or brightstock is present in one embodiment from 0 to 35, in another embodiment 0 to 30, in another embodiment 0.01 to 25 and in another embodiment 0.05 to 20 weight percent of the lubricating composition. In one embodiment the heavy neutral base oil is present from 1 to 25 or 5 to 20 weight percent of the lubricating composition.
  • the amount of heavy neutral base oil or brightstock is present from 0 to 20 weight percent, or 0 to 10 weight percent of 0 to 5 weight percent of the lubricating composition. In one embodiment the amount of heavy neutral base oil or brightstock is zero weight percent.
  • the lubricating composition includes at least one performance additive selected from the group consisting of metal deactivators, polymeric thickeners, dispersants, antioxidants, antiwear agents, corrosion inhibitors, antiscuffing agents, extreme pressure agents, foam inhibitors, demulsifiers, friction modifiers, pour point depressants and mixtures thereof.
  • at least one performance additive selected from the group consisting of metal deactivators, polymeric thickeners, dispersants, antioxidants, antiwear agents, corrosion inhibitors, antiscuffing agents, extreme pressure agents, foam inhibitors, demulsifiers, friction modifiers, pour point depressants and mixtures thereof.
  • fully-formulated lubricating oil will contain one or more of these performance additives.
  • the total combined amount of the optional performance additives present in one embodiment from 0 or 0.01 to 25, in another embodiment 0 or 0.01 to 20, in another embodiment 0 or 0.01 to 15 and in another embodiment 0.05 or 0.1 or 0.5 to 10 weight percent of the lubricating composition.
  • the polymeric thickener includes styrene-butadiene rubbers, ethylene-propylene copolymers, hydrogenated styrene-isoprene polymers, hydrogenated radical isoprene polymers, poly(meth)acrylate acid esters, polyalkyl styrenes, polyolefins (such as polyisobutylene), polyalkylmethacrylates and esters of maleic anhydride-styrene copolymers.
  • the polymeric thickener is free of polyisobutylene; and in another embodiment the polymeric thickener is a polyisobutylene.
  • the polymeric thickener is poly(meth)acrylate.
  • the polymeric thickener in several embodiments has a weight average molecular weight (Mw) of more than 8000, or 8400 or more, at least 10,000, or at least 15,000, or at least 25,000 or at least 35,000.
  • Mw weight average molecular weight
  • the polymeric thickener generally has no upper limit on Mw, however in one embodiment the Mw is less than 2,000,000 in another embodiment less than 500,000 and in another embodiment less than 150,000. Examples of suitable ranges of Mw include in one embodiment 12,000 to 1,000,000, in another embodiment 20,000 to 300,000 and in another embodiment 30,000 to 75,000.
  • the weight average molecular weight (Mw) may be more than 8000, or 8400 or more, at least 10,000 to 15,000 or 25,000. Examples of a suitable range include more than 8000 to 25,000 or 8400 to 15,000.
  • the polymeric thickener in one embodiment is present from 0 or 0.01 to 15 and in another embodiment 0.05 to 10 weight percent of the lubricating composition.
  • the lubricating composition further comprises an antiwear agent such as a metal hydrocarbyl dithiophosphate.
  • a metal hydrocarbyl dithiophosphate include zinc dihydrocarbyl dithiophosphates (often referred to as ZDDP, ZDP or ZDTP).
  • suitable zinc hydrocarbyl dithiophosphates compounds include the reaction product(s) of butyl/pentyl, heptyl, octyl, and/or nonyl dithiophosphoric acid zinc salts or mixtures thereof.
  • the antiwear agent is ashless, i.e., the antiwear agent is metal-free (prior to mixture with other components).
  • the metal-free antiwear agent is an amine salt.
  • the ashless antiwear agent often contains an atom including sulphur, phosphorus, boron or mixtures thereof.
  • the invention optionally includes a detergent such as an overbased sulphonate detergent.
  • a detergent such as an overbased sulphonate detergent.
  • the sulphonate detergent of the composition includes compounds represented by the formula:
  • each R 1 is a hydrocarbyl group in one embodiment containing 6 to 40 carbon atoms, in another embodiment 8 to 35 carbon atoms and in another embodiment 12 to 30 carbon atoms;
  • A may be independently a cyclic or acyclic divalent or multivalent hydrocarbon group;
  • M is hydrogen, a valence of a metal ion, an ammonium ion or mixtures thereof; and k is an integer of 0 to 5, for example 0, 1, 2, 3, 4, 5.
  • k is 1, 2 or 3, in another embodiment 1 or 2 and in another embodiment 1.
