US20080026002A1 - Regimens for immunisation with meningococcal conjugates - Google Patents

Regimens for immunisation with meningococcal conjugates Download PDF

Info

Publication number
US20080026002A1
US20080026002A1 US11/726,656 US72665607A US2008026002A1 US 20080026002 A1 US20080026002 A1 US 20080026002A1 US 72665607 A US72665607 A US 72665607A US 2008026002 A1 US2008026002 A1 US 2008026002A1
Authority
US
United States
Prior art keywords
vaccine
months
dose
administered
month period
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/726,656
Inventor
Lisa Danzig
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Novartis Vaccines and Diagnostics Inc
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=38327015&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20080026002(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Individual filed Critical Individual
Priority to US11/726,656 priority Critical patent/US20080026002A1/en
Assigned to NOVARTIS VACCINES AND DIAGNOSTICS, INC. reassignment NOVARTIS VACCINES AND DIAGNOSTICS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DANZIG, LISA
Publication of US20080026002A1 publication Critical patent/US20080026002A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/02Bacterial antigens
    • A61K39/095Neisseria
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/545Medicinal preparations containing antigens or antibodies characterised by the dose, timing or administration schedule
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/55Medicinal preparations containing antigens or antibodies characterised by the host/recipient, e.g. newborn with maternal antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/02Bacterial antigens
    • A61K39/116Polyvalent bacterial antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/64Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
    • A61K47/646Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent the entire peptide or protein drug conjugate elicits an immune response, e.g. conjugate vaccines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/22Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Neisseriaceae (F)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/12Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria
    • C07K16/1203Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria from Gram-negative bacteria
    • C07K16/1217Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria from Gram-negative bacteria from Neisseriaceae (F)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/36Neisseria
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • This invention is in the field of immunising patients with meningococcal conjugates.
  • Conjugate vaccines for N. meningitidis serogroup C have been approved for human use, and include the products known as MenjugateTM [1], MeningitecTM and NeisVac-CTM. Bivalent mixtures of conjugates from serogroups A+C [2, 3] and C+Y [4] have also been reported. Mixtures of conjugates from all four of serogroups A, C, W135 and Y are also known (e.g. see references 5-9), including the MenactraTM product that was licensed in 2005.
  • an important aspect of effective immunisation is the dosing schedule. As noted in chapter 8 of reference 10, “most vaccines require administration of multiple doses in a primary series for development of immunity”. Moreover, “periodic revaccination (‘booster doses’) with certain vaccines may be necessary to maintain immunity”.
  • Known schedules for serogroup C meningococcal conjugate vaccines include: a single dose at 12 months of age; two doses at 2 & 4 months; three doses at 2, 3 & 4 months of age; three doses at 2, 4 & 6 months of age; three doses at 3, 5 & 12 months of age; three doses at 2, 4 & 12 months.
  • Multivalent meningococcal conjugate combinations have been administered according to various dosing schedules.
  • known single-dose schedules for multivalent meningococcal conjugate vaccines include: at 14 weeks of age [12]; at 6 months of age [13]; at 9 months [12]; between 12-16 months [14]; between 2-3 years of age [5, 15]; between 2-10 years [16, 17, 18]; between 11-18 years [18]; 18-50 years [19]; 18-55 years [18].
  • the prescribing information for MenactraTM shows that it is administered as a single dose in 11-18 or 18-55 year olds.
  • Known 2-dose schedules for multivalent meningococcal conjugate vaccines include: 2 & 6 months of age [13]; first dose at 14 weeks of age, second dose at 9 months of age [12]; first dose at 12-15 months, second dose 2 months later [5]; first dose at 12-16 months, second dose 1 month later [14]; doses in 2 year olds at time zero and then 2 months later [18]; in adults at time zero and then 6 weeks later [2]; in adults at time zero and then 2 months later [3].
  • a clinical study has also been reported in which patients received a first dose aged 11-18 years and a second dose 3 years later.
  • Known 3-dose schedules for multivalent meningococcal conjugate vaccines include: 6, 10 and 14 weeks of age [5, 12]; 2, 3 & 4 months [13]; 2, 4 & 6 months of age [18]; 3, 4 & 5 months of age [20].
  • a 4-dose schedule at 6 weeks, 10 weeks, 14 weeks and 9 months is disclosed in reference 12.
  • the present invention relates to methods for immunizing a patient, comprising: (a) administering a multivalent meningococcal conjugate vaccine to the patient when they are aged between 0 and 12 months; and (b) administering a multivalent meningococcal conjugate vaccine to the patient when they are aged between 12 and 24 months.
  • the present invention also relates to methods for immunizing a patient who previously received a multivalent meningococcal conjugate vaccine to the patient when they were aged between 0 and 12 months, comprising: administering a multivalent meningococcal conjugate vaccine to the patient when they are aged between 12 and 24 months.
  • kits comprising: (a) a multivalent meningococcal conjugate vaccine; and (b) instructions for administering the vaccine according to a schedule that includes: (a) first administering the vaccine to a patient when they are aged between 0 and 12 months; and (b) then administering the vaccine to a patient when they are aged between 12 and 24 months.
  • the invention also relates to uses of a plurality of meningococcal conjugates in the manufacture of a medicament for administering to a patient in an immunisation schedule comprising: (a) administering the medicament to the patient when they are aged between 0 and 12 months; and (b) administering the medicament to the patient when they are aged between 12 and 24 months.
  • the invention further relates to uses of a plurality of meningococcal conjugates in the manufacture of a medicament for administering to a patient who is aged between 12 and 24 months and who previously received a multivalent meningococcal conjugate vaccine when they were aged between 0 and 12 months.
  • the multivalent meningococcal conjugate vaccine includes capsular saccharides from at least two of meningococcal serogroups A, C, W135 and Y. In a second embodiment, the multivalent meningococcal conjugate vaccine includes capsular saccharides from all four of meningococcal serogroups A, C, W135 and Y.
  • a dose in the 0-12 month period and a dose in the 12-24 month period are administered ⁇ 6 months apart.
  • a dose in the 0-12 month period is administered at 2 months, 3 months, 4 months, 5 months or 6 months of age.
  • a dose in the 12-24 month period is administered at between 12-15 months of age or at between 15-18 months of age.
  • a dose in the 0-12 month period is administered at substantially the same time as a hepatitis B virus vaccine, a diphtheria vaccine, a tetanus vaccine, a pertussis vaccine, a Haemophilus influenzae type b vaccine, a Streptococcus pneumoniae vaccine, and/or a polio vaccine.
  • a dose in the 12-24 month period is administered at substantially the same time as a hepatitis B virus vaccine, a diphtheria vaccine, a tetanus vaccine, a pertussis vaccine, a Haemophilus influenzae type b vaccine, a Streptococcus pneumoniae vaccine, a polio vaccine, an influenza vaccine, a chickenpox vaccine, a measles vaccine, a mumps vaccine, and/or a rubella vaccine.
  • the multivalent meningococcal conjugate vaccine has a carrier protein selected from the group consisting of diphtheria toxoid, tetanus toxoid and CRM197.
  • the multivalent meningococcal conjugate vaccine is unadjuvanted.
  • multivalent meningococcal conjugate vaccines are administered according to a schedule in which a first dose is administered to a patient aged between 0 and 12 months, and a second dose is administered to a patient aged between 12 and 24 months.
  • This schedule offers early protection than the existing licensed schedule, reduces the cost of immunisation by avoiding the need for a third immunisation, and the second dose can act as a booster dose for providing long-lasting protection.
  • the invention provides a method for immunising a patient, comprising: (a) administering a multivalent meningococcal conjugate vaccine to the patient when they are aged between 0 and 12 months; and (b) administering a multivalent meningococcal conjugate vaccine to the patient when they are aged between 12 and 24 months.
  • the invention also provides a method for immunising a patient who previously received a multivalent meningococcal conjugate vaccine to the patient when they were aged between 0 and 12 months, comprising: administering a multivalent meningococcal conjugate vaccine to the patient when they are aged between 12 and 24 months.
  • the invention also provides the use of a plurality of meningococcal conjugates in the manufacture of a medicament for administering to a patient in an immunisation schedule comprising: (a) administering the medicament to the patient when they are aged between 0 and 12 months; and (b) administering the medicament to the patient when they are aged between 12 and 24 months.
  • the invention also provides the use of a plurality of meningococcal conjugates in the manufacture of a medicament for administering to a patient who is aged between 12 and 24 months and who previously received a multivalent meningococcal conjugate vaccine when they were aged between 0 and 12 months.
  • the invention also provides a kit comprising: (a) a multivalent meningococcal conjugate vaccine; and (b) instructions for administering the vaccine according to a schedule that includes: (a) first administering the vaccine to a patient when they are aged between 0 and 12 months; and (b) then administering the vaccine to a patient when they are aged between 12 and 24 months.
  • the schedule of the invention involves a first dose in the first year of life and a second dose in the second year of life.
  • the first dose is given to a patient aged between 0 and 12 months, up to but not including their first birthday.
  • the second dose is given to a patient aged 12 and 24 months, starting on the day of their first birthday, up to and including their second birthday.
  • the two doses can be administered at any time. In general, however, the two doses will be administered at least 4 weeks apart e.g. ⁇ 8 weeks apart, ⁇ 2 months apart, ⁇ 3 months apart, ⁇ 6 months apart, etc.
  • the first dose is preferably not administered before about 6 weeks of age. after 5 weeks. Typical times for receiving the first dose are at 2 months, 3 months, 4 months, 5 months or 6 months of age.
  • the second dose is preferably administered in the first half i.e. between 12 and 18 months e.g. between 12 and 15 months of age, or between 15 and 18 months.
  • the patient will not have received a meningococcal conjugate vaccine before the first dose in the schedule.
  • the patient does not receive a meningococcal conjugate vaccine between the first dose and the second dose, but sometimes an intermediate dose may be administered.
  • the patient may receive 2 or 3 doses in the 0-12 month period e.g. at 2, 3 & 4 months of age, at 3, 4 & 5 months of age, at 2, 4 & 6 months, at 3, 5 & 9 months etc.
  • the patient does not receive a further dose, but in other embodiments they can do so.
  • a further dose is preferably not administered until after the patient's second birthday e.g. until after their fifth birthday, after their tenth birthday, after their fifteenth birthday, after their seventeenth birthday, after their twenty-first birthday, etc.
  • the further dose may be administered when circulating antibody levels have declined to undetectable levels [21].
  • the first dose can be administered at substantially the same time as (e.g. during the same medical consultation or visit to a healthcare professional) another vaccine e.g. at substantially the same time as a hepatitis B virus vaccine, a diphtheria vaccine, a tetanus vaccine, a pertussis vaccine (either cellular or, preferably, acellular), a Haemophilus influenzae type b vaccine, a Streptococcus pneumoniae vaccine, and/or a polio vaccine (preferably in inactivated poliovirus vaccine).
  • a hepatitis B virus vaccine e.g. at substantially the same time as a hepatitis B virus vaccine, a diphtheria vaccine, a tetanus vaccine, a pertussis vaccine (either cellular or, preferably, acellular), a Haemophilus influenzae type b vaccine, a Streptococcus pneumoniae vaccine, and/or a polio vaccine (preferably in inactivated
  • the second dose can be administered at substantially the same time as (e.g. during the same medical consultation or visit to a healthcare professional) another vaccine e.g. at substantially the same time as a hepatitis B virus vaccine, a diphtheria vaccine, a tetanus vaccine, a pertussis vaccine (either cellular or acellular), a Haemophilus influenzae type b vaccine, a Streptococcus pneumoniae vaccine, a polio vaccine (preferably in inactivated poliovirus vaccine), an influenza vaccine, a chickenpox vaccine, a measles vaccine, a mumps vaccine, and/or a rubella vaccine.
  • Each of these optionally co-administered vaccines may be a monovalent vaccine or may be part of a combination vaccine (e.g. as part of a M-M-R vaccine).
  • the invention involves the administration of multivalent meningococcal conjugate vaccines i.e. vaccines that, when administered, simultaneously provide immunity against 2, 3, 4 or more different serotypes of N. meningitidis .
  • Multivalent vaccines against 2, 3, or 4 of serogroups A, C, W135 and Y are preferred e.g. A+C, C+Y, W135+Y, A+W135+Y, A+C+W135+Y, etc.
  • Vaccines including at least serogroup C are preferred (e.g. A+C), and vaccines including saccharides from all four of serogroups A, C, W135 and Y are most preferred.
  • the vaccines include a meningococcal capsular saccharide conjugated to a carrier protein.
  • the capsular saccharide of serogroup A meningococcus is a homopolymer of ( ⁇ 1 ⁇ 6)-linked N-acetyl-D-mannosamine-1-phosphate, with partial O-acetylation in the C3 and C4 positions.
  • the acetyl groups can be replaced with blocking groups to prevent hydrolysis [22], and such modified saccharides are still serogroup A saccharides within the meaning of the present invention.
  • the serogroup C capsular saccharide is a homopolymer of ( ⁇ 2 ⁇ 9)-linked sialic acid (N-acetyl neuraminic acid, or ‘NeuNAc’).
  • the saccharide structure is written as ⁇ 9)-Neu p NAc 7/8 OAc-( ⁇ 2 ⁇ .
  • the serogroup W135 saccharide is a polymer of sialic acid-galactose disaccharide units. Like the serogroup C saccharide, it has variable O-acetylation, but at sialic acid 7 and 9 positions [25].
  • the structure is written as: ⁇ 4)-D-Neup5Ac(7/9OAc)- ⁇ -(2 ⁇ 6)-D-Gal- ⁇ -(1 ⁇ .
  • the serogroup Y saccharide is similar to the serogroup W135 saccharide, except that the disaccharide repeating unit includes glucose instead of galactose. Like serogroup W135, it has variable O-acetylation at sialic acid 7 and 9 positions [25].
  • the serogroup Y structure is written as: ⁇ 4)-D-Neup5Ac(7/9OAc)- ⁇ -(2 ⁇ 6)-D-Glc- ⁇ -(1 ⁇ .
  • the saccharides used according to the invention may be O-acetylated as described above (e.g. with the same O-acetylation pattern as seen in native capsular saccharides), or they may be partially or totally de-O-acetylated at one or more positions of the saccharide rings, or they may be hyper-O-acetylated relative to the native capsular saccharides.
  • Serogroup C saccharides used with the invention may be prepared from either OAc+ or OAc ⁇ strains.
  • Preferred strains for production of serogroup C conjugates are OAc+ strains, preferably of serotype 16, preferably of serosubtype P1.7a,1.
  • C: 16:P1.7a,1 OAc+ strains are preferred.
  • Preferably at least 50% (e.g. at least 60%, 70%, 80%, 90%, 95% or more) of the mannosamine residues in a serogroup A saccharides are O-acetylated at the C-3 position.
  • the saccharide moieties in conjugates may comprise full-length saccharides as prepared from meningococci, and/or it may comprise fragments of full-length saccharides.
  • the saccharides used according to the invention are preferably shorter than the native capsular saccharides seen in bacteria.
  • the saccharides are preferably depolymerised, with depolymerisation occurring during or after saccharide purification but before conjugation. Depolymerisation reduces the chain length of the saccharides.
  • One depolymerisation method involves the use of hydrogen peroxide [5]. Hydrogen peroxide is added to a saccharide (e.g. to give a final H 2 O 2 concentration of 1%), and the mixture is then incubated (e.g.
  • the saccharides used to prepare conjugates for use according to the invention may be obtainable by any of these depolymerisation methods.
  • Depolymerisation can be used in order to provide an optimum chain length for immunogenicity and/or to reduce chain length for physical manageability of the saccharides.
  • preferred ranges are, for all serogroups: ⁇ 100 kDa; 5 kDa-75 kDa; 7 kDa-50 kDa; 8 kDa-35 kDa; 12 kDa-25 kDa; 15 kDa-22 kDa.
  • Typical carrier proteins for use in conjugates are bacterial toxins, such as diphtheria toxin [e.g. see chapter 13 of ref. 10; refs. 26-29] (or its CRM197 mutant [30-33]) and tetanus toxin, usually in toxoid form (e.g. obtained by treatment with an inactivating chemical, such as formalin or formaldehyde).
  • suitable carrier proteins include, but are not limited to, N.
  • pathogen-derived antigens [42] such as N19 [43], protein D from H. influenzae [ 44-46], pneumolysin [47], pneumococcal surface protein PspA [48], iron-uptake proteins [49], toxin A or B from C. difficile [ 50], etc.
  • Dt diphtheria toxoid
  • Tt tetanus toxoid
  • CRM197 protein D from H. influenzae
  • these proteins are preferred because they are the main carriers currently in use in pediatric vaccines e.g. the Hib conjugates from GSK use Tt as the carrier, the HibTITERTM product uses CRM197, the pneumococcal conjugates in PrevenarTM use CRM197, the MenjugateTM and MeningitecTM products use CRM197, and NeisVac-CTM uses Tt.
  • Conjugates are preferably mixed at substantially equal masses (measured as mass of saccharide) e.g. the mass of each serogroup's saccharide is within ⁇ 10% of each other.
  • a typical quantity of meningococcal antigen per serogroup in a composition is between 1 ⁇ g and 20 ⁇ g e.g. between 2 and 10 ⁇ g per serogroup, or about 4 ⁇ g.
  • a double serogroup A dose may be used.
  • Conjugates with a saccharide:protein ratio (w/w) of between 1:15 (i.e. excess protein) and 15:1 (i.e. excess saccharide), preferably between 1:5 and 5:1, are preferred. Excess carrier protein is preferred. Conjugates with saccharide:protein ratio of about 1:12 or about 1:3 are preferred, particularly where the carrier is Dt.
  • the saccharide will typically be activated or functionalised prior to conjugation. Activation may involve, for example, cyanylating reagents [51, 52, etc.]). Other suitable techniques use active esters, carbodiimides, hydrazides, norborane, p-nitrobenzoic acid, N-hydroxysuccinimide, S—NHS, EDC, TSTU; see also the introduction to reference 53).
  • Linkages via a linker group may be made using any known procedure, for example, the procedures described in references 54 and 55.
  • One type of linkage involves reductive amination of the polysaccharide, coupling the resulting amino group with one end of an adipic acid linker group, and then coupling a protein to the other end of the adipic acid linker group [56, 57, 58].
  • Other linkers include B-propionamido [59], nitrophenyl-ethylamine [60], haloacyl halides [61], glycosidic linkages [62], 6-aminocaproic acid [63], ADH [64], C 4 to C 12 moieties [65] etc.
  • direct linkage can be used. Direct linkages to the protein may comprise oxidation of the polysaccharide followed by reductive amination with the protein, as described in, for example, references 66 and 67.
  • a preferred conjugation process involves: introduction of amino groups into the saccharide (e.g. by replacing terminal ⁇ O groups with —NH 2 ) followed by derivatisation with an adipic diester (e.g. adipic acid N-hydroxysuccinimide diester) and reaction with carrier protein (e.g. CRM197). Further details of this conjugation method can be found in reference 6. Conjugates obtainable by this method are preferred conjugates for use according to the invention.
  • a saccharide is reacted with adipic acid dihydrazide.
  • carbodiimide EDAC
  • sodium cyanoborohydride is added.
  • Derivatised saccharide can then be prepared e.g. by ultrafiltration.
  • carrier protein e.g. with a diphtheria toxoid
  • carbodiimide is added.
  • the conjugate can be recovered. Further details of this conjugation method can be found in reference 6.
  • Conjugates obtainable by this method are preferred conjugates for use according to the invention e.g. conjugates comprising a diphtheria toxoid carrier and an adipic acid linker.
  • a saccharide is derivatised with a cyanylating reagent [52], followed by coupling to a protein (direct, or after introduction of a thiol or hydrazide nucleophile group into the carrier), without the need to use a linker.
  • Suitable cyanylating reagents include 1-cyano-4-(dimethylamino)-pyridinium tetrafluoroborate (‘CDAP’), p-nitrophenylcyanate and N-cyanotriethylammonium tetrafluoroborate (‘CTEA’).
  • CDAP is preferred, particularly where H. influenzae protein D is the common carrier. Direct coupling is preferred.
  • Administration of a conjugate preferably results in an increase in serum bactericidal assay (SBA) titre for the relevant serogroup of at least 4-fold, and preferably at least 8-fold, measured with human complement [68]. If rabbit complement is used to measure SBA titres then the titre increase is preferably at least 128-fold.
  • SBA serum bactericidal assay
  • Conjugates are preferably prepared separately and then mixed. Thus it is preferred not to use a single protein carrying multiple serogroups (cf. references 69 & 70). After mixing, the concentration of the mixed conjugates can be adjusted e.g. with sterile pyrogen-free, phosphate-buffered saline.
  • the amount of carrier (conjugated and unconjugated) from each conjugate is preferably no more than 100 ⁇ g/ml e.g. ⁇ 30 ⁇ g/ml of carrier protein from each conjugate.
  • Preferred compositions include a total concentration of carrier (either solely for the combined meningococcal conjugates, or preferably for the composition as a whole) of less than 500 ⁇ g/ml e.g. ⁇ 400 ⁇ g/ml, ⁇ 300 ⁇ g/ml, ⁇ 200 ⁇ g/ml, ⁇ 100 ⁇ g/ml, ⁇ 50 ⁇ g/ml, etc.
  • Vaccines of the invention may include no antigens other than the meningococcal conjugates. In some embodiments, however, vaccines may include further antigens. Thus they may include further antigens from other pathogens, particularly from bacteria and/or viruses. They may include other conjugated saccharides from non-meningococcal organisms and/or they may include non-saccharide antigens. For example, they may include one or more of the following:
  • the schedule of the invention may use different vaccines for the first and second doses e.g. the first vaccine may include non-meningococcal antigens whereas the second vaccine does not, or the first vaccine may include a first set of non-meningococcal antigens (e.g. DTP) whereas the second vaccine includes a second (different) set of non-meningococcal antigens (e.g. MMR).
  • the first vaccine may include non-meningococcal antigens whereas the second vaccine does not, or the first vaccine may include a first set of non-meningococcal antigens (e.g. DTP) whereas the second vaccine includes a second (different) set of non-meningococcal antigens (e.g. MMR).
  • compositions of the invention will generally include a non-antigenic component.
  • the non-antigenic component can include carriers, adjuvants, excipients, buffers, etc., as described in more detail below.
  • These non-antigenic components may have various sources. For example, they may be present in one of the antigen or adjuvant materials that is used during manufacture or may be added separately from those components.
  • Preferred compositions of the invention include one or more pharmaceutical carrier(s) and/or excipient(s). A thorough discussion of pharmaceutically acceptable carriers and excipients is available in reference 71.
  • a physiological salt such as a sodium salt.
  • Sodium chloride (NaCl) is preferred, which may be present at between 1 and 20 mg/ml.
  • Compositions will generally have an osmolality of between 200 mOsm/kg and 400 mOsm/kg, preferably between 240-360 mOsm/kg, and will more preferably fall within the range of 290-310 mOsm/kg. Osmolality has previously been reported not to have an impact on pain caused by vaccination [72], but keeping osmolality in this range is nevertheless preferred.
  • Compositions of the invention may include one or more buffers.
  • Typical buffers include: a phosphate buffer; a Tris buffer; a borate buffer; a succinate buffer; a histidine buffer; or a citrate buffer. Buffers will typically be included in the 5-20 mM range.
  • the pH of a composition of the invention will generally be between 5.0 and 7.5, and more typically between 5.0 and 6.0 for optimum stability, or between 6.0 and 7.0.
  • compositions of the invention are preferably sterile.
  • compositions of the invention are preferably non-pyrogenic e.g. containing ⁇ 1 EU (endotoxin unit, a standard measure) per dose, and preferably ⁇ 0.1 EU per dose.
  • ⁇ 1 EU endotoxin unit, a standard measure
  • compositions of the invention are preferably gluten free.
  • a composition may be a suspension with a cloudy appearance. This appearance means that microbial contamination is not readily visible, and so the vaccine preferably contains a preservative. This is particularly important when the vaccine is packaged in multidose containers.
  • Preferred preservatives for inclusion are 2-phenoxyethanol and thimerosal. It is recommended, however, not to use mercurial preservatives (e.g. thimerosal) where possible. It is preferred that compositions of the invention contain less than about 25 ng/ml mercury.
  • the concentration of any aluminium salts in a composition of the invention, expressed in terms of Al 3+ , is preferably less than 5 mg/ml e.g. ⁇ 4 mg/ml, ⁇ 3 mg/ml, ⁇ 2 mg/ml, ⁇ 1 mg/ml, etc.
  • compositions of the invention are preferably administered to patients in 0.5 ml doses.
  • References to 0.5 ml doses will be understood to include normal variance e.g. 0.5 ml ⁇ 0.05 ml.
  • Residual material from individual antigenic components may also be present in trace amounts in the final vaccine produced by the process of the invention.
  • the final vaccine product may retain trace amounts of formaldehyde (e.g. less than 10 ⁇ g/ml, preferably ⁇ 5 ⁇ g/ml).
  • Media or stabilizers may have been used during poliovirus preparation (e.g. Medium 199), and these may carry through to the final vaccine.
  • free amino acids e.g.
  • neomycin e.g. neomycin sulfate, particularly from an IPV component
  • polymyxin B e.g. polymyxin B sulfate, particularly from an IPV component
  • etc. may also be present e.g. at sub-nanogram amounts per dose.
  • a further possible component of the final vaccine which originates in the antigen preparations arises from less-than-total purification of antigens. Small amounts of B. pertussis, C. diphtheriae, C. tetani and/or S. cerevisiae proteins and/or genomic DNA may therefore be present.
  • Meningococcal conjugates may be lyophilised prior to use according to the invention. If lyophilised, the composition may include a stabiliser such as mannitol. It may also include sodium chloride.
  • a stabiliser such as mannitol. It may also include sodium chloride.
  • the age of patients receiving vaccines of the invention is dictated by the schedule.
  • the patient will not have received a meningococcal conjugate vaccine before the first dose in the schedule, they may have received other non-meningococcal conjugates and/or they may have received the carrier protein that is used in the meningococcal conjugate.
  • Prior exposure to the carrier may have been as carrier in non-meningococcal conjugate (e.g. in a Hib conjugate) and/or as antigen itself (e.g. tetanus toxoid is commonly used as carrier for Hib conjugates, but is also used as an antigen for protecting against C. tetani ).
  • compositions of the invention can be administered by intramuscular injection e.g. into the arm, leg or buttock. Where another vaccine is co-administered then it is typical to inject compositions into opposite limbs e.g. to inject one into the left arm and one into the right arm.
  • compositions of the invention include an aluminium-based adjuvant
  • settling of components may occur during storage.
  • the composition should therefore be shaken prior to administration to a patient.
  • the shaken composition will generally be a turbid white suspension.
  • the patient is a human.
  • Vaccines for use with the invention can be placed into containers for use.
  • Suitable containers include vials and disposable syringes (preferably sterile ones).
  • vials are preferably made of a glass or plastic material.
  • the vial is preferably sterilized before the composition is added to it.
  • vials are preferably sealed with a latex-free stopper.
  • the vial may include a single dose of vaccine, or it may include more than one dose (a ‘multidose’ vial) e.g. 10 doses.
  • a multidose vial When using a multidose vial, each dose should be withdrawn with a sterile needle and syringe under strict aseptic conditions, taking care to avoid contaminating the vial contents.
  • Preferred vials are made of colorless glass.
  • a vial can have a cap (e.g. a Luer lock) adapted such that a pre-filled syringe can be inserted into the cap, the contents of the syringe can be expelled into the vial (e.g. to reconstitute lyophilised material therein), and the contents of the vial can be removed back into the syringe.
  • a needle can then be attached and the composition can be administered to a patient.
  • the cap is preferably located inside a seal or cover, such that the seal or cover has to be removed before the cap can be accessed.
  • the syringe will not normally have a needle attached to it, although a separate needle may be supplied with the syringe for assembly and use.
  • Safety needles are preferred.
  • 1-inch 23-gauge, 1-inch 25-gauge and 5 ⁇ 8-inch 25-gauge needles are typical.
  • Syringes may be provided with peel-off labels on which the lot number and expiration date of the contents may be printed, to facilitate record keeping.
  • the plunger in the syringe preferably has a stopper to prevent the plunger from being accidentally removed during aspiration.
  • the syringes may have a latex rubber cap and/or plunger. Disposable syringes contain a single dose of vaccine.
  • the syringe will generally have a tip cap to seal the tip prior to attachment of a needle, and the tip cap is preferably made of butyl rubber. If the syringe and needle are packaged separately then the needle is preferably fitted with a butyl rubber shield. Grey butyl rubber is preferred. Preferred syringes are those marketed under the trade name “Tip-Lok”TM.
  • a glass container e.g. a syringe or a vial
  • a container made from a borosilicate glass rather than from a soda lime glass.
  • a vaccine is in lyophilised form then it will usually be resuspended into an aqueous form prior to administration.
  • kits of the invention can include instructions for administering the vaccine.
  • the instructions will refer to an immunisation schedule that includes: (a) first administering the vaccine to a patient when they are aged between 0 and 12 months; and (b) then administering the vaccine to a patient when they are aged between 12 and 24 months.
  • Vaccines of the invention may include an adjuvant. Where a vaccine includes only meningococcal conjugates, however, use of an adjuvant is not preferred. Where an adjuvant is used, it may comprise one or more aluminium salts, and particularly an aluminium phosphate adjuvant and/or an aluminium hydroxide adjuvant.
  • Aluminium adjuvants currently in use are typically referred to either as “aluminium hydroxide” or as “aluminium phosphate” adjuvants. These are names of convenience, however, as neither is a precise description of the actual chemical compound which is present (e.g. see chapter 9 of reference 73).
  • the invention can use any of the “hydroxide” or “phosphate” salts that are in general use as adjuvants.
  • aluminium hydroxide typically aluminium oxyhydroxide salts, which are usually at least partially crystalline.
  • Aluminium oxyhydroxide which can be represented by the formula AlO(OH)
  • AlO(OH) 3 aluminium hydroxide
  • IR infrared
  • the adjuvants known as “aluminium phosphate” are typically aluminium hydroxyphosphates, often also containing a small amount of sulfate. They may be obtained by precipitation, and the reaction conditions and concentrations during precipitation can influence the degree of substitution of phosphate for hydroxyl in the salt. Hydroxyphosphates generally have a PO 4 /Al molar ratio between 0.3 and 0.99. Hydroxyphosphates can be distinguished from strict AlPO 4 by the presence of hydroxyl groups. For example, an IR spectrum band at 3164 cm ⁇ 1 (e.g. when heated to 200° C.) indicates the presence of structural hydroxyls (chapter 9 of ref. 73).
  • the PO 4 /Al 3+ molar ratio of an aluminium phosphate adjuvant will generally be between 0.3 and 1.2, preferably between 0.8 and 1.2, and more preferably 0.95 ⁇ 0.1.
  • the aluminium phosphate will generally be amorphous, particularly for hydroxyphosphate salts.
  • a typical adjuvant is amorphous aluminium hydroxyphosphate with PO 4 /Al molar ratio between 0.84 and 0.92, included at 0.6 mg Al 3+ /ml.
  • the aluminium phosphate will generally be particulate. Typical diameters of the particles are in the range 0.5-20 ⁇ m (e.g. about 5-10 ⁇ m) after any antigen adsorption.
  • An aluminium phosphate solution used to prepare a composition of the invention may contain a buffer (e.g. a phosphate or a histidine or a Tris buffer), but this is not always necessary.
  • the aluminium phosphate solution is preferably sterile and pyrogen-free.
  • the aluminium phosphate solution may include free aqueous phosphate ions e.g. present at a concentration between 1.0 and 20 mM, preferably between 5 and 15 mM, and more preferably about 10 mM.
  • the aluminium phosphate solution may also comprise sodium chloride.
  • the concentration of sodium chloride is preferably in the range of 0.1 to 100 mg/ml (e.g. 0.5-50 mg/ml, 1-20 mg/ml, 2-10 mg/ml) and is more preferably about 3 ⁇ 1 mg/ml.
  • the presence of NaCl facilitates the correct measurement of pH prior to adsorption of antigens.
  • a mixture of both an aluminium hydroxide adjuvant and an aluminium phosphate adjuvant can be used. If so, there may be more aluminium phosphate than hydroxide e.g. a weight ratio of at least 2:1 e.g. ⁇ 5:1, ⁇ 6:1, ⁇ 7:1, ⁇ 8:1, ⁇ 9:1, etc.
  • composition “comprising” encompasses “including” as well as “consisting” e.g. a composition “comprising” X may consist exclusively of X or may include something additional e.g. X+Y.
  • the word “substantially” does not exclude “completely” e.g. a composition which is “substantially free” from Y may be completely free from Y. Where necessary, the word “substantially” may be omitted from the definition of the invention.
  • a process comprising a step of mixing two or more components does not require any specific order of mixing.
  • components can be mixed in any order. Where there are three components then two components can be combined with each other, and then the combination may be combined with the third component, etc.
  • an antigen is described as being “adsorbed” to an adjuvant, it is preferred that at least 50% (by weight) of that antigen is adsorbed e.g. 50%, 60%, 70%, 80%, 90%, 95%, 98% or more. It is preferred that diphtheria toxoid and tetanus toxoid are both totally adsorbed i.e. none is detectable in supernatant. Total adsorption of HBsAg is also preferred.
  • Amounts of conjugates are generally given in terms of mass of saccharide (i.e. the dose of the conjugate (carrier+saccharide) as a whole is higher than the stated dose) in order to avoid variation due to choice of carrier.
  • TSEs transmissible spongiform encaphalopathies
  • BSE bovine spongiform encephalopathy
  • the immunogenicity, safety, tolerability and the ability to prime for memory of a meningococcal conjugate vaccine are investigated in a multi-centre, open-label, controlled, randomized study. Infants are split into three groups to receive an unadjuvanted 4-valent conjugated A-C-W135-Y vaccine as follows, with the group 1 schedule being an embodiment of the invention:
  • Immunogenicity is assessed by evaluating serum antibody responses by measuring bactericidal antibody titers.
  • the bactericidal antibody titer at visit 2 expressed as a ratio relative to visit 1, was as follows for each group: A C W135 Y Group 1 1.5 11 2.8 1.8 Group 2 1.0 1 1.0 1.0 Group 3 1.0 20 1.0 1.0

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Epidemiology (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

Multivalent meningococcal conjugate vaccines are administered according to a schedule in which a first dose is administered to a patient aged between 0 and 12 months, and a second dose is administered to the patient aged between 12 and 24 months.

Description

    RELATED APPLICATIONS
  • All documents cited herein are incorporated by reference in their entirety.
  • This application claims the benefit of U.S. Provisional Application No. 60/785,234, filed Mar. 22, 2006, which is incorporated herein in its entirety.
  • TECHNICAL FIELD
  • This invention is in the field of immunising patients with meningococcal conjugates.
  • BACKGROUND OF THE INVENTION
  • Conjugate vaccines for N. meningitidis serogroup C have been approved for human use, and include the products known as Menjugate™ [1], Meningitec™ and NeisVac-C™. Bivalent mixtures of conjugates from serogroups A+C [2, 3] and C+Y [4] have also been reported. Mixtures of conjugates from all four of serogroups A, C, W135 and Y are also known (e.g. see references 5-9), including the Menactra™ product that was licensed in 2005.
  • In addition to the antigens included in a vaccine, an important aspect of effective immunisation is the dosing schedule. As noted in chapter 8 of reference 10, “most vaccines require administration of multiple doses in a primary series for development of immunity”. Moreover, “periodic revaccination (‘booster doses’) with certain vaccines may be necessary to maintain immunity”.
  • Known schedules for serogroup C meningococcal conjugate vaccines include: a single dose at 12 months of age; two doses at 2 & 4 months; three doses at 2, 3 & 4 months of age; three doses at 2, 4 & 6 months of age; three doses at 3, 5 & 12 months of age; three doses at 2, 4 & 12 months. Alternative schedules, including the potential for a dose in late infancy or the second year of life, have been suggested [11].
  • Multivalent meningococcal conjugate combinations have been administered according to various dosing schedules. For example, known single-dose schedules for multivalent meningococcal conjugate vaccines include: at 14 weeks of age [12]; at 6 months of age [13]; at 9 months [12]; between 12-16 months [14]; between 2-3 years of age [5, 15]; between 2-10 years [16, 17, 18]; between 11-18 years [18]; 18-50 years [19]; 18-55 years [18]. The prescribing information for Menactra™ shows that it is administered as a single dose in 11-18 or 18-55 year olds.
  • Known 2-dose schedules for multivalent meningococcal conjugate vaccines include: 2 & 6 months of age [13]; first dose at 14 weeks of age, second dose at 9 months of age [12]; first dose at 12-15 months, second dose 2 months later [5]; first dose at 12-16 months, second dose 1 month later [14]; doses in 2 year olds at time zero and then 2 months later [18]; in adults at time zero and then 6 weeks later [2]; in adults at time zero and then 2 months later [3]. A clinical study has also been reported in which patients received a first dose aged 11-18 years and a second dose 3 years later.
  • Known 3-dose schedules for multivalent meningococcal conjugate vaccines include: 6, 10 and 14 weeks of age [5, 12]; 2, 3 & 4 months [13]; 2, 4 & 6 months of age [18]; 3, 4 & 5 months of age [20].
  • A 4-dose schedule at 6 weeks, 10 weeks, 14 weeks and 9 months is disclosed in reference 12.
  • It is an object of the invention to provide further and improved schedules for administering multivalent meningococcal conjugate vaccines, in particular to children.
  • SUMMARY OF THE INVENTION
  • The present invention relates to methods for immunizing a patient, comprising: (a) administering a multivalent meningococcal conjugate vaccine to the patient when they are aged between 0 and 12 months; and (b) administering a multivalent meningococcal conjugate vaccine to the patient when they are aged between 12 and 24 months. The present invention also relates to methods for immunizing a patient who previously received a multivalent meningococcal conjugate vaccine to the patient when they were aged between 0 and 12 months, comprising: administering a multivalent meningococcal conjugate vaccine to the patient when they are aged between 12 and 24 months.
  • The invention further relates to kits comprising: (a) a multivalent meningococcal conjugate vaccine; and (b) instructions for administering the vaccine according to a schedule that includes: (a) first administering the vaccine to a patient when they are aged between 0 and 12 months; and (b) then administering the vaccine to a patient when they are aged between 12 and 24 months.
  • The invention also relates to uses of a plurality of meningococcal conjugates in the manufacture of a medicament for administering to a patient in an immunisation schedule comprising: (a) administering the medicament to the patient when they are aged between 0 and 12 months; and (b) administering the medicament to the patient when they are aged between 12 and 24 months. The invention further relates to uses of a plurality of meningococcal conjugates in the manufacture of a medicament for administering to a patient who is aged between 12 and 24 months and who previously received a multivalent meningococcal conjugate vaccine when they were aged between 0 and 12 months.
  • In one embodiment, the multivalent meningococcal conjugate vaccine includes capsular saccharides from at least two of meningococcal serogroups A, C, W135 and Y. In a second embodiment, the multivalent meningococcal conjugate vaccine includes capsular saccharides from all four of meningococcal serogroups A, C, W135 and Y.
  • In another embodiment, a dose in the 0-12 month period and a dose in the 12-24 month period are administered ≧6 months apart. In a further embodiment, a dose in the 0-12 month period is administered at 2 months, 3 months, 4 months, 5 months or 6 months of age. In another embodiment, a dose in the 12-24 month period is administered at between 12-15 months of age or at between 15-18 months of age.
  • In a further embodiment, a dose in the 0-12 month period is administered at substantially the same time as a hepatitis B virus vaccine, a diphtheria vaccine, a tetanus vaccine, a pertussis vaccine, a Haemophilus influenzae type b vaccine, a Streptococcus pneumoniae vaccine, and/or a polio vaccine. In another embodiment, a dose in the 12-24 month period is administered at substantially the same time as a hepatitis B virus vaccine, a diphtheria vaccine, a tetanus vaccine, a pertussis vaccine, a Haemophilus influenzae type b vaccine, a Streptococcus pneumoniae vaccine, a polio vaccine, an influenza vaccine, a chickenpox vaccine, a measles vaccine, a mumps vaccine, and/or a rubella vaccine.
  • In a particular embodiment, the multivalent meningococcal conjugate vaccine has a carrier protein selected from the group consisting of diphtheria toxoid, tetanus toxoid and CRM197. In another embodiment, the multivalent meningococcal conjugate vaccine is unadjuvanted.
  • DETAILED DESCRIPTION OF THE INVENTION
  • According to the invention, multivalent meningococcal conjugate vaccines are administered according to a schedule in which a first dose is administered to a patient aged between 0 and 12 months, and a second dose is administered to a patient aged between 12 and 24 months. This schedule offers early protection than the existing licensed schedule, reduces the cost of immunisation by avoiding the need for a third immunisation, and the second dose can act as a booster dose for providing long-lasting protection.
  • Thus the invention provides a method for immunising a patient, comprising: (a) administering a multivalent meningococcal conjugate vaccine to the patient when they are aged between 0 and 12 months; and (b) administering a multivalent meningococcal conjugate vaccine to the patient when they are aged between 12 and 24 months.
  • The invention also provides a method for immunising a patient who previously received a multivalent meningococcal conjugate vaccine to the patient when they were aged between 0 and 12 months, comprising: administering a multivalent meningococcal conjugate vaccine to the patient when they are aged between 12 and 24 months.
  • The invention also provides the use of a plurality of meningococcal conjugates in the manufacture of a medicament for administering to a patient in an immunisation schedule comprising: (a) administering the medicament to the patient when they are aged between 0 and 12 months; and (b) administering the medicament to the patient when they are aged between 12 and 24 months.
  • The invention also provides the use of a plurality of meningococcal conjugates in the manufacture of a medicament for administering to a patient who is aged between 12 and 24 months and who previously received a multivalent meningococcal conjugate vaccine when they were aged between 0 and 12 months.
  • The invention also provides a kit comprising: (a) a multivalent meningococcal conjugate vaccine; and (b) instructions for administering the vaccine according to a schedule that includes: (a) first administering the vaccine to a patient when they are aged between 0 and 12 months; and (b) then administering the vaccine to a patient when they are aged between 12 and 24 months.
  • The Schedule
  • The schedule of the invention involves a first dose in the first year of life and a second dose in the second year of life. The first dose is given to a patient aged between 0 and 12 months, up to but not including their first birthday. The second dose is given to a patient aged 12 and 24 months, starting on the day of their first birthday, up to and including their second birthday.
  • Within this overall schedule, the two doses can be administered at any time. In general, however, the two doses will be administered at least 4 weeks apart e.g. ≧8 weeks apart, ≧2 months apart, ≧3 months apart, ≧6 months apart, etc.
  • Within the 0-12 month period, the first dose is preferably not administered before about 6 weeks of age. after 5 weeks. Typical times for receiving the first dose are at 2 months, 3 months, 4 months, 5 months or 6 months of age.
  • Within the 12-24 month period, the second dose is preferably administered in the first half i.e. between 12 and 18 months e.g. between 12 and 15 months of age, or between 15 and 18 months.
  • The patient will not have received a meningococcal conjugate vaccine before the first dose in the schedule. In preferred embodiments, the patient does not receive a meningococcal conjugate vaccine between the first dose and the second dose, but sometimes an intermediate dose may be administered. For example, the patient may receive 2 or 3 doses in the 0-12 month period e.g. at 2, 3 & 4 months of age, at 3, 4 & 5 months of age, at 2, 4 & 6 months, at 3, 5 & 9 months etc.
  • In some embodiments, the patient does not receive a further dose, but in other embodiments they can do so. Such a further dose is preferably not administered until after the patient's second birthday e.g. until after their fifth birthday, after their tenth birthday, after their fifteenth birthday, after their seventeenth birthday, after their twenty-first birthday, etc. The further dose may be administered when circulating antibody levels have declined to undetectable levels [21].
  • Conveniently, the first dose can be administered at substantially the same time as (e.g. during the same medical consultation or visit to a healthcare professional) another vaccine e.g. at substantially the same time as a hepatitis B virus vaccine, a diphtheria vaccine, a tetanus vaccine, a pertussis vaccine (either cellular or, preferably, acellular), a Haemophilus influenzae type b vaccine, a Streptococcus pneumoniae vaccine, and/or a polio vaccine (preferably in inactivated poliovirus vaccine). Each of these optionally co-administered vaccines may be a monovalent vaccine or may be part of a combination vaccine (e.g. as part of a D-T-P vaccine).
  • Conveniently, the second dose can be administered at substantially the same time as (e.g. during the same medical consultation or visit to a healthcare professional) another vaccine e.g. at substantially the same time as a hepatitis B virus vaccine, a diphtheria vaccine, a tetanus vaccine, a pertussis vaccine (either cellular or acellular), a Haemophilus influenzae type b vaccine, a Streptococcus pneumoniae vaccine, a polio vaccine (preferably in inactivated poliovirus vaccine), an influenza vaccine, a chickenpox vaccine, a measles vaccine, a mumps vaccine, and/or a rubella vaccine. Each of these optionally co-administered vaccines may be a monovalent vaccine or may be part of a combination vaccine (e.g. as part of a M-M-R vaccine).
  • The Vaccine
  • The invention involves the administration of multivalent meningococcal conjugate vaccines i.e. vaccines that, when administered, simultaneously provide immunity against 2, 3, 4 or more different serotypes of N. meningitidis. Multivalent vaccines against 2, 3, or 4 of serogroups A, C, W135 and Y are preferred e.g. A+C, C+Y, W135+Y, A+W135+Y, A+C+W135+Y, etc. Vaccines including at least serogroup C are preferred (e.g. A+C), and vaccines including saccharides from all four of serogroups A, C, W135 and Y are most preferred.
  • The vaccines include a meningococcal capsular saccharide conjugated to a carrier protein.
  • The capsular saccharide of serogroup A meningococcus is a homopolymer of (α1→6)-linked N-acetyl-D-mannosamine-1-phosphate, with partial O-acetylation in the C3 and C4 positions. The acetyl groups can be replaced with blocking groups to prevent hydrolysis [22], and such modified saccharides are still serogroup A saccharides within the meaning of the present invention. The serogroup C capsular saccharide is a homopolymer of (α2→9)-linked sialic acid (N-acetyl neuraminic acid, or ‘NeuNAc’). Most serogroup C strains have O-acetyl groups at C-7 and/or C-8 of the sialic acid residues, but about 15% of clinical isolates lack these O-acetyl groups [23, 24]. The saccharide structure is written as →9)-Neu p NAc 7/8 OAc-(α2→. The serogroup W135 saccharide is a polymer of sialic acid-galactose disaccharide units. Like the serogroup C saccharide, it has variable O-acetylation, but at sialic acid 7 and 9 positions [25]. The structure is written as: →4)-D-Neup5Ac(7/9OAc)-α-(2→6)-D-Gal-α-(1→. The serogroup Y saccharide is similar to the serogroup W135 saccharide, except that the disaccharide repeating unit includes glucose instead of galactose. Like serogroup W135, it has variable O-acetylation at sialic acid 7 and 9 positions [25]. The serogroup Y structure is written as: →4)-D-Neup5Ac(7/9OAc)-α-(2→6)-D-Glc-α-(1→.
  • The saccharides used according to the invention may be O-acetylated as described above (e.g. with the same O-acetylation pattern as seen in native capsular saccharides), or they may be partially or totally de-O-acetylated at one or more positions of the saccharide rings, or they may be hyper-O-acetylated relative to the native capsular saccharides. Serogroup C saccharides used with the invention may be prepared from either OAc+ or OAc− strains. Preferred strains for production of serogroup C conjugates are OAc+ strains, preferably of serotype 16, preferably of serosubtype P1.7a,1. Thus C: 16:P1.7a,1 OAc+ strains are preferred. Preferably at least 50% (e.g. at least 60%, 70%, 80%, 90%, 95% or more) of the mannosamine residues in a serogroup A saccharides are O-acetylated at the C-3 position.
  • The saccharide moieties in conjugates may comprise full-length saccharides as prepared from meningococci, and/or it may comprise fragments of full-length saccharides. The saccharides used according to the invention are preferably shorter than the native capsular saccharides seen in bacteria. Thus the saccharides are preferably depolymerised, with depolymerisation occurring during or after saccharide purification but before conjugation. Depolymerisation reduces the chain length of the saccharides. One depolymerisation method involves the use of hydrogen peroxide [5]. Hydrogen peroxide is added to a saccharide (e.g. to give a final H2O2 concentration of 1%), and the mixture is then incubated (e.g. at about 55° C.) until a desired chain length reduction has been achieved. Another depolymerisation method involves acid hydrolysis [5]. Other depolymerization methods are known in the art. The saccharides used to prepare conjugates for use according to the invention may be obtainable by any of these depolymerisation methods. Depolymerisation can be used in order to provide an optimum chain length for immunogenicity and/or to reduce chain length for physical manageability of the saccharides. Preferred saccharides have the following range of average degrees of polymerisation (Dp): A=10-20; C=12-22; W135=15-25; Y=15-25. In terms of molecular weight, rather than Dp, preferred ranges are, for all serogroups: <100 kDa; 5 kDa-75 kDa; 7 kDa-50 kDa; 8 kDa-35 kDa; 12 kDa-25 kDa; 15 kDa-22 kDa.
  • Typical carrier proteins for use in conjugates are bacterial toxins, such as diphtheria toxin [e.g. see chapter 13 of ref. 10; refs. 26-29] (or its CRM197 mutant [30-33]) and tetanus toxin, usually in toxoid form (e.g. obtained by treatment with an inactivating chemical, such as formalin or formaldehyde). Other suitable carrier proteins include, but are not limited to, N. meningitidis outer membrane protein [34], synthetic peptides [35, 36], heat shock proteins [37, 38], pertussis proteins [39, 40], cytokines [41], lymphokines [41], hormones [41], growth factors [41], artificial proteins comprising multiple human CD4+ T cell epitopes from various pathogen-derived antigens [42] such as N19 [43], protein D from H. influenzae [44-46], pneumolysin [47], pneumococcal surface protein PspA [48], iron-uptake proteins [49], toxin A or B from C. difficile [50], etc.
  • Four particularly preferred carrier proteins are diphtheria toxoid (Dt), tetanus toxoid (Tt), CRM197 and protein D from H. influenzae. These proteins are preferred because they are the main carriers currently in use in pediatric vaccines e.g. the Hib conjugates from GSK use Tt as the carrier, the HibTITER™ product uses CRM197, the pneumococcal conjugates in Prevenar™ use CRM197, the Menjugate™ and Meningitec™ products use CRM197, and NeisVac-C™ uses Tt.
  • Conjugates are preferably mixed at substantially equal masses (measured as mass of saccharide) e.g. the mass of each serogroup's saccharide is within ±10% of each other. A typical quantity of meningococcal antigen per serogroup in a composition is between 1 μg and 20 μg e.g. between 2 and 10 μg per serogroup, or about 4 μg. As an alternative to an equal ratio, a double serogroup A dose may be used.
  • Conjugates with a saccharide:protein ratio (w/w) of between 1:15 (i.e. excess protein) and 15:1 (i.e. excess saccharide), preferably between 1:5 and 5:1, are preferred. Excess carrier protein is preferred. Conjugates with saccharide:protein ratio of about 1:12 or about 1:3 are preferred, particularly where the carrier is Dt.
  • Any suitable conjugation reaction can be used, with any suitable linker where necessary.
  • The saccharide will typically be activated or functionalised prior to conjugation. Activation may involve, for example, cyanylating reagents [51, 52, etc.]). Other suitable techniques use active esters, carbodiimides, hydrazides, norborane, p-nitrobenzoic acid, N-hydroxysuccinimide, S—NHS, EDC, TSTU; see also the introduction to reference 53).
  • Linkages via a linker group may be made using any known procedure, for example, the procedures described in references 54 and 55. One type of linkage involves reductive amination of the polysaccharide, coupling the resulting amino group with one end of an adipic acid linker group, and then coupling a protein to the other end of the adipic acid linker group [56, 57, 58]. Other linkers include B-propionamido [59], nitrophenyl-ethylamine [60], haloacyl halides [61], glycosidic linkages [62], 6-aminocaproic acid [63], ADH [64], C4 to C12 moieties [65] etc. As an alternative to using a linker, direct linkage can be used. Direct linkages to the protein may comprise oxidation of the polysaccharide followed by reductive amination with the protein, as described in, for example, references 66 and 67.
  • A preferred conjugation process involves: introduction of amino groups into the saccharide (e.g. by replacing terminal ═O groups with —NH2) followed by derivatisation with an adipic diester (e.g. adipic acid N-hydroxysuccinimide diester) and reaction with carrier protein (e.g. CRM197). Further details of this conjugation method can be found in reference 6. Conjugates obtainable by this method are preferred conjugates for use according to the invention.
  • In another preferred conjugation process, a saccharide is reacted with adipic acid dihydrazide. For serogroup A, carbodiimide (EDAC) may also be added at this stage. After a reaction period, sodium cyanoborohydride is added. Derivatised saccharide can then be prepared e.g. by ultrafiltration. The derivatized saccharide is then mixed with carrier protein (e.g. with a diphtheria toxoid), and carbodiimide is added. After a reaction period, the conjugate can be recovered. Further details of this conjugation method can be found in reference 6. Conjugates obtainable by this method are preferred conjugates for use according to the invention e.g. conjugates comprising a diphtheria toxoid carrier and an adipic acid linker.
  • In another preferred conjugation process, a saccharide is derivatised with a cyanylating reagent [52], followed by coupling to a protein (direct, or after introduction of a thiol or hydrazide nucleophile group into the carrier), without the need to use a linker. Suitable cyanylating reagents include 1-cyano-4-(dimethylamino)-pyridinium tetrafluoroborate (‘CDAP’), p-nitrophenylcyanate and N-cyanotriethylammonium tetrafluoroborate (‘CTEA’). CDAP is preferred, particularly where H. influenzae protein D is the common carrier. Direct coupling is preferred.
  • Administration of a conjugate preferably results in an increase in serum bactericidal assay (SBA) titre for the relevant serogroup of at least 4-fold, and preferably at least 8-fold, measured with human complement [68]. If rabbit complement is used to measure SBA titres then the titre increase is preferably at least 128-fold.
  • Conjugates are preferably prepared separately and then mixed. Thus it is preferred not to use a single protein carrying multiple serogroups (cf. references 69 & 70). After mixing, the concentration of the mixed conjugates can be adjusted e.g. with sterile pyrogen-free, phosphate-buffered saline.
  • In compositions of the invention, the amount of carrier (conjugated and unconjugated) from each conjugate is preferably no more than 100 μg/ml e.g. <30 μg/ml of carrier protein from each conjugate. Preferred compositions include a total concentration of carrier (either solely for the combined meningococcal conjugates, or preferably for the composition as a whole) of less than 500 μg/ml e.g. <400 μg/ml, <300 μg/ml, <200 μg/ml, <100 μg/ml, <50 μg/ml, etc.
  • Vaccines of the invention may include no antigens other than the meningococcal conjugates. In some embodiments, however, vaccines may include further antigens. Thus they may include further antigens from other pathogens, particularly from bacteria and/or viruses. They may include other conjugated saccharides from non-meningococcal organisms and/or they may include non-saccharide antigens. For example, they may include one or more of the following:
      • a diphtheria toxoid (‘D’).
      • a tetanus toxoid (‘T’).
      • a pertussis antigen (‘P’), which is typically acellular (‘aP’).
      • a hepatitis B virus (HBV) surface antigen (‘HBsAg’).
      • a hepatitis A virus (HAV) antigen.
      • a conjugated Haemophilus influenzae type b capsular saccharide (‘Hib’).
      • a protein from serogroup B of N. meningitidis.
      • an vesicle preparation from serogroup B of N. meningitidis.
      • inactivated poliovirus vaccine (IPV).
  • The schedule of the invention may use different vaccines for the first and second doses e.g. the first vaccine may include non-meningococcal antigens whereas the second vaccine does not, or the first vaccine may include a first set of non-meningococcal antigens (e.g. DTP) whereas the second vaccine includes a second (different) set of non-meningococcal antigens (e.g. MMR).
  • In addition to the antigenic components described above, compositions of the invention will generally include a non-antigenic component. The non-antigenic component can include carriers, adjuvants, excipients, buffers, etc., as described in more detail below. These non-antigenic components may have various sources. For example, they may be present in one of the antigen or adjuvant materials that is used during manufacture or may be added separately from those components. Preferred compositions of the invention include one or more pharmaceutical carrier(s) and/or excipient(s). A thorough discussion of pharmaceutically acceptable carriers and excipients is available in reference 71.
  • To control tonicity, it is preferred to include a physiological salt, such as a sodium salt. Sodium chloride (NaCl) is preferred, which may be present at between 1 and 20 mg/ml.
  • Compositions will generally have an osmolality of between 200 mOsm/kg and 400 mOsm/kg, preferably between 240-360 mOsm/kg, and will more preferably fall within the range of 290-310 mOsm/kg. Osmolality has previously been reported not to have an impact on pain caused by vaccination [72], but keeping osmolality in this range is nevertheless preferred.
  • Compositions of the invention may include one or more buffers. Typical buffers include: a phosphate buffer; a Tris buffer; a borate buffer; a succinate buffer; a histidine buffer; or a citrate buffer. Buffers will typically be included in the 5-20 mM range.
  • The pH of a composition of the invention will generally be between 5.0 and 7.5, and more typically between 5.0 and 6.0 for optimum stability, or between 6.0 and 7.0.
  • Compositions of the invention are preferably sterile.
  • Compositions of the invention are preferably non-pyrogenic e.g. containing <1 EU (endotoxin unit, a standard measure) per dose, and preferably <0.1 EU per dose.
  • Compositions of the invention are preferably gluten free.
  • Where antigens are adsorbed, a composition may be a suspension with a cloudy appearance. This appearance means that microbial contamination is not readily visible, and so the vaccine preferably contains a preservative. This is particularly important when the vaccine is packaged in multidose containers. Preferred preservatives for inclusion are 2-phenoxyethanol and thimerosal. It is recommended, however, not to use mercurial preservatives (e.g. thimerosal) where possible. It is preferred that compositions of the invention contain less than about 25 ng/ml mercury.
  • The concentration of any aluminium salts in a composition of the invention, expressed in terms of Al3+, is preferably less than 5 mg/ml e.g. ≦4 mg/ml, ≦3 mg/ml, ≦2 mg/ml, ≦1 mg/ml, etc.
  • Compositions of the invention are preferably administered to patients in 0.5 ml doses. References to 0.5 ml doses will be understood to include normal variance e.g. 0.5 ml±0.05 ml.
  • Residual material from individual antigenic components may also be present in trace amounts in the final vaccine produced by the process of the invention. For example, if formaldehyde is used to prepare the toxoids of diphtheria, tetanus and pertussis then the final vaccine product may retain trace amounts of formaldehyde (e.g. less than 10 μg/ml, preferably <5 μg/ml). Media or stabilizers may have been used during poliovirus preparation (e.g. Medium 199), and these may carry through to the final vaccine. Similarly, free amino acids (e.g. alanine, arginine, aspartate, cysteine and/or cystine, glutamate, glutamine, glycine, histidine, proline and/or hydroxyproline, isoleucine, leucine, lysine, methionine, phenylalanine, serine, threonine, tryptophan, tyrosine and/or valine), vitamins (e.g. choline, ascorbate, etc.), disodium phosphate, monopotassium phosphate, calcium, glucose, adenine sulfate, phenol red, sodium acetate, potassium chloride, etc. may be retained in the final vaccine at ≦100 μg/ml, preferably <10 μg/ml, each. Other components from antigen preparations, such as neomycin (e.g. neomycin sulfate, particularly from an IPV component), polymyxin B (e.g. polymyxin B sulfate, particularly from an IPV component), etc. may also be present e.g. at sub-nanogram amounts per dose.
  • A further possible component of the final vaccine which originates in the antigen preparations arises from less-than-total purification of antigens. Small amounts of B. pertussis, C. diphtheriae, C. tetani and/or S. cerevisiae proteins and/or genomic DNA may therefore be present.
  • Meningococcal conjugates may be lyophilised prior to use according to the invention. If lyophilised, the composition may include a stabiliser such as mannitol. It may also include sodium chloride.
  • The Patient
  • The age of patients receiving vaccines of the invention is dictated by the schedule.
  • Although the patient will not have received a meningococcal conjugate vaccine before the first dose in the schedule, they may have received other non-meningococcal conjugates and/or they may have received the carrier protein that is used in the meningococcal conjugate. Prior exposure to the carrier may have been as carrier in non-meningococcal conjugate (e.g. in a Hib conjugate) and/or as antigen itself (e.g. tetanus toxoid is commonly used as carrier for Hib conjugates, but is also used as an antigen for protecting against C. tetani).
  • After receiving the first dose in the schedule, and before the second dose, a patient is distinguishable from a person in the general population, as they will have mounted an immune response against the first dose. Thus patients waiting to receive the schedule's second dose are a specific and identifiable subset of the population.
  • Compositions of the invention can be administered by intramuscular injection e.g. into the arm, leg or buttock. Where another vaccine is co-administered then it is typical to inject compositions into opposite limbs e.g. to inject one into the left arm and one into the right arm.
  • Where compositions of the invention include an aluminium-based adjuvant, settling of components may occur during storage. The composition should therefore be shaken prior to administration to a patient. The shaken composition will generally be a turbid white suspension.
  • The patient is a human.
  • Packaging
  • Vaccines for use with the invention can be placed into containers for use. Suitable containers include vials and disposable syringes (preferably sterile ones).
  • Where a composition of the invention is packaged into vials, these are preferably made of a glass or plastic material. The vial is preferably sterilized before the composition is added to it. To avoid problems with latex-sensitive patients, vials are preferably sealed with a latex-free stopper. The vial may include a single dose of vaccine, or it may include more than one dose (a ‘multidose’ vial) e.g. 10 doses. When using a multidose vial, each dose should be withdrawn with a sterile needle and syringe under strict aseptic conditions, taking care to avoid contaminating the vial contents. Preferred vials are made of colorless glass.
  • A vial can have a cap (e.g. a Luer lock) adapted such that a pre-filled syringe can be inserted into the cap, the contents of the syringe can be expelled into the vial (e.g. to reconstitute lyophilised material therein), and the contents of the vial can be removed back into the syringe. After removal of the syringe from the vial, a needle can then be attached and the composition can be administered to a patient. The cap is preferably located inside a seal or cover, such that the seal or cover has to be removed before the cap can be accessed.
  • Where the composition is packaged into a syringe, the syringe will not normally have a needle attached to it, although a separate needle may be supplied with the syringe for assembly and use. Safety needles are preferred. 1-inch 23-gauge, 1-inch 25-gauge and ⅝-inch 25-gauge needles are typical. Syringes may be provided with peel-off labels on which the lot number and expiration date of the contents may be printed, to facilitate record keeping. The plunger in the syringe preferably has a stopper to prevent the plunger from being accidentally removed during aspiration. The syringes may have a latex rubber cap and/or plunger. Disposable syringes contain a single dose of vaccine. The syringe will generally have a tip cap to seal the tip prior to attachment of a needle, and the tip cap is preferably made of butyl rubber. If the syringe and needle are packaged separately then the needle is preferably fitted with a butyl rubber shield. Grey butyl rubber is preferred. Preferred syringes are those marketed under the trade name “Tip-Lok”™.
  • Where a glass container (e.g. a syringe or a vial) is used, then it is preferred to use a container made from a borosilicate glass rather than from a soda lime glass.
  • If a vaccine is in lyophilised form then it will usually be resuspended into an aqueous form prior to administration.
  • In addition to containing vaccines for administration, kits of the invention can include instructions for administering the vaccine. The instructions will refer to an immunisation schedule that includes: (a) first administering the vaccine to a patient when they are aged between 0 and 12 months; and (b) then administering the vaccine to a patient when they are aged between 12 and 24 months.
  • Adjuvants
  • Vaccines of the invention may include an adjuvant. Where a vaccine includes only meningococcal conjugates, however, use of an adjuvant is not preferred. Where an adjuvant is used, it may comprise one or more aluminium salts, and particularly an aluminium phosphate adjuvant and/or an aluminium hydroxide adjuvant.
  • Aluminium adjuvants currently in use are typically referred to either as “aluminium hydroxide” or as “aluminium phosphate” adjuvants. These are names of convenience, however, as neither is a precise description of the actual chemical compound which is present (e.g. see chapter 9 of reference 73). The invention can use any of the “hydroxide” or “phosphate” salts that are in general use as adjuvants.
  • The adjuvants known as “aluminium hydroxide” are typically aluminium oxyhydroxide salts, which are usually at least partially crystalline. Aluminium oxyhydroxide, which can be represented by the formula AlO(OH), can be distinguished from other aluminium compounds, such as aluminium hydroxide Al(OH)3, by infrared (IR) spectroscopy, in particular by the presence of an adsorption band at 1070 cm−1 and a strong shoulder at 3090-3100 cm−1 (chapter 9 of ref. 73).
  • The adjuvants known as “aluminium phosphate” are typically aluminium hydroxyphosphates, often also containing a small amount of sulfate. They may be obtained by precipitation, and the reaction conditions and concentrations during precipitation can influence the degree of substitution of phosphate for hydroxyl in the salt. Hydroxyphosphates generally have a PO4/Al molar ratio between 0.3 and 0.99. Hydroxyphosphates can be distinguished from strict AlPO4 by the presence of hydroxyl groups. For example, an IR spectrum band at 3164 cm−1 (e.g. when heated to 200° C.) indicates the presence of structural hydroxyls (chapter 9 of ref. 73).
  • The PO4/Al3+ molar ratio of an aluminium phosphate adjuvant will generally be between 0.3 and 1.2, preferably between 0.8 and 1.2, and more preferably 0.95±0.1. The aluminium phosphate will generally be amorphous, particularly for hydroxyphosphate salts. A typical adjuvant is amorphous aluminium hydroxyphosphate with PO4/Al molar ratio between 0.84 and 0.92, included at 0.6 mg Al3+/ml. The aluminium phosphate will generally be particulate. Typical diameters of the particles are in the range 0.5-20 μm (e.g. about 5-10 μm) after any antigen adsorption.
  • The PZC of aluminium phosphate is inversely related to the degree of substitution of phosphate for hydroxyl, and this degree of substitution can vary depending on reaction conditions and concentration of reactants used for preparing the salt by precipitation. PZC is also altered by changing the concentration of free phosphate ions in solution (more phosphate=more acidic PZC) or by adding a buffer such as a histidine buffer (makes PZC more basic). Aluminium phosphates used according to the invention will generally have a PZC of between 4.0 and 7.0, more preferably between 5.0 and 6.5 e.g. about 5.7.
  • An aluminium phosphate solution used to prepare a composition of the invention may contain a buffer (e.g. a phosphate or a histidine or a Tris buffer), but this is not always necessary. The aluminium phosphate solution is preferably sterile and pyrogen-free. The aluminium phosphate solution may include free aqueous phosphate ions e.g. present at a concentration between 1.0 and 20 mM, preferably between 5 and 15 mM, and more preferably about 10 mM. The aluminium phosphate solution may also comprise sodium chloride. The concentration of sodium chloride is preferably in the range of 0.1 to 100 mg/ml (e.g. 0.5-50 mg/ml, 1-20 mg/ml, 2-10 mg/ml) and is more preferably about 3±1 mg/ml. The presence of NaCl facilitates the correct measurement of pH prior to adsorption of antigens.
  • A mixture of both an aluminium hydroxide adjuvant and an aluminium phosphate adjuvant can be used. If so, there may be more aluminium phosphate than hydroxide e.g. a weight ratio of at least 2:1 e.g. ≧5:1, ≧6:1, ≧7:1, ≧8:1, ≧9:1, etc.
  • General
  • The term “comprising” encompasses “including” as well as “consisting” e.g. a composition “comprising” X may consist exclusively of X or may include something additional e.g. X+Y. The word “substantially” does not exclude “completely” e.g. a composition which is “substantially free” from Y may be completely free from Y. Where necessary, the word “substantially” may be omitted from the definition of the invention.
  • The term “about” in relation to a numerical value x means, for example, x±10%.
  • Unless specifically stated, a process comprising a step of mixing two or more components does not require any specific order of mixing. Thus components can be mixed in any order. Where there are three components then two components can be combined with each other, and then the combination may be combined with the third component, etc.
  • Where an antigen is described as being “adsorbed” to an adjuvant, it is preferred that at least 50% (by weight) of that antigen is adsorbed e.g. 50%, 60%, 70%, 80%, 90%, 95%, 98% or more. It is preferred that diphtheria toxoid and tetanus toxoid are both totally adsorbed i.e. none is detectable in supernatant. Total adsorption of HBsAg is also preferred.
  • Amounts of conjugates are generally given in terms of mass of saccharide (i.e. the dose of the conjugate (carrier+saccharide) as a whole is higher than the stated dose) in order to avoid variation due to choice of carrier.
  • Where animal (and particularly bovine) materials are used in the culture of cells, they should be obtained from sources that are free from transmissible spongiform encaphalopathies (TSEs), and in particular free from bovine spongiform encephalopathy (BSE).
  • EXAMPLE
  • The immunogenicity, safety, tolerability and the ability to prime for memory of a meningococcal conjugate vaccine are investigated in a multi-centre, open-label, controlled, randomized study. Infants are split into three groups to receive an unadjuvanted 4-valent conjugated A-C-W135-Y vaccine as follows, with the group 1 schedule being an embodiment of the invention:
      • 1: first doses at about 6 months, then a second dose at about 12 months (on or after birthday)
      • 2: single dose at about 12 months (on or after birthday)
      • 3: dose of monovalent MenC at 12 months, then 4-valent at 18 months.
  • Meningococcal conjugates are administered at the same time as other routine pediatric vaccines, and blood samples for serological analysis are taken both at the time of vaccination and 1 month later:
    Visit 1 Visit 2 Visit 3 Visit 4
    Group 1 6 months 7 months 12 months 13 months
    B, M4, PC7, 5 B B, M4, PC7 B, 4V
    Group 2 6 months 7 months 12 months 73 months
    B, PC7, 5 B B, M4, PC7 B, 4V
    Group 3 12 months 13 months 18 months 19 months
    B, M1, PC7 B, 4V B, M4, 5 B

    Key: B = blood taken for serology; 5 = D-T-Pa-Hib-IPV; PC7 = 7-valent pneumococcal conjugate; 4V = MMR + V; M4 = 4-valent Men-A-C-W135-Y conjugates; M1 = Men-C conjugate.
  • Immunogenicity is assessed by evaluating serum antibody responses by measuring bactericidal antibody titers.
  • For blood samples taken at the first 2 visits, the bactericidal antibody titer at visit 2, expressed as a ratio relative to visit 1, was as follows for each group:
    A C W135 Y
    Group 1 1.5 11 2.8 1.8
    Group 2 1.0 1 1.0 1.0
    Group 3 1.0 20 1.0 1.0
  • It will be understood that the invention has been described by way of example only, and that modifications may be made whilst remaining within the scope and spirit of the invention.
  • REFERENCES The Contents of which are Hereby Incorporated by Reference
    • [1] Jones (2001) Curr Opin Investig Drugs 2:47-49.
    • [2] Costantino et al. (1992) Vaccine 10:691-8.
    • [3] Lieberman et al. (1996) JAMA 275:1499-503.
    • [4] WO02/080965.
    • [5] WO02/058737.
    • [6] WO03/007985.
    • [7] Rennels et al. (2002) Pediatr Infect Dis J 21:978-979.
    • [8] Keyserling et al. (2005) Arch Pediatr Adolesc Med 159(10):907-13.
    • [9] Campbell et al. (2002) J Infect Dis 186:1848-1851.
    • [10] Vaccines. (eds. Plotkin & Orenstein). 4th edition, 2004, ISBN: 0-7216-9688-0.
    • [11] Trotter et al. (2004) Lancet 364:365-7.
    • [12] WO2005/000345.
    • [13] Twumasi et al. (1995) J Infect Dis 171:632-8.
    • [14] WO2005/105140
    • [15] Granoff et al. (2005) Pediatr Infect Dis J 24:132-6.
    • [16] Granoff & Harris (2004) Pediatr Infect Dis J 23:490-7.
    • [17] Granoff et al. (2005) Vaccine 23:4307-14.
    • [18] WO2004/103400.
    • [19] Anderson et al. (1994) Infect Immun 62:3391-5.
    • [20] WO02/00249.
    • [21] WO98/58670.
    • [22] WO03/080678.
    • [23] Glode et al. (1979) J Infect Dis 139:52-56
    • [24] WO94/05325; U.S. Pat. No. 5,425,946.
    • [25] WO2005/033148.
    • [26] U.S. Pat. No. 4,709,017.
    • [27] WO93/25210.
    • [28] U.S. Pat. No. 5,917,017.
    • [29] WO00/48638.
    • [30] Del Guidice et al. (1998) Molecular Aspects of Medicine 19:1-70.
    • [31] Anonymous (January 2002) Research Disclosure, 453077.
    • [32] Anderson (1983) Infect Immun 39(1):233-238.
    • [33] Anderson et al. (1985) J Clin Invest 76(1):52-59.
    • [34] EP-A-0372501.
    • [35] EP-A-0378881.
    • [36] EP-A-0427347.
    • [37] WO93/17712
    • [38] WO94/03208.
    • [39] WO98/58668.
    • [40] EP-A-0471177.
    • [41] WO91/01146
    • [42] Falugi et al. (2001) Eur J Immunol 31:3816-3824.
    • [43] Baraldo et al. (2004) Infect Immun 72(8):4884-7.
    • [44] EP-A-0594610.
    • [45] Ruan et al. (1990) J Immunol 145:3379-3384.
    • [46] WO00/56360.
    • [47] Kuo et al. (1995) Infect Immun 63:2706-13.
    • [48] WO02/091998.
    • [49] WO01/72337
    • [50] WO00/61761.
    • [51] Lees et al. (1996) Vaccine 14:190-198.
    • [52] WO95/08348.
    • [53] WO98/42721.
    • [54] U.S. Pat. No. 4,882,317
    • [55] U.S. Pat. No. 4,695,624
    • [56] European patent 0477508.
    • [57] Porro et al. (1985) Mol Immunol 22:907-919.
    • [58] EP-A-0208375
    • [59] WO00/10599
    • [60] Gever et al. Med. Microbiol. Immunol, 165: 171-288 (1979).
    • [61] U.S. Pat. No. 4,057,685.
    • [62] U.S. Pat. Nos. 4,673,574; 4,761,283; 4,808,700.
    • [63] U.S. Pat. No. 4,459,286.
    • [64] U.S. Pat. No. 4,965,338
    • [65] U.S. Pat. No. 4,663,160.
    • [66] U.S. Pat. No. 4,761,283
    • [67] U.S. Pat. No. 4,356,170
    • [68] W.H.O. Tech. Rep. Ser. 594:51, 1976.
    • [69] WO99/42130
    • [70] U.S. Pat. No. 4,711,779.
    • [71] Gennaro (2000) Remington: The Science and Practice of pharmacy. 20th ed. ISBN: 0683306472.
    • [72] Nony et al. (2001) Vaccine 27:3645-51.
    • [73] Vaccine Design: The Subunit and Adjuvant Approach (eds. Powell & Newman) Plenum Press 1995 (ISBN 0-306-44867-X).

Claims (30)

1. A method for immunizing a patient, comprising: (a) administering a multivalent meningococcal conjugate vaccine to the patient when they are aged between 0 and 12 months; and (b) administering a multivalent meningococcal conjugate vaccine to the patient when they are aged between 12 and 24 months.
2. The method of claim 1, where the multivalent meningococcal conjugate vaccine includes capsular saccharides from at least two of meningococcal serogroups A, C, W135 and Y.
3. The method of claim 2, where the multivalent meningococcal conjugate vaccine includes capsular saccharides from all four of meningococcal serogroups A, C, W135 and Y.
4. The method of claim 1, wherein a dose in the 0-12 month period and a dose in the 12-24 month period are administered ≧6 months apart.
5. The method of claim 1, wherein a dose in the 0-12 month period is administered at 2 months, 3 months, 4 months, 5 months or 6 months of age.
6. The method of claim 1, wherein a dose in the 12-24 month period is administered at between 12-15 months of age or at between 15-18 months of age.
7. The method of claim 1, wherein a dose in the 0-12 month period is administered at substantially the same time as a hepatitis B virus vaccine, a diphtheria vaccine, a tetanus vaccine, a pertussis vaccine, a Haemophilus influenzae type b vaccine, a Streptococcus pneumoniae vaccine, and/or a polio vaccine.
8. The method of claim 1, wherein a dose in the 12-24 month period is administered at substantially the same time as a hepatitis B virus vaccine, a diphtheria vaccine, a tetanus vaccine, a pertussis vaccine, a Haemophilus influenzae type b vaccine, a Streptococcus pneumoniae vaccine, a polio vaccine, an influenza vaccine, a chickenpox vaccine, a measles vaccine, a mumps vaccine, and/or a rubella vaccine.
9. The method of claim 1, wherein the multivalent meningococcal conjugate vaccine has a carrier protein selected from the group consisting of diphtheria toxoid, tetanus toxoid and CRM197.
10. The method of claim 1, wherein the multivalent meningococcal conjugate vaccine is unadjuvanted.
11. A method for immunizing a patient who previously received a multivalent meningococcal conjugate vaccine to the patient when they were aged between 0 and 12 months, comprising: administering a multivalent meningococcal conjugate vaccine to the patient when they are aged between 12 and 24 months.
12. The method of claim 11, where the multivalent meningococcal conjugate vaccine includes capsular saccharides from at least two of meningococcal serogroups A, C, W135 and Y.
13. The method of claim 12, where the multivalent meningococcal conjugate vaccine includes capsular saccharides from all four of meningococcal serogroups A, C, W135 and Y.
14. The method of claim 11, wherein a dose in the 0-12 month period and a dose in the 12-24 month period are administered ≧6 months apart.
15. The method of claim 11, wherein a dose in the 0-12 month period is administered at 2 months, 3 months, 4 months, 5 months or 6 months of age.
16. The method of claim 11, wherein a dose in the 12-24 month period is administered at between 12-15 months of age or at between 15-18 months of age.
17. The method of claim 11, wherein a dose in the 0-12 month period is administered at substantially the same time as a hepatitis B virus vaccine, a diphtheria vaccine, a tetanus vaccine, a pertussis vaccine, a Haemophilus influenzae type b vaccine, a Streptococcus pneumoniae vaccine, and/or a polio vaccine.
18. The method of claim 11, wherein a dose in the 12-24 month period is administered at substantially the same time as a hepatitis B virus vaccine, a diphtheria vaccine, a tetanus vaccine, a pertussis vaccine, a Haemophilus influenzae type b vaccine, a Streptococcus pneumoniae vaccine, a polio vaccine, an influenza vaccine, a chickenpox vaccine, a measles vaccine, a mumps vaccine, and/or a rubella vaccine.
19. The method of claim 11, wherein the multivalent meningococcal conjugate vaccine has a carrier protein selected from the group consisting of diphtheria toxoid, tetanus toxoid and CRM197.
20. The method of claim 11, wherein the multivalent meningococcal conjugate vaccine is unadjuvanted.
21. A kit comprising: (a) a multivalent meningococcal conjugate vaccine; and (b) instructions for administering the vaccine according to a schedule that includes: (a) first administering the vaccine to a patient when they are aged between 0 and 12 months; and (b) then administering the vaccine to a patient when they are aged between 12 and 24 months.
22. The kit of claim 21, where the multivalent meningococcal conjugate vaccine includes capsular saccharides from at least two of meningococcal serogroups A, C, W135 and Y.
23. The kit of claim 22, where the multivalent meningococcal conjugate vaccine includes capsular saccharides from all four of meningococcal serogroups A, C, W135 and Y.
24. The kit of claim 21, wherein a dose in the 0-12 month period and a dose in the 12-24 month period are administered ≧6 months apart.
25. The kit of claim 21, wherein a dose in the 0-12 month period is administered at 2 months, 3 months, 4 months, 5 months or 6 months of age.
26. The kit of claim 21, wherein a dose in the 12-24 month period is administered at between 12-15 months of age or at between 15-18 months of age.
27. The kit of claim 21, wherein a dose in the 0-12 month period is administered at substantially the same time as a hepatitis B virus vaccine, a diphtheria vaccine, a tetanus vaccine, a pertussis vaccine, a Haemophilus influenzae type b vaccine, a Streptococcus pneumoniae vaccine, and/or a polio vaccine.
28. The kit of claim 21, wherein a dose in the 12-24 month period is administered at substantially the same time as a hepatitis B virus vaccine, a diphtheria vaccine, a tetanus vaccine, a pertussis vaccine, a Haemophilus influenzae type b vaccine, a Streptococcus pneumoniae vaccine, a polio vaccine, an influenza vaccine, a chickenpox vaccine, a measles vaccine, a mumps vaccine, and/or a rubella vaccine.
29. The kit of claim 21, wherein the multivalent meningococcal conjugate vaccine has a carrier protein selected from the group consisting of diphtheria toxoid, tetanus toxoid and CRM197.
30. The kit of claim 21, wherein the multivalent meningococcal conjugate vaccine is unadjuvanted.
US11/726,656 2006-03-22 2007-03-22 Regimens for immunisation with meningococcal conjugates Abandoned US20080026002A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/726,656 US20080026002A1 (en) 2006-03-22 2007-03-22 Regimens for immunisation with meningococcal conjugates

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US78523406P 2006-03-22 2006-03-22
US11/726,656 US20080026002A1 (en) 2006-03-22 2007-03-22 Regimens for immunisation with meningococcal conjugates

Publications (1)

Publication Number Publication Date
US20080026002A1 true US20080026002A1 (en) 2008-01-31

Family

ID=38327015

Family Applications (4)

Application Number Title Priority Date Filing Date
US11/726,656 Abandoned US20080026002A1 (en) 2006-03-22 2007-03-22 Regimens for immunisation with meningococcal conjugates
US12/225,501 Active 2028-08-05 US10543265B2 (en) 2006-03-22 2007-03-22 Regimens for immunisation with meningococcal conjugates
US16/716,638 Active US10881721B2 (en) 2006-03-22 2019-12-17 Regimens for immunisation with meningococcal conjugates
US17/082,415 Abandoned US20210060151A1 (en) 2006-03-22 2020-10-28 Regimens for immunisation with meningococcal conjugates

Family Applications After (3)

Application Number Title Priority Date Filing Date
US12/225,501 Active 2028-08-05 US10543265B2 (en) 2006-03-22 2007-03-22 Regimens for immunisation with meningococcal conjugates
US16/716,638 Active US10881721B2 (en) 2006-03-22 2019-12-17 Regimens for immunisation with meningococcal conjugates
US17/082,415 Abandoned US20210060151A1 (en) 2006-03-22 2020-10-28 Regimens for immunisation with meningococcal conjugates

Country Status (14)

Country Link
US (4) US20080026002A1 (en)
EP (2) EP2004225B1 (en)
AT (1) ATE554788T1 (en)
AU (1) AU2007229449A1 (en)
CA (1) CA2646993C (en)
CY (1) CY1112920T1 (en)
DK (1) DK2004225T3 (en)
ES (2) ES2670231T3 (en)
NZ (1) NZ572054A (en)
PL (1) PL2004225T3 (en)
PT (1) PT2004225E (en)
SI (1) SI2004225T1 (en)
TR (1) TR201807355T4 (en)
WO (1) WO2007111940A2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120064103A1 (en) * 2009-03-24 2012-03-15 Novartis Ag Combinations of meningococcal factor h binding protein and pneumococcal saccharide conjugates
US9267163B2 (en) 2000-02-28 2016-02-23 Glaxosmithkline Biologicals Sa Hybrid expression of neisserial proteins
EP3026059A1 (en) 2014-10-28 2016-06-01 ADMA Biologics, Inc. Compositions and methods for the treatment of immunodeficiency
EP3375789A1 (en) 2017-03-15 2018-09-19 ADMA Biologics, Inc. Anti-pneumococcal hyperimmune globulin for the treatment and prevention of pneumococcal infection

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0115176D0 (en) 2001-06-20 2001-08-15 Chiron Spa Capular polysaccharide solubilisation and combination vaccines
MX339524B (en) 2001-10-11 2016-05-30 Wyeth Corp Novel immunogenic compositions for the prevention and treatment of meningococcal disease.
WO2004067030A2 (en) 2003-01-30 2004-08-12 Chiron Srl Injectable vaccines against multiple meningococcal serogroups
NZ572054A (en) * 2006-03-22 2011-12-22 Novartis Ag Regimens for immunisation with meningococcal conjugates
US10828361B2 (en) 2006-03-22 2020-11-10 Glaxosmithkline Biologicals Sa Regimens for immunisation with meningococcal conjugates
AR064642A1 (en) 2006-12-22 2009-04-15 Wyeth Corp POLINUCLEOTIDE VECTOR THAT INCLUDES IT RECOMBINATING CELL THAT UNDERSTANDS THE VECTOR POLYPEPTIDE, ANTIBODY, COMPOSITION THAT UNDERSTANDS THE POLINUCLEOTIDE, VECTOR, RECOMBINATING CELL POLYPEPTIDE OR ANTIBODY, USE OF THE COMPOSITION AND A COMPOSITION AND A METHOD
GB0714963D0 (en) * 2007-08-01 2007-09-12 Novartis Ag Compositions comprising antigens
ES2850973T3 (en) 2010-08-23 2021-09-01 Wyeth Llc Stable formulations of rLP2086 antigens from Neisseria meningitidis
WO2012032489A1 (en) 2010-09-10 2012-03-15 Wyeth Llc Non-lipidated variants of neisseria meningitidis orf2086 antigens
SA115360586B1 (en) 2012-03-09 2017-04-12 فايزر انك Neisseria meningitidis compositions and methods thereof
NZ628449A (en) 2012-03-09 2016-04-29 Pfizer Neisseria meningitidis compositions and methods thereof
JP6446377B2 (en) 2013-03-08 2018-12-26 ファイザー・インク Immunogenic fusion polypeptide
PL2976101T3 (en) 2013-03-18 2021-03-08 Glaxosmithkline Biologicals S.A. Method of treatment
CA2923129C (en) 2013-09-08 2020-06-09 Pfizer Inc. Neisseria meningitidis compositions and methods thereof
BR112017017460A2 (en) 2015-02-19 2018-04-10 Pfizer Inc. neisseria meningitidis compositions and methods thereof
CN104998255B (en) * 2015-06-30 2018-08-28 北京祥瑞生物制品有限公司 New A CYW135 group meningitis cocci combined vaccines and preparation method thereof
MX2019002489A (en) 2016-09-02 2019-10-21 Sanofi Pasteur Inc Neisseria meningitidis vaccine.
CN110234658B (en) 2017-01-31 2024-03-12 辉瑞大药厂 Neisseria meningitidis compositions and methods of use thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6531131B1 (en) * 1999-08-10 2003-03-11 The United States Of America As Represented By The Department Of Health And Human Services Conjugate vaccine for Neisseria meningitidis
US20030068336A1 (en) * 2001-01-23 2003-04-10 Ryall Robert P. Multivalent meningococcal polysaccharide-protein conjugate vaccine

Family Cites Families (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4057685A (en) 1972-02-02 1977-11-08 Abbott Laboratories Chemically modified endotoxin immunizing agent
US4356170A (en) 1981-05-27 1982-10-26 Canadian Patents & Development Ltd. Immunogenic polysaccharide-protein conjugates
US4673574A (en) 1981-08-31 1987-06-16 Anderson Porter W Immunogenic conjugates
US4902506A (en) 1983-07-05 1990-02-20 The University Of Rochester Immunogenic conjugates
US4459286A (en) 1983-01-31 1984-07-10 Merck & Co., Inc. Coupled H. influenzae type B vaccine
US4663160A (en) 1983-03-14 1987-05-05 Miles Laboratories, Inc. Vaccines for gram-negative bacteria
US4761283A (en) 1983-07-05 1988-08-02 The University Of Rochester Immunogenic conjugates
US4695624A (en) 1984-05-10 1987-09-22 Merck & Co., Inc. Covalently-modified polyanionic bacterial polysaccharides, stable covalent conjugates of such polysaccharides and immunogenic proteins with bigeneric spacers, and methods of preparing such polysaccharides and conjugates and of confirming covalency
US4882317A (en) 1984-05-10 1989-11-21 Merck & Co., Inc. Covalently-modified bacterial polysaccharides, stable covalent conjugates of such polysaccharides and immunogenic proteins with bigeneric spacers and methods of preparing such polysaccharides and conjugataes and of confirming covalency
US4808700A (en) 1984-07-09 1989-02-28 Praxis Biologics, Inc. Immunogenic conjugates of non-toxic E. coli LT-B enterotoxin subunit and capsular polymers
US4709017A (en) 1985-06-07 1987-11-24 President And Fellows Of Harvard College Modified toxic vaccines
IT1187753B (en) 1985-07-05 1987-12-23 Sclavo Spa GLYCOPROTEIC CONJUGATES WITH TRIVALENT IMMUNOGENIC ACTIVITY
NL8802046A (en) 1988-08-18 1990-03-16 Gen Electric POLYMER MIXTURE WITH POLYESTER AND ALKANE SULFONATE, OBJECTS THEREFORE.
DE3841091A1 (en) 1988-12-07 1990-06-13 Behringwerke Ag SYNTHETIC ANTIGENS, METHOD FOR THEIR PRODUCTION AND THEIR USE
EP0378881B1 (en) 1989-01-17 1993-06-09 ENIRICERCHE S.p.A. Synthetic peptides and their use as universal carriers for the preparation of immunogenic conjugates suitable for the development of synthetic vaccines
AU651949B2 (en) 1989-07-14 1994-08-11 American Cyanamid Company Cytokine and hormone carriers for conjugate vaccines
IT1237764B (en) 1989-11-10 1993-06-17 Eniricerche Spa SYNTHETIC PEPTIDES USEFUL AS UNIVERSAL CARRIERS FOR THE PREPARATION OF IMMUNOGENIC CONJUGATES AND THEIR USE FOR THE DEVELOPMENT OF SYNTHETIC VACCINES.
SE466259B (en) 1990-05-31 1992-01-20 Arne Forsgren PROTEIN D - AN IGD BINDING PROTEIN FROM HAEMOPHILUS INFLUENZAE, AND THE USE OF THIS FOR ANALYSIS, VACCINES AND PURPOSE
IL98715A0 (en) 1990-08-13 1992-07-15 American Cyanamid Co Filamentous hemaglutinin of bodetella pertussis as a carrier molecule for conjugate vaccines
US5153312A (en) 1990-09-28 1992-10-06 American Cyanamid Company Oligosaccharide conjugate vaccines
JP2631035B2 (en) 1991-03-12 1997-07-16 アメリカ合衆国 Polysaccharide-protein complex
IT1262896B (en) 1992-03-06 1996-07-22 CONJUGATE COMPOUNDS FORMED FROM HEAT SHOCK PROTEIN (HSP) AND OLIGO-POLY-SACCHARIDES, THEIR USE FOR THE PRODUCTION OF VACCINES.
JP3428646B2 (en) 1992-06-18 2003-07-22 プレジデント アンド フェローズ オブ ハーバードカレッジ Diphtheria toxin vaccine
IL102687A (en) 1992-07-30 1997-06-10 Yeda Res & Dev Conjugates of poorly immunogenic antigens and synthetic pepide carriers and vaccines comprising them
PT658118E (en) 1992-08-31 2002-05-31 Baxter Healthcare Sa VACCINES AGAINST NEISSERIA MENINGITIDIS OF GROUP C
US5425946A (en) 1992-08-31 1995-06-20 North American Vaccine, Inc. Vaccines against group C Neisseria meningitidis
JP3828145B2 (en) 1993-09-22 2006-10-04 ヘンリー エム.ジャクソン ファウンデイション フォー ザ アドバンスメント オブ ミリタリー メディスン A method for the activation of soluble carbohydrates using a novel cyanating reagent for the production of immunogenic components
US5917017A (en) 1994-06-08 1999-06-29 President And Fellows Of Harvard College Diphtheria toxin vaccines bearing a mutated R domain
US6455673B1 (en) 1994-06-08 2002-09-24 President And Fellows Of Harvard College Multi-mutant diphtheria toxin vaccines
CA2222455C (en) 1995-03-22 2013-05-28 Smithkline Beecham Biologicals S.A. A vaccine composition comprising a polysaccharide conjugate antigen adsorbed onto aluminium phosphate
US5811102A (en) * 1995-06-07 1998-09-22 National Research Council Of Canada Modified meningococcal polysaccharide conjugate vaccines
BR9608612A (en) 1995-06-07 1999-05-04 Smithkline Beecham Biolog Vaccine comprising a polysaccharide antigen conjugate - carrier protein and free carrier protein
US6248334B1 (en) 1997-01-08 2001-06-19 Henry M. Jackson Foundation For The Advancement Of Military Medicine Process for preparing conjugate vaccines including free protein and the conjugate vaccines, immunogens, and immunogenic reagents produced by this process
US6299881B1 (en) 1997-03-24 2001-10-09 Henry M. Jackson Foundation For The Advancement Of Military Medicine Uronium salts for activating hydroxyls, carboxyls, and polysaccharides, and conjugate vaccines, immunogens, and other useful immunological reagents produced using uronium salts
US6403306B1 (en) 1997-04-09 2002-06-11 Emory University Serogroup-specific nucleotide sequences in the molecular typing of bacterial isolates and the preparation of vaccines thereto
US6087328A (en) 1997-04-24 2000-07-11 Henry M. Jackson Foundation For The Advancement Of Military Medicine Coupling of unmodified proteins to haloacyl or dihaloacyl derivatized polysaccharides for the preparation of protein-polysaccharide vaccines
GB9713156D0 (en) 1997-06-20 1997-08-27 Microbiological Res Authority Vaccines
US6413520B1 (en) 1997-06-24 2002-07-02 Chiron Corporation Methods of immunizing adults using anti-meningococcal vaccine compositions
US5965714A (en) 1997-10-02 1999-10-12 Connaught Laboratories, Inc. Method for the covalent attachment of polysaccharides to protein molecules
DE69841676D1 (en) 1997-12-23 2010-07-01 Baxter Healthcare Sa PROCESS FOR EXTRACTION AND ISOLATION OF BACTERIAL HOLLOW POLYSACCHARIDES FOR USE AS VACCINE OR COUPLED TO PROTEINS AS CONJUGATED VACCINE
US7018637B2 (en) 1998-02-23 2006-03-28 Aventis Pasteur, Inc Multi-oligosaccharide glycoconjugate bacterial meningitis vaccines
CN1263510C (en) 1998-08-19 2006-07-12 巴克斯特健康护理股份有限公司 Immunogenic beta-propionamido-linked polysaccharide protein conjugate useful as a vaccine produced using an N-acryloylated polysaccharide
US6146902A (en) * 1998-12-29 2000-11-14 Aventis Pasteur, Inc. Purification of polysaccharide-protein conjugate vaccines by ultrafiltration with ammonium sulfate solutions
CZ303653B6 (en) 1999-03-19 2013-01-30 Smithkline Beecham Biologicals S. A. Immunogenic composition
WO2000061761A2 (en) 1999-04-09 2000-10-19 Techlab, Inc. Recombinant clostridium toxin a protein carrier for polysaccharide conjugate vaccines
GB9925559D0 (en) 1999-10-28 1999-12-29 Smithkline Beecham Biolog Novel method
DK1233784T3 (en) 1999-12-02 2008-09-01 Novartis Vaccines & Diagnostic Preparations and Methods for Stabilizing Biological Molecules after Lyophilization
GB0007432D0 (en) 2000-03-27 2000-05-17 Microbiological Res Authority Proteins for use as carriers in conjugate vaccines
PT1296715E (en) 2000-06-29 2012-01-19 Smithkline Beecham Biolog Multivalent vaccine composition
GB0108364D0 (en) 2001-04-03 2001-05-23 Glaxosmithkline Biolog Sa Vaccine composition
US20030035806A1 (en) 2001-05-11 2003-02-20 D'ambra Anello J. Novel meningitis conjugate vaccine
GB0115176D0 (en) 2001-06-20 2001-08-15 Chiron Spa Capular polysaccharide solubilisation and combination vaccines
ES2318117T3 (en) 2002-03-26 2009-05-01 Novartis Vaccines And Diagnostics S.R.L. MODIFIED SALADS THAT HAVE IMPROVED STABILITY IN WATER.
MXPA04011249A (en) 2002-05-14 2005-06-06 Chiron Srl Mucosal vaccines with chitosan adjuvant and meningococcal antigens.
WO2004067030A2 (en) 2003-01-30 2004-08-12 Chiron Srl Injectable vaccines against multiple meningococcal serogroups
WO2004103400A2 (en) * 2003-05-07 2004-12-02 Aventis Pasteur,Inc. Multivalent meningococcal derivatized polysaccharide-protein conjugates and corresponding vaccines
CA2530434A1 (en) 2003-06-23 2005-01-06 Aventis Pasteur, Inc. Immunization method against neisseria meningitidis serogroups a and c
CA2530364C (en) * 2003-06-23 2014-03-18 Baxter International Inc. Vaccines against group y neisseria meningitidis and meningococcal combinations thereof
GB0323103D0 (en) 2003-10-02 2003-11-05 Chiron Srl De-acetylated saccharides
BRPI0510315A (en) 2004-04-30 2007-10-16 Chiron Srl integration of meningococcal conjugate vaccination
GB0409745D0 (en) 2004-04-30 2004-06-09 Chiron Srl Compositions including unconjugated carrier proteins
EP2351582A1 (en) 2004-08-30 2011-08-03 Sanofi Pasteur, Inc. Multivalent meningococcal derivatized polysaccharide-protein conjugates and vaccine
GB0419627D0 (en) * 2004-09-03 2004-10-06 Chiron Srl Immunogenic bacterial vesicles with outer membrane proteins
KR101408113B1 (en) * 2005-06-27 2014-06-16 글락소스미스클라인 바이오로지칼즈 에스.에이. Process for manufacturing vaccines
BRPI0615420A2 (en) 2005-09-01 2011-05-17 Novartis Vaccines & Diagnostic multiple vaccination including serogroup c meningococcus
US10828361B2 (en) 2006-03-22 2020-11-10 Glaxosmithkline Biologicals Sa Regimens for immunisation with meningococcal conjugates
NZ572054A (en) * 2006-03-22 2011-12-22 Novartis Ag Regimens for immunisation with meningococcal conjugates

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6531131B1 (en) * 1999-08-10 2003-03-11 The United States Of America As Represented By The Department Of Health And Human Services Conjugate vaccine for Neisseria meningitidis
US20030068336A1 (en) * 2001-01-23 2003-04-10 Ryall Robert P. Multivalent meningococcal polysaccharide-protein conjugate vaccine

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9267163B2 (en) 2000-02-28 2016-02-23 Glaxosmithkline Biologicals Sa Hybrid expression of neisserial proteins
US20120064103A1 (en) * 2009-03-24 2012-03-15 Novartis Ag Combinations of meningococcal factor h binding protein and pneumococcal saccharide conjugates
EP3026059A1 (en) 2014-10-28 2016-06-01 ADMA Biologics, Inc. Compositions and methods for the treatment of immunodeficiency
EP4233903A2 (en) 2014-10-28 2023-08-30 ADMA BioManufacturing, LLC Compositions and methods for the treatment of immunodeficiency
EP3375789A1 (en) 2017-03-15 2018-09-19 ADMA Biologics, Inc. Anti-pneumococcal hyperimmune globulin for the treatment and prevention of pneumococcal infection
US10259865B2 (en) 2017-03-15 2019-04-16 Adma Biologics, Inc. Anti-pneumococcal hyperimmune globulin for the treatment and prevention of pneumococcal infection
US11084870B2 (en) 2017-03-15 2021-08-10 Adma Biologics, Inc. Anti-pneumococcal hyperimmune globulin for the treatment and prevention of pneumococcal infection
EP4032903A1 (en) 2017-03-15 2022-07-27 ADMA Biologics, Inc. Anti-pneumococcal hyperimmune globulin
US11897943B2 (en) 2017-03-15 2024-02-13 Adma Biomanufacturing, Llc Anti-pneumococcal hyperimmune globulin for the treatment and prevention of pneumococcal infection

Also Published As

Publication number Publication date
CA2646993A1 (en) 2007-10-04
US20090297553A1 (en) 2009-12-03
DK2004225T3 (en) 2012-08-06
ES2670231T3 (en) 2018-05-29
EP2004225A2 (en) 2008-12-24
WO2007111940A3 (en) 2007-11-15
AU2007229449A1 (en) 2007-10-04
EP2357001B1 (en) 2018-03-07
CY1112920T1 (en) 2016-04-13
CA2646993C (en) 2016-01-26
EP2357001A1 (en) 2011-08-17
ATE554788T1 (en) 2012-05-15
WO2007111940A2 (en) 2007-10-04
PL2004225T3 (en) 2012-09-28
ES2383209T3 (en) 2012-06-19
NZ572054A (en) 2011-12-22
SI2004225T1 (en) 2012-08-31
US20210060151A1 (en) 2021-03-04
US20200138932A1 (en) 2020-05-07
PT2004225E (en) 2012-05-30
TR201807355T4 (en) 2018-06-21
US10881721B2 (en) 2021-01-05
US10543265B2 (en) 2020-01-28
EP2004225B1 (en) 2012-04-25

Similar Documents

Publication Publication Date Title
US10881721B2 (en) Regimens for immunisation with meningococcal conjugates
EP2152302B1 (en) Formulation of meningitis vaccines
US8444992B2 (en) Multiple vaccination including serogroup C meningococcus
US9511132B2 (en) Mixing lyophilised meningococcal vaccines with D-T-Pa vaccines
US20150125486A1 (en) Adjuvanted formulations of pediatric antigens
US10828361B2 (en) Regimens for immunisation with meningococcal conjugates
AU2015203146B2 (en) Regimens for immunisation with meningococcal conjugates
AU2013222031A1 (en) Regimens for immunisation with meningococcal conjugates

Legal Events

Date Code Title Description
AS Assignment

Owner name: NOVARTIS VACCINES AND DIAGNOSTICS, INC., CALIFORNI

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DANZIG, LISA;REEL/FRAME:020013/0499

Effective date: 20070808

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION