US20080089745A1 - Method And Device For Connecting A Riser To A Target Structure - Google Patents

Method And Device For Connecting A Riser To A Target Structure Download PDF

Info

Publication number
US20080089745A1
US20080089745A1 US11/632,307 US63230705A US2008089745A1 US 20080089745 A1 US20080089745 A1 US 20080089745A1 US 63230705 A US63230705 A US 63230705A US 2008089745 A1 US2008089745 A1 US 2008089745A1
Authority
US
United States
Prior art keywords
riser
support assembly
riser support
target structure
buoyancy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/632,307
Inventor
Peter Salome
Robert Narold
Robert Hovinga
Ion Coppens
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heerema Marine Contractors Nederland BV
Original Assignee
Heerema Marine Contractors Nederland BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heerema Marine Contractors Nederland BV filed Critical Heerema Marine Contractors Nederland BV
Priority to US11/632,307 priority Critical patent/US20080089745A1/en
Publication of US20080089745A1 publication Critical patent/US20080089745A1/en
Assigned to HEEREMA MARINE CONTRACTORS NEDERLAND B. V. reassignment HEEREMA MARINE CONTRACTORS NEDERLAND B. V. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: COPPENS, TON, HOVINGA, ROBERT PAUL, NAROLD, ROBERT REINDER, SALOME, PETER
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B19/00Handling rods, casings, tubes or the like outside the borehole, e.g. in the derrick; Apparatus for feeding the rods or cables
    • E21B19/002Handling rods, casings, tubes or the like outside the borehole, e.g. in the derrick; Apparatus for feeding the rods or cables specially adapted for underwater drilling
    • E21B19/004Handling rods, casings, tubes or the like outside the borehole, e.g. in the derrick; Apparatus for feeding the rods or cables specially adapted for underwater drilling supporting a riser from a drilling or production platform
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/01Risers
    • E21B17/012Risers with buoyancy elements

Definitions

  • the present invention relates to a method and device for connecting a riser to a target structure.
  • Risers are widely applied in the offshore industry in oil and/or gas fields at sea.
  • An oil and/or gas well is located at a seabed level.
  • the product e.g. oil and/or gas
  • the product is produced by the well and is transported to a structure at the water level. From the structure, the product is transported further on, for instance by means of another pipeline to a shore.
  • the product may also be temporarily stored in a storage facility close to, or on the structure.
  • the well In order to transport the product to the structure, the well is connected to the structure by a pipeline for conveying the product to the structure.
  • a pipeline is laid connecting the well with the structure located at the water surface.
  • Such a pipeline usually has a first part which rests on the seabed, and a second part which rises from the seabed towards the structure at the water level.
  • the second part of the pipeline is known in the field of the art as a “riser”.
  • the riser follows a curved trajectory from the seabed towards the riser support assembly. At the seabed level, the riser has a substantially horizontal orientation. Near the riser support assembly, the riser may have a substantially vertical orientation.
  • a transfer of a product riser and a transfer of a number of anchor lines from a first, temporary buoy to a second, permanent buoy are combined.
  • the product riser is produced and installed by a pipe-laying vessel, located at the water surface.
  • the first buoy is anchored to the seabed by at least a first and a second anchor line.
  • the product riser connected by a free end thereof to the first buoy. The riser may stay in this position for a considerable period of time, until a second, permanent mooring buoy is put in place.
  • the second buoy When the second buoy is ready, it is positioned in a desired position, close to the first buoy.
  • the first and the second buoy are connected to one another via a member which can take up tension forces.
  • a tug boat is provided for pulling the second buoy away from the first buoy.
  • the anchor lines are detached one by one from the first buoy and connected to the second buoy.
  • the tug boat is provided for keeping the buoys in place.
  • the second anchor line is transferred from the first buoy to the second buoy.
  • the tug boat also keeps the first and second buoy in place en prevents drifting away of the first and second buoy.
  • the product riser is transferred from the first buoy to the second buoy. This is performed by using a cable which is connected to a winch on the second buoy. The free end of the cable is connected to a free end of the product riser. When the product riser is detached from the first buoy, the cable is pulled by the winch, transferring the product riser from the first buoy to the second buoy.
  • a drawback of the above mentioned method is that it is a complicated procedure, requiring a tug boat
  • the combination of transferring the anchor lines and the product riser at the same time provides the drawback that the first buoy is no longer anchored to the seabed at the end of the operation and is to be moved away by the tug boat.
  • a reverse operation of transferring the product riser back to the first buoy cannot be performed without re-anchoring the first buoy back to the seabed.
  • risers can be installed when the target structure is not yet present at the time of installation of the riser itself.
  • the word “riser” may refer to a production, injection, communication and/or control riser for conveying oil and/or gas or another product.
  • a production or injection riser is constructed to convey a product, such as oil or gas or water or any fluid, from the seabed to the target structure or vice versa from the target structure to the well.
  • the word riser may also refer to a communication and/or control riser.
  • a communication and/or control riser is constructed to transmit signals from the target structure to devices on the seabed, such as for instance the wells, or controllable valves. Also, signals may be transmitted by the riser from the oil well and/or other devices on the seabed to the target structure, for controlling the devices on the seabed.
  • risers also exist, for instance risers that are used to convey water from the target structure toward the seabed, for injection of the water in the well.
  • risers are well control risers.
  • target structure are to be interpreted broadly and can indicate a wide range of structures, floating or resting on the seabed. A number of non-limiting examples of target structures are provided hereinafter.
  • the words “lifting assembly” are to be understood as to indicate a wide range of lifting assemblies.
  • the lifting assembly may be a crane or a winch or a drilling tower, or another device.
  • the lifting assembly may be positioned on the target structure or on a separate vessel or structure.
  • the riser support assembly indicates any construction configured for supporting a riser by a free end thereof.
  • the riser support assembly preferably comprises a buoyancy device for providing a required buoyancy for supporting the riser.
  • the target structure and the riser support assembly are maintained in their respective positions independently from one another.
  • the riser support assembly and the target structure may be accurately positioned with respect to one another.
  • the target structure comprises the lifting assembly.
  • This provides the advantage of obviating the need for providing a separate vessel with a lifting assembly.
  • the moving of the riser can be conducted from the target structure itself, which is simple and reliable.
  • the riser support assembly is anchored to the seabed by a first anchoring device.
  • the anchoring device advantageously keeps the riser support assembly in a fixed position.
  • the target structure is anchored to the seabed by a second anchoring device which is an independent device from the first anchoring device.
  • a second anchoring device which is an independent device from the first anchoring device.
  • the riser support assembly is directly connected to the first anchoring device throughout steps (a), (b), (c), (d) and (e).
  • This provides the advantage of having a simple and reliable positioning of the riser support assembly throughout steps (a), (b), (c), (d) and (e).
  • step (b) the target structure and the riser support assembly are connected by a connecting means.
  • the connecting means With the connecting means, a horizontal distance between the riser support assembly and the target structure can be reduced, providing easier transfer of the riser.
  • the target structure and the riser support assembly are not connected to one another.
  • the target structure and the riser support assembly are moved towards one another by reducing the length of the connection means.
  • the length of the mooring lines of the target structure can be adjusted, thereby moving the target structure toward the riser support assembly. This may be a substantial horizontal movement.
  • the target structure and the riser support assembly can be positioned very close to one another, facilitating the transferal of the riser from the target support assembly to the target structure.
  • the riser support assembly is positioned at a predetermined depth under the water surface when the riser is suspended from the riser support assembly. This facilitates an eventual positioning of the riser support assembly close to the target structure.
  • the riser support assembly is positioned at a depth at which the riser support assembly is substantially free from influences from wind and waves at the water surface. This provides the advantage of a stable support for the riser with relative low dynamic forces exerted on the riser support assembly and the riser.
  • the target structure is at least temporarily positioned substantially above the riser support assembly.
  • the riser can be moved from the riser support assembly to the target structure in a substantially vertical direction. This enables a simple lift operation by the lifting assembly.
  • the depth at which the riser support assembly is positioned is greater than the draught of the target structure. This enables the positioning of the riser support assembly under the target structure.
  • the method according to the invention comprises a further step (f) of removing the riser support assembly.
  • the riser support assembly may be reused at another location.
  • the riser is suspended by the free end thereof from a pipe-laying vessel and in step (a) the riser is transferred from the pipe-laying vessel to the riser support assembly.
  • the pipe-laying vessel is suspended by the free end thereof from a pipe-laying vessel and in step (a) the riser is transferred from the pipe-laying vessel to the riser support assembly.
  • step (a) the riser support assembly is moved towards the pipe-laying vessel, for transferring the riser from the pipe-laying vessel to the riser support assembly.
  • the target structure is chosen from a group of floating structures, comprising: a TLP, a Spar, a Semi-submersible, an FPSO, an FPDSO, an FPWSO, a storage barge, an FSO, an FSU.
  • a group of floating structures comprising: a TLP, a Spar, a Semi-submersible, an FPSO, an FPDSO, an FPWSO, a storage barge, an FSO, an FSU.
  • the riser comprises rigid sections.
  • the riser comprises only flexible pipe sections.
  • the riser can also be of a hybrid type comprising rigid sections and flexible sections.
  • step (a) at least two risers are connected to a single riser support assembly.
  • This provides the advantage of needing only a limited number of riser support assemblies, in some cases only one.
  • a first riser support assembly and a second riser support assembly are provided, wherein the first riser support assembly and second riser support assembly are connected by a mooring connecting means for maintaining a predetermined distance between the first and second riser support assembly.
  • the mooring connecting means may be a wire or a line, a cable or a rigid bar, or another connecting means known in the art.
  • the riser support assemblies may be positioned at a sufficient large distance from one another.
  • the riser support assemblies may comprise fenders to prevent damage at contact between the riser support assemblies.
  • riser support assemblies are integrated into to a large riser support assembly.
  • a large riser support assembly can support a number of risers, thereby further simplifying the construction.
  • the lifting assembly is chosen from a group of lifting assemblies, comprising: a pull-in device with chain jacks, a winch, a crane and a drill tower. These lifting assemblies have a lifting power that is sufficient to move the riser from the riser support assembly to the target structure.
  • the target structure is anchored to the seabed using a second anchoring device.
  • a second anchoring device This provides the advantage of a secure anchoring of the target structure, while obviating the need for detaching the first anchoring device from the riser support assembly.
  • the lifting assembly is connected to the riser by a remotely operated vehicle (ROV)
  • the lifting assembly comprises a lifting means such as a cable or a wire or another lifting means known in the art.
  • the ROV will assist to connect underwater the lifting means and the riser with the advantage of diverless operations.
  • the invention also relates to a riser support assembly for connecting a riser by a free end thereof with a target structure, the riser support assembly comprising:
  • a riser With the riser support assembly, a riser can be connected to a target structure in a reliable and simple way.
  • the riser support assembly is constructed for allowing an upwards movement of the riser relative to the riser support assembly.
  • the lifting assembly can lift the riser from the riser support assembly without hindrance, for instance when the riser support assembly is positioned substantially underneath the target structure.
  • the riser support assembly comprises a recess configured for receiving the riser therein.
  • the riser is positioned in the recess, thereby exerting a downwards pulling force on the riser support assembly substantially on the center of the riser support assembly, when viewed from above.
  • the riser support assembly will subsequently stay in a stable orientation.
  • the recess is a channel which, in use, extends substantially through the buoyancy device, preferably in a substantially vertical direction. This provides the advantage that the free end of the riser will extend on the upper side of the riser support assembly, allowing easy access to the riser from above, for instance for connecting a connecting means thereto.
  • the riser support assembly has a substantially elongated form.
  • the substantially elongated form extends in a substantially horizontal direction. In this way, space is created for suspending more than one riser from the riser support assembly.
  • the buoyancy device comprises a first buoyancy means and a second buoyancy means, wherein the first and second buoyancy means are connected with one another by means of a bridging body.
  • the bridging body comprises the suspending device.
  • An integration of the bridging body and the suspending device provides the advantage of a simple design and ease of construction.
  • the suspending device is configured for suspending a number of risers therefrom. This provides the advantage that less riser support assemblies will need to be installed when a relatively large number of risers is present.
  • a number of oil and/or gas wells are located in a same oil and/or gas field at relatively close distances with respect to one another.
  • a number of riser may rise from the wells and be suspended from a single riser support assembly.
  • the first anchoring device comprises a mooring line and an anchoring means, the anchoring means being chosen from a group of anchoring means, comprising: a piled foundation, a suction pile and a gravity foundation.
  • anchoring means have shown to be reliable for these purposes.
  • the anchoring means are configured for bearing a substantially upwardly directed force which is exerted on the anchoring means by the mooring line.
  • an upwards force may be exerted by the buoyancy device. Therefore, the anchoring means preferably allows for an upwardly directed force.
  • the first anchoring device comprises a mooring line, the mooring line being chosen from a group of mooring lines, comprising: a tendon, a polyester line, a steel wire and a chain. These mooring lines have shown to be reliable.
  • tendon indicates a rigid and stiff pipe, used for vertical mooring and high loads.
  • the tendon comprises pipe section which are screwed to one another.
  • These tendons technology is well known and has been used to moor Tension Leg Platforms (TLP) to the seabed.
  • FIG. 1 a schematic perspective view of a typical configuration of a target structure
  • FIG. 2 a schematic top view of a typical configuration of the target structure
  • FIG. 3 shows a schematic top view of the target structure in a production field
  • FIG. 4 shows a schematic top view of an existing method to pre-lay the mooring lines and risers of the target structure to the seabed;
  • FIG. 5 shows a schematic side view of a pipe-laying vessel approaching a riser support assembly
  • FIG. 6 shows a schematic side view of the riser support assembly in a vertical position
  • FIG. 7 shows a schematic side view of the riser connected to the riser support assembly
  • FIG. 8 shows a schematic side view of a part of the riser support assembly
  • FIG. 9 shows a schematic top view of a part of the riser support assembly
  • FIGS. 10 a and 10 b show an alternative embodiment of the riser support assembly
  • FIG. 11 shows another alternative embodiment of the riser support assembly
  • FIGS. 12 and 13 show a side view of an installation of the riser onto a riser support assembly
  • FIG. 14 shows a side view of the riser 6 suspended from the riser support assembly
  • FIGS. 15 and 16 show a side view of the riser 6 with buoyancy elements
  • FIG. 17 shows a top view of a number of pre-installed risers
  • FIG. 18 shows a top view of the target structure in the vicinity of the buoyancy devices
  • FIG. 19 shows a side view of the target structure which is moved toward a buoyancy device
  • FIGS. 20 shows a side view of an alternative embodiment of moving the buoyancy device and the target structure towards one another
  • FIG. 21 shows a side view of a movement of the riser support assembly after the riser is lifted off the riser support assembly
  • FIG. 22 shows a side view of a pull-in device for pulling the riser towards a target structure
  • FIGS. 23 a , 23 b , 23 c show a chain jacking device for pulling the riser towards the target structure
  • FIGS. 24, 25 show schematic views of the pull-in device, movably positioned onboard a target structure.
  • FIG. 1 a schematic perspective view of a typical configuration of a target structure 2 in use.
  • a number of risers 6 a , 6 b , 6 c , 6 d , 6 e , 6 f , 6 g , 6 h , 6 i , 6 j and 6 k are suspended from the target structure 2 .
  • a riser is referred to as riser 6 .
  • the target structure 2 is anchored to the seabed by an anchoring device 8 , comprising a number of mooring lines 8 a , 8 b , 8 c ; 8 d , 8 e , 8 f , 8 g , 8 h , 8 i , 8 j , 8 k , 8 l.
  • an anchoring device 8 comprising a number of mooring lines 8 a , 8 b , 8 c ; 8 d , 8 e , 8 f , 8 g , 8 h , 8 i , 8 j , 8 k , 8 l.
  • a mooring line is referred to as mooring line 8 .
  • the target structure 2 may typically be a floating production facility, such as a Tension leg Platform (TLP), a Spar, a Semi-submersible, a Floating Production Storage and Offloading Facility (FPSO), a Floating Production Drilling Storage and Offloading Facility (FPDSO), a Floating Production well Workover Storage and Offloading Facility (FPWSO), a storage barge, a Floating Storage and Offloading Facility (FSO), or a Floating Storage Unit (FSU).
  • TLP Tension leg Platform
  • Spar a Spar
  • FPSO Floating Production Storage and Offloading Facility
  • FPDSO Floating Production Drilling Storage and Offloading Facility
  • FPWSO Floating Production well Workover Storage and Offloading Facility
  • FSO Floating Storage and Offloading Facility
  • FSU Floating Storage Unit
  • the riser 6 may be manufactured from well-known construction materials such as steel or titanium.
  • the riser 6 is a Steel Catenary Riser (SCR).
  • SCR Steel Catenary Riser
  • the riser 6 may also be manufactured from a synthetic material, or a composite material. It is also possible that the riser is a flexible riser.
  • the riser 6 may also be a hybrid curved riser comprising rigid sections and flexible sections (not shown).
  • FIG. 2 shows a schematic top view of the target structure 2 .
  • the risers 6 a , 6 b , 6 c , . . . 6 q are connected to the target structure 2 on different sides of the target structure 2 .
  • FIG. 3 shows a schematic top view of the target structure 2 in a production field.
  • Pipelines 9 extend between the wells 10 a , 10 b, 10 c , 10 d, 10 e , 10 f , 10 g , 10 h and the target structure 2 .
  • the wells produce a product such as oil and/or gas.
  • the product from the wells 10 a . . . 10 h is conveyed through the pipeline in the direction of the target structure 2 .
  • Some pipelines 9 are not directly connected to the target structure, but are connected to another pipeline 9 at a junction 11 , from which junction 11 the product is further conveyed by another pipeline 9 .
  • the part of the pipeline which rises from the seabed to the target structure is the riser 6 , which is not separately indicated in this figure.
  • Other lines extend on the seabed, such as water injection lines and umbilicals. These are not indicated by a reference sign.
  • FIG. 4 shows a schematic top view of an existing method to pre-lay the mooring lines 8 and risers 6 of the target structure 2 to the seabed.
  • the mooring lines 8 a , 8 b , 8 c , . . . 8 l are connected on one end thereof to a respective anchoring point 12 a , 12 b , 12 c , . . . 12 l.
  • the mooring lines are then laid on the seabed to rest for a predetermined period of time.
  • the risers 6 a , . . . , 6 f are laid on the sea bed, possibly connected on one end thereof with a respective well.
  • the target structure 2 is positioned in its desired position.
  • the mooring lines 8 a , . . . , 8 l are picked up from the seabed by an installation vessel (not shown).
  • the mooring lines 8 a , . . . , 8 l are then connected at their free end to the target structure 2 .
  • the risers 6 a , 6 f are picked up from the seabed and connected on a respective free end 24 a , . . . , 24 f thereof to the target structure 2 .
  • FIG. 5 a side view of a pipe-laying vessel 16 approaching a riser support assembly 20 is shown.
  • the pipeline or riser 6 is suspended from the pipe-laying vessel 16 .
  • the pipeline or riser 6 is laid in J-lay mode, wherein the free end 24 of the pipeline or riser 6 extends in a substantially vertical direction near the pipe-laying vessel 16 .
  • other type of lay vessels can be used to install the risers, such as S-lay or reel-lay vessels.
  • the pipe-laying vessel 16 moves in the direction indicated by arrow 26 .
  • the pipeline 6 is formed on the pipe-laying vessel 16 by joining abutting pipe sections (not shown) with the pipeline 6 .
  • the pipeline 6 comes to rest on the seabed 18 .
  • the riser support assembly 20 comprises a buoyancy device 28 and an anchoring device 29 .
  • the anchoring device 29 comprises a mooring line 14 and an anchoring means 30 , the mooring line 14 being connected with a first end to the buoyancy device 28 and with a second end to the anchoring means 30 , anchored in the seabed at an anchoring point 12 .
  • An indicating buoy 32 is connected with a line to the riser support assembly 20 and floats at the water surface 34 , for indicating the position of the riser support assembly 20 .
  • the anchoring means 30 may be a piled foundation, a suction pile, a gravity foundation.
  • the anchoring means 30 is configured to resist a substantially upwardly directed vertical force exerted on it by the mooring line 14 .
  • the mooring line 14 can be a tendon, a light weight line such as a polyester line, a steel wire or a chain.
  • the buoyancy device 28 may be completely under the water surface 34 or partially above the water surface 34 when there is no riser 6 suspended from the riser support assembly 20 .
  • the buoyancy device 28 will be under the water surface 34 at a depth 41 where there is no influence from wind and/or waves.
  • the mooring line 14 may extend along a substantially straight line or may extend along a catenary line.
  • FIG. 6 shows a riser support assembly 20 having a buoyancy device 28 which is positioned partially submerged and partially above the water surface 34 .
  • FIG. 7 shows the riser 6 connected to the riser support assembly 20 .
  • the buoyancy device 28 is positioned at a predetermined depth under the water surface 34 .
  • FIGS. 8 and 9 show schematic views from the side and from the top of a part of the riser support assembly 20 .
  • the buoyancy device 28 has a substantially cylindrical form. Other forms of the buoyancy device 28 , such as box-like, are also possible.
  • a mooring line 14 is attached to the buoyancy device 28 at a bottom side thereof.
  • a recess 36 extends through the buoyancy device 28 to form a channel 37 in a substantial vertical direction through the buoyancy device 28 .
  • the buoyancy device 28 can adopt the orientation of the riser 6 and the channel 37 will have an inclined orientation.
  • the riser 6 has at the free end 24 thereof a lifting connector 40 for connecting the riser 6 to a lifting assembly (not shown), in order to lift the riser 6 from the buoyancy device 28 . Further, at the free end 24 of the riser 6 a first collar 42 is provided for suspending the riser 6 from the buoyancy device 28 . A second collar 44 is provided to hang the riser 6 from the target structure (not shown).
  • the riser support buoy 28 has a suspending device 31 for suspending the riser 6 therefrom.
  • the suspending device comprises a contact area 33 , wherein the collar 42 engages the buoyancy device 28 .
  • FIGS. 10 a and 10 b show an alternative embodiment of the riser support assembly 20 .
  • the buoyancy device 28 has an elongated form and extends in a substantially horizontal orientation.
  • Two mooring lines 14 a , 14 b are connected on a first end thereof to respective ends of the riser support assembly 20 .
  • the mooring lines 14 a , 14 b are connected on a second end thereof to anchoring means 30 a , 30 b .
  • Other forms of the buoyancy device are also possible.
  • a number of risers 6 a , 6 b , 6 c , 6 d , 6 e are suspended from the riser support assembly 20 .
  • Each riser has at the free end 24 thereof a suspending device 46 in the form of a hook 46 a , 46 b , 46 c , 46 e for suspending the respective risers 6 from the buoyancy device 28 .
  • a person skilled in the art will appreciate that many other embodiments such a suspending device 46 are possible, without departing from the scope of the invention.
  • FIG. 11 shows another alternative embodiment of the riser support assembly 20 .
  • two buoyancy means 28 a , 28 b are provided which are connected by a bridging body 48 .
  • the bridging body 48 is configured to suspend the risers 6 a , . . . 6 g therefrom.
  • the bridging body 48 may be a rigid bar.
  • FIGS. 12 and 13 the installation of the riser 6 onto a riser support assembly 20 is shown.
  • the riser 6 When the riser 6 has reached the required length, it is to be transferred to the riser support assembly 20 .
  • the riser support assembly 20 In FIG. 12 , the riser support assembly 20 is pulled toward the pipe-laying vessel 16 by a line 50 .
  • the buoyancy device 28 is moved in close proximity with the pipe-laying vessel 16 . This may be performed using a winch (not shown) on board the pipe-laying vessel 16 or by using an assisting tug boat (not shown). Then, the riser 6 is transferred from the pipe-laying vessel 16 to the riser support assembly 20 and is suspended from the buoyancy device 28 .
  • FIG. 14 shows the riser 6 suspended from the riser support assembly 20 .
  • the riser 6 may rest in a suspended position for a period of time. In some cases, this period of time may last for a number of months.
  • the riser support assembly 20 should preferably be in a submerged position at a depth well below the water surface 34 , at which depth the riser support assembly 20 experiences no wind and smaller wave induced forces that it would experience when in the water surface 34 .
  • FIGS. 15 and 16 show a riser 6 with a number of buoyancy elements 52 a , 52 b , 52 c , 52 d , 52 e attached thereto, for providing buoyancy to the riser 6 .
  • the riser 6 has a lazy wave configuration, to reduce fatigue of the riser at the touch down point and to reduce riser weight.
  • the buoyancy elements 52 a , 52 b , 52 c , 52 d , 52 e are attached to the part of the riser 6 which extends from the seabed 18 towards the buoyancy device 28 to reduce riser weight and the size of the buoy 28 .
  • FIG. 17 shows a top view of a number of pre-installed risers 6 a , 6 b , 6 c , and 6 d , suspended from riser support assemblies 20 a , 20 b , 20 c , 20 d .
  • a connecting element 54 is provided between the buoyancy device 28 b and the buoyancy device 28 c , for keeping the buoyancy device 28 b and the buoyancy device 28 c at a desired distance from one another. In this way, contact between the buoyancy devices 28 b , 28 c in a current flow, can be avoided, which could result in damage.
  • Connecting elements 54 may also be provided between the other buoyancy devices 28 .
  • a sufficient large distance between the buoyancy devices may also be provided.
  • fenders on the buoyancy devices 28 may be provided in order to avoid damage during contact. Another possibility of avoiding damage to the buoyancy devices 28 is to integrate a number of buoyancy devices into a single large buoyancy device 28 .
  • FIG. 18 shows the target structure 2 in the vicinity of the buoyancy devices.
  • the target structure 2 is moored to the seabed after arrival in the field.
  • pre-installed mooring lines 8 can for instance be pre-installed and laid on the seabed, as is shown in FIG. 4 .
  • the mooring lines 8 can also be connected to buoyancy devices 28 (not shown) allowing pre-installation of the mooring lines prior to arrival of the target structure 2 .
  • the anchoring means 30 a , 30 b , 30 c . . . 30 h are positioned on the other side of the target structure as the respective corresponding buoyancy devices 28 a , . . . 28 h.
  • the risers 6 a , 6 b , 6 c , . . . 6 h extend in different directions, and are connected to the target structure 2 on different sides thereof.
  • Mooring connecting means 54 connect buoyancy devices 28 a , with 28 e , 28 b with 28 c , 28 d with 28 h , and 28 g with 28 f .
  • Other ways of connecting the buoyancy devices 28 a . . . 28 h with one another are also possible.
  • FIG. 19 shows a target structure 2 which is moved toward a buoyancy device 28 .
  • the target structure 2 is anchored to the seabed by mooring lines 8 a , 8 b, shown and designated in a first position as 8 a 1 and 8 b 1 .
  • the mooring line 8 b is winched to shorten the length thereof. Consequently, the target structure 2 will move in the direction of arrow 56 , toward the buoyancy device 28 .
  • the mooring lines 8 a , 8 b will adopt respective second positions 8 a 2 , 8 b 2 .
  • a tug boat is used to move the target structure toward the buoyancy device 28 .
  • the riser 6 can be transferred to the target structure.
  • the target structure may be moved from one desired position to the next one, picking up a riser 6 in each position. After the risers 6 are connected to the target structure 2 , the target structure 2 is moved to its final position.
  • FIG. 20 shows an alternative embodiment of moving the buoyancy device 28 and the target structure 2 towards one another.
  • the buoyancy device 28 is winched towards the target structure 2 by a winching device 58 located on the target structure 2 .
  • a guiding assembly 60 is provided for guiding a connection line 62 between the winching device 58 and the buoyancy device 28 , in order to ensure a correct positioning of the buoyancy device 28 relative to the target structure 2 .
  • FIG. 21 shows a movement of the riser support assembly 20 after the riser 6 is lifted off the riser support assembly 20 and transferred to the target structure 2 .
  • the buoyancy device 28 will move with respect to the anchoring point 12 , until it reaches its equilibrium position vertically above the anchoring point 12 .
  • the buoyancy device 28 can be left in this position, allowing a reverse operation of transferring the riser 6 from the target structure 2 onto the riser support assembly 20 .
  • the riser support assembly 20 may be removed and reused in another location.
  • the riser support assemblies 20 may be disconnected from the anchoring means 30 by a remote operated vehicle (ROV, not shown), known in the art. Partial flooding of the buoyancy device 28 may be performed prior to disconnecting from the buoyancy device 28 .
  • the ROV may also be used to assist in connecting the connection line 62 to the buoyancy device 28 .
  • the riser 6 is lifted off the riser support assembly 20 by a support vessel (not shown) and moved towards the target structure 2 by the support vessel.
  • the support vessel requires a high capacity winch to lift the heavy riser (possibly weighing in the order of 2000-6000 kiloNewton).
  • FIG. 22 shows a pull-in device 63 for pulling the riser 6 towards a target structure 2 .
  • the pull-in device 63 is a drilling tower 64 .
  • the pull-in device 63 may also be a crane or a jacking device (not shown).
  • FIG. 23 shows a chain jacking device 66 for pulling the riser 6 towards the target structure 2 .
  • the chain jacking device 66 comprises lift cylinders 68 a and 68 b , a fixed latch 70 , a travelling latch 72 and a traveling cross-arm 74 .
  • Chain jacking devices are known in the art.
  • FIGS. 24 and 25 show a configuration of a pull-in device 63 , movably positioned onboard a target structure 2 , on rails 76 a , 76 b , such as skidding rails.
  • a number of risers 6 are positioned on the side 83 of the target structure 2 .
  • Hydraulic rams 78 a , 78 b are provided for moving the pull-in device in the directions of arrows relative to the target structure
  • a pulling rig skid base 81 is provided for skidding on the skidding rails 78 a , 78 b . In this way, a single pull-in device 63 can be used to sequentially pull in a number of risers 6 a , 6 b , 6 c towards the target structure 2 .

Abstract

The present invention relates to a method for connecting a free end of an at least partially submerged riser to a target structure, the method comprising: (a) connecting the riser by the free end thereof to a riser support assembly; (b) positioning the target structure near the riser support assembly; (c) connecting a lifting assembly, with the free end (24) of the riser; (d) moving the riser by the free end thereof from the riser support assembly toward the target structure by the lifting assembly; and (e) connecting the riser with the target structure. The present invention also relates to a riser support assembly for connecting a riser by a free end thereof with a target structure.

Description

    FIELD OF THE INVENTION
  • The present invention relates to a method and device for connecting a riser to a target structure. Risers are widely applied in the offshore industry in oil and/or gas fields at sea. An oil and/or gas well is located at a seabed level. The product, e.g. oil and/or gas, is produced by the well and is transported to a structure at the water level. From the structure, the product is transported further on, for instance by means of another pipeline to a shore. The product may also be temporarily stored in a storage facility close to, or on the structure. In order to transport the product to the structure, the well is connected to the structure by a pipeline for conveying the product to the structure.
  • During the installation of oil and/or gas field, a pipeline is laid connecting the well with the structure located at the water surface. Such a pipeline usually has a first part which rests on the seabed, and a second part which rises from the seabed towards the structure at the water level. The second part of the pipeline is known in the field of the art as a “riser”.
  • Typically, the riser follows a curved trajectory from the seabed towards the riser support assembly. At the seabed level, the riser has a substantially horizontal orientation. Near the riser support assembly, the riser may have a substantially vertical orientation.
  • DESCRIPTION OF THE PRIOR ART
  • In a known method of installation of a riser, a transfer of a product riser and a transfer of a number of anchor lines from a first, temporary buoy to a second, permanent buoy are combined. The product riser is produced and installed by a pipe-laying vessel, located at the water surface. The first buoy is anchored to the seabed by at least a first and a second anchor line. The product riser connected by a free end thereof to the first buoy. The riser may stay in this position for a considerable period of time, until a second, permanent mooring buoy is put in place.
  • When the second buoy is ready, it is positioned in a desired position, close to the first buoy. The first and the second buoy are connected to one another via a member which can take up tension forces. A tug boat is provided for pulling the second buoy away from the first buoy. Then, the anchor lines are detached one by one from the first buoy and connected to the second buoy. During the time period in which at least one of the anchor lines is detached, the combination of the first and second buoy is no longer anchored in a stable and secure way, and is in risk of drifting away from the desired location. The tug boat is provided for keeping the buoys in place.
  • Subsequently, the second anchor line is transferred from the first buoy to the second buoy. During this operation, the tug boat also keeps the first and second buoy in place en prevents drifting away of the first and second buoy.
  • Then, the product riser is transferred from the first buoy to the second buoy. This is performed by using a cable which is connected to a winch on the second buoy. The free end of the cable is connected to a free end of the product riser. When the product riser is detached from the first buoy, the cable is pulled by the winch, transferring the product riser from the first buoy to the second buoy.
  • A drawback of the above mentioned method is that it is a complicated procedure, requiring a tug boat
  • Further, the combination of transferring the anchor lines and the product riser at the same time provides the drawback that the first buoy is no longer anchored to the seabed at the end of the operation and is to be moved away by the tug boat. A reverse operation of transferring the product riser back to the first buoy cannot be performed without re-anchoring the first buoy back to the seabed.
  • SUMMARY OF THE INVENTION
  • It is an object of the present invention to provide a method and device for connecting a riser to a target structure which is substantially free of the above mentioned drawbacks.
  • It is a further object of the invention to provide a method and device for connecting a riser to a target structure, which is relatively fast, reliable and simple to perform.
  • It is in particular an object of the present invention to provide a method and device of connecting a riser to a target structure, wherein a free end of the riser can temporarily be positioned in a predetermined way during a time period in which the target structure is not yet present and connected to the target structure when the target structure is present at its desired position.
  • Thereto the method according to the invention comprises the steps of:
      • (a) connecting the riser by the free end thereof to a riser support assembly;
      • (b) positioning the target structure near the riser support assembly;
      • (c) connecting a lifting assembly with the free end of the riser;
      • (d) moving the riser by the free end thereof from the riser support assembly toward the target structure by the lifting assembly; and
      • (e) connecting the riser with the target structure.
  • With the method according to the invention, risers can be installed when the target structure is not yet present at the time of installation of the riser itself.
  • The word “riser” may refer to a production, injection, communication and/or control riser for conveying oil and/or gas or another product. A production or injection riser is constructed to convey a product, such as oil or gas or water or any fluid, from the seabed to the target structure or vice versa from the target structure to the well. The word riser may also refer to a communication and/or control riser. A communication and/or control riser is constructed to transmit signals from the target structure to devices on the seabed, such as for instance the wells, or controllable valves. Also, signals may be transmitted by the riser from the oil well and/or other devices on the seabed to the target structure, for controlling the devices on the seabed.
  • Other types of risers also exist, for instance risers that are used to convey water from the target structure toward the seabed, for injection of the water in the well. Other types of riser are well control risers.
  • The words “target structure” are to be interpreted broadly and can indicate a wide range of structures, floating or resting on the seabed. A number of non-limiting examples of target structures are provided hereinafter.
  • The words “lifting assembly” are to be understood as to indicate a wide range of lifting assemblies. The lifting assembly may be a crane or a winch or a drilling tower, or another device. The lifting assembly may be positioned on the target structure or on a separate vessel or structure.
  • The riser support assembly indicates any construction configured for supporting a riser by a free end thereof. The riser support assembly preferably comprises a buoyancy device for providing a required buoyancy for supporting the riser.
  • Preferably, the target structure and the riser support assembly are maintained in their respective positions independently from one another.
  • In this way the riser support assembly and the target structure may be accurately positioned with respect to one another.
  • Preferably, the target structure comprises the lifting assembly. This provides the advantage of obviating the need for providing a separate vessel with a lifting assembly. The moving of the riser can be conducted from the target structure itself, which is simple and reliable.
  • Preferably, the riser support assembly is anchored to the seabed by a first anchoring device.
  • The anchoring device advantageously keeps the riser support assembly in a fixed position.
  • Preferably, the target structure is anchored to the seabed by a second anchoring device which is an independent device from the first anchoring device. In this way, advantageously the step of transferring the anchoring device of the riser support assembly to the target structure can be left out of the procedure.
  • Preferably, the riser support assembly is directly connected to the first anchoring device throughout steps (a), (b), (c), (d) and (e). This provides the advantage of having a simple and reliable positioning of the riser support assembly throughout steps (a), (b), (c), (d) and (e).
  • Preferably, during step (b) the target structure and the riser support assembly are connected by a connecting means. With the connecting means, a horizontal distance between the riser support assembly and the target structure can be reduced, providing easier transfer of the riser.
  • Preferably, the target structure and the riser support assembly are not connected to one another.
  • Preferably, during step (b) the target structure and the riser support assembly are moved towards one another by reducing the length of the connection means. Also, the length of the mooring lines of the target structure can be adjusted, thereby moving the target structure toward the riser support assembly. This may be a substantial horizontal movement. Advantageously, the target structure and the riser support assembly can be positioned very close to one another, facilitating the transferal of the riser from the target support assembly to the target structure.
  • Preferably, the riser support assembly is positioned at a predetermined depth under the water surface when the riser is suspended from the riser support assembly. This facilitates an eventual positioning of the riser support assembly close to the target structure.
  • Preferably, the riser support assembly is positioned at a depth at which the riser support assembly is substantially free from influences from wind and waves at the water surface. This provides the advantage of a stable support for the riser with relative low dynamic forces exerted on the riser support assembly and the riser.
  • Preferably, in step (b) the target structure is at least temporarily positioned substantially above the riser support assembly. This provides the advantage that the riser can be moved from the riser support assembly to the target structure in a substantially vertical direction. This enables a simple lift operation by the lifting assembly.
  • Preferably, the depth at which the riser support assembly is positioned is greater than the draught of the target structure. This enables the positioning of the riser support assembly under the target structure.
  • Preferably, the method according to the invention comprises a further step (f) of removing the riser support assembly. Advantageously, the riser support assembly may be reused at another location.
  • Preferably, prior to step (a) the riser is suspended by the free end thereof from a pipe-laying vessel and in step (a) the riser is transferred from the pipe-laying vessel to the riser support assembly. This enables the pipe-laying vessel to start another operation elsewhere, and obviates the need for the pipe-laying vessel to wait for a substantial amount of time for late arrival of the target structure.
  • Preferably, in step (a) the riser support assembly is moved towards the pipe-laying vessel, for transferring the riser from the pipe-laying vessel to the riser support assembly.
  • Preferably, the target structure is chosen from a group of floating structures, comprising: a TLP, a Spar, a Semi-submersible, an FPSO, an FPDSO, an FPWSO, a storage barge, an FSO, an FSU. For these structures and other structures, the method according to the invention provides a reliable way of connecting the riser to the target structure.
  • Different riser configurations exist to provide a reliable connection between the pipeline on the seabed and the target structure. Preferably, the riser comprises rigid sections. Alternatively the riser comprises only flexible pipe sections. The riser can also be of a hybrid type comprising rigid sections and flexible sections.
  • Preferably, in step (a) at least two risers are connected to a single riser support assembly. This provides the advantage of needing only a limited number of riser support assemblies, in some cases only one.
  • Preferably, a first riser support assembly and a second riser support assembly are provided, wherein the first riser support assembly and second riser support assembly are connected by a mooring connecting means for maintaining a predetermined distance between the first and second riser support assembly.
  • This embodiment advantageously prevents damage to the riser support assemblies. The mooring connecting means may be a wire or a line, a cable or a rigid bar, or another connecting means known in the art.
  • Alternatively, the riser support assemblies may be positioned at a sufficient large distance from one another. The riser support assemblies may comprise fenders to prevent damage at contact between the riser support assemblies.
  • Alternatively, two or more riser support assemblies are integrated into to a large riser support assembly. A large riser support assembly can support a number of risers, thereby further simplifying the construction.
  • Preferably, the lifting assembly is chosen from a group of lifting assemblies, comprising: a pull-in device with chain jacks, a winch, a crane and a drill tower. These lifting assemblies have a lifting power that is sufficient to move the riser from the riser support assembly to the target structure.
  • Preferably, the target structure is anchored to the seabed using a second anchoring device. This provides the advantage of a secure anchoring of the target structure, while obviating the need for detaching the first anchoring device from the riser support assembly.
  • Preferably, the lifting assembly is connected to the riser by a remotely operated vehicle (ROV) The lifting assembly comprises a lifting means such as a cable or a wire or another lifting means known in the art. The ROV will assist to connect underwater the lifting means and the riser with the advantage of diverless operations.
  • The invention also relates to a riser support assembly for connecting a riser by a free end thereof with a target structure, the riser support assembly comprising:
      • a buoyancy device for providing a predetermined buoyancy to the riser support assembly;
      • a suspending device configured for suspending the riser by the free end thereof from the riser support assembly;
      • a first anchoring device for anchoring the riser support assembly to the seabed.
  • With the riser support assembly, a riser can be connected to a target structure in a reliable and simple way.
  • Preferably, the riser support assembly is constructed for allowing an upwards movement of the riser relative to the riser support assembly. In this way the lifting assembly can lift the riser from the riser support assembly without hindrance, for instance when the riser support assembly is positioned substantially underneath the target structure.
  • Preferably the riser support assembly comprises a recess configured for receiving the riser therein. Advantageously, the riser is positioned in the recess, thereby exerting a downwards pulling force on the riser support assembly substantially on the center of the riser support assembly, when viewed from above. The riser support assembly will subsequently stay in a stable orientation.
  • Preferably, the recess is a channel which, in use, extends substantially through the buoyancy device, preferably in a substantially vertical direction. This provides the advantage that the free end of the riser will extend on the upper side of the riser support assembly, allowing easy access to the riser from above, for instance for connecting a connecting means thereto.
  • Preferably, the riser support assembly has a substantially elongated form.
  • Preferably, the substantially elongated form extends in a substantially horizontal direction. In this way, space is created for suspending more than one riser from the riser support assembly.
  • Preferably, the buoyancy device comprises a first buoyancy means and a second buoyancy means, wherein the first and second buoyancy means are connected with one another by means of a bridging body. This provides the further advantage of enabling a configuration of a large riser support assembly.
  • Preferably, the bridging body comprises the suspending device. An integration of the bridging body and the suspending device provides the advantage of a simple design and ease of construction.
  • Preferably, the suspending device is configured for suspending a number of risers therefrom. This provides the advantage that less riser support assemblies will need to be installed when a relatively large number of risers is present.
  • Often, a number of oil and/or gas wells are located in a same oil and/or gas field at relatively close distances with respect to one another. In that case, a number of riser may rise from the wells and be suspended from a single riser support assembly.
  • Preferably, the first anchoring device comprises a mooring line and an anchoring means, the anchoring means being chosen from a group of anchoring means, comprising: a piled foundation, a suction pile and a gravity foundation. These anchoring means have shown to be reliable for these purposes.
  • Preferably, the anchoring means are configured for bearing a substantially upwardly directed force which is exerted on the anchoring means by the mooring line. On the first anchoring means an upwards force may be exerted by the buoyancy device. Therefore, the anchoring means preferably allows for an upwardly directed force.
  • Preferably, the first anchoring device comprises a mooring line, the mooring line being chosen from a group of mooring lines, comprising: a tendon, a polyester line, a steel wire and a chain. These mooring lines have shown to be reliable.
  • The word tendon indicates a rigid and stiff pipe, used for vertical mooring and high loads. Preferably the tendon comprises pipe section which are screwed to one another. These tendons technology is well known and has been used to moor Tension Leg Platforms (TLP) to the seabed.
  • The claims and advantages will be more readily appreciated as the same becomes better understood by reference to the following detailed description and considered in connection with the accompanying drawings in which like reference symbols designate like parts.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Hereinafter the present invention will be illustrated in more detail by a drawing. Herein shows:
  • FIG. 1 a schematic perspective view of a typical configuration of a target structure;
  • FIG. 2 a schematic top view of a typical configuration of the target structure;
  • FIG. 3 shows a schematic top view of the target structure in a production field;
  • FIG. 4 shows a schematic top view of an existing method to pre-lay the mooring lines and risers of the target structure to the seabed;
  • FIG. 5 shows a schematic side view of a pipe-laying vessel approaching a riser support assembly;
  • FIG. 6 shows a schematic side view of the riser support assembly in a vertical position;
  • FIG. 7 shows a schematic side view of the riser connected to the riser support assembly;
  • FIG. 8 shows a schematic side view of a part of the riser support assembly;
  • FIG. 9 shows a schematic top view of a part of the riser support assembly;
  • FIGS. 10 a and 10 b show an alternative embodiment of the riser support assembly;
  • FIG. 11 shows another alternative embodiment of the riser support assembly;
  • FIGS. 12 and 13 show a side view of an installation of the riser onto a riser support assembly;
  • FIG. 14 shows a side view of the riser 6 suspended from the riser support assembly;
  • FIGS. 15 and 16 show a side view of the riser 6 with buoyancy elements;
  • FIG. 17. shows a top view of a number of pre-installed risers;
  • FIG. 18 shows a top view of the target structure in the vicinity of the buoyancy devices;
  • FIG. 19 shows a side view of the target structure which is moved toward a buoyancy device;
  • FIGS. 20 shows a side view of an alternative embodiment of moving the buoyancy device and the target structure towards one another;
  • FIG. 21 shows a side view of a movement of the riser support assembly after the riser is lifted off the riser support assembly;
  • FIG. 22 shows a side view of a pull-in device for pulling the riser towards a target structure;
  • FIGS. 23 a, 23 b, 23 c show a chain jacking device for pulling the riser towards the target structure; and
  • FIGS. 24, 25 show schematic views of the pull-in device, movably positioned onboard a target structure.
  • FIG. 1 a schematic perspective view of a typical configuration of a target structure 2 in use. A number of risers 6 a, 6 b, 6 c, 6 d, 6 e, 6 f, 6 g, 6 h, 6 i, 6 j and 6 k are suspended from the target structure 2. For ease of reference, a riser is referred to as riser 6. The target structure 2 is anchored to the seabed by an anchoring device 8, comprising a number of mooring lines 8 a, 8 b, 8 c; 8 d, 8 e, 8 f, 8 g, 8 h, 8 i, 8 j, 8 k, 8 l. For ease of reference, a mooring line is referred to as mooring line 8. The target structure 2 may typically be a floating production facility, such as a Tension leg Platform (TLP), a Spar, a Semi-submersible, a Floating Production Storage and Offloading Facility (FPSO), a Floating Production Drilling Storage and Offloading Facility (FPDSO), a Floating Production well Workover Storage and Offloading Facility (FPWSO), a storage barge, a Floating Storage and Offloading Facility (FSO), or a Floating Storage Unit (FSU).
  • The riser 6 may be manufactured from well-known construction materials such as steel or titanium. Preferably, the riser 6 is a Steel Catenary Riser (SCR). The riser 6 may also be manufactured from a synthetic material, or a composite material. It is also possible that the riser is a flexible riser. The riser 6 may also be a hybrid curved riser comprising rigid sections and flexible sections (not shown).
  • FIG. 2 shows a schematic top view of the target structure 2. The risers 6 a, 6 b, 6 c, . . . 6 q are connected to the target structure 2 on different sides of the target structure 2.
  • FIG. 3 shows a schematic top view of the target structure 2 in a production field. Pipelines 9 extend between the wells 10 a, 10 b, 10 c, 10 d, 10 e, 10 f, 10 g, 10 h and the target structure 2. The wells produce a product such as oil and/or gas. The product from the wells 10 a . . . 10 h is conveyed through the pipeline in the direction of the target structure 2. Some pipelines 9 are not directly connected to the target structure, but are connected to another pipeline 9 at a junction 11, from which junction 11 the product is further conveyed by another pipeline 9. The part of the pipeline which rises from the seabed to the target structure is the riser 6, which is not separately indicated in this figure. Other lines extend on the seabed, such as water injection lines and umbilicals. These are not indicated by a reference sign.
  • FIG. 4 shows a schematic top view of an existing method to pre-lay the mooring lines 8 and risers 6 of the target structure 2 to the seabed. In this phase, the target structure 2 is not present. The mooring lines 8 a, 8 b, 8 c, . . . 8 l are connected on one end thereof to a respective anchoring point 12 a, 12 b, 12 c, . . . 12 l. The mooring lines are then laid on the seabed to rest for a predetermined period of time.
  • In the same way, the risers 6 a, . . . , 6 f are laid on the sea bed, possibly connected on one end thereof with a respective well.
  • Then, the target structure 2 is positioned in its desired position. The mooring lines 8 a, . . . , 8 l are picked up from the seabed by an installation vessel (not shown). The mooring lines 8 a, . . . , 8 l are then connected at their free end to the target structure 2.
  • In the same way, the risers 6 a, 6 f are picked up from the seabed and connected on a respective free end 24 a, . . . , 24 f thereof to the target structure 2.
  • Turning to FIG. 5, a side view of a pipe-laying vessel 16 approaching a riser support assembly 20 is shown. The pipeline or riser 6 is suspended from the pipe-laying vessel 16. In this configuration, the pipeline or riser 6 is laid in J-lay mode, wherein the free end 24 of the pipeline or riser 6 extends in a substantially vertical direction near the pipe-laying vessel 16. Instead of a J-lay vessel, other type of lay vessels can be used to install the risers, such as S-lay or reel-lay vessels. The pipe-laying vessel 16 moves in the direction indicated by arrow 26. The pipeline 6 is formed on the pipe-laying vessel 16 by joining abutting pipe sections (not shown) with the pipeline 6. The pipeline 6 comes to rest on the seabed 18.
  • The riser support assembly 20 comprises a buoyancy device 28 and an anchoring device 29. The anchoring device 29 comprises a mooring line 14 and an anchoring means 30, the mooring line 14 being connected with a first end to the buoyancy device 28 and with a second end to the anchoring means 30, anchored in the seabed at an anchoring point 12. An indicating buoy 32 is connected with a line to the riser support assembly 20 and floats at the water surface 34, for indicating the position of the riser support assembly 20.
  • The anchoring means 30 may be a piled foundation, a suction pile, a gravity foundation. Preferably, the anchoring means 30 is configured to resist a substantially upwardly directed vertical force exerted on it by the mooring line 14.
  • The mooring line 14 can be a tendon, a light weight line such as a polyester line, a steel wire or a chain.
  • The buoyancy device 28 may be completely under the water surface 34 or partially above the water surface 34 when there is no riser 6 suspended from the riser support assembly 20. When the riser 6 is suspended from the riser support assembly 20, the buoyancy device 28 will be under the water surface 34 at a depth 41 where there is no influence from wind and/or waves.
  • When the riser 6 is connected to the riser support assembly 20, the mooring line 14 may extend along a substantially straight line or may extend along a catenary line.
  • FIG. 6 shows a riser support assembly 20 having a buoyancy device 28 which is positioned partially submerged and partially above the water surface 34.
  • FIG. 7 shows the riser 6 connected to the riser support assembly 20. The buoyancy device 28 is positioned at a predetermined depth under the water surface 34.
  • FIGS. 8 and 9 show schematic views from the side and from the top of a part of the riser support assembly 20. The buoyancy device 28 has a substantially cylindrical form. Other forms of the buoyancy device 28, such as box-like, are also possible. A mooring line 14 is attached to the buoyancy device 28 at a bottom side thereof. A recess 36 extends through the buoyancy device 28 to form a channel 37 in a substantial vertical direction through the buoyancy device 28. A person skilled in the art will readily appreciate that if the riser 6 is not positioned substantially vertically but in an inclined orientation, the buoyancy device 28 can adopt the orientation of the riser 6 and the channel 37 will have an inclined orientation.
  • The riser 6 has at the free end 24 thereof a lifting connector 40 for connecting the riser 6 to a lifting assembly (not shown), in order to lift the riser 6 from the buoyancy device 28. Further, at the free end 24 of the riser 6 a first collar 42 is provided for suspending the riser 6 from the buoyancy device 28. A second collar 44 is provided to hang the riser 6 from the target structure (not shown).
  • The riser support buoy 28 has a suspending device 31 for suspending the riser 6 therefrom. The suspending device comprises a contact area 33, wherein the collar 42 engages the buoyancy device 28.
  • FIGS. 10 a and 10 b show an alternative embodiment of the riser support assembly 20. The buoyancy device 28 has an elongated form and extends in a substantially horizontal orientation. Two mooring lines 14 a, 14 b are connected on a first end thereof to respective ends of the riser support assembly 20. The mooring lines 14 a, 14 b are connected on a second end thereof to anchoring means 30 a, 30 b. Other forms of the buoyancy device are also possible.
  • A number of risers 6 a, 6 b, 6 c, 6 d, 6 e are suspended from the riser support assembly 20. Each riser has at the free end 24 thereof a suspending device 46 in the form of a hook 46 a, 46 b, 46 c, 46 e for suspending the respective risers 6 from the buoyancy device 28. A person skilled in the art will appreciate that many other embodiments such a suspending device 46 are possible, without departing from the scope of the invention.
  • FIG. 11 shows another alternative embodiment of the riser support assembly 20. In this embodiment, two buoyancy means 28 a, 28 b are provided which are connected by a bridging body 48. The bridging body 48 is configured to suspend the risers 6 a, . . . 6 g therefrom. The bridging body 48 may be a rigid bar.
  • Turning to FIGS. 12 and 13, the installation of the riser 6 onto a riser support assembly 20 is shown. When the riser 6 has reached the required length, it is to be transferred to the riser support assembly 20. In FIG. 12, the riser support assembly 20 is pulled toward the pipe-laying vessel 16 by a line 50. The buoyancy device 28 is moved in close proximity with the pipe-laying vessel 16. This may be performed using a winch (not shown) on board the pipe-laying vessel 16 or by using an assisting tug boat (not shown). Then, the riser 6 is transferred from the pipe-laying vessel 16 to the riser support assembly 20 and is suspended from the buoyancy device 28.
  • FIG. 14 shows the riser 6 suspended from the riser support assembly 20. In this position, the riser 6 may rest in a suspended position for a period of time. In some cases, this period of time may last for a number of months. The riser support assembly 20 should preferably be in a submerged position at a depth well below the water surface 34, at which depth the riser support assembly 20 experiences no wind and smaller wave induced forces that it would experience when in the water surface 34.
  • FIGS. 15 and 16 show a riser 6 with a number of buoyancy elements 52 a, 52 b, 52 c, 52 d, 52 e attached thereto, for providing buoyancy to the riser 6. In FIG. 15, the riser 6 has a lazy wave configuration, to reduce fatigue of the riser at the touch down point and to reduce riser weight.
  • In FIG. 16, the buoyancy elements 52 a, 52 b, 52 c, 52 d, 52 e are attached to the part of the riser 6 which extends from the seabed 18 towards the buoyancy device 28 to reduce riser weight and the size of the buoy 28.
  • FIG. 17. shows a top view of a number of pre-installed risers 6 a, 6 b, 6 c, and 6 d, suspended from riser support assemblies 20 a, 20 b, 20 c, 20 d. A connecting element 54 is provided between the buoyancy device 28 b and the buoyancy device 28 c, for keeping the buoyancy device 28 b and the buoyancy device 28 c at a desired distance from one another. In this way, contact between the buoyancy devices 28 b, 28 c in a current flow, can be avoided, which could result in damage. Connecting elements 54 may also be provided between the other buoyancy devices 28.
  • Alternatively, in order to prevent contact between the buoyancy devices 28, a sufficient large distance between the buoyancy devices may also be provided. Also fenders on the buoyancy devices 28 may be provided in order to avoid damage during contact. Another possibility of avoiding damage to the buoyancy devices 28 is to integrate a number of buoyancy devices into a single large buoyancy device 28.
  • FIG. 18 shows the target structure 2 in the vicinity of the buoyancy devices. The target structure 2 is moored to the seabed after arrival in the field. In order to reduce installation time of the target structure, use can be made of pre-installed mooring lines 8. These mooring lines 8 can for instance be pre-installed and laid on the seabed, as is shown in FIG. 4. The mooring lines 8 can also be connected to buoyancy devices 28 (not shown) allowing pre-installation of the mooring lines prior to arrival of the target structure 2.
  • The anchoring means 30 a, 30 b, 30 c . . . 30 h are positioned on the other side of the target structure as the respective corresponding buoyancy devices 28 a, . . . 28 h.
  • The risers 6 a, 6 b, 6 c, . . . 6 h extend in different directions, and are connected to the target structure 2 on different sides thereof.
  • Mooring connecting means 54 connect buoyancy devices 28 a, with 28 e, 28 b with 28 c, 28 d with 28 h, and 28 g with 28 f. Other ways of connecting the buoyancy devices 28 a . . . 28 h with one another are also possible.
  • FIG. 19 shows a target structure 2 which is moved toward a buoyancy device 28. The target structure 2 is anchored to the seabed by mooring lines 8 a,8 b, shown and designated in a first position as 8 a 1 and 8 b 1. In order to move the target structure 2 towards the buoyancy device 28, the mooring line 8 b is winched to shorten the length thereof. Consequently, the target structure 2 will move in the direction of arrow 56, toward the buoyancy device 28. The mooring lines 8 a,8 b will adopt respective second positions 8 a 2, 8 b 2. In an alternative embodiment, a tug boat is used to move the target structure toward the buoyancy device 28.
  • When the target structure 2 is in the desired position, the riser 6 can be transferred to the target structure.
  • If a number of risers 6 are to be connected to the target structure 2, the target structure may be moved from one desired position to the next one, picking up a riser 6 in each position. After the risers 6 are connected to the target structure 2, the target structure 2 is moved to its final position.
  • FIG. 20 shows an alternative embodiment of moving the buoyancy device 28 and the target structure 2 towards one another. In FIG. 20, the buoyancy device 28 is winched towards the target structure 2 by a winching device 58 located on the target structure 2. A guiding assembly 60 is provided for guiding a connection line 62 between the winching device 58 and the buoyancy device 28, in order to ensure a correct positioning of the buoyancy device 28 relative to the target structure 2.
  • FIG. 21 shows a movement of the riser support assembly 20 after the riser 6 is lifted off the riser support assembly 20 and transferred to the target structure 2. The buoyancy device 28 will move with respect to the anchoring point 12, until it reaches its equilibrium position vertically above the anchoring point 12.
  • The buoyancy device 28 can be left in this position, allowing a reverse operation of transferring the riser 6 from the target structure 2 onto the riser support assembly 20. Alternatively the riser support assembly 20 may be removed and reused in another location. The riser support assemblies 20 may be disconnected from the anchoring means 30 by a remote operated vehicle (ROV, not shown), known in the art. Partial flooding of the buoyancy device 28 may be performed prior to disconnecting from the buoyancy device 28. The ROV may also be used to assist in connecting the connection line 62 to the buoyancy device 28.
  • In an alternative embodiment, the riser 6 is lifted off the riser support assembly 20 by a support vessel (not shown) and moved towards the target structure 2 by the support vessel. The support vessel requires a high capacity winch to lift the heavy riser (possibly weighing in the order of 2000-6000 kiloNewton).
  • FIG. 22 shows a pull-in device 63 for pulling the riser 6 towards a target structure 2. In this embodiment, the pull-in device 63 is a drilling tower 64. The pull-in device 63 may also be a crane or a jacking device (not shown).
  • FIG. 23 shows a chain jacking device 66 for pulling the riser 6 towards the target structure 2. The chain jacking device 66 comprises lift cylinders 68 a and 68 b, a fixed latch 70, a travelling latch 72 and a traveling cross-arm 74. Chain jacking devices are known in the art.
  • FIGS. 24 and 25 show a configuration of a pull-in device 63, movably positioned onboard a target structure 2, on rails 76 a, 76 b, such as skidding rails.
  • A number of risers 6 are positioned on the side 83 of the target structure 2. Hydraulic rams 78 a, 78 b are provided for moving the pull-in device in the directions of arrows relative to the target structure A pulling rig skid base 81 is provided for skidding on the skidding rails 78 a, 78 b. In this way, a single pull-in device 63 can be used to sequentially pull in a number of risers 6 a, 6 b, 6 c towards the target structure 2.
  • It will be obvious to a person skilled in the art that numerous changes in the details and the arrangement of the parts may be varied over considerable range without departing from the spirit of the invention and the scope of the claims.

Claims (38)

1. A method for connecting a free end of an at least partially submerged riser to a target structure, the method comprising:
(a) connecting the riser by the free end thereof to a riser support assembly;
(b) positioning the target structure near the riser support assembly;
(c) connecting a lifting assembly with the free end (24) of the riser;
(d) moving the riser by the free end thereof from the riser support assembly toward the target structure by the lifting assembly; and
(e) connecting the riser with the target structure.
2. The method of claim 1, wherein the target structure and the riser support assembly are maintained in their respective positions independently from one another.
3. The method of claim 1 or 2, wherein the target structure comprises the lifting assembly.
4. The method of claim 1, wherein the riser support assembly is anchored to the seabed by a first anchoring device.
5. The method of claim 4, wherein the target structure is anchored to the seabed by a second anchoring device which is an independent device from the first anchoring device.
6. The method of claim 1, wherein the riser support assembly is directly connected to the first anchoring device throughout steps (a), (b), (c), (d) and (e).
7. The method of claim 1, wherein during step (b) the target structure and the riser support assembly are connected by a connecting means.
8. The method of claim 7, wherein during step (b) the target structure and the riser support assembly are moved towards one another by reducing a length of the connection means.
9. The method of claim 1, wherein the riser support assembly is positioned at a predetermined depth under the water surface when the riser is suspended from the riser support assembly.
10. The method of claim 9, wherein the riser support assembly is positioned at a depth at which the riser support assembly is substantially free from influences from wind and waves at the water surface.
11. The method of claim 1, wherein in step (b) the target structure is at least temporarily positioned substantially above the riser support assembly.
12. The method of claim 1, comprising a further step (f) of removing the riser support assembly.
13. The method of claim 1, wherein prior to step (a) the riser is suspended by the free end thereof from a pipe-laying vessel and in step (a), the riser is transferred from the pipe-laying vessel to the riser support assembly.
14. The method of claim 13, wherein in step (a) the riser support assembly is moved towards the pipe-laying vessel, for transferring the riser from the pipe-laying vessel to the riser support assembly.
15. The method of claim 1, wherein the target structure is chosen from a group of floating structures, comprising: a TLP, a Spar, a Semi-submersible, an FPSO, an FPDSO, an FPWSO, a storage barge, an FSO, an FSU.
16. The method of claim 1, wherein the riser is chosen from a group of risers, comprising: a steel catenary riser, a lazy wave riser with buoyancy elements, a steep wave riser, and a flexible riser.
17. The method of claim 1, wherein the riser is manufactured from a material, chosen from a group of materials, comprising: steel, titanium, a synthetic material, and a composite of a metal and a synthetic material.
18. The method of claim 1, wherein the riser comprises flexible pipe sections.
19. The method of claim 1, wherein at least two risers are connected to the target structure.
20. The method of claim 19, wherein in step (a) at least two risers are connected to a single riser support assembly.
21. The method of claim 19 or 20, wherein a first riser support assembly and a second riser support assembly are provided, and wherein the first riser support assembly and second riser support assembly are connected by a mooring connecting means for maintaining a predetermined distance between the first and second riser support assembly.
22. The method of claim 21, wherein the mooring connecting means are selected from a group of mooring connecting means, comprising: a flexible mooring connecting means and a rigid mooring connecting means.
23. The method of claim 1, wherein the lifting assembly is chosen from a group of lifting assemblies, comprising: a pull-in device with chain jacks, a winch, a crane and a drill tower.
24. The method of claim 1, wherein the target structure is anchored to the seabed using a second anchoring device.
25. The method of claim 1, wherein the lifting assembly is connected to the riser by a remotely operated device.
26. A riser support assembly for connecting a riser by a free end thereof with a target structure, the riser support assembly comprising:
a buoyancy device for providing a predetermined buoyancy to the riser support assembly;
a suspending device configured for suspending the riser by the free end thereof from the riser support assembly;
a first anchoring device for anchoring the riser support assembly to the seabed.
27. The riser support assembly of claim 26, wherein the suspending device is constructed for allowing an upwards movement of the riser relative to the riser support assembly.
28. The riser support assembly of claim 26 or 27, wherein the riser support assembly comprises a recess configured for receiving the riser therein.
29. The riser support assembly according to claim 28, wherein the recess is a channel which, in use, extends substantially through the buoyancy device, preferably in a substantially vertical direction.
30. The riser support assembly according to claim 26, wherein the riser support assembly has a substantially elongated form.
31. The riser support assembly according to claim 30, wherein the substantially elongated form extends in a substantially horizontal direction.
32. The riser support assembly according to claim 26, wherein the buoyancy device comprises a first buoyancy means and a second buoyancy means, wherein the first and second buoyancy means are connected with one another by means of a bridging body.
33. The riser support assembly according to claim 26, wherein the bridging body comprises the suspending device.
34. The riser support assembly according to claim 26, wherein the suspending device is configured for suspending a number of risers therefrom.
35. The riser support assembly according to claim 26, wherein the first anchoring device comprises an mooring line and an anchoring means, the anchoring means being chosen from a group of anchoring means, comprising: a piled foundation, a suction pile and a gravity foundation.
36. The riser support assembly according to claim 35, wherein the anchoring means are configured for bearing a substantially upwardly directed force which is exerted on the anchoring means by the mooring line.
37. The riser support assembly according to claim 26, wherein the first anchoring device comprises a mooring line, the mooring line being chosen from a group of mooring lines, comprising: a tendon, a polyester line, a steel wire and a chain.
38. The riser support assembly according to claim 26, having at least one riser suspended therefrom.
US11/632,307 2004-07-12 2005-07-08 Method And Device For Connecting A Riser To A Target Structure Abandoned US20080089745A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/632,307 US20080089745A1 (en) 2004-07-12 2005-07-08 Method And Device For Connecting A Riser To A Target Structure

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US58687104P 2004-07-12 2004-07-12
US61901504P 2004-10-18 2004-10-18
US60619015 2004-10-18
PCT/NL2005/000493 WO2006006852A1 (en) 2004-07-12 2005-07-08 Method and device for connecting a riser to a target structure
US11/632,307 US20080089745A1 (en) 2004-07-12 2005-07-08 Method And Device For Connecting A Riser To A Target Structure

Publications (1)

Publication Number Publication Date
US20080089745A1 true US20080089745A1 (en) 2008-04-17

Family

ID=34972041

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/632,307 Abandoned US20080089745A1 (en) 2004-07-12 2005-07-08 Method And Device For Connecting A Riser To A Target Structure

Country Status (2)

Country Link
US (1) US20080089745A1 (en)
WO (1) WO2006006852A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040244984A1 (en) * 2001-10-19 2004-12-09 Einar Kjelland-Fosterud Riser for connection between a vessel and a point at the seabed
US20090269141A1 (en) * 2006-09-21 2009-10-29 Li You Son Floating system connected to an underwater line structure and methods of use
US20110192484A1 (en) * 2008-10-09 2011-08-11 Clevelario Judimar De Assis Flexible pipe
US20110286802A1 (en) * 2010-05-21 2011-11-24 Jacobs Engineering Group Improved Subsea Riser System
US20120298373A1 (en) * 2010-01-05 2012-11-29 Ange Luppi Assembly for supporting at least one fluid transport pipe through an expanse of water, and associated facility and method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013167710A2 (en) * 2012-05-08 2013-11-14 Wellstream International Limited Riser assembly and method
EP3437979A1 (en) * 2017-07-31 2019-02-06 NOV APL Limited Docking riser barge for fpso

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4650431A (en) * 1979-03-28 1987-03-17 Amtel, Inc Quick disconnect storage production terminal
US4735267A (en) * 1985-03-11 1988-04-05 Shell Oil Company Flexible production riser assembly and installation method
US5044297A (en) * 1990-09-14 1991-09-03 Bluewater Terminal Systems N.V. Disconnectable mooring system for deep water
US5190411A (en) * 1990-12-10 1993-03-02 Shell Oil Company Tension leg well jacket
US5957074A (en) * 1997-04-15 1999-09-28 Bluewater Terminals B.V. Mooring and riser system for use with turrent moored hydrocarbon production vessels
US6257801B1 (en) * 1998-07-23 2001-07-10 Fmc Corporation Riser arrangement for offshore vessel and method for installation
US20020177375A1 (en) * 2001-05-22 2002-11-28 Fmc Corporation, Inc. Hybrid buoyant riser/tension mooring system
US6595725B1 (en) * 1998-11-23 2003-07-22 Foster Wheeler Energy Limited Tethered buoyant support for risers to a floating production vessel
US6688348B2 (en) * 2001-11-06 2004-02-10 Fmc Technologies, Inc. Submerged flowline termination buoy with direct connection to shuttle tanker
US6763862B2 (en) * 2001-11-06 2004-07-20 Fmc Technologies, Inc. Submerged flowline termination at a single point mooring buoy

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8905364D0 (en) * 1989-03-09 1989-04-19 Britoil Plc Offshore oil production system
AU1164397A (en) * 1995-12-19 1997-07-14 Foster Wheeler Energy Limited Catenary riser system
GB9600231D0 (en) * 1996-01-05 1996-03-06 Foster Wheeler Petrol Dev Ltd Spacing bouy for flexible risers
FR2839109B3 (en) * 2002-04-26 2004-02-20 Coflexip BUOY COLUMN CONFIGURATION AND ITS INSTALLATION METHOD

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4650431A (en) * 1979-03-28 1987-03-17 Amtel, Inc Quick disconnect storage production terminal
US4735267A (en) * 1985-03-11 1988-04-05 Shell Oil Company Flexible production riser assembly and installation method
US5044297A (en) * 1990-09-14 1991-09-03 Bluewater Terminal Systems N.V. Disconnectable mooring system for deep water
US5190411A (en) * 1990-12-10 1993-03-02 Shell Oil Company Tension leg well jacket
US5957074A (en) * 1997-04-15 1999-09-28 Bluewater Terminals B.V. Mooring and riser system for use with turrent moored hydrocarbon production vessels
US6257801B1 (en) * 1998-07-23 2001-07-10 Fmc Corporation Riser arrangement for offshore vessel and method for installation
US6595725B1 (en) * 1998-11-23 2003-07-22 Foster Wheeler Energy Limited Tethered buoyant support for risers to a floating production vessel
US20020177375A1 (en) * 2001-05-22 2002-11-28 Fmc Corporation, Inc. Hybrid buoyant riser/tension mooring system
US6688348B2 (en) * 2001-11-06 2004-02-10 Fmc Technologies, Inc. Submerged flowline termination buoy with direct connection to shuttle tanker
US6763862B2 (en) * 2001-11-06 2004-07-20 Fmc Technologies, Inc. Submerged flowline termination at a single point mooring buoy

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7712539B2 (en) * 2001-10-09 2010-05-11 Kjelland-Fosterud Einar Riser for connection between a vessel and a point at the seabed
US20040244984A1 (en) * 2001-10-19 2004-12-09 Einar Kjelland-Fosterud Riser for connection between a vessel and a point at the seabed
US20090269141A1 (en) * 2006-09-21 2009-10-29 Li You Son Floating system connected to an underwater line structure and methods of use
US8562256B2 (en) * 2006-09-21 2013-10-22 Shell Oil Company Floating system connected to an underwater line structure and methods of use
US20110192484A1 (en) * 2008-10-09 2011-08-11 Clevelario Judimar De Assis Flexible pipe
US9909368B2 (en) 2008-10-09 2018-03-06 Ge Oil & Gas Uk Limited Flexible pipe and a method for providing buoyancy to a jumper or riser assembly
US20120298373A1 (en) * 2010-01-05 2012-11-29 Ange Luppi Assembly for supporting at least one fluid transport pipe through an expanse of water, and associated facility and method
US8893802B2 (en) * 2010-01-05 2014-11-25 Technip France Assembly for supporting at least one fluid transport pipe through an expanse of water, and associated facility and method
US20110286802A1 (en) * 2010-05-21 2011-11-24 Jacobs Engineering Group Improved Subsea Riser System

Also Published As

Publication number Publication date
WO2006006852A1 (en) 2006-01-19

Similar Documents

Publication Publication Date Title
US8123437B2 (en) Pipeline assembly comprising an anchoring device
US4735267A (en) Flexible production riser assembly and installation method
US5582252A (en) Hydrocarbon transport system
US20070081862A1 (en) Pipeline assembly comprising an anchoring device and method for installing a pipeline assembly comprising an anchoring device
CA2637832C (en) Submerged loading system
AU2007299791B2 (en) Floating system connected to an underwater line structure and methods of use
RU2403378C2 (en) Method for installation of pipeline that connects underwater deposit to platform, from offshore production unit
KR20090121403A (en) Floating platform for operation in regions exposed to extreme weather conditions
US20080089745A1 (en) Method And Device For Connecting A Riser To A Target Structure
MXPA05004043A (en) Riser installation vessel and method of using the same.
US10760241B2 (en) Upgrading subsea foundations of mooring systems
WO2003074353A1 (en) A method for underwater transportation and installation or removal of objects at sea
CN101522511A (en) Hybrid riser systems and methods
EP3072804B1 (en) A method of installing a buoy at an anchoring location
AU2012252921B2 (en) An offshore system
AU2007244951B2 (en) Towing and recovery method for deepwater pipelines and risers
EP2398695B1 (en) Deep water and ultra deep water mooring system
EP2162593B1 (en) Methods of laying elongate articles at sea
WO2002076818A1 (en) Riser system for use for production of hydrocarbons with a vessel of the epso-type with a dynamic positioning system (dp)
GB2562977A (en) Upgrading subsea foundations of mooring systems
BRPI1002454B1 (en) SELF-SUSTAINABLE HYBRID RISER INSTALLATION METHOD
JPS6217216A (en) J-shaped ocean oil production riser
IE83908B1 (en) A method for underwater transportation and installation or removal of objects at sea

Legal Events

Date Code Title Description
AS Assignment

Owner name: HEEREMA MARINE CONTRACTORS NEDERLAND B. V., NETHER

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SALOME, PETER;NAROLD, ROBERT REINDER;HOVINGA, ROBERT PAUL;AND OTHERS;REEL/FRAME:022560/0672

Effective date: 20061221

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION