US20080087592A1 - Fluid filter - Google Patents

Fluid filter Download PDF

Info

Publication number
US20080087592A1
US20080087592A1 US11/662,037 US66203705A US2008087592A1 US 20080087592 A1 US20080087592 A1 US 20080087592A1 US 66203705 A US66203705 A US 66203705A US 2008087592 A1 US2008087592 A1 US 2008087592A1
Authority
US
United States
Prior art keywords
filter
fluid
housing
filtered
anti corrosive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US11/662,037
Other versions
US7931803B2 (en
Inventor
Andrea Buchanan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Assigned to BUCHANAN, ANDREA ELAINE reassignment BUCHANAN, ANDREA ELAINE ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: RAMJET FILTER COMPANY
Publication of US20080087592A1 publication Critical patent/US20080087592A1/en
Application granted granted Critical
Publication of US7931803B2 publication Critical patent/US7931803B2/en
Expired - Fee Related legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/66Regeneration of the filtering material or filter elements inside the filter
    • B01D46/70Regeneration of the filtering material or filter elements inside the filter by acting counter-currently on the filtering surface, e.g. by flushing on the non-cake side of the filter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/01Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with flat filtering elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/62Regenerating the filter material in the filter
    • B01D29/66Regenerating the filter material in the filter by flushing, e.g. counter-current air-bumps
    • B01D29/668Regenerating the filter material in the filter by flushing, e.g. counter-current air-bumps with valves, e.g. rotating valves for coaxially placed filtering elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/62Regenerating the filter material in the filter
    • B01D29/70Regenerating the filter material in the filter by forces created by movement of the filter element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/88Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor having feed or discharge devices
    • B01D29/90Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor having feed or discharge devices for feeding
    • B01D29/908Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor having feed or discharge devices for feeding provoking a tangential stream
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D35/00Filtering devices having features not specifically covered by groups B01D24/00 - B01D33/00, or for applications not specifically covered by groups B01D24/00 - B01D33/00; Auxiliary devices for filtration; Filter housing constructions
    • B01D35/16Cleaning-out devices, e.g. for removing the cake from the filter casing or for evacuating the last remnants of liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/02Particle separators, e.g. dust precipitators, having hollow filters made of flexible material
    • B01D46/04Cleaning filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/10Particle separators, e.g. dust precipitators, using filter plates, sheets or pads having plane surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/66Regeneration of the filtering material or filter elements inside the filter
    • B01D46/74Regeneration of the filtering material or filter elements inside the filter by forces created by movement of the filter element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2271/00Sealings for filters specially adapted for separating dispersed particles from gases or vapours
    • B01D2271/02Gaskets, sealings
    • B01D2271/027Radial sealings

Definitions

  • the present invention relates to a fluid filter.
  • a fluid filter typically comprises a fluid inlet and a fluid outlet between which is provided a filter element which may comprise a mesh filter element for example.
  • the pores in the mesh are sized to allow fluid flow through the pores, but to trap particles of undesirable material carried by the fluid.
  • the pores can become blocked with trapped particles over time and to avoid the costs and inconvenience of replacing the filter element, it has been proposed to clean the filter element in situ.
  • a back flushing process has been proposed wherein, during a cleaning cycle, the flow of fluid through the filter is reversed so that the filtered fluid in the downstream part of the filter is pumped back through the filter element to try to dislodge the particles from the upstream side of the filter pores.
  • this reversal of fluid flow is typically required to last for at least twenty five seconds during which time normal use of the filter, and therefore of the fluid being filtered, is interrupted.
  • Such back flushing also typically requires a fluid pressure above that which can often be achieved.
  • the back flushing process can suffer from so called rat-holing wherein the particles from only some of the filter pores are cleared, resulting in all of the fluid flowing through those cleared pores rather than cleaning the remaining blocked filter pores.
  • a fluid filter comprising a housing provided with a fluid inlet and a fluid outlet, filter means being mounted in the housing between the fluid inlet and the fluid outlet to filter fluid flowing through the housing, actuation means being provided to move the filter means, in use, within the housing to dislodge particles of filtered material from the filter means so as to clean the filter means.
  • the movement of the filter means comprises an axial movement in one direction and then in an opposed direction.
  • the movement in at least one direction is an abrupt movement that moves the filter means relatively quickly over a relatively short distance to jolt the filtered particles from the blocked pores of the filter means.
  • the filter means is moved initially towards the filter outlet.
  • the filter means may be moved initially towards the filter inlet, the filter means being biased back towards the filter outlet to clean the filter means. Either way, the filter means is moved into the filtered fluid which acts on the particles blocking the pores of the filter means to dislodge those particles that have not already been dislodged by the abrupt movement.
  • the actuation means exerts a pulse of force on the filter means to move the filter means.
  • the pulse duration is less than five seconds. Most preferably the pulse duration is less than one second.
  • the pulse is such that the filter means moves an axial distance of less than 10 mm.
  • the pulse could move the filter means more or less than 10 mm if required.
  • the actuation means comprises an electrically operated actuator.
  • the actuator comprises a solenoid.
  • the actuator could comprise a motorised cam, rotation of the cam moving the filter means.
  • the actuation means comprises a manually operated mechanical actuator.
  • the actuation means could comprise a crank operated cam for example, rotation of the cam moving the filter means.
  • the filter means is biased to a rest position, the actuation means, in use, moving the filter means away from the rest position against the action of the bias.
  • a drain aperture and plug means are provided on the upstream side of the filter, that is on the upstream side of the filter means during normal use of the filter, the filter being such that the plug means is moved away from the drain aperture when the filter means is moved.
  • the filter is thus operative such that as fluid enters the upstream part of the fluid filter through the fluid inlet, the filter means is moved to dislodge filtered material from the filter means into the upstream part of the fluid filter, further incoming fluid from the fluid inlet forcing the dislodged filtered material out of the upstream part of the fluid filter and through the open drain aperture.
  • the actuation means is operative to simultaneously move the filter means and the plug means.
  • the filter means comprises a planar filter disc plate.
  • the filter disc is provided with peripheral sealing means which form a fluid seal between the interior of the housing and the periphery of the filter means.
  • reinforcing means are provided to reinforce the filter disc to resist deformation of the filter disc in use.
  • the reinforcing means comprises at least one reinforcing brace mounted across at least part of the filter disc.
  • the filter means is mounted on a shaft which extends from the actuation means into the housing.
  • the filter means and shaft thus respectively comprise a piston and piston rod within the filter housing.
  • the filter inlet comprises a radially directed inlet provided in the side wall of the housing.
  • the filter inlet may alternatively comprise an axially directed inlet provided in the base of the housing.
  • the filter outlet comprises a radially directed outlet provided in the side wall of the housing.
  • the filter outlet may alternatively comprise an axially directed outlet provided in the top of the housing.
  • the filter further comprises means to release anti corrosive material into the filtered fluid.
  • the means to release anti corrosive material comprises a source of anti corrosive material mounted in the outlet path of the filtered fluid.
  • the means to release anti corrosive material comprises a plate of an anti corrosive metal material arranged such that the filtered fluid contacts the plate prior to flowing through the fluid outlet.
  • impeller means is provided to direct the filtered fluid into contact with the anti corrosive means.
  • Preferably means are provided to remove oxidisation formed on the anti corrosive means.
  • the oxidisation removal means comprises abrasion means operative to contact the anti corrosive means and abrade oxidisation from the anti corrosive means.
  • the oxidisation removal means is mounted to the impeller means for rotation with the impeller means.
  • a filter assembly comprising a plurality of the fluid filters of the first aspect of the invention connected together.
  • the fluid filters are connected in series such that fluid flows through one fluid filter and into an adjacent fluid filter.
  • each fluid filter comprises filter means adapted to filter finer material than the previous fluid filter in the filter assembly.
  • the fluid filters are connected in parallel such that fluid simultaneously enters the fluid inlets of each filter and simultaneously exits the fluid outlets of each filter.
  • a fluid filter comprising a housing provided with a fluid inlet and a fluid outlet, filter means being mounted in the housing between the fluid inlet and the fluid outlet to filter fluid flowing through the housing, the filter further comprising means to release anti corrosive material into the filtered fluid.
  • the means to release anti corrosive material comprises a source of anti corrosive material mounted in the outlet path of the filtered fluid.
  • the means to release anti corrosive material comprises a plate of an anti corrosive metal material arranged such that the filtered fluid contacts the plate prior to flowing through the fluid outlet.
  • impeller means is provided to direct the filtered fluid into contact with the anti corrosive means.
  • Preferably means are provided to remove oxidisation formed on the anti corrosive means.
  • the oxidisation removal means comprises abrasion means operative to contact the anti corrosive means and abrade oxidisation from the anti corrosive means.
  • the oxidisation removal means is mounted to the impeller means for rotation with the impeller means.
  • FIG. 1 is a sectional side view of a filter in accordance with the present invention showing the filter in a rest condition
  • FIG. 2 is a plan view of the filter of FIG. 1 taken on line A-A of FIG. 1 ;
  • FIG. 3 is a sectional side view corresponding to FIG. 1 but showing the filter in another condition
  • FIG. 4 is a sectional side view of a modified filter in accordance with the present invention.
  • FIG. 5 is a plan view of the filter of FIG. 4 , taken on line B-B of FIG. 4 ;
  • FIG. 6 is a sectional side view of a further modified filter in accordance with the present invention showing the filter in a rest condition
  • FIG. 7 is a view corresponding to FIG. 6 but showing the filter in another condition.
  • a fluid filter 1 comprises a hollow cylindrical housing 3 formed from two housing halves 5 , 7 that are sealingly joined together using any suitable method which may include the use of a deformable gasket such as a rubber or fabric gasket.
  • the housing halves 5 , 7 could comprise peripheral, mating flanges that enable the housing halves 5 , 7 to be bolted or clamped together, or the housing halves 5 , 7 could comprise a peripheral, sealing snap fit type connection.
  • Lower housing half 5 comprises a radially directed tubular fluid inlet 11 which extends through the side wall of the lower housing half 5 .
  • Lower housing half 5 also comprises an axially aligned circular drain aperture 13 formed in a cylindrical boss 15 at the base of the lower housing half 5 .
  • the internal face of the boss 15 around the aperture 13 is chamfered 17 .
  • Upper housing half 7 comprises a radially directed tubular fluid outlet 19 which extends through the side wall of the upper housing half 7 .
  • Upper housing half 7 also comprises an axially aligned cylindrical boss 21 formed with a short, threaded through bore 23 .
  • An elongate guide hub 25 extends into the upper housing half 7 with the upper end of the body 27 of the hub 25 threadingly engaging the bore 23 , and the underside of the head 29 of the hub 25 abutting the boss 21 .
  • the hub 25 is formed with an axial through bore 31 .
  • An end cap 33 is secured to the lower end of the body 27 of the hub 25 and comprises a radially outwardly extending peripheral flange 34 that functions as a spring locator.
  • a shaft 35 extends through the bore 31 in the hub 25 such that the lower end of the shaft 35 projects through the end cap 33 and into the housing 3 .
  • a seal 36 is provided at the lower end of the body 27 of the hub 25 which sealingly engages the shaft 35 to effect a fluid seal between the shaft 35 and the hub 25 to resist fluid leaking from the housing 3 and along the bore 31 in the body 27 of the hub 25 .
  • the seal 36 could comprise any suitable seal including, for example, an O-ring type seal.
  • the seal may comprise an energising O-ring type seal that pushes against a primary seal to force the primary seal into sealing contact with the hub 25 .
  • the lower end of the shaft 35 terminates in a plug 37 that flares outwardly from the shaft 35 .
  • the wider, lower end of the plug 37 is radially inwardly chamfered 39 so as to seal with the chamfered face 17 of the boss 15 of the lower housing half 5 when the chamfered faces 17 , 39 are in contact.
  • the upper end of the shaft 35 terminates in a piston 41 which is connected to actuation means comprising, in the example illustrated, a solenoid 43 operative to move the shaft 35 axially down within the bore 31 in the hub 25 against the biasing force of a spring 55 that acts to subsequently move the shaft 35 axially upwardly.
  • actuation means comprising, in the example illustrated, a solenoid 43 operative to move the shaft 35 axially down within the bore 31 in the hub 25 against the biasing force of a spring 55 that acts to subsequently move the shaft 35 axially upwardly.
  • Filter means is also connected to the shaft 35 in between the end cap 33 and the plug 37 .
  • the filter means comprises a planar filter disc 45 comprising a mesh formed with a plurality of pores. The size of the pores will be selected so as to trap the desired particles from the fluid being filtered.
  • the periphery of the filter disc 45 is secured to reinforcing means comprising a circular outer ring 47 and two cross braces 49 arranged in cruciform when viewed in plan, see FIG. 2 .
  • the ring 47 and cross braces 49 are operative to resist deflection and deformation of the filter disc 45 in use, and in particular when some of the pores of the filter disc 45 become blocked as blocked pores will increase the force acting on the filter disc by the fluid flowing through the filter.
  • the filter disc 45 and reinforcing means are secured to the shaft 35 using, for example, a bolt 50 that extends up through the plug 37 and into a threaded bore (not shown) formed in the lower end of the shaft 35 .
  • Sealing means are provided at the periphery of the reinforcing ring 47 to effect a fluid seal between the ring 47 and the side wall of the housing 3 .
  • the sealing means comprises a peripheral groove 51 formed in the ring 47 .
  • An O-ring 53 sits in the groove 51 and acts against an outer sealing strip 54 also located in the groove 51 .
  • the O-ring 53 acts to push the outer sealing strip 54 into sealing engagement with the side wall of the housing 3 .
  • Biasing means comprising a coil spring 55 is mounted on the shaft 35 , the upper end of the spring 55 abutting the flange 34 of the end cap 33 , and the lower end of the spring 55 abutting the cross braces 49 on the filter means.
  • the spring 55 acts to bias the shaft 35 axially downwardly towards the base of the lower filter housing 5 and away from the solenoid 43 such that the drain plug 37 is biased into sealing engagement with the drain aperture 13 . This rest position is shown in FIG. 1 .
  • fluid In use, with the filter in the rest position, fluid enters the fluid inlet 11 in the lower housing 5 and swirls around the lower housing 5 .
  • the fluid cannot drain through the drain aperture 13 because the plug 37 is biased to seal the drain aperture 13 as shown in FIG. 1 .
  • the fluid fills the lower housing half 5 and passes upwardly through the pores in the filter disc 45 . Any particles in the fluid that are larger than the pores get trapped by the filter disc 45 , whilst filtered fluid passes through the filter disc 45 and into the upper housing half 7 .
  • the filtered fluid exits the upper housing half 7 via the tubular outlet 19 .
  • the filter 1 reverts to a cleaning cycle at a predetermined time which may correspond, for example, to the time at which a predetermined acceptable pressure drop or fluid flow rate occurs.
  • the solenoid 43 is actuated to pass a rapid pulse of tensile force to the shaft 35 to move the shaft 35 , the filter disc 45 and the drain plug 37 axially upwardly towards the top of the upper filter half 7 and into the filtered fluid as shown in FIG. 3 .
  • This upward movement is against the biasing force of the spring 55 .
  • the pulse is preferably less than five seconds in duration but can be any duration suitable to dislodge the particles of filtered material from the blocked or clogged pores.
  • the pulse of upward movement serves to dislodge particles from clogged or blocked pores in the filter disc 45 , the dislodged particles dispersing into the unfiltered fluid upstream (below) the filter disc 45 .
  • the continuing input of fluid through the fluid inlet 11 forces the fluid containing the dispersed particles along the path of least resistance, that is, through the open drain aperture 13 .
  • the actuation means namely the solenoid 43 , thus serves to dislodge trapped particles from the filter disc 45 , open the drain aperture 13 , flush dislodged particles from the housing 3 , and close the drain aperture 13 all using only a single, low energy pulse.
  • the spring 55 biases the shaft 35 , filter disc 45 and drain plug 37 downwardly away from the top of the housing 3 and the solenoid 43 to the rest position shown in FIG. 1 wherein the drain plug 37 sealingly closes the drain aperture 13 .
  • the fluid can enter and exit the housing 3 under pressure provided from a pump or pumps (not shown), or under mains pressure as found in a water supply. It will be appreciated that the minimum pressure required to clean the filter is relatively low and is typically below the pressure typically achieved via a pump or mains fluid supply.
  • the inlet 11 and outlet 19 can be radially directed as described, or can be axially directed so as to be formed in the base and top of the lower and upper housing halves 5 , 7 respectively. Having a radially directed inlet and outlet generates a spiralling of fluid within the housing 3 which improves filtration and improves the flushing of dislodged particles using the cleaning cycle described above.
  • the filter 1 can be a discrete unit, or could comprise one of a number of filters connected together in a filter system.
  • the filters 1 could be connected together in series or in parallel, and the tubular inlet 11 and outlet 19 of each filter 1 can be shaped so as to facilitate alignment and connection between adjacent filters 1 .
  • the inlet 11 and outlet 19 comprise tubular elbows for example.
  • the connected filters 1 when connected in parallel, could comprise filter discs 45 of similar porosity so as to increase the volume of fluid filtered, or the connected filters 1 , when connected in series, could comprise filter discs 45 of decreasing porosity in the direction of fluid flow so as to be able to filter finer material from the fluid.
  • the filter 1 or filter system could comprise part of any desired fluid system such as, for example, a domestic water supply, or an industrial fluid system such as a heating or cooling system.
  • a modified filter 61 is shown with like features being given like references.
  • Filter 61 additionally comprises an anti-corrosion means comprising a disc 63 made from, or coated with, zinc.
  • the disc 63 is mounted on the body 27 of the hub 25 above the spring 55 .
  • the periphery of the zinc disc 63 is provided with a suitable seal 64 that seals against the inside of the housing 3 .
  • the seal 64 may comprise an O-ring type seal.
  • the disc 63 may be secured to the body 27 of the hub 25 in any suitable way including, for example, by screwing the zinc disc 63 onto threads formed on the body 27 .
  • the zinc disc 63 thus separates the downstream chamber of the upper filter half 7 into two sub chambers. These sub chambers are linked by an inlet aperture 65 formed in the zinc plate 63 .
  • Impellor means comprising four equispaced paddles 67 are secured to a ring 68 rotatably mounted on the body 27 of the hub 25 above the zinc disc 63 in the upper sub chamber.
  • the paddles 67 rotate under influence of the fluid entering the upper sub chamber through the inlet aperture 65 .
  • Each paddle 67 is provided with an anti oxidation rod 69 that extends from top to bottom of the respective paddle 67 . Any suitable number of paddles 67 and corresponding rods 69 can be provided.
  • the filtered fluid flows through the inlet aperture 65 , into the upper sub chamber and into contact with the paddles 67 which rotate under influence of the filtered fluid such that the filtered fluid is swept over the zinc disc 63 and out through the tubular filter outlet 19 .
  • the filtered fluid is swept over the zinc disc, particles of zinc are released into the filtered fluid.
  • the zinc particles can assist in reducing corrosion of other components downstream of the filter 1 .
  • the rods 69 are slidably mounted in bores 71 in respective paddles 67 and are under the influence of gravity such that the lower end of each rod 69 is in contact with the upper surface of the zinc disc 63 .
  • the lower surface of the rods 69 serves to abrade oxidisation that may have formed on the upper surface of the zinc disc 63 thus maximising the release of zinc particles into the filtered fluid.
  • the zinc disc 63 could be made from any other suitable material, such as magnesium for example, that releases anti corrosive particles into the filtered fluid.
  • the rods 69 could also be made of any suitable material including, for example, brass, stainless steel or a ceramic material.
  • the zinc disc 63 and paddles 67 thus serve to reduce the corrosive effects of any corrosive fluid that is being filtered.
  • the modified filter 61 also includes a shaft guide 73 that extends from the underside of the drain plug 37 into the drain aperture 13 so as to radially constrain the lower end of the shaft 35 .
  • the solenoid 43 described above acts to pull the shaft 35 upwardly.
  • the filter 1 could be modified such the solenoid 43 is repositioned so as to push the shaft 35 .
  • the solenoid 43 could be replaced with any other suitable actuation means operative to apply a pulse to the shaft 35 such as, for example, an electric motor such as a DC stepping motor, or a hydraulic or pneumatically operated piston.
  • a rotating solenoid could be provided.
  • a suitable gear mechanism can be provided if required.
  • FIGS. 6 and 7 a modified filter 71 is shown comprising an alternative actuating mechanism. Like features have been given like references.
  • the filter 71 comprises an actuator assembly 73 that is mounted on top of the upper housing half 7 externally of the filter cavity.
  • the actuator assembly 73 comprises an inner tubular guide sleeve 75 the base of which threadingly engages the inside of the boss 21 .
  • An outer tubular actuator casing 77 surrounds the sleeve 75 with the lower portion of the casing 77 threadingly engaging the outside of the boss 21 .
  • the upper end of the shaft 35 extends up through the sleeve 75 and is mounted to a movable spring locator 79 that can slide axially upwardly and downwardly along the guide sleeve 75 inside the housing 77 .
  • the coil spring 55 extends between the top of the housing half 7 and the underside of the spring locator 79 .
  • the upper surface of the spring locator 79 comprises a rubber end stop 80 that can engage the underside of the housing 77 and thus limits the maximum upward movement of the spring locator 79 and shaft 35 .
  • the top of the spring locator 79 is provided with a cam follower 81 which in this example comprises a rotatably mounted wheel.
  • a cam 83 is mounted above the cam follower 81 and has a comma shaped profile, that is the diameter is constant for approximately 180°, increases for approximately 170° and then reduces suddenly for approximately 10°.
  • the cam 83 can be manually rotatable using a suitable hand crank for example (not shown) or could be electrically rotatable using a suitable electric motor (not shown).
  • the cam 83 rests in the position shown in FIG. 6 wherein the largest diameter portion of the cam 83 rests on the follower 81 which forces the spring locator 79 , shaft 35 , and plug 37 downwardly so that the plug 37 seals the drain aperture 13 .
  • the filter 71 functions as described above with reference to filters 1 and 61 .
  • the cam 83 When the filter 71 is to be cleaned, the cam 83 is rotated clockwise such that the narrowing diameter portion of the cam 83 is rotated into engagement with the cam follower 81 . Because the diameter changes over a relative short rotational distance the follower 81 snaps upwardly under the influence of the spring 55 . This causes the filter 45 to snap upwardly and causes the plug 37 to open the drain aperture 13 so that the cleaning cycle described above can occur.
  • FIGS. 6 and 7 An additional modification shown in the filter 71 of FIGS. 6 and 7 is the modified filter seal 91 wherein the energising o-ring 53 and PTFE outer sealing strip 54 are replaced by a flexible seal 91 that extends between, and is secured to, the housing 3 and the filter 45 .
  • the seal 91 thus comprises the gasket that seals between the lower and upper housing halves 5 , 7 .
  • the flexible seal 91 has sufficient length that the seal 91 comprises a fold in the space between the filter 45 and the housing 3 when the filter 71 is in the rest position shown in FIG. 6 .
  • the actuation means could be operated to apply the pulse to the shaft 35 via a control signal from a timer, or by a fluid pressure switch operate to send a control signal when the fluid pressure in the downstream chamber of the filter 1 falls below a predetermined level, or by a control signal from a manually operated device such as a push button switch.
  • seals are provided between the moving and static components of the above described filters 1 and 61 .
  • These seals could be any suitable seals such as O-ring type seals, or rubber or fibre gaskets for example.
  • the peripheral seal between the reinforcing ring 47 and the wall of the housing 3 preferably comprises an inner O-ring 53 that pushes against an outer PTFE sealing strip 55 .
  • an O-ring alone may suffice.
  • a gasket could be provided between the upper and lower housing halves 5 , 7 , the gasket extending into the housing 3 and into sealing contact with the reinforcing ring 47 of the filter disc 45 .
  • the housing 3 and filter disc 45 are described as being of circular cross section. However any other desired shape of cross section can alternatively be used.
  • the filter disc could be formed from any suitable material or combination of materials including, for example, a sintered metal material.
  • the filter disc could comprise a laminate of filter elements of different pore size.
  • the shape of the housing 3 can be varied to suit the requirements of the filter 1 .
  • the base of the lower filter half 5 can be tapered.
  • filters 1 , 61 and 71 are interchangeable between filters 1 , 61 and 71 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Filtration Of Liquid (AREA)

Abstract

A fluid filter (1) comprises a housing (3) provided with a fluid inlet (11) and a fluid outlet (19), filter means (45) being mounted in the house (3) between the fluid inlet (11) and the fluid outlet (19) to filter fluid flowing through the housing (3). Actuation means (43) is provided to move the filter means (45), in use, within the housing (3) to dislodge particles of filtered material from the filter means (45) so as to clean the filter means (45). A filter assembly comprising a plurality of such filters is also provided.

Description

  • The present invention relates to a fluid filter.
  • A fluid filter typically comprises a fluid inlet and a fluid outlet between which is provided a filter element which may comprise a mesh filter element for example. The pores in the mesh are sized to allow fluid flow through the pores, but to trap particles of undesirable material carried by the fluid.
  • The pores can become blocked with trapped particles over time and to avoid the costs and inconvenience of replacing the filter element, it has been proposed to clean the filter element in situ.
  • It has been proposed to clean the filter element by scraping or brushing the filter element but this does not always clean the filter pores properly.
  • A back flushing process has been proposed wherein, during a cleaning cycle, the flow of fluid through the filter is reversed so that the filtered fluid in the downstream part of the filter is pumped back through the filter element to try to dislodge the particles from the upstream side of the filter pores. However this reversal of fluid flow is typically required to last for at least twenty five seconds during which time normal use of the filter, and therefore of the fluid being filtered, is interrupted. Such back flushing also typically requires a fluid pressure above that which can often be achieved.
  • Furthermore, the back flushing process can suffer from so called rat-holing wherein the particles from only some of the filter pores are cleared, resulting in all of the fluid flowing through those cleared pores rather than cleaning the remaining blocked filter pores.
  • According to a first aspect of the invention there is provided a fluid filter comprising a housing provided with a fluid inlet and a fluid outlet, filter means being mounted in the housing between the fluid inlet and the fluid outlet to filter fluid flowing through the housing, actuation means being provided to move the filter means, in use, within the housing to dislodge particles of filtered material from the filter means so as to clean the filter means.
  • Preferably the movement of the filter means comprises an axial movement in one direction and then in an opposed direction.
  • The movement in at least one direction is an abrupt movement that moves the filter means relatively quickly over a relatively short distance to jolt the filtered particles from the blocked pores of the filter means.
  • Preferably the filter means is moved initially towards the filter outlet. However, the filter means may be moved initially towards the filter inlet, the filter means being biased back towards the filter outlet to clean the filter means. Either way, the filter means is moved into the filtered fluid which acts on the particles blocking the pores of the filter means to dislodge those particles that have not already been dislodged by the abrupt movement.
  • Preferably the actuation means exerts a pulse of force on the filter means to move the filter means. Preferably the pulse duration is less than five seconds. Most preferably the pulse duration is less than one second.
  • Preferably the pulse is such that the filter means moves an axial distance of less than 10 mm. However, the pulse could move the filter means more or less than 10 mm if required.
  • Preferably the actuation means comprises an electrically operated actuator. Most preferably the actuator comprises a solenoid. The actuator could comprise a motorised cam, rotation of the cam moving the filter means.
  • Alternatively the actuation means comprises a manually operated mechanical actuator. The actuation means could comprise a crank operated cam for example, rotation of the cam moving the filter means.
  • Preferably the filter means is biased to a rest position, the actuation means, in use, moving the filter means away from the rest position against the action of the bias.
  • Preferably a drain aperture and plug means are provided on the upstream side of the filter, that is on the upstream side of the filter means during normal use of the filter, the filter being such that the plug means is moved away from the drain aperture when the filter means is moved.
  • The filter is thus operative such that as fluid enters the upstream part of the fluid filter through the fluid inlet, the filter means is moved to dislodge filtered material from the filter means into the upstream part of the fluid filter, further incoming fluid from the fluid inlet forcing the dislodged filtered material out of the upstream part of the fluid filter and through the open drain aperture.
  • Preferably the actuation means is operative to simultaneously move the filter means and the plug means.
  • Preferably the filter means comprises a planar filter disc plate.
  • Preferably the filter disc is provided with peripheral sealing means which form a fluid seal between the interior of the housing and the periphery of the filter means.
  • Preferably reinforcing means are provided to reinforce the filter disc to resist deformation of the filter disc in use.
  • Preferably the reinforcing means comprises at least one reinforcing brace mounted across at least part of the filter disc.
  • Preferably the filter means is mounted on a shaft which extends from the actuation means into the housing. The filter means and shaft thus respectively comprise a piston and piston rod within the filter housing.
  • Preferably the filter inlet comprises a radially directed inlet provided in the side wall of the housing. The filter inlet may alternatively comprise an axially directed inlet provided in the base of the housing.
  • Preferably the filter outlet comprises a radially directed outlet provided in the side wall of the housing. The filter outlet may alternatively comprise an axially directed outlet provided in the top of the housing.
  • Preferably the filter further comprises means to release anti corrosive material into the filtered fluid.
  • Preferably the means to release anti corrosive material comprises a source of anti corrosive material mounted in the outlet path of the filtered fluid.
  • Preferably the means to release anti corrosive material comprises a plate of an anti corrosive metal material arranged such that the filtered fluid contacts the plate prior to flowing through the fluid outlet.
  • Preferably impeller means is provided to direct the filtered fluid into contact with the anti corrosive means.
  • Preferably means are provided to remove oxidisation formed on the anti corrosive means.
  • Preferably the oxidisation removal means comprises abrasion means operative to contact the anti corrosive means and abrade oxidisation from the anti corrosive means.
  • Preferably the oxidisation removal means is mounted to the impeller means for rotation with the impeller means.
  • According to a second aspect of the invention there is provided a filter assembly comprising a plurality of the fluid filters of the first aspect of the invention connected together.
  • In one embodiment the fluid filters are connected in series such that fluid flows through one fluid filter and into an adjacent fluid filter.
  • Preferably each fluid filter comprises filter means adapted to filter finer material than the previous fluid filter in the filter assembly.
  • In another embodiment, the fluid filters are connected in parallel such that fluid simultaneously enters the fluid inlets of each filter and simultaneously exits the fluid outlets of each filter.
  • According to a third aspect of the invention there is provided a fluid filter comprising a housing provided with a fluid inlet and a fluid outlet, filter means being mounted in the housing between the fluid inlet and the fluid outlet to filter fluid flowing through the housing, the filter further comprising means to release anti corrosive material into the filtered fluid.
  • Preferably the means to release anti corrosive material comprises a source of anti corrosive material mounted in the outlet path of the filtered fluid.
  • Preferably the means to release anti corrosive material comprises a plate of an anti corrosive metal material arranged such that the filtered fluid contacts the plate prior to flowing through the fluid outlet.
  • Preferably impeller means is provided to direct the filtered fluid into contact with the anti corrosive means.
  • Preferably means are provided to remove oxidisation formed on the anti corrosive means.
  • Preferably the oxidisation removal means comprises abrasion means operative to contact the anti corrosive means and abrade oxidisation from the anti corrosive means.
  • Preferably the oxidisation removal means is mounted to the impeller means for rotation with the impeller means.
  • Other aspects of the present invention may include any combination of the features or limitations referred to herein.
  • The present invention may be carried into practice in various ways, but embodiments will now be described by way of example only with reference to the accompanying drawings in which:
  • FIG. 1 is a sectional side view of a filter in accordance with the present invention showing the filter in a rest condition;
  • FIG. 2 is a plan view of the filter of FIG. 1 taken on line A-A of FIG. 1;
  • FIG. 3 is a sectional side view corresponding to FIG. 1 but showing the filter in another condition;
  • FIG. 4 is a sectional side view of a modified filter in accordance with the present invention;
  • FIG. 5 is a plan view of the filter of FIG. 4, taken on line B-B of FIG. 4;
  • FIG. 6 is a sectional side view of a further modified filter in accordance with the present invention showing the filter in a rest condition; and
  • FIG. 7 is a view corresponding to FIG. 6 but showing the filter in another condition.
  • Referring to FIGS. 1 to 3, a fluid filter 1 comprises a hollow cylindrical housing 3 formed from two housing halves 5, 7 that are sealingly joined together using any suitable method which may include the use of a deformable gasket such as a rubber or fabric gasket. The housing halves 5, 7 could comprise peripheral, mating flanges that enable the housing halves 5, 7 to be bolted or clamped together, or the housing halves 5, 7 could comprise a peripheral, sealing snap fit type connection.
  • Lower housing half 5 comprises a radially directed tubular fluid inlet 11 which extends through the side wall of the lower housing half 5. Lower housing half 5 also comprises an axially aligned circular drain aperture 13 formed in a cylindrical boss 15 at the base of the lower housing half 5. The internal face of the boss 15 around the aperture 13 is chamfered 17.
  • Upper housing half 7 comprises a radially directed tubular fluid outlet 19 which extends through the side wall of the upper housing half 7. Upper housing half 7 also comprises an axially aligned cylindrical boss 21 formed with a short, threaded through bore 23.
  • An elongate guide hub 25 extends into the upper housing half 7 with the upper end of the body 27 of the hub 25 threadingly engaging the bore 23, and the underside of the head 29 of the hub 25 abutting the boss 21. The hub 25 is formed with an axial through bore 31.
  • An end cap 33 is secured to the lower end of the body 27 of the hub 25 and comprises a radially outwardly extending peripheral flange 34 that functions as a spring locator.
  • A shaft 35 extends through the bore 31 in the hub 25 such that the lower end of the shaft 35 projects through the end cap 33 and into the housing 3.
  • A seal 36 is provided at the lower end of the body 27 of the hub 25 which sealingly engages the shaft 35 to effect a fluid seal between the shaft 35 and the hub 25 to resist fluid leaking from the housing 3 and along the bore 31 in the body 27 of the hub 25. The seal 36 could comprise any suitable seal including, for example, an O-ring type seal. The seal may comprise an energising O-ring type seal that pushes against a primary seal to force the primary seal into sealing contact with the hub 25.
  • The lower end of the shaft 35 terminates in a plug 37 that flares outwardly from the shaft 35. The wider, lower end of the plug 37 is radially inwardly chamfered 39 so as to seal with the chamfered face 17 of the boss 15 of the lower housing half 5 when the chamfered faces 17, 39 are in contact.
  • The upper end of the shaft 35 terminates in a piston 41 which is connected to actuation means comprising, in the example illustrated, a solenoid 43 operative to move the shaft 35 axially down within the bore 31 in the hub 25 against the biasing force of a spring 55 that acts to subsequently move the shaft 35 axially upwardly.
  • Filter means is also connected to the shaft 35 in between the end cap 33 and the plug 37. The filter means comprises a planar filter disc 45 comprising a mesh formed with a plurality of pores. The size of the pores will be selected so as to trap the desired particles from the fluid being filtered.
  • The periphery of the filter disc 45 is secured to reinforcing means comprising a circular outer ring 47 and two cross braces 49 arranged in cruciform when viewed in plan, see FIG. 2. The ring 47 and cross braces 49 are operative to resist deflection and deformation of the filter disc 45 in use, and in particular when some of the pores of the filter disc 45 become blocked as blocked pores will increase the force acting on the filter disc by the fluid flowing through the filter.
  • The filter disc 45 and reinforcing means are secured to the shaft 35 using, for example, a bolt 50 that extends up through the plug 37 and into a threaded bore (not shown) formed in the lower end of the shaft 35.
  • Sealing means are provided at the periphery of the reinforcing ring 47 to effect a fluid seal between the ring 47 and the side wall of the housing 3. In the example illustrated the sealing means comprises a peripheral groove 51 formed in the ring 47. An O-ring 53 sits in the groove 51 and acts against an outer sealing strip 54 also located in the groove 51. The O-ring 53 acts to push the outer sealing strip 54 into sealing engagement with the side wall of the housing 3.
  • Biasing means comprising a coil spring 55 is mounted on the shaft 35, the upper end of the spring 55 abutting the flange 34 of the end cap 33, and the lower end of the spring 55 abutting the cross braces 49 on the filter means. The spring 55 acts to bias the shaft 35 axially downwardly towards the base of the lower filter housing 5 and away from the solenoid 43 such that the drain plug 37 is biased into sealing engagement with the drain aperture 13. This rest position is shown in FIG. 1.
  • In use, with the filter in the rest position, fluid enters the fluid inlet 11 in the lower housing 5 and swirls around the lower housing 5. The fluid cannot drain through the drain aperture 13 because the plug 37 is biased to seal the drain aperture 13 as shown in FIG. 1. The fluid fills the lower housing half 5 and passes upwardly through the pores in the filter disc 45. Any particles in the fluid that are larger than the pores get trapped by the filter disc 45, whilst filtered fluid passes through the filter disc 45 and into the upper housing half 7. The filtered fluid exits the upper housing half 7 via the tubular outlet 19.
  • After a period of use, sufficient particles will be filtered from the fluid that some or all of the pores of the filter disc 45 become clogged or blocked. In such a situation, fluid flow through the filter 1 may be reduced or may stop altogether.
  • The filter 1 reverts to a cleaning cycle at a predetermined time which may correspond, for example, to the time at which a predetermined acceptable pressure drop or fluid flow rate occurs. During the cleaning cycle the solenoid 43 is actuated to pass a rapid pulse of tensile force to the shaft 35 to move the shaft 35, the filter disc 45 and the drain plug 37 axially upwardly towards the top of the upper filter half 7 and into the filtered fluid as shown in FIG. 3. This upward movement is against the biasing force of the spring 55. The pulse is preferably less than five seconds in duration but can be any duration suitable to dislodge the particles of filtered material from the blocked or clogged pores.
  • During this upward movement, fluid is still entering the housing 3 through the fluid inlet 11.
  • The pulse of upward movement serves to dislodge particles from clogged or blocked pores in the filter disc 45, the dislodged particles dispersing into the unfiltered fluid upstream (below) the filter disc 45. The continuing input of fluid through the fluid inlet 11 forces the fluid containing the dispersed particles along the path of least resistance, that is, through the open drain aperture 13.
  • The actuation means, namely the solenoid 43, thus serves to dislodge trapped particles from the filter disc 45, open the drain aperture 13, flush dislodged particles from the housing 3, and close the drain aperture 13 all using only a single, low energy pulse.
  • On termination of the pulse of force from the solenoid 43, the spring 55 biases the shaft 35, filter disc 45 and drain plug 37 downwardly away from the top of the housing 3 and the solenoid 43 to the rest position shown in FIG. 1 wherein the drain plug 37 sealingly closes the drain aperture 13.
  • The fluid can enter and exit the housing 3 under pressure provided from a pump or pumps (not shown), or under mains pressure as found in a water supply. It will be appreciated that the minimum pressure required to clean the filter is relatively low and is typically below the pressure typically achieved via a pump or mains fluid supply.
  • The inlet 11 and outlet 19 can be radially directed as described, or can be axially directed so as to be formed in the base and top of the lower and upper housing halves 5, 7 respectively. Having a radially directed inlet and outlet generates a spiralling of fluid within the housing 3 which improves filtration and improves the flushing of dislodged particles using the cleaning cycle described above.
  • The filter 1 can be a discrete unit, or could comprise one of a number of filters connected together in a filter system. The filters 1 could be connected together in series or in parallel, and the tubular inlet 11 and outlet 19 of each filter 1 can be shaped so as to facilitate alignment and connection between adjacent filters 1. The inlet 11 and outlet 19 comprise tubular elbows for example.
  • The connected filters 1, when connected in parallel, could comprise filter discs 45 of similar porosity so as to increase the volume of fluid filtered, or the connected filters 1, when connected in series, could comprise filter discs 45 of decreasing porosity in the direction of fluid flow so as to be able to filter finer material from the fluid.
  • The filter 1 or filter system could comprise part of any desired fluid system such as, for example, a domestic water supply, or an industrial fluid system such as a heating or cooling system.
  • Referring additionally to FIGS. 4 to 6, a modified filter 61 is shown with like features being given like references.
  • Filter 61 additionally comprises an anti-corrosion means comprising a disc 63 made from, or coated with, zinc. The disc 63 is mounted on the body 27 of the hub 25 above the spring 55. The periphery of the zinc disc 63 is provided with a suitable seal 64 that seals against the inside of the housing 3. The seal 64 may comprise an O-ring type seal. The disc 63 may be secured to the body 27 of the hub 25 in any suitable way including, for example, by screwing the zinc disc 63 onto threads formed on the body 27.
  • The zinc disc 63 thus separates the downstream chamber of the upper filter half 7 into two sub chambers. These sub chambers are linked by an inlet aperture 65 formed in the zinc plate 63.
  • Impellor means comprising four equispaced paddles 67 are secured to a ring 68 rotatably mounted on the body 27 of the hub 25 above the zinc disc 63 in the upper sub chamber. The paddles 67 rotate under influence of the fluid entering the upper sub chamber through the inlet aperture 65. Each paddle 67 is provided with an anti oxidation rod 69 that extends from top to bottom of the respective paddle 67. Any suitable number of paddles 67 and corresponding rods 69 can be provided.
  • In use the filtered fluid flows through the inlet aperture 65, into the upper sub chamber and into contact with the paddles 67 which rotate under influence of the filtered fluid such that the filtered fluid is swept over the zinc disc 63 and out through the tubular filter outlet 19. As the filtered fluid is swept over the zinc disc, particles of zinc are released into the filtered fluid. The zinc particles can assist in reducing corrosion of other components downstream of the filter 1.
  • The rods 69 are slidably mounted in bores 71 in respective paddles 67 and are under the influence of gravity such that the lower end of each rod 69 is in contact with the upper surface of the zinc disc 63. As the paddles 67 and rods 69 rotate, the lower surface of the rods 69 serves to abrade oxidisation that may have formed on the upper surface of the zinc disc 63 thus maximising the release of zinc particles into the filtered fluid.
  • The zinc disc 63 could be made from any other suitable material, such as magnesium for example, that releases anti corrosive particles into the filtered fluid. The rods 69 could also be made of any suitable material including, for example, brass, stainless steel or a ceramic material.
  • The zinc disc 63 and paddles 67 thus serve to reduce the corrosive effects of any corrosive fluid that is being filtered.
  • The modified filter 61 also includes a shaft guide 73 that extends from the underside of the drain plug 37 into the drain aperture 13 so as to radially constrain the lower end of the shaft 35.
  • The solenoid 43 described above acts to pull the shaft 35 upwardly. However the filter 1 could be modified such the solenoid 43 is repositioned so as to push the shaft 35.
  • The solenoid 43 could be replaced with any other suitable actuation means operative to apply a pulse to the shaft 35 such as, for example, an electric motor such as a DC stepping motor, or a hydraulic or pneumatically operated piston. A rotating solenoid could be provided. A suitable gear mechanism can be provided if required.
  • Referring to FIGS. 6 and 7 a modified filter 71 is shown comprising an alternative actuating mechanism. Like features have been given like references.
  • In this embodiment the filter 71 comprises an actuator assembly 73 that is mounted on top of the upper housing half 7 externally of the filter cavity.
  • The actuator assembly 73 comprises an inner tubular guide sleeve 75 the base of which threadingly engages the inside of the boss 21. An outer tubular actuator casing 77 surrounds the sleeve 75 with the lower portion of the casing 77 threadingly engaging the outside of the boss 21.
  • The upper end of the shaft 35 extends up through the sleeve 75 and is mounted to a movable spring locator 79 that can slide axially upwardly and downwardly along the guide sleeve 75 inside the housing 77. The coil spring 55 extends between the top of the housing half 7 and the underside of the spring locator 79. The upper surface of the spring locator 79 comprises a rubber end stop 80 that can engage the underside of the housing 77 and thus limits the maximum upward movement of the spring locator 79 and shaft 35.
  • The top of the spring locator 79 is provided with a cam follower 81 which in this example comprises a rotatably mounted wheel.
  • A cam 83 is mounted above the cam follower 81 and has a comma shaped profile, that is the diameter is constant for approximately 180°, increases for approximately 170° and then reduces suddenly for approximately 10°.
  • The cam 83 can be manually rotatable using a suitable hand crank for example (not shown) or could be electrically rotatable using a suitable electric motor (not shown).
  • The cam 83 rests in the position shown in FIG. 6 wherein the largest diameter portion of the cam 83 rests on the follower 81 which forces the spring locator 79, shaft 35, and plug 37 downwardly so that the plug 37 seals the drain aperture 13. When in this condition the filter 71 functions as described above with reference to filters 1 and 61.
  • When the filter 71 is to be cleaned, the cam 83 is rotated clockwise such that the narrowing diameter portion of the cam 83 is rotated into engagement with the cam follower 81. Because the diameter changes over a relative short rotational distance the follower 81 snaps upwardly under the influence of the spring 55. This causes the filter 45 to snap upwardly and causes the plug 37 to open the drain aperture 13 so that the cleaning cycle described above can occur.
  • An additional modification shown in the filter 71 of FIGS. 6 and 7 is the modified filter seal 91 wherein the energising o-ring 53 and PTFE outer sealing strip 54 are replaced by a flexible seal 91 that extends between, and is secured to, the housing 3 and the filter 45. The seal 91 thus comprises the gasket that seals between the lower and upper housing halves 5, 7.
  • The flexible seal 91 has sufficient length that the seal 91 comprises a fold in the space between the filter 45 and the housing 3 when the filter 71 is in the rest position shown in FIG. 6.
  • When the filter 71 is undergoing the cleaning cycle shown in FIG. 7 the filter 45 has moved upwardly and this causes the fold in the flexible seal 91 to unfold to some extent to account for this difference in position.
  • The actuation means could be operated to apply the pulse to the shaft 35 via a control signal from a timer, or by a fluid pressure switch operate to send a control signal when the fluid pressure in the downstream chamber of the filter 1 falls below a predetermined level, or by a control signal from a manually operated device such as a push button switch.
  • Various seals are provided between the moving and static components of the above described filters 1 and 61. These seals could be any suitable seals such as O-ring type seals, or rubber or fibre gaskets for example.
  • The peripheral seal between the reinforcing ring 47 and the wall of the housing 3 preferably comprises an inner O-ring 53 that pushes against an outer PTFE sealing strip 55. However an O-ring alone may suffice.
  • In a modification of the described filters, a gasket could be provided between the upper and lower housing halves 5, 7, the gasket extending into the housing 3 and into sealing contact with the reinforcing ring 47 of the filter disc 45.
  • The housing 3 and filter disc 45 are described as being of circular cross section. However any other desired shape of cross section can alternatively be used.
  • The filter disc could be formed from any suitable material or combination of materials including, for example, a sintered metal material. The filter disc could comprise a laminate of filter elements of different pore size.
  • The shape of the housing 3 can be varied to suit the requirements of the filter 1. For example, the base of the lower filter half 5 can be tapered.
  • It will be appreciated that the various features described above with reference to filters 1, 61 and 71 are interchangeable between filters 1, 61 and 71.

Claims (34)

1. A fluid filter comprising a housing provided with a fluid inlet and a fluid outlet, filter means being mounted in the housing between the fluid inlet and the fluid outlet to filter fluid flowing through the housing, actuation means being provided to move the filter means, in use, within the housing to dislodge particles of filtered material from the filter means so as to clean the filter means.
2. The fluid filter of claim 1 wherein the movement of the filter means comprises an axial movement in one direction and then in an opposed direction.
3. The fluid filter of claim 2 wherein the movement in at least one direction is an abrupt movement operative that moves the filter means relatively quickly over a relatively short distance to jolt the filtered particles from the blocked pores of the filter means.
4. The fluid filter of claim 2 wherein the filter means is moved initially towards the filter outlet.
5. The fluid filter of claim 1 wherein the actuation means exerts a pulse of force on the filter means to move the filter means.
6. The fluid filter of claim 1 wherein the actuation means comprises an electrically operated actuator.
7. The fluid filter of claim 6 wherein the actuator comprises a solenoid.
8. The fluid filter of claim 1 wherein the filter means is biased to a rest position, the actuation means, in use, moving the filter means away from the rest position against the action of the bias.
9. The fluid filter of claim 1 wherein a drain aperture and plug means are provided on the upstream side of the filter, that is on the upstream side of the filter means during normal use of the filter, the filter being such that the plug means is moved away from the drain aperture when the filter means is moved.
10. The fluid filter of claim 9 being operative such that as fluid enters the upstream part of the fluid filter through the fluid inlet, the filter means is moved to dislodge filtered material from the filter means into the upstream part of the fluid filter, further incoming fluid from the fluid inlet forcing the dislodged filtered material out of the upstream part of the fluid filter and through the open drain aperture.
11. The fluid filter of claim 10 wherein the actuation means is operative to simultaneously move the filter means and the plug means.
12. The fluid filter of claim 1 wherein the filter means comprises a planar filter disc plate.
13. The fluid filter of claim 12 wherein the filter disc is provided with peripheral sealing means which form a fluid seal between the interior of the housing and the periphery of the filter means.
14. The fluid filter of claim 12 wherein reinforcing means are provided to reinforce the filter disc to resist deformation of the filter disc in use.
15. The fluid filter of claim 14 wherein the reinforcing means comprises at least one reinforcing brace mounted across at least part of the filter disc.
16. The fluid filter of claim 1 wherein the filter means is mounted on a shaft which extends from the actuation means into the housing.
17. The fluid filter of claim 1 wherein the filter further comprises means to release anti corrosive material into the filtered fluid.
18. The fluid filter of claim 17 wherein the means to release anti corrosive material comprises a source of anti corrosive material mounted in the outlet path of the filtered fluid.
19. The fluid filter of claim 18 wherein the means to release anti corrosive material comprises a plate of an anti corrosive metal material arranged such that the filtered fluid contacts the plate prior to flowing through the fluid outlet.
20. The fluid filter of claim 17 wherein impeller means is provided to direct the filtered fluid into contact with the anti corrosive means.
21. The fluid filter of claim 17 wherein means are provided to remove oxidisation formed on the anti corrosive means.
22. The fluid filter of claim 21 wherein the oxidisation removal means comprises abrasion means operative to contact the anti corrosive means and abrade oxidisation from the anti corrosive means.
23. The fluid filter of claim 20 wherein an oxidisation removal means is mounted to the impeller means for rotation with the impeller means.
24. A filter assembly comprising a plurality of the fluid filters of claim 1 connected together.
25. The filter assembly of claim 24 wherein the fluid filters are connected in series such that fluid flows through one fluid filter and into an adjacent fluid filter.
26. The filter assembly of claim 25 wherein each fluid filter comprises filter means adapted to filter finer material than the previous fluid filter in the filter assembly.
27. The filter assembly of claim 24 wherein the fluid filters are connected in parallel such that fluid simultaneously enters the fluid inlets of each filter and simultaneously exits the fluid outlets of each filter.
28. A fluid filter comprising a housing provided with a fluid inlet and a fluid outlet, filter means being mounted in the housing between the fluid inlet and the fluid outlet to filter fluid flowing through the housing, the filter further comprising means to release anti corrosive material into the filtered fluid.
29. The fluid filter of claim 28 wherein the means to release anti corrosive material comprises a source of anti corrosive material mounted in the outlet path of the filtered fluid.
30. The fluid filter of claim 29 wherein the means to release anti corrosive material comprises a plate of an anti corrosive metal material arranged such that the filtered fluid contacts the plate prior to flowing through the fluid outlet.
31. The fluid filter of claim 28 wherein impeller means is provided to direct the filtered fluid into contact with the anti corrosive means.
32. The fluid filter of claim 31 wherein means are provided to remove oxidisation formed on the anti corrosive means.
33. The fluid filter of claim 32 wherein the oxidisation removal means comprises abrasion means operative to contact the anti corrosive means and abrade oxidisation from the anti corrosive means.
34. The fluid filter of claim 31 wherein an oxidisation removal means is mounted to the impeller means for rotation with the impeller means.
US11/662,037 2004-09-06 2005-09-06 Fluid filter Expired - Fee Related US7931803B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB0419686.1 2004-09-06
GBGB0419686.1A GB0419686D0 (en) 2004-09-06 2004-09-06 An appliance for the removal of sediments & debris from fluids
PCT/GB2005/003436 WO2006027572A2 (en) 2004-09-06 2005-09-06 A fluid filter

Publications (2)

Publication Number Publication Date
US20080087592A1 true US20080087592A1 (en) 2008-04-17
US7931803B2 US7931803B2 (en) 2011-04-26

Family

ID=33156037

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/662,037 Expired - Fee Related US7931803B2 (en) 2004-09-06 2005-09-06 Fluid filter

Country Status (10)

Country Link
US (1) US7931803B2 (en)
EP (2) EP1793907B1 (en)
KR (1) KR101299806B1 (en)
CN (2) CN101052452B (en)
AU (2) AU2005281488B2 (en)
CA (1) CA2579309A1 (en)
ES (1) ES2425751T3 (en)
GB (1) GB0419686D0 (en)
PT (1) PT1793907E (en)
WO (1) WO2006027572A2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080164223A1 (en) * 2007-01-05 2008-07-10 Wilson Kelce S Floating filter holder
US20110073549A1 (en) * 2009-09-30 2011-03-31 Itt Water & Wastewater Leopold, Inc. Clog Resistant Media Retainer Assembly
US7931803B2 (en) * 2004-09-06 2011-04-26 Andrea Elaine Buchanan Fluid filter
US20110171081A1 (en) * 2004-09-06 2011-07-14 Andrea Elaine Buchanan Corrosion-inhibiting device
CN111888836A (en) * 2020-09-10 2020-11-06 台嘉成都玻纤有限公司 Side filtering system for filtering impurities in water
US11802257B2 (en) 2022-01-31 2023-10-31 Marathon Petroleum Company Lp Systems and methods for reducing rendered fats pour point
US11835450B2 (en) 2021-02-25 2023-12-05 Marathon Petroleum Company Lp Methods and assemblies for determining and using standardized spectral responses for calibration of spectroscopic analyzers
US11891581B2 (en) 2017-09-29 2024-02-06 Marathon Petroleum Company Lp Tower bottoms coke catching device
US11898109B2 (en) 2021-02-25 2024-02-13 Marathon Petroleum Company Lp Assemblies and methods for enhancing control of hydrotreating and fluid catalytic cracking (FCC) processes using spectroscopic analyzers
US11905468B2 (en) 2021-02-25 2024-02-20 Marathon Petroleum Company Lp Assemblies and methods for enhancing control of fluid catalytic cracking (FCC) processes using spectroscopic analyzers
US11905479B2 (en) 2020-02-19 2024-02-20 Marathon Petroleum Company Lp Low sulfur fuel oil blends for stability enhancement and associated methods
WO2024054792A1 (en) * 2022-09-05 2024-03-14 ODH IP Corp. Combination crystallizer, filter, washer, dryer device
US11970664B2 (en) 2021-10-10 2024-04-30 Marathon Petroleum Company Lp Methods and systems for enhancing processing of hydrocarbons in a fluid catalytic cracking unit using a renewable additive
US11975316B2 (en) 2019-05-09 2024-05-07 Marathon Petroleum Company Lp Methods and reforming systems for re-dispersing platinum on reforming catalyst
US12000720B2 (en) 2018-09-10 2024-06-04 Marathon Petroleum Company Lp Product inventory monitoring
US20240189753A1 (en) * 2022-12-08 2024-06-13 Marathon Petroleum Company Lp Removable flue gas strainer and associated methods
US12018216B2 (en) 2021-10-10 2024-06-25 Marathon Petroleum Company Lp Methods and systems for enhancing processing of hydrocarbons in a fluid catalytic cracking unit using plastic
US12031094B2 (en) 2023-06-22 2024-07-09 Marathon Petroleum Company Lp Assemblies and methods for enhancing fluid catalytic cracking (FCC) processes during the FCC process using spectroscopic analyzers

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100439875C (en) * 2006-09-25 2008-12-03 上海沪庆仪表有限公司 On-line cleaning flowmeter protector and cleaning method therefor
KR100911160B1 (en) * 2009-05-13 2009-08-06 주식회사 에이피엠엔지니어링 Filter casette megazine and apparatus for sequential gathering of fine particle using the same
CN102995237A (en) * 2012-10-30 2013-03-27 吴江新劲纺织有限公司 Water supplying and purifying structure of hydraulic loom
CN107376539B (en) * 2017-09-22 2023-07-14 苏州科技大学 Self-cleaning air purifier
CN113750717B (en) * 2021-08-23 2022-12-09 宁波佳尔灵气动机械有限公司 Pressure regulating filter with movable filter element
CN113967658B (en) * 2021-09-27 2022-08-30 嘉兴职业技术学院 Terylene textile secondary recycling treatment device
CN115105914A (en) * 2022-07-14 2022-09-27 安徽百通达科技医疗用品有限公司 Automatic ash removal device for bag-type dust collector

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1971090A (en) * 1931-01-21 1934-08-21 Zwicky Jean Filter
US2083148A (en) * 1935-02-25 1937-06-08 Joseph C Coulombe Oil filter
US2672986A (en) * 1949-03-16 1954-03-23 Lichtgarn Fred Liquid filter
US2954872A (en) * 1955-09-08 1960-10-04 Yarrow & Co Ltd Filtration of liquids
US3056499A (en) * 1958-09-26 1962-10-02 Yarrow And Company Filtration of liquids
US3541004A (en) * 1968-06-10 1970-11-17 Abcor Inc Cleaning an ultrafilter with an elongated,reciprocating,agitator
US3998735A (en) * 1976-05-19 1976-12-21 Nathan Ira M Apparatus and method for separating a mother liquor into a concentrated particulate fraction and a filtrate fraction
US4075098A (en) * 1975-04-01 1978-02-21 Monroe Auto Equipment Company Masking elements for dissolving oil improving body in an oil filter
US4271019A (en) * 1978-10-13 1981-06-02 Gi. Pi. S.N.C. Di Galletti Alfonso & C. Filter unit for use in liquid purification apparatus
US4315820A (en) * 1980-01-23 1982-02-16 Zurn Industries, Inc. Self-cleaning strainer
US4804481A (en) * 1986-09-16 1989-02-14 Boll & Kirch Filterbau Gmbh Helical spring apparatus and process for detaching filter cake
US5008009A (en) * 1989-07-17 1991-04-16 Baker Hughes Incorporated Mechanism for filter cake removal
US5500093A (en) * 1992-05-14 1996-03-19 Marsden; Alan Oil purification
US5882512A (en) * 1997-11-05 1999-03-16 Baracuda International Corporation Automatic swimming pool cleaners and associated components and systems
US6033558A (en) * 1995-08-04 2000-03-07 Kabushiki Kaisha Yokota Seisakusho Self-gush-cleaning filter device
US20020038783A1 (en) * 2000-03-04 2002-04-04 Birgit Trotzki Precoated filter for the filtration of flowing media

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3321083A (en) * 1963-08-08 1967-05-23 Fram Corp Radiator water filter
IT999678B (en) * 1973-10-25 1976-03-10 Galletti A PRESSURE FILTER FOR TOR BIDI LIQUIDS
US4190544A (en) * 1977-02-23 1980-02-26 Chemap A.G. Filter element for a rotatable disc filter
CN2058619U (en) * 1989-04-27 1990-06-27 上海华元干燥技术工程公司 Turning-over tank filter with sealing cap
US5021151A (en) * 1989-05-12 1991-06-04 Yane Daryl J Plastic impeller pump and filtration unit for semi-conductor etching system
FR2673120B1 (en) * 1991-02-27 1993-12-31 Fleetguard REUSABLE FILTER FOR FLUID HAVING A FILTERING FUNCTION AND AN ADDITIVE FEEDING FUNCTION.
JP3078621B2 (en) * 1991-10-15 2000-08-21 日本碍子株式会社 Multi-function filter
JP2000246014A (en) * 1999-03-04 2000-09-12 Shimooka Kogyo:Kk Filtration device
BRPI9904465A2 (en) * 1999-04-30 2016-09-20 Astrex Equipamentos Filtrantes Ltda self-cleaning liquid filter, particularly for solid particle lubricants
US6835304B2 (en) * 2000-03-08 2004-12-28 The Penray Companies, Inc. Device for monitoring of a coolant regeneration system
DE10020437A1 (en) * 2000-04-26 2001-11-08 Honeywell Ag Method and equipment for inhibiting scale formation and corrosion in system conveying or in contact with liquid, e.g. drinking water, involves increasing molar fraction of magnesium (compound) with respect to other salts causing hardness
CN2541445Y (en) * 2002-03-20 2003-03-26 葛敬 Filtering radio-frequency water treatment appts.
GB0419686D0 (en) * 2004-09-06 2004-10-06 Buchanan Andrea E An appliance for the removal of sediments & debris from fluids

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1971090A (en) * 1931-01-21 1934-08-21 Zwicky Jean Filter
US2083148A (en) * 1935-02-25 1937-06-08 Joseph C Coulombe Oil filter
US2672986A (en) * 1949-03-16 1954-03-23 Lichtgarn Fred Liquid filter
US2954872A (en) * 1955-09-08 1960-10-04 Yarrow & Co Ltd Filtration of liquids
US3056499A (en) * 1958-09-26 1962-10-02 Yarrow And Company Filtration of liquids
US3541004A (en) * 1968-06-10 1970-11-17 Abcor Inc Cleaning an ultrafilter with an elongated,reciprocating,agitator
US4075098A (en) * 1975-04-01 1978-02-21 Monroe Auto Equipment Company Masking elements for dissolving oil improving body in an oil filter
US3998735A (en) * 1976-05-19 1976-12-21 Nathan Ira M Apparatus and method for separating a mother liquor into a concentrated particulate fraction and a filtrate fraction
US4271019A (en) * 1978-10-13 1981-06-02 Gi. Pi. S.N.C. Di Galletti Alfonso & C. Filter unit for use in liquid purification apparatus
US4315820A (en) * 1980-01-23 1982-02-16 Zurn Industries, Inc. Self-cleaning strainer
US4804481A (en) * 1986-09-16 1989-02-14 Boll & Kirch Filterbau Gmbh Helical spring apparatus and process for detaching filter cake
US5008009A (en) * 1989-07-17 1991-04-16 Baker Hughes Incorporated Mechanism for filter cake removal
US5500093A (en) * 1992-05-14 1996-03-19 Marsden; Alan Oil purification
US6033558A (en) * 1995-08-04 2000-03-07 Kabushiki Kaisha Yokota Seisakusho Self-gush-cleaning filter device
US5882512A (en) * 1997-11-05 1999-03-16 Baracuda International Corporation Automatic swimming pool cleaners and associated components and systems
US20020038783A1 (en) * 2000-03-04 2002-04-04 Birgit Trotzki Precoated filter for the filtration of flowing media

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7931803B2 (en) * 2004-09-06 2011-04-26 Andrea Elaine Buchanan Fluid filter
US20110171081A1 (en) * 2004-09-06 2011-07-14 Andrea Elaine Buchanan Corrosion-inhibiting device
US7767087B2 (en) * 2007-01-05 2010-08-03 Wilson Kelce S Floating filter holder
US20080164223A1 (en) * 2007-01-05 2008-07-10 Wilson Kelce S Floating filter holder
WO2011041513A3 (en) * 2009-09-30 2011-10-20 Itt Water & Wastewater Leopold, Inc. Clog resistant media retainer assembly
WO2011041513A2 (en) * 2009-09-30 2011-04-07 Itt Water & Wastewater Leopold, Inc. Clog resistant media retainer assembly
US8657122B2 (en) 2009-09-30 2014-02-25 Xylem Water Solutions Zelienople Llc Clog resistant media retainer assembly
US20110073549A1 (en) * 2009-09-30 2011-03-31 Itt Water & Wastewater Leopold, Inc. Clog Resistant Media Retainer Assembly
US11891581B2 (en) 2017-09-29 2024-02-06 Marathon Petroleum Company Lp Tower bottoms coke catching device
US12000720B2 (en) 2018-09-10 2024-06-04 Marathon Petroleum Company Lp Product inventory monitoring
US11975316B2 (en) 2019-05-09 2024-05-07 Marathon Petroleum Company Lp Methods and reforming systems for re-dispersing platinum on reforming catalyst
US11905479B2 (en) 2020-02-19 2024-02-20 Marathon Petroleum Company Lp Low sulfur fuel oil blends for stability enhancement and associated methods
US11920096B2 (en) 2020-02-19 2024-03-05 Marathon Petroleum Company Lp Low sulfur fuel oil blends for paraffinic resid stability and associated methods
US12031676B2 (en) 2020-03-24 2024-07-09 Marathon Petroleum Company Lp Insulation securement system and associated methods
CN111888836A (en) * 2020-09-10 2020-11-06 台嘉成都玻纤有限公司 Side filtering system for filtering impurities in water
US11898109B2 (en) 2021-02-25 2024-02-13 Marathon Petroleum Company Lp Assemblies and methods for enhancing control of hydrotreating and fluid catalytic cracking (FCC) processes using spectroscopic analyzers
US11905468B2 (en) 2021-02-25 2024-02-20 Marathon Petroleum Company Lp Assemblies and methods for enhancing control of fluid catalytic cracking (FCC) processes using spectroscopic analyzers
US11906423B2 (en) 2021-02-25 2024-02-20 Marathon Petroleum Company Lp Methods, assemblies, and controllers for determining and using standardized spectral responses for calibration of spectroscopic analyzers
US11921035B2 (en) 2021-02-25 2024-03-05 Marathon Petroleum Company Lp Methods and assemblies for determining and using standardized spectral responses for calibration of spectroscopic analyzers
US11885739B2 (en) 2021-02-25 2024-01-30 Marathon Petroleum Company Lp Methods and assemblies for determining and using standardized spectral responses for calibration of spectroscopic analyzers
US11860069B2 (en) 2021-02-25 2024-01-02 Marathon Petroleum Company Lp Methods and assemblies for determining and using standardized spectral responses for calibration of spectroscopic analyzers
US11835450B2 (en) 2021-02-25 2023-12-05 Marathon Petroleum Company Lp Methods and assemblies for determining and using standardized spectral responses for calibration of spectroscopic analyzers
US11970664B2 (en) 2021-10-10 2024-04-30 Marathon Petroleum Company Lp Methods and systems for enhancing processing of hydrocarbons in a fluid catalytic cracking unit using a renewable additive
US12018216B2 (en) 2021-10-10 2024-06-25 Marathon Petroleum Company Lp Methods and systems for enhancing processing of hydrocarbons in a fluid catalytic cracking unit using plastic
US11802257B2 (en) 2022-01-31 2023-10-31 Marathon Petroleum Company Lp Systems and methods for reducing rendered fats pour point
WO2024054792A1 (en) * 2022-09-05 2024-03-14 ODH IP Corp. Combination crystallizer, filter, washer, dryer device
US20240189753A1 (en) * 2022-12-08 2024-06-13 Marathon Petroleum Company Lp Removable flue gas strainer and associated methods
US12031094B2 (en) 2023-06-22 2024-07-09 Marathon Petroleum Company Lp Assemblies and methods for enhancing fluid catalytic cracking (FCC) processes during the FCC process using spectroscopic analyzers

Also Published As

Publication number Publication date
WO2006027572A2 (en) 2006-03-16
CN102512859A (en) 2012-06-27
EP2384801A1 (en) 2011-11-09
US7931803B2 (en) 2011-04-26
AU2010257322A1 (en) 2011-01-13
EP1793907A2 (en) 2007-06-13
AU2005281488A1 (en) 2006-03-16
WO2006027572A3 (en) 2006-09-14
CN101052452B (en) 2012-04-11
KR101299806B1 (en) 2013-08-23
PT1793907E (en) 2013-08-29
EP1793907B1 (en) 2013-05-22
AU2005281488B2 (en) 2011-02-17
CA2579309A1 (en) 2006-03-16
WO2006027572B1 (en) 2006-11-09
KR20070065873A (en) 2007-06-25
ES2425751T3 (en) 2013-10-17
CN101052452A (en) 2007-10-10
GB0419686D0 (en) 2004-10-06

Similar Documents

Publication Publication Date Title
US7931803B2 (en) Fluid filter
US8591739B2 (en) Molecular separator
US6182689B1 (en) Filter mechanism for diaphragm flush valve
US7459091B2 (en) Molecular separator
JPH026565B2 (en)
CN111035979B (en) Pressure reducer filter device
US20040238435A1 (en) Filter and filter cleaning apparatus and related methods
US20220203274A1 (en) System and method for a filter system
JPS60132611A (en) Backwashable filter
JP2012157799A (en) Backwashing strainer
US20110171081A1 (en) Corrosion-inhibiting device
CN107485913B (en) Backwash filter assembly
WO2006035103A1 (en) Filter apparatus for filtering a flowing material
EP1446213B1 (en) Filter and filter cleaning apparatus and related methods
EP4106900A1 (en) Filter systems and methods
AU2002354008A1 (en) Filter and filter cleaning apparatus and related methods

Legal Events

Date Code Title Description
AS Assignment

Owner name: BUCHANAN, ANDREA ELAINE, UNITED KINGDOM

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:RAMJET FILTER COMPANY;REEL/FRAME:019006/0949

Effective date: 20070221

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20150426