  • M is hydrogen and is present on less than 30%, in another embodiment less than 20%, in another embodiment less than 10% and in another embodiment less than 5% of the available M entities, the balance of the M entities being a metal or ammonium ion.
  • k is 1 and R 1 is a branched alkyl group with 6 to 40 carbon atoms. In one embodiment k is 1 and R 1 is a linear alkyl group with 6 to 40 carbon atoms.
  • Suitable sulphonic acids capable of forming the overbased sulphonate detergent include polypropene benzene sulphonic acid, undecyl benzene sulphonic acid, dodecyl benzene sulphonic acid, tridecyl benzene sulphonic acid, tetradecyl benzene sulphonic acid, pentadecyl benzene sulphonic acid, hexadecyl benzene sulphonic acid and mixtures thereof.
  • the sulphonic acid includes tridecyl benzene sulphonic acid, tetradecyl benzene sulphonic acid, octadecyl benzene sulphonic acid, tetraeicosyl benzene sulphonic acid or mixtures thereof.
  • the sulphonic acid is a polypropene benzene sulphonic acid, where the polypropene contains 18 to 30 carbon atoms.
  • the sulphonate components are calcium polypropene benzenesulphonate and calcium monoalkyl and dialkyl benzenesulphonates wherein the alkyl groups contain at least 10 or 12 carbons, for example 11, 12, 13, 14, 15, 18, 24 or 30 carbon atoms.
  • the metal when M is a valence of a metal ion, the metal may be monovalent, divalent, trivalent or mixtures of such metals.
  • the metal M when monovalent, the metal M includes an alkali metal such as lithium, sodium, or potassium, and when divalent, the metal M includes an alkaline earth metal such as magnesium, calcium or barium. In one embodiment the metal is an alkaline earth metal. In one embodiment the metal is calcium.
  • A is cyclic hydrocarbon group
  • suitable groups include phenylene or fused bicyclic groups such as naphthylene, indenylene, indanylene, bicyclopentadienylene or mixtures thereof.
  • A comprises a benzene ring.
  • A is an acyclic divalent hydrocarbon group
  • the carbon chain may be linear or branched.
  • A is an acyclic linear hydrocarbon group.
  • the overbased sulphonate detergent in one embodiment has a TBN (total base number) of at least 350, in another embodiment at least 400, in another embodiment at least 425, in another embodiment at least 450 and in another embodiment at least 475. In one embodiment the overbased sulphonate detergent has a TBN of 400 or 500.
  • the sulphonate detergent is present in one embodiment at 0.1 to 35, in another embodiment 2 to 30, in another embodiment 5 to 25 and in another embodiment 10 to 25 weight percent of the lubricating composition.
  • the sulphonate detergent is overbased.
  • Overbased materials otherwise referred to as overbased or superbased salts, are generally single phase, homogeneous Newtonian systems characterised by a metal content in excess of that which would be present for neutralisation according to the stoichiometry of the metal and the particular acidic organic compound reacted with the metal.
  • the overbased materials are prepared by reacting an acidic material (typically an inorganic acid or lower carboxylic acid, often carbon dioxide) with a mixture comprising an acidic organic compound, a reaction medium comprising at least one organic solvent and promoter such as phenol or a mixture of alcohols.
  • a mixture of alcohols typically contains methanol and at least one alcohol with 2 to 7 carbon atoms, and may contain 50-60 mole percent methanol.
  • the acidic organic material (substrate) will normally have a sufficient number of carbon atoms to provide a degree of solubility in oil.
  • the amount of excess metal is commonly expressed in terms of metal to substrate ratio.
  • the term “metal to substrate ratio” or “metal ratio” is the ratio of the total equivalents of the metal to the equivalents of the substrate.
  • An overbased sulphonate detergent in one embodiment has a metal ratio of 12.5:1 to 40:1, in another embodiment 13.5:1 to 40:1, in another embodiment 14.5:1 to 40:1, in another embodiment 15.5:1 to 40:1 and in another embodiment 16.5:1 to 40:1.
  • the overbased detergent often has a low in-process viscosity and a low final viscosity.
  • a sulphonate detergent with 500 TBN and its preparation are disclosed in U.S. Pat. No. 5,792,732.
  • a 500 TBN all-linear alkylbenzene sulphonate is prepared by reacting an alkyl benzene sulphonate from Witco Corp. (now known as Crompton) with Ca(OH) 2 and CaO in n-heptane and methanol and bubbling with CO 2 .
  • Witco Corp. now known as Crompton
  • Ca(OH) 2 and CaO in n-heptane and methanol and bubbling with CO 2 .
  • a 500 TBN overbased sulphonate containing highly branched alkylbenzene sulphonate is available from Witco Corp. (now known as Crompton) as Petronate® C-500.
  • U.S. Pat. No. 6,444,625 Another method for preparing an overbased sulphonate detergent of high metal ratio is disclosed in U.S. Pat. No. 6,444,625 (see, for instance, column 3, bottom).
  • the latter process includes providing a sulphonic acid to a reactor, adding a lime reactant for neutralization and overbasing, adding a lower aliphatic C 1 to C 4 alcohol and a hydrocarbon solvent, and carbonating the process mixture with carbon dioxide during which process the exotherm of the reaction is maintained between 27° C. and 57° C.
  • a high metal-ratio detergent may be prepared by using a mixture of short chain alcohols, with or without a hydrocarbon solvent, conducting the addition of lime reactants and carbon dioxide in multiple iterations, and, if desired the process of adding lime and carbon dioxide and of removal of volatile materials may be repeated.
  • the overbased sulphonate detergent in the present invention may be used alone or with other overbased sulphonates. In one embodiment the sulphonate detergent is in a mixture with other sulphonate detergents.
  • a 500 TBN sulphonate detergent may be prepared by the process shown in Preparative Example S-1.
  • a sample of a 500 TBN sulphonate detergent is prepared using a vessel with flange and clip, overhead stirrer with paddle and polytetrafluoroethylene (PTFE) stirrer gland, Dean Stark trap and double surface condenser, a mantle/thermocouple temperature controller system, the equipment from just above the mantle to just below the condenser being covered with glass wool.
  • the vessel is charged with 35.1 parts by weight of C 16 -C 24 alkylbenzene sulphonic acid and 31.8 parts by weight of mineral oil (SN 150) and heated to 30° C.
  • the reactor is charged through a port with 11.6 parts by weight of alcohols containing methanol and a mixture of iso-butanol/amyl alcohol.
  • the weight ratio of methanol to the mixture of iso-butanol/amyl alcohol is 1.31.
  • the reactor is charged with 14.9 parts by weight of calcium hydroxide and the mixture is heated to 54° C. at which temperature carbon dioxide is added to form a carbonated product.
  • the carbonated product is further treated three more times with similar (or equal) portions of calcium hydroxide and carbon dioxide. Water is removed by stripping before repeating the addition of alcohol, calcium hydroxide and carbon dioxide two times. The product is stripped and filtered.
  • the lubricating composition further includes a phenate detergent.
  • the phenate detergent is known and includes neutral and overbased metal salts of a sulphur-containing phenate, a non-sulphurised phenate or mixtures thereof. Suitable metal salts are the same as those described for the sulphonate detergent.
  • the phenate detergent in one embodiment has a TBN from 30 to 450, in another embodiment 30 to 350 or 290, in another embodiment 40 to 265, in another embodiment 50 to 190 and in another embodiment 70 to 175.
  • the sulphur containing phenate detergent has a TBN of 150, in another embodiment a TBN of 225 and in another embodiment 250.
  • Suitable detergent compounds include a salicylate, carboxylate, phosphate, salixarate or mixtures thereof.
  • the invention optionally further includes a dispersant.
  • the dispersant is known and includes an ash-containing dispersant or an ashless-type dispersant, “ashless” dispersant being so named because, prior to mixing with other components of the lubricant, they do not contain metals which form sulfated ash. After admixture, of course, they may acquire metal ions from other components; but they are still commonly referred to as “ashless dispersants.”
  • the dispersant may be used alone or in combination with other dispersants.
  • the ashless dispersant does not contain ash-forming metals.
  • Ashless type dispersants are characterised by a polar group attached to a relatively high molecular weight hydrocarbon chain.
  • Typical ashless dispersants include a N-substituted long chain hydrocarbon succinimide such as alkenyl succinimide.
  • N-substituted long chain alkenyl succinimides include polyisobutylene succinimide with number average molecular weight of the polyisobutylene substituent in one embodiment from 350 to 5000, and in another embodiment 500 to 3000.
  • Succinimide dispersants and their preparation are disclosed, for instance in U.S. Pat. No. 4,234,435.
  • Succinimide dispersants are typically the imide formed from a polyamine, typically a poly(ethyleneamine).
  • the dispersant is derived from polyisobutylene, an amine and zinc oxide to form a polyisobutylene succinimide complex with zinc.
  • the dispersant is derived from half ester, ester or salts of a long chain hydrocarbon acylating agent such as long chain alkenyl succinic acid/anhydride.
  • Mannich bases Another class of ashless dispersant is Mannich bases.
  • Mannich dispersants are the reaction products of alkyl phenols with aldehydes (especially formaldehyde) and amines (especially polyalkylene polyamines).
  • the alkyl group typically contains at least 30 carbon atoms.
  • the dispersant may also be post-treated by conventional methods by a reaction with any of a variety of agents.
  • agents include urea, thiourea, dimercaptothiadiazole or derivatives thereof, carbon disulphide, aldehydes, ketones, carboxylic acids, hydrocarbon-substituted succinic anhydrides, maleic anhydride, acrylonitrile, epoxides, boron compounds, and phosphorus compounds.
  • the dispersant is borated using a variety of agents selected from the group consisting of the various forms of boric acid (including metaboric acid, HBO 2 , orthoboric acid, H 3 BO 3 , and tetraboric acid, H 2 B 4 O 7 ), boric oxide, boron trioxide, and alkyl borates.
  • boric acid including metaboric acid, HBO 2 , orthoboric acid, H 3 BO 3 , and tetraboric acid, H 2 B 4 O 7
  • boric oxide including metaboric acid, HBO 2 , orthoboric acid, H 3 BO 3 , and tetraboric acid, H 2 B 4 O 7
  • boric oxide including metaboric acid, HBO 2 , orthoboric acid, H 3 BO 3 , and tetraboric acid, H 2 B 4 O 7
  • the borated dispersant may be prepared by blending the boron compound and the N-substituted long chain alkenyl succinimides and heating them at a suitable temperature in one embodiment from 80° C. to 250° C., in another embodiment 90° C. to 230° C. and in another embodiment 100° C. to 210° C., until the desired reaction has occurred.
  • the molar ratio of the boron compounds to the N-substituted long chain alkenyl succinimides is typically 10:1 to 1:4, in another embodiment 4:1 to 1:3, and in another embodiment about 1:2.
  • An inert liquid may be used in performing the reaction.
  • the liquid may include toluene, xylene, chlorobenzene, dimethylformamide and mixtures thereof.
  • performance additives may be used, such as an antioxidant including a diphenylamine, a hindered phenol, a molybdenum dithiocarbamate, a sulphurised olefin and mixtures thereof (in one embodiment the lubricating composition is free of an antioxidant); corrosion inhibitors including octylamine octanoate; condensation products of dodecenyl succinic acid or anhydride and a fatty acid such as oleic acid with a polyamine; metal deactivators including derivatives of benzotriazoles, 1,2,4-triazoles, benzimidazoles, 2-alkyldithiobenzimidazoles or 2-alkyldithiobenzothiazoles; foam inhibitors including copolymers of ethyl acrylate and 2-ethylhexylacrylate and optionally vinyl acetate; demulsifiers including trialkyl phosphates, polyethylene glycols, polyethylene oxides, polypropylene oxides
  • the invention also includes a process to prepare a lubricating composition, comprising mixing:
  • At least one performance additive comprising: a polymeric thickener, a dispersant, an antiwear agent, a detergent or mixtures thereof;
  • the polymeric thickener has a weight average molecular weight (Mw) of more than 8000 and is present in an amount to provide a total viscosity of the composition of 12 mm 2 /s or 15 mm 2 /s to 29 mm 2 /s; the dispersant or detergent when present imparts basicity to said lubricating composition; and the composition has a total base number of at least 10 mg KOH/g.
  • Mw weight average molecular weight
  • the mixing conditions include a temperature in one embodiment from 15° C. to 130° C., in another embodiment 20° C. to 120° C. and in another embodiment 25° C. to 110° C.; and for a period of time in one embodiment from 30 seconds to 48 hours, in another embodiment 2 minutes to 24 hours, and in other embodiments 5 minutes to 16 hours or 20 minutes to 4 hours; and at pressures in one embodiment from 86 kPa to 270 kPa (650 mm Hg to 2000 mm Hg), in another embodiment 92 kPa to 200 kPa (690 mm Hg to 1500 mm Hg), and in another embodiment 95 kPa to 130 kPa (715 mm Hg to 1000 mm Hg).
  • the process optionally includes mixing other performance additives as described above.
  • the optional performance additives may be added sequentially, separately or as a concentrate.
  • the composition is a concentrate.
  • the lubricating composition of the present invention is useful for an internal combustion engine, for example stationary combustion engine, such as a power station combustion engine; a diesel fuelled engine, a gasoline fuelled engine, a natural gas fuelled engine or a mixed gasoline/alcohol fuelled engine.
  • an internal combustion engine for example stationary combustion engine, such as a power station combustion engine; a diesel fuelled engine, a gasoline fuelled engine, a natural gas fuelled engine or a mixed gasoline/alcohol fuelled engine.
  • the internal combustion engine is a 4-stroke and in another embodiment a 2-stroke engine.
  • the diesel fuelled engine is a marine diesel engine.
  • the invention provides a method for lubricating an internal combustion engine, comprising supplying thereto a lubricant comprising the composition as described herein.
  • a lubricant comprising the composition as described herein.
  • the use of the composition may impart one or more of TBN control, cleanliness properties, antiwear performance and deposit control.
  • the invention provides a method for lubricating a 2-stroke marine diesel cylinder comprising: lubricating said 2-stroke marine diesel cylinder with a lubricating composition comprising:
  • At least one performance additive comprising: a dispersant, an antiwear agent, a detergent or mixtures thereof;
  • the polymeric thickener has a weight average molecular weight (Mw) of more than 8000 and is present in an amount to provide a total viscosity of the lubricating composition of 12 mm 2 /s or 15 mm 2 /s to 29 mm 2 /s (or viscosity grade ranging from SAE 40 to SAE 60); the dispersant or detergent when present imparts basicity to said lubricating composition; and the composition has a total base number of at least 10 mg KOH/g.
  • Mw weight average molecular weight
  • a system oil is prepared having a TBN of 1-15, containing 1 wt % dispersant, 0.5 wt % ZDDP, 6 wt % of 250 TBN phenate detergent, 0.5 wt % of neutral sulphonate detergent and base oil containing light solvent neutral oil and brightstock.
  • the system oil composition has a viscosity of 11 mm 2 /s.
  • a System Oil is prepared having a TBN of 2-7, containing 0.5 wt % dispersant, 0.3 wt % ZDDP, 1.0 wt % of 250 TBN phenate detergent, 1.2 wt % of neutral sulphonate detergent, 0.2 wt % of an anti-oxidant and base oil containing 4.8 wt % of Exxon 150 light neutral base oil and 92.2 wt % of Exxon 600 light neutral base stock.
  • the system oil composition has a viscosity of 11 mm 2 /s.
  • a core lubricating oil composition is prepared having a TBN of 3-30, containing 1.5 wt % dispersant, 0.5 wt % of ZDDP, 12 wt % of 250 TBN phenate, and base oil containing solvent neutral oil and brightstock.
  • the core lubricating oil composition has a viscosity of 19.5 mm 2 /s.
  • a core lubricating oil composition is prepared having a TBN of 4-10, containing 1 wt % of borated dispersant, 6.5 wt % of 250 TBN phenate, and base oil containing solvent neutral oil and brightstock.
  • the core lubricating oil composition has a viscosity of 19.5 mm 2 /s.
  • a high TBN composition is prepared from a 200 TBN concentrate of 50 wt % of 400 TBN overbased sulphonate detergent and 50 wt % of 500 SN basestock.
  • a high TBN composition is prepared from a 400 TBN concentrate of 80 wt % of 500 TBN overbased sulphonate detergent and 20 wt % of 500 SN basestock.
  • Preparative Example 7 is a polymethacrylate viscosity index improver with a weight average molecular weight, Mw of 10 5 to 106.
  • Examples 1-10 are prepared by blending portions of preparative examples 1-7 as shown:
  • a lubricating composition is prepared from 79.4 wt % of fresh system oil from Preparative Example 2, 2.6 wt % of 150 TBN phenate detergent, 15 wt % of 400 TBN sulphonate detergent, 0.8 wt % of borated dispersant and 2.2 wt % of the product of Preparative Example 7.
  • the lubricating composition has TBN of 67.2, and a viscosity of 18.1 mm 2 /S.
  • a lubricating composition is prepared with 40.3 wt % of fresh system oil from Preparative Example 2, 40.3 wt % of used system oil containing contaminants from an engine stuffing box (a stuffing box is fitted to a crankcase to separate system oil from used cylinder oil) from Preparative Example 2.
  • the used system oil is originally derived from the system oil of Preparative Example 2.
  • the lubricating composition further contains 2.5 wt % of 150 TBN phenate detergent, 14.2 wt % of 400 TBN sulphonate detergent, 0.7 wt % of borated dispersant and 2 wt % of the product of Preparative Example 7.
  • the lubricating composition has TBN of 67.2, and a viscosity of 18.1 mm 2 /s.
  • a lubricating composition is prepared with 81.7 wt % of used system oil containing contaminants from an engine stuffing box.
  • the used system oil is originally derived from the system oil of Preparative Example 2.
  • the lubricating composition further contains 2.3 wt % of 150 TBN phenate detergent, 13.4 wt % of 400 TBN sulphonate detergent, 0.7 wt % of borated dispersant and 1.9 wt % of the product of Preparative Example 7.
  • the lubricating composition has TBN of 66.2, and a viscosity of 17.8 mm 2 /s.
  • Reference Example is the same as Example 11, except the compound of preparative Example 7 is absent. Furthermore the system oil is replaced with 55 wt % of Exxon 600N base oil and 23.7 wt % of Exxon 150 brightstock base oil.
  • the Reference Examples has TBN of 68.9, and a viscosity of 18.7 mm 2 /s.
  • Reference Example is the same as Example 11, except the compound of preparative Example 7 is absent and ZDDP is present at 0.5 wt %. Furthermore the system oil is replaced with 55.9 wt % of Exxon 600N base oil and 23.8 wt % of Exxon 150 brightstock base oil.
  • the Reference Examples has TBN of 68.9, and a viscosity of 18.7 mm 2 /s.
  • the Cameron Plint TE-77TM is a reciprocating wear tester. In this test a steel ball upper specimen is reciprocated against a steel flat lower specimen. The lubricant sample is initially treated with 3.5 wt % sulphuric acid. The Cameron Plint is then charged with 10 ml of the sample and heated to 50° C. and held for 20 minutes. The sample is then subject to a load of 240 N over two minutes while at the same time reciprocation is started at 10 Hz over 15 mm stroke length. The sample is then heated to 350° C. at 2° C. per minute and then held at temperature for 3 hours. At the end of the test the onset of film failure is measured. The onset of film failure is determined by the temperature at which the oil film as measured by the contact potential first falls to 80% of its starting value. The results obtained by testing the lubricants of the indicated Examples are as shown:
  • Example Temperature of Onset of Film Failure (° C.) EX11 320 EX12 300 EX13 290 RF1 250 RF2 240
  • the analysis of the experimental data obtained indicates that presence of the additive package of the invention provides one or more of TBN control, cleanliness properties, antiwear performance and deposit control to a system oil.
  • Examples 14 to 26 contain 2 wt % of various polymethacrylate polymeric thickeners, 1.5 wt % of a succinimide dispersant, 7 wt % of a brightstock base oil, between 67.4 and 72.3 wt % of a light neutral base oil and a detergent package.
  • the detergent package in Examples 14 to 22 contains a mixture of sulphonate detergents with a TBN ranging from 350 to 500 TBN.
  • Examples 23 to 26 contain a mixture of sulphonate and phenate detergents.
  • Reference Example 3 is a commercially available marine diesel cylinder lubricant.
  • hydrocarbyl substituent or “hydrocarbyl group” is used in its ordinary sense, which is well-known to those skilled in the art. Specifically, it refers to a group having a carbon atom directly attached to the remainder of the molecule and having predominantly hydrocarbon character.
  • Hydrocarbyl Groups include
  • hydrocarbon substituents that is, aliphatic (e.g., alkyl or alkenyl), alicyclic (e.g., cycloalkyl, cycloalkenyl) substituents, and aromatic-, aliphatic-, and alicyclic-substituted aromatic substituents, as well as cyclic substituents wherein the ring is completed through another portion of the molecule (e.g., two substituents together form a ring);
  • aliphatic e.g., alkyl or alkenyl
  • alicyclic e.g., cycloalkyl, cycloalkenyl
  • aromatic-, aliphatic-, and alicyclic-substituted aromatic substituents as well as cyclic substituents wherein the ring is completed through another portion of the molecule (e.g., two substituents together form a ring);
  • substituted hydrocarbon substituents that is, substituents containing non-hydrocarbon groups which, in the context of this invention, do not alter the predominantly hydrocarbon nature of the substituent (e.g., halo (especially chloro and fluoro), hydroxy, alkoxy, mercapto, alkylmercapto, nitro, nitroso, and sulfoxy);
  • hetero substituents that is, substituents which, while having a predominantly hydrocarbon character, in the context of this invention, contain other than carbon in a ring or chain otherwise composed of carbon atoms.
  • Heteroatoms include sulfur, oxygen, nitrogen, and encompass substituents as pyridyl, furyl, thienyl and imidazolyl.
  • no more than two, or no more than one, non-hydrocarbon substituent will be present for every ten carbon atoms in the hydrocarbyl group; typically, there will be no non-hydrocarbon substituents in the hydrocarbyl group.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)
US11/572,867 2004-07-29 2005-07-22 Lubricating Compositions Abandoned US20080121206A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/572,867 US20080121206A1 (en) 2004-07-29 2005-07-22 Lubricating Compositions
US13/622,455 US20130019832A1 (en) 2004-07-29 2012-09-19 Lubricating Compositions

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US59235604P 2004-07-29 2004-07-29
US66065005P 2005-03-11 2005-03-11
PCT/US2005/026309 WO2006014866A1 (en) 2004-07-29 2005-07-22 Lubricating compositions
US11/572,867 US20080121206A1 (en) 2004-07-29 2005-07-22 Lubricating Compositions

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/622,455 Continuation US20130019832A1 (en) 2004-07-29 2012-09-19 Lubricating Compositions

Publications (1)

Publication Number Publication Date
US20080121206A1 true US20080121206A1 (en) 2008-05-29

Family

ID=35116067

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/572,867 Abandoned US20080121206A1 (en) 2004-07-29 2005-07-22 Lubricating Compositions
US13/622,455 Abandoned US20130019832A1 (en) 2004-07-29 2012-09-19 Lubricating Compositions

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/622,455 Abandoned US20130019832A1 (en) 2004-07-29 2012-09-19 Lubricating Compositions

Country Status (5)

Country Link
US (2) US20080121206A1 (ja)
EP (2) EP1778824B1 (ja)
JP (3) JP5158939B2 (ja)
CA (1) CA2574950A1 (ja)
WO (1) WO2006014866A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120258898A1 (en) * 2009-12-24 2012-10-11 Jx Nippon Oil & Energy Corporation System lubricating oil composition for crosshead-type diesel engine
US20170175029A1 (en) * 2014-03-31 2017-06-22 Idemitsu Kosan Co., Ltd. Lubricating-oil composition
US20190256791A1 (en) * 2016-10-12 2019-08-22 Chevron Oronite Technology B.V. Marine diesel lubricant oil compositions

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2574950A1 (en) * 2004-07-29 2006-02-09 The Lubrizol Corporation Lubricant composition comprising additive package to provide desired total base number
WO2007047446A1 (en) 2005-10-14 2007-04-26 The Lubrizol Corporation Method of lubricating a marine diesel engine
AU2006301982B2 (en) * 2005-10-14 2011-06-30 The Lubrizol Corporation Lubricating compositions
US20070238626A1 (en) * 2006-04-07 2007-10-11 The Lubrizol Corporation Metal containing hydraulic composition
US20080153723A1 (en) * 2006-12-20 2008-06-26 Chevron Oronite Company Llc Diesel cylinder lubricant oil composition
EP1985689A1 (en) * 2007-03-30 2008-10-29 BP p.l.c. Lubrication methods
WO2008119936A1 (en) * 2007-03-30 2008-10-09 Bp P.L.C. Lubrication methods
CN102575183A (zh) 2009-08-18 2012-07-11 卢布里佐尔公司 含有抗磨剂的润滑组合物
US8383562B2 (en) 2009-09-29 2013-02-26 Chevron Oronite Technology B.V. System oil formulation for marine two-stroke engines
EP2494014B1 (en) * 2009-10-26 2015-12-16 Shell Internationale Research Maatschappij B.V. Lubricating composition
JP5707274B2 (ja) * 2011-08-12 2015-04-22 株式会社Ihi 2サイクルエンジン
JP5863813B2 (ja) 2011-09-27 2016-02-17 Jx日鉱日石エネルギー株式会社 クロスヘッド型ディーゼル機関用システム油組成物
EP2607465A1 (en) * 2011-12-21 2013-06-26 Infineum International Limited Marine engine lubrication
PL2767578T3 (pl) 2013-02-19 2016-09-30 Sposób i aparat do przygotowywania oleju cylindrowego
US10430759B2 (en) * 2013-12-20 2019-10-01 Viacom International Inc. Systems and methods for discovering a performance artist
CN104450091A (zh) * 2014-12-02 2015-03-25 中国石油天然气股份有限公司 一种船用气缸油组合物及其制备方法与应用
PL3341595T3 (pl) * 2015-08-24 2022-10-03 A.P. Møller - Mærsk A/S Sposób i urządzenie do przygotowania oleju do dostarczania do cylindrów dwusuwowego silnika wodzikowego
SG11201806301QA (en) * 2016-02-29 2018-09-27 Shell Int Research Lubricating composition

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5962378A (en) * 1997-02-11 1999-10-05 Exxon Chemical Patents Inc. Synergistic combinations for use in functional fluid compositions
US6339051B1 (en) * 1998-06-11 2002-01-15 Mobil Oil Corporation Diesel engine cylinder oils
US20030073590A1 (en) * 2001-09-28 2003-04-17 Laurent Chambard Lubricating oil compositions
US20030159672A1 (en) * 2002-02-26 2003-08-28 Carey Vincent M. Modification of lubricant properties in an operating all loss lubricating system
US20030162673A1 (en) * 1999-12-22 2003-08-28 Nippon Mitsubishi Oil Corporation Engine oil compositions
US20030183188A1 (en) * 2002-02-26 2003-10-02 Carey Vincent M. Modification of lubricant properties in a recirculating lubricant system
US20030196632A1 (en) * 2002-04-23 2003-10-23 Reischman Paul Thomas Method of employing instrumentation to efficiently modify a lubricant's flow rate or properties in an operating all-loss lubricating system
US6642188B1 (en) * 2002-07-08 2003-11-04 Infineum International Ltd. Lubricating oil composition for outboard engines
US7316992B2 (en) * 2004-09-24 2008-01-08 A.P. Moller-Maersk A/S Method and system for modifying a used hydrocarbon fluid to create a cylinder oil

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE792976A (fr) * 1972-12-19 1973-04-16 Labofina Sa Lubrifiants pour moteurs diesel marins.
US4234435A (en) 1979-02-23 1980-11-18 The Lubrizol Corporation Novel carboxylic acid acylating agents, derivatives thereof, concentrate and lubricant compositions containing the same, and processes for their preparation
GB8804171D0 (en) * 1988-02-23 1988-03-23 Exxon Chemical Patents Inc Dispersant for marine diesel cylinder lubricant
EP0645444A3 (en) 1993-09-27 1995-05-24 Texaco Development Corp Lubricant with overbased detergents made from linear alkyl aromatics.
JPH07247494A (ja) * 1994-03-11 1995-09-26 Cosmo Sogo Kenkyusho:Kk 再生潤滑油組成物
DK1086195T3 (da) 1998-03-12 2004-10-04 Crompton Corp Skibscylinderolier, der indeholder höjviskositetsdetergenter
US6586375B1 (en) * 2002-04-15 2003-07-01 The Lubrizol Corporation Phosphorus salts of nitrogen containing copolymers and lubricants containing the same
CA2574950A1 (en) * 2004-07-29 2006-02-09 The Lubrizol Corporation Lubricant composition comprising additive package to provide desired total base number

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5962378A (en) * 1997-02-11 1999-10-05 Exxon Chemical Patents Inc. Synergistic combinations for use in functional fluid compositions
US6339051B1 (en) * 1998-06-11 2002-01-15 Mobil Oil Corporation Diesel engine cylinder oils
US20030162673A1 (en) * 1999-12-22 2003-08-28 Nippon Mitsubishi Oil Corporation Engine oil compositions
US20030073590A1 (en) * 2001-09-28 2003-04-17 Laurent Chambard Lubricating oil compositions
US20030159672A1 (en) * 2002-02-26 2003-08-28 Carey Vincent M. Modification of lubricant properties in an operating all loss lubricating system
US20030183188A1 (en) * 2002-02-26 2003-10-02 Carey Vincent M. Modification of lubricant properties in a recirculating lubricant system
US20030196632A1 (en) * 2002-04-23 2003-10-23 Reischman Paul Thomas Method of employing instrumentation to efficiently modify a lubricant's flow rate or properties in an operating all-loss lubricating system
US6642188B1 (en) * 2002-07-08 2003-11-04 Infineum International Ltd. Lubricating oil composition for outboard engines
US7316992B2 (en) * 2004-09-24 2008-01-08 A.P. Moller-Maersk A/S Method and system for modifying a used hydrocarbon fluid to create a cylinder oil

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120258898A1 (en) * 2009-12-24 2012-10-11 Jx Nippon Oil & Energy Corporation System lubricating oil composition for crosshead-type diesel engine
US20170175029A1 (en) * 2014-03-31 2017-06-22 Idemitsu Kosan Co., Ltd. Lubricating-oil composition
US20190256791A1 (en) * 2016-10-12 2019-08-22 Chevron Oronite Technology B.V. Marine diesel lubricant oil compositions

Also Published As

Publication number Publication date
WO2006014866A1 (en) 2006-02-09
EP2292724A1 (en) 2011-03-09
JP2012193384A (ja) 2012-10-11
JP2008508398A (ja) 2008-03-21
CA2574950A1 (en) 2006-02-09
EP1778824A1 (en) 2007-05-02
EP2292724B1 (en) 2014-09-03
JP5158939B2 (ja) 2013-03-06
EP1778824B1 (en) 2015-09-02
US20130019832A1 (en) 2013-01-24
JP2012193383A (ja) 2012-10-11
JP5406339B2 (ja) 2014-02-05

Similar Documents

Publication Publication Date Title
EP1778824B1 (en) Method of lubricating a two-stroke marine engine
US7928043B2 (en) Lubricating compositions
US7678746B2 (en) Lubricating compositions containing sulphonates and phenates
JP4927714B2 (ja) スルホネートおよびフェネートを含有する潤滑組成物
US9267092B2 (en) Motorcycle engine lubricant
US20150175929A1 (en) Lubricating oil composition for automobile engine lubrication
US20170022442A1 (en) Marine diesel cylinder lubricant oil compositions
JP2003336089A (ja) 潤滑油組成物
US20070184992A1 (en) Method of improving the acrylic rubber sealant compatibility in an internal combustion engine
EP1680491B1 (en) Lubricating compositions containing sulphonates and phenates
CA2583420C (en) Lubricating compositions containing sulphonates
JP3936823B2 (ja) エンジン油組成物

Legal Events

Date Code Title Description
AS Assignment

Owner name: THE LUBRIZOL CORPORATION, OHIO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LEAHY, RICHARD;MAYHEW, ALEXANDRA;BARNES, W. PRESTON;AND OTHERS;REEL/FRAME:020345/0548;SIGNING DATES FROM 20070112 TO 20070212

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION