US20080009368A1 - Metal alloy for manufacturing golf club head members - Google Patents

Metal alloy for manufacturing golf club head members Download PDF

Info

Publication number
US20080009368A1
US20080009368A1 US11/480,854 US48085406A US2008009368A1 US 20080009368 A1 US20080009368 A1 US 20080009368A1 US 48085406 A US48085406 A US 48085406A US 2008009368 A1 US2008009368 A1 US 2008009368A1
Authority
US
United States
Prior art keywords
weight
metal alloy
club head
golf club
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/480,854
Inventor
Yan-Zhen Su
Huang-Min Lin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fu Sheng Industrial Co Ltd
Nelson Precision Casting Co Ltd
Original Assignee
Fu Sheng Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fu Sheng Industrial Co Ltd filed Critical Fu Sheng Industrial Co Ltd
Priority to US11/480,854 priority Critical patent/US20080009368A1/en
Assigned to NELSON PRECISION CASTING CO., LTD., FU SHENG INDUSTRIAL CO., LTD. reassignment NELSON PRECISION CASTING CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LIN, HUANG-MIN, SU, YAN-ZHENG
Publication of US20080009368A1 publication Critical patent/US20080009368A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B53/00Golf clubs
    • A63B53/04Heads
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B60/00Details or accessories of golf clubs, bats, rackets or the like
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2209/00Characteristics of used materials
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B60/00Details or accessories of golf clubs, bats, rackets or the like
    • A63B60/02Ballast means for adjusting the centre of mass

Definitions

  • the present invention relates to a metal alloy for manufacturing golf club head members. More particularly, the present invention relates to the metal alloy that possesses a relatively high degree of structural strength and hardness capability, and is suitable for manufacturing the golf club head member with a weighting capability.
  • Conventional stainless steel for manufacturing a golf club head member such as a golf club head body or a striking plate in casting is typically selected from ASTM 304 stainless steel that may, however, limit the mechanical strength of the golf club head member.
  • ASTM 304 stainless steel has the maximum of tensile strength about 77 ksi and yielding strength about 37 ksi which cannot endure an extremely high stress while striking a golf ball. Accordingly, the golf club head member made from ASTM 304 stainless steel is inadequate for providing a high degree of mechanical strength in striking the golf ball such that this may cause a good possibility of permanent deformation of the golf club head member.
  • the striking plate In order to increase the durability of the striking plate to withstand stresses imparted from the golf ball, the striking plate must be designed to have a thickness of safety greater than 3.3 mm in a casting procedure. Although the greater thickness of the striking plate is successful in reducing the possibility of permanent deformation or crack, it would be disadvantageous to have various design limitations. For instance, this type of the golf club head is susceptible to a number of problems, including: an increase of the entire weight of the golf club head; difficulties in adjusting a center of gravity of the golf club head; and difficulties in providing a thin wall of the golf club head etc.
  • Another problem with the use of such a stainless steel in manufacture of the golf club head is the difficulty in increasing the wear resistibility due to the fact that its maximum hardness is only about HRB 80 to about HRB 90.
  • the density of ASTM 304 stainless steel is not greater than 7.82 that would be disadvantageous in adjusting the weight of the club weight member of the golf club head.
  • ASTM 304 stainless steel it is desirable to increase the mechanical characteristics of tensile strength, hardness and densities of ASTM 304 stainless steel such that it can possess a relatively higher degree of mechanical strength and wear-resisting ability, and can perform a weight-adjusting function.
  • ASTM 304 stainless steel In manufacturing the golf club head member, there is a desire to use ASTM 304 stainless steel that can still provide adequate a relatively higher degree of mechanical strength and wear-resisting ability etc.
  • ASTM 304 stainless steel there is a need for improving the mechanical characteristics of ASTM 304 stainless steel in the art.
  • the present invention intends to provide a metal alloy for manufacturing a golf club head member.
  • the metal alloy contains a predetermined amount of higher specific-gravity metal components so as to perform a weighting function. Alloy components of carbon, silicon, manganese, nickel, chromium, tungsten and iron contained in the metal alloy are adjusted to increase its mechanical strength and wear-resisting ability in such a way as to mitigate and overcome the above problem.
  • the primary objective of this invention is to provide a metal alloy for manufacturing a golf club head member, wherein a predetermined amount of tungsten is added to have a higher density of the metal alloy. Accordingly, the metal alloy is suitable for manufacturing the golf club head member with a weighting capability.
  • the secondary objective of this invention is to provide the metal alloy for manufacturing the golf club head member, wherein tungsten is added to be unsusceptible to thermal cracking in welding operation and to improve metallurgical compatibility of heterogeneous metals. Accordingly, the metal alloy is suitable for welding operation of the golf club head member.
  • Another objective of this invention is to provide the metal alloy for manufacturing the golf club head member, wherein a predetermined amount of nickel and chromium is contained to improve the corrosion resisting ability. Accordingly, the golf club head member made from such a metal alloy has a high degree of corrosion resistance.
  • the metal alloy in accordance with an aspect of the present invention includes carbon less than 0.08% by weight, silicon of about 0.5% to about 2.0% by weight, manganese of about 0.5% to about 2.0% by weight, nickel of about 5.0% to about 15.0% by weight, chromium of about 15.0% to about 30.0% by weight, tungsten of about 5.0% to about 15.0% by weight and the balance is essentially iron. Accordingly, the metal alloy has a high degree of mechanical strength and extensibility, and functions as a weight material of the golf club head.
  • the metal alloy further includes an incidental impurity of phosphorous less than 0.04%. In a further separate aspect of the present invention, the metal alloy further includes an incidental impurity of sulfur less than 0.04%.
  • the metal alloy further includes molybdenum less than 1.0%.
  • the metal alloy further includes copper less than 1.0%.
  • FIG. 1 is a photomicrograph of a cross section of a metal alloy applied to manufacture a golf club head member in accordance with a preferred embodiment of the present invention, with a magnification of 200 times.
  • a metal alloy applied to manufacture a golf club head member in accordance with a preferred embodiment of the present invention is constructed from a stainless steel containing a predetermined amount of tungsten (W).
  • W tungsten
  • other components are carbon (C), silicon (Si), manganese (Mn), nickel (Ni), chromium (Cr), tungsten (W) and iron (Fe) which are in the predetermined ratio of the following alloy components.
  • the alloy components of the metal alloy in accordance with the present invention satisfy the following conditions: carbon less than 0.08% by weight, silicon of about 0.5% to about 2.0% by weight, manganese of about 0.5% to about 2.0% by weight, nickel of about 5.0% to about 15.0% by weight, chromium of about 15.0% to about 30.0% by weight, tungsten of about 5.0% to about 15.0% by weight and the balance is essentially iron, as is given in Table 1.
  • the density of the metal alloy of this preferred embodiment may vary in a range of 8 to 8.5.
  • Table 1 shows the alloy components of ASTM 304 and the metal alloy of a preferred embodiment of the present invention in percent by weight. As obtained from Table 1, contents of carbon (C), silicon (Si), manganese (Mn), phosphorous (P), sulfur (S), nickel (Ni), chromium (Cr), tungsten (W) and iron (Fe) are listed. In this embodiment, phosphorous and sulfur are added without departing from the scope and spirit of the present invention. In comparison with the present invention, ASTM 304 is absent tungsten that functions as a weighting material for the golf club head.
  • a manufacturing method for the metal alloy in practicing the present invention is similar to that described in U.S. Pat. No. 6,776,728, entitled “Weight Member for a Golf Club Head,” U.S. Pat. No. 6,758,764, entitled “Weight Member for a Golf Club Head,” and Taiwanese Patent Publication No. 589,215, entitled “Forging Composition and a Method thereof for Manufacturing a Golf Club Head” which are owned by the present assignee and hereby incorporated by reference in its entirety.
  • the manufacturing method for the metal alloy in accordance with the preferred embodiment of the present invention comprises the steps of: melting raw materials of pure iron, ferrosilicon, ferromanganese, ferrochromium nickel and tungsten in a high-temperature furnace (e.g. microwave furnace, not shown).
  • a high-temperature furnace e.g. microwave furnace, not shown.
  • the above raw materials may vary weigh percent of the contents of carbon, silicon, manganese, nickel, chromium and tungsten without departing from scope and spirit of the present invention.
  • the metal alloy has carbon less than 0.08% by weight, silicon of about 0.5% to about 2.0% by weight, manganese of about 0.5% to about 2.0% by weight, nickel of about 5.0% to about 15.0% by weight, chromium of about 15.0% to about 30.0% by weight, tungsten of about 5.0% to about 15.0% by weight and the balance being essentially iron.
  • the melting alloy is preferably poured into a molding apparatus (not shown) to form a casting selecting from configurations of a golf club head, a striking plate, a weighting member or other club head members.
  • the metal alloy in accordance with the present invention may be in an alloy bar form for a following forging procedure.
  • the stainless steel alloy of the present invention mainly includes alloy matrix having a metallurgical phase of austenite, and having a quadratic metallurgical phase of ferrite formed in the alloy matrix.
  • the raw materials may be selected from pure iron, other elements (i.e. carbon, silicon, manganese, chromium, nickel and tungsten) of pure metals (containing normal small amount of impurities) and ferroalloys thereof.
  • the amount of alloy components applied in the present invention may be varied according to elements contained in the raw materials of pure iron, pure metals or ferroalloys in manufacturing the golf club head members.
  • the stainless steel alloy of the present invention due to the differences of raw materials, may further include incidental impurities, molybdenum (Mo), copper (Cu), phosphorous (P) and sulfur (S) for example.
  • tensile strength is a maximum of stress that the metal alloy can normally withstand; yielding strength is a threshold limit value of stress that can shift the structure of metal alloy from elastic deformation to permanent deformation.
  • Table 2 shows the mechanical characteristics of ASTM 304 and the metal alloy of the present invention including tensile strength, yielding strength and elongation. As shown in Table 2, the tensile strength, yielding strength and hardness of the metal alloy of the present invention are greater than those of ASTM 304 due to the different amount of elements. Further, the metal alloy of the present invention has a greater density that is suitable for functioning as a weighting material of the golf club head. Finally, the metal alloy of the present invention has an excellent property of corrosion resistance same with that of ASTM 304.
  • Table 3 shows the application properties of ASTM 304 and the metal alloy of the present invention for the golf club head including hardness, embeddness, heterogeneous metal weldability, corrosion resistance, surface, hosel angle adjustability and thermal cracking sensibility. As shown in Table 3, the hardness, heterogeneous metal weldability and thermal cracking sensibility of the metal alloy of the present invention are greater than those of ASTM 304 due to the different amount of elements.
  • the metal alloy in accordance with the present invention further includes tungsten of about 5.0% to about 15.0% by weight and incidental impurities (e.g. molybdenum less than 1.0% by weight and less than 1.0%).
  • incidental impurities e.g. molybdenum less than 1.0% by weight and less than 1.0%.
  • carbon, silicon, manganese, phosphorous, sulfur, nickel, chromium, tungsten and other metals contained in the metal alloy in accordance with the present invention can perform functions and advantages as follows:
  • Carbon is less than 0.08% by weight, preferably less than 0.07% by weight, 0.06% by weight, 0.05% by weight or 0.04% by weight, so as to increase hardness and tensile of the carbon-contained metal alloy.
  • Silicon is in a range of about 0.5% by weight to about 2.0% weight, preferably selecting from 0.7%, 0.9%, 1.1%, 1.4% or 1.7% by weight, so as to enhance fluidness of the molten metal alloy in a casting procedure. It would be advantageous that this alloy component can aid precipitation of carbide in ferrite such that tensile strength of the metal alloy can be increased and is in the range of 90 ksi to 110 ksi (see Table 2). In this manner, the metal alloy is suitable for manufacturing the striking plate which can withstand a higher stress in striking a golf ball. Also, the structure of the striking plate can be designed to have a relatively thinner thickness due to the fact that the striking plate can provide a higher tensile strength (i.e. impact resistance).
  • the striking plate can be designed to have a relatively lower weight by reducing its thickness such that the total weight of the golf club head can be redesigned. Accordingly, it would be advantageous to lower a center of gravity of the golf club head.
  • the golf club head body can be made from a heavy material having a relatively high density so as to increase moment of inertia if the striking plate is designed to have such a relatively lower (lighter) weight. Accordingly, the silicon-contained metal alloy can enhance the golf club head to have a greater striking ability.
  • Manganese is in a range of about 0.5% by weight to about 2.0% weight, preferably selecting from 0.7%, 0.9%, 1.1%, 1.4% or 1.7% by weight, so as to enhance the structure of austenite of the metal alloy that can provide better corrosion resistance. Also, such a manganese-contained metal alloy can provide better extensibility in aiding hosel angle adjusting operation of the golf club head. Accordingly, the manganese-contained metal alloy can enhance the golf club head to have a greater toughness.
  • Nickel is in a range of about 5.0% by weight to about 15.0% weight, preferably selecting from 7.0%, 9.0%, 11.0% or 13.0% by weight, while chromium is in a range of about 15.0% by weight to about 30.0% weight, preferably selecting from 17.0%, 19.0%, 21.0%, 24.0% or 27.0% by weight.
  • Such a nickel-contained metal alloy can suppress formation of a pearlite structure that can improve corrosion resistance (i.e. resistance to pitting cavitations or uniform corrosion) of the metal alloy.
  • Chromium is in a range of about 15.0% by weight to about 30.0% weight, preferably selecting from 17.0%, 19.0%, 21.0%, 24.0% or 27.0% by weight which can suppress formation of a pearlite structure.
  • chromium is a stabilized element formed in a ferrite phase that can aid in producing a complex structure of austenite and ferrite when the molten metal alloy is solidified.
  • Such a chromium-contained structure of the ferrite phase exists a grain boundary limiting stress corrosion crack (SCC), thereby causing a pinning effect upon the diffusion of SCC. Consequently, the amount of chromium can affect the growth of SCC.
  • SCC grain boundary limiting stress corrosion crack
  • the metal alloy can possess a higher degree of mechanical strength and a heterogeneous metal compatibility for the dilute ratio of high-strength steel (i.e. a matrix of martensite). Accordingly, the chromium-contained metal alloy is suitable for filler-free welding.
  • Tungsten is in a range of about 5.0% by weight to about 15.0% weight, preferably selecting from 7.0%, 9.0%, 11.0% or 13.0% by weight.
  • the ferrite phase may be precipitated in advance so that a coefficient of thermal expansion may be lower in high temperature. In this way, thermal stresses in the solidified metal alloy can therefore be avoided.
  • the ferrite phase may melt a greater amount of solids of incidental impurities such that deficiencies of the gain boundary may be minimized.
  • the grain boundary of the tungsten-contained metal alloy may cause a pinning effect upon the diffusion of SCC, thereby stopping or overwhelming the growth of SCC.
  • the metal alloy can possess a higher degree of mechanical strength and a heterogeneous metal compatibility for the dilute ratio of high-strength steel (i.e. a matrix of martensite).
  • the tungsten-contained metal alloy is also suitable for filler-free welding.
  • tungsten may increase a density of the metal alloy such that the tungsten-contained metal alloy can function as a weight material of the golf club head.
  • Molybdenum is less than 1.0% by weight, preferably selecting from 0.9%, 0.8%, 0.7%, 0.6%, 0.5% or 0.4% by weight, so as to intensify and stabilize the structure of ferrite phase such that the molybdenum-contained metal alloy can reduce a possibility of thermal cracking in welding operation. Accordingly, the striking plate made from such a molybdenum-contained metal alloy can perform a greater heterogeneous metal weldability in a welding procedure.
  • a small amount of impurities may be contained according to changes in processes, raw materials or both.
  • copper is less than 1.0% by weight, preferably selecting from 0.9%, 0.8%, 0.7%, 0.6%, 0.5% or 0.4% by weight, so as to maintain the mechanical characteristics of the metal alloy of the present invention. Also, the copper-contained metal alloy can avoid the occurrence of embrittlement.
  • sulfur is less than 0.04% by weight, preferably selecting from 0.03%, 0.02% or 0.01% by weight; and phosphorous is less than 0.04% by weight, preferably selecting from 0.03%, 0.02% or 0.01% by weight. The amount of sulfur and phosphorous must be lower than a predetermined value so as to avoid deficiencies of hot cracking in welding.
  • the metal alloy can ensure the quality of welding. It will be apparent from the aforementioned discussions that ASTM 304 has a relatively low degree of tensile strength, wielding strength and hardness that may reduce mechanical strength and wear resistibility.
  • ASTM 304 has a relatively low degree of tensile strength, wielding strength and hardness that may reduce mechanical strength and wear resistibility.
  • the metal alloy of the present invention contains a predetermined amount of tungsten and a small amount of incidental impurities (i.e. molybdenum, copper, phosphorous and sulfur) such that a ferrite structure is formed in the matrix of austenite phase.
  • incidental impurities i.e. molybdenum, copper, phosphorous and sulfur
  • such a structure of the metal alloy possesses a high degree of mechanical characteristic and functions as a weighting material for the golf club head.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Golf Clubs (AREA)

Abstract

A metal alloy applied to manufacture a club weight member of a golf club head includes carbon less than 0.08% by weight, silicon of about 0.5% to about 2.0% by weight, manganese of about 0.5% to about 2.0% by weight, nickel of about 5.0% to about 15.0% by weight, chromium of about 15.0% to about 30.0% by weight, tungsten of about 5.0% to about 15.0% by weight and the balance is essential iron. Accordingly, the metal alloy has a high degree of mechanical strength and extensibility, and functions as a weight material of the golf club head.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to a metal alloy for manufacturing golf club head members. More particularly, the present invention relates to the metal alloy that possesses a relatively high degree of structural strength and hardness capability, and is suitable for manufacturing the golf club head member with a weighting capability.
  • 2. Description of the Related Art
  • Conventional stainless steel for manufacturing a golf club head member such as a golf club head body or a striking plate in casting is typically selected from ASTM 304 stainless steel that may, however, limit the mechanical strength of the golf club head member. For example, the golf club head body or striking plate so constructed from ASTM 304 stainless steel has the maximum of tensile strength about 77 ksi and yielding strength about 37 ksi which cannot endure an extremely high stress while striking a golf ball. Accordingly, the golf club head member made from ASTM 304 stainless steel is inadequate for providing a high degree of mechanical strength in striking the golf ball such that this may cause a good possibility of permanent deformation of the golf club head member. In order to increase the durability of the striking plate to withstand stresses imparted from the golf ball, the striking plate must be designed to have a thickness of safety greater than 3.3 mm in a casting procedure. Although the greater thickness of the striking plate is successful in reducing the possibility of permanent deformation or crack, it would be disadvantageous to have various design limitations. For instance, this type of the golf club head is susceptible to a number of problems, including: an increase of the entire weight of the golf club head; difficulties in adjusting a center of gravity of the golf club head; and difficulties in providing a thin wall of the golf club head etc.
  • Another problem with the use of such a stainless steel in manufacture of the golf club head is the difficulty in increasing the wear resistibility due to the fact that its maximum hardness is only about HRB 80 to about HRB 90. In addition, the density of ASTM 304 stainless steel is not greater than 7.82 that would be disadvantageous in adjusting the weight of the club weight member of the golf club head.
  • Technically, it is desirable to increase the mechanical characteristics of tensile strength, hardness and densities of ASTM 304 stainless steel such that it can possess a relatively higher degree of mechanical strength and wear-resisting ability, and can perform a weight-adjusting function. In manufacturing the golf club head member, there is a desire to use ASTM 304 stainless steel that can still provide adequate a relatively higher degree of mechanical strength and wear-resisting ability etc. Hence, there is a need for improving the mechanical characteristics of ASTM 304 stainless steel in the art.
  • As is described in greater detail below, the present invention intends to provide a metal alloy for manufacturing a golf club head member. The metal alloy contains a predetermined amount of higher specific-gravity metal components so as to perform a weighting function. Alloy components of carbon, silicon, manganese, nickel, chromium, tungsten and iron contained in the metal alloy are adjusted to increase its mechanical strength and wear-resisting ability in such a way as to mitigate and overcome the above problem.
  • SUMMARY OF THE INVENTION
  • The primary objective of this invention is to provide a metal alloy for manufacturing a golf club head member, wherein a predetermined amount of tungsten is added to have a higher density of the metal alloy. Accordingly, the metal alloy is suitable for manufacturing the golf club head member with a weighting capability.
  • The secondary objective of this invention is to provide the metal alloy for manufacturing the golf club head member, wherein tungsten is added to be unsusceptible to thermal cracking in welding operation and to improve metallurgical compatibility of heterogeneous metals. Accordingly, the metal alloy is suitable for welding operation of the golf club head member.
  • Another objective of this invention is to provide the metal alloy for manufacturing the golf club head member, wherein a predetermined amount of nickel and chromium is contained to improve the corrosion resisting ability. Accordingly, the golf club head member made from such a metal alloy has a high degree of corrosion resistance.
  • The metal alloy in accordance with an aspect of the present invention includes carbon less than 0.08% by weight, silicon of about 0.5% to about 2.0% by weight, manganese of about 0.5% to about 2.0% by weight, nickel of about 5.0% to about 15.0% by weight, chromium of about 15.0% to about 30.0% by weight, tungsten of about 5.0% to about 15.0% by weight and the balance is essentially iron. Accordingly, the metal alloy has a high degree of mechanical strength and extensibility, and functions as a weight material of the golf club head.
  • In a separate aspect of the present invention, the metal alloy further includes an incidental impurity of phosphorous less than 0.04%. In a further separate aspect of the present invention, the metal alloy further includes an incidental impurity of sulfur less than 0.04%.
  • In a yet further separate aspect of the present invention, the metal alloy further includes molybdenum less than 1.0%.
  • In a yet further separate aspect of the present invention, the metal alloy further includes copper less than 1.0%.
  • Further scope of the applicability of the present invention will become apparent from the detailed description given hereinafter. However, it should be understood that the detailed description and specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only, since various will become apparent to those skilled in the art from this detailed description.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The present invention will become more fully understood from the detailed description given hereinbelow and the accompanying drawings which are given by way of illustration only, and thus are not limitative of the present invention, and wherein:
  • FIG. 1 is a photomicrograph of a cross section of a metal alloy applied to manufacture a golf club head member in accordance with a preferred embodiment of the present invention, with a magnification of 200 times.
  • DETAILED DESCRIPTION OF THE INVENTION
  • A metal alloy applied to manufacture a golf club head member in accordance with a preferred embodiment of the present invention is constructed from a stainless steel containing a predetermined amount of tungsten (W). In the preferred embodiment, other components are carbon (C), silicon (Si), manganese (Mn), nickel (Ni), chromium (Cr), tungsten (W) and iron (Fe) which are in the predetermined ratio of the following alloy components. Preferably, the alloy components of the metal alloy in accordance with the present invention satisfy the following conditions: carbon less than 0.08% by weight, silicon of about 0.5% to about 2.0% by weight, manganese of about 0.5% to about 2.0% by weight, nickel of about 5.0% to about 15.0% by weight, chromium of about 15.0% to about 30.0% by weight, tungsten of about 5.0% to about 15.0% by weight and the balance is essentially iron, as is given in Table 1. The density of the metal alloy of this preferred embodiment may vary in a range of 8 to 8.5.
  • TABLE 1
    Alloy Components of Conventional ASTM 304 and Metal Alloy of
    the Present Invention in Percent by Weight (wt. %)
    AlloyType C Si Mn P S Ni Cr W Fe
    ASTM 304 0.08 <2.0 <2.0 <0.04 <0.03 8.0–10.5 18.0–20.0 Balance
    Embodiment <0.08 0.5–2.0 0.5–2.0 <0.04 <0.04 5.0–15.0 15.0–30.0 5.0–15.0 Balance
  • Table 1 shows the alloy components of ASTM 304 and the metal alloy of a preferred embodiment of the present invention in percent by weight. As obtained from Table 1, contents of carbon (C), silicon (Si), manganese (Mn), phosphorous (P), sulfur (S), nickel (Ni), chromium (Cr), tungsten (W) and iron (Fe) are listed. In this embodiment, phosphorous and sulfur are added without departing from the scope and spirit of the present invention. In comparison with the present invention, ASTM 304 is absent tungsten that functions as a weighting material for the golf club head.
  • A manufacturing method for the metal alloy in practicing the present invention is similar to that described in U.S. Pat. No. 6,776,728, entitled “Weight Member for a Golf Club Head,” U.S. Pat. No. 6,758,764, entitled “Weight Member for a Golf Club Head,” and Taiwanese Patent Publication No. 589,215, entitled “Forging Composition and a Method thereof for Manufacturing a Golf Club Head” which are owned by the present assignee and hereby incorporated by reference in its entirety.
  • The manufacturing method for the metal alloy in accordance with the preferred embodiment of the present invention comprises the steps of: melting raw materials of pure iron, ferrosilicon, ferromanganese, ferrochromium nickel and tungsten in a high-temperature furnace (e.g. microwave furnace, not shown). The above raw materials may vary weigh percent of the contents of carbon, silicon, manganese, nickel, chromium and tungsten without departing from scope and spirit of the present invention. In a preferred embodiment, the metal alloy has carbon less than 0.08% by weight, silicon of about 0.5% to about 2.0% by weight, manganese of about 0.5% to about 2.0% by weight, nickel of about 5.0% to about 15.0% by weight, chromium of about 15.0% to about 30.0% by weight, tungsten of about 5.0% to about 15.0% by weight and the balance being essentially iron. The melting alloy is preferably poured into a molding apparatus (not shown) to form a casting selecting from configurations of a golf club head, a striking plate, a weighting member or other club head members. In another preferred embodiment, the metal alloy in accordance with the present invention may be in an alloy bar form for a following forging procedure.
  • Referring now to FIG. 1, a photomicrograph of a cross section, with a magnification of 200.times, of a metal alloy for manufacturing a golf club head member in accordance with the preferred embodiment of the present invention is illustrated. As shown in FIG. 1, the stainless steel alloy of the present invention mainly includes alloy matrix having a metallurgical phase of austenite, and having a quadratic metallurgical phase of ferrite formed in the alloy matrix.
  • In the preferred embodiment, the raw materials may be selected from pure iron, other elements (i.e. carbon, silicon, manganese, chromium, nickel and tungsten) of pure metals (containing normal small amount of impurities) and ferroalloys thereof. The amount of alloy components applied in the present invention may be varied according to elements contained in the raw materials of pure iron, pure metals or ferroalloys in manufacturing the golf club head members. In addition, the stainless steel alloy of the present invention, due to the differences of raw materials, may further include incidental impurities, molybdenum (Mo), copper (Cu), phosphorous (P) and sulfur (S) for example.
  • TABLE 2
    Mechanical Characteristics of Conventional ASTM 304 and Metal
    Alloy of the Present Invention
    Tensile Yielding Elongation Corrosion
    Alloy Type Strength (ksi*) Strength (ksi*) (%) Hardness Density Resistance
    ASTM 304 77 37 >40 HRB 80–90 7.82 excellent
    Embodiment 90–110 45–60 20–30 HRC 10–20 8.0–8.5 Excellent
    *ksi = 103 psi.
  • As shown in Table 2, tensile strength is a maximum of stress that the metal alloy can normally withstand; yielding strength is a threshold limit value of stress that can shift the structure of metal alloy from elastic deformation to permanent deformation.
  • Table 2 shows the mechanical characteristics of ASTM 304 and the metal alloy of the present invention including tensile strength, yielding strength and elongation. As shown in Table 2, the tensile strength, yielding strength and hardness of the metal alloy of the present invention are greater than those of ASTM 304 due to the different amount of elements. Further, the metal alloy of the present invention has a greater density that is suitable for functioning as a weighting material of the golf club head. Finally, the metal alloy of the present invention has an excellent property of corrosion resistance same with that of ASTM 304.
  • TABLE 3
    Application Properties of Conventional ASTM 304 and Metal Alloy
    of the Present Invention for the golf club head
    Corrosion Hosel Angle Cracking
    Alloy Type Hardness Embeddness Weldability Resistance Surface Adjustability Sensibility
    ASTM 304 soft ultimately poor excellent excellent excellent high risk
    excellent
    Embodiment hard Excellent excellent excellent excellent good low risk
  • Table 3 shows the application properties of ASTM 304 and the metal alloy of the present invention for the golf club head including hardness, embeddness, heterogeneous metal weldability, corrosion resistance, surface, hosel angle adjustability and thermal cracking sensibility. As shown in Table 3, the hardness, heterogeneous metal weldability and thermal cracking sensibility of the metal alloy of the present invention are greater than those of ASTM 304 due to the different amount of elements.
  • Referring back to Table 1, in comparison with ASTM 304, the metal alloy in accordance with the present invention further includes tungsten of about 5.0% to about 15.0% by weight and incidental impurities (e.g. molybdenum less than 1.0% by weight and less than 1.0%). As has been apparent from Table 1 through 3 and FIG. 1, carbon, silicon, manganese, phosphorous, sulfur, nickel, chromium, tungsten and other metals contained in the metal alloy in accordance with the present invention can perform functions and advantages as follows:
  • (1) Carbon is less than 0.08% by weight, preferably less than 0.07% by weight, 0.06% by weight, 0.05% by weight or 0.04% by weight, so as to increase hardness and tensile of the carbon-contained metal alloy.
  • (2) Silicon is in a range of about 0.5% by weight to about 2.0% weight, preferably selecting from 0.7%, 0.9%, 1.1%, 1.4% or 1.7% by weight, so as to enhance fluidness of the molten metal alloy in a casting procedure. It would be advantageous that this alloy component can aid precipitation of carbide in ferrite such that tensile strength of the metal alloy can be increased and is in the range of 90 ksi to 110 ksi (see Table 2). In this manner, the metal alloy is suitable for manufacturing the striking plate which can withstand a higher stress in striking a golf ball. Also, the structure of the striking plate can be designed to have a relatively thinner thickness due to the fact that the striking plate can provide a higher tensile strength (i.e. impact resistance). Consequently, the striking plate can be designed to have a relatively lower weight by reducing its thickness such that the total weight of the golf club head can be redesigned. Accordingly, it would be advantageous to lower a center of gravity of the golf club head. By way of example, the golf club head body can be made from a heavy material having a relatively high density so as to increase moment of inertia if the striking plate is designed to have such a relatively lower (lighter) weight. Accordingly, the silicon-contained metal alloy can enhance the golf club head to have a greater striking ability.
  • (3) Manganese is in a range of about 0.5% by weight to about 2.0% weight, preferably selecting from 0.7%, 0.9%, 1.1%, 1.4% or 1.7% by weight, so as to enhance the structure of austenite of the metal alloy that can provide better corrosion resistance. Also, such a manganese-contained metal alloy can provide better extensibility in aiding hosel angle adjusting operation of the golf club head. Accordingly, the manganese-contained metal alloy can enhance the golf club head to have a greater toughness.
  • (4) Nickel is in a range of about 5.0% by weight to about 15.0% weight, preferably selecting from 7.0%, 9.0%, 11.0% or 13.0% by weight, while chromium is in a range of about 15.0% by weight to about 30.0% weight, preferably selecting from 17.0%, 19.0%, 21.0%, 24.0% or 27.0% by weight. Such a nickel-contained metal alloy can suppress formation of a pearlite structure that can improve corrosion resistance (i.e. resistance to pitting cavitations or uniform corrosion) of the metal alloy.
  • (5) Chromium is in a range of about 15.0% by weight to about 30.0% weight, preferably selecting from 17.0%, 19.0%, 21.0%, 24.0% or 27.0% by weight which can suppress formation of a pearlite structure. Meanwhile, chromium is a stabilized element formed in a ferrite phase that can aid in producing a complex structure of austenite and ferrite when the molten metal alloy is solidified. Such a chromium-contained structure of the ferrite phase exists a grain boundary limiting stress corrosion crack (SCC), thereby causing a pinning effect upon the diffusion of SCC. Consequently, the amount of chromium can affect the growth of SCC. In addition, there exists a change of a solidified columnar grain orientation in austenite phase to form ferrite phase by shifting a linear grain orientation to a cross grain orientation. In this way, the metal alloy can possess a higher degree of mechanical strength and a heterogeneous metal compatibility for the dilute ratio of high-strength steel (i.e. a matrix of martensite). Accordingly, the chromium-contained metal alloy is suitable for filler-free welding.
  • (6) Tungsten is in a range of about 5.0% by weight to about 15.0% weight, preferably selecting from 7.0%, 9.0%, 11.0% or 13.0% by weight. When the metal alloy is solidified, the ferrite phase may be precipitated in advance so that a coefficient of thermal expansion may be lower in high temperature. In this way, thermal stresses in the solidified metal alloy can therefore be avoided. In addition, the ferrite phase may melt a greater amount of solids of incidental impurities such that deficiencies of the gain boundary may be minimized. Also, the grain boundary of the tungsten-contained metal alloy may cause a pinning effect upon the diffusion of SCC, thereby stopping or overwhelming the growth of SCC. In addition, there also exists a change of a solidified columnar grain orientation in austenite phase to form ferrite phase by shifting a linear grain orientation to a cross grain orientation. In this way, the metal alloy can possess a higher degree of mechanical strength and a heterogeneous metal compatibility for the dilute ratio of high-strength steel (i.e. a matrix of martensite). Accordingly, the tungsten-contained metal alloy is also suitable for filler-free welding. Yet further, tungsten may increase a density of the metal alloy such that the tungsten-contained metal alloy can function as a weight material of the golf club head.
  • (7) Molybdenum is less than 1.0% by weight, preferably selecting from 0.9%, 0.8%, 0.7%, 0.6%, 0.5% or 0.4% by weight, so as to intensify and stabilize the structure of ferrite phase such that the molybdenum-contained metal alloy can reduce a possibility of thermal cracking in welding operation. Accordingly, the striking plate made from such a molybdenum-contained metal alloy can perform a greater heterogeneous metal weldability in a welding procedure.
  • (8) A small amount of impurities may be contained according to changes in processes, raw materials or both. In a preferred embodiment, copper is less than 1.0% by weight, preferably selecting from 0.9%, 0.8%, 0.7%, 0.6%, 0.5% or 0.4% by weight, so as to maintain the mechanical characteristics of the metal alloy of the present invention. Also, the copper-contained metal alloy can avoid the occurrence of embrittlement. In another preferred embodiment, sulfur is less than 0.04% by weight, preferably selecting from 0.03%, 0.02% or 0.01% by weight; and phosphorous is less than 0.04% by weight, preferably selecting from 0.03%, 0.02% or 0.01% by weight. The amount of sulfur and phosphorous must be lower than a predetermined value so as to avoid deficiencies of hot cracking in welding. Accordingly, the metal alloy can ensure the quality of welding. It will be apparent from the aforementioned discussions that ASTM 304 has a relatively low degree of tensile strength, wielding strength and hardness that may reduce mechanical strength and wear resistibility. Conversely, the metal alloy of the present invention contains a predetermined amount of tungsten and a small amount of incidental impurities (i.e. molybdenum, copper, phosphorous and sulfur) such that a ferrite structure is formed in the matrix of austenite phase. Advantageously, such a structure of the metal alloy possesses a high degree of mechanical characteristic and functions as a weighting material for the golf club head. Although the invention has been described in detail with reference to its presently preferred embodiment, it will be understood by one of ordinary skill in the art that various modifications can be made without departing from the spirit and the scope of the invention, as set forth in the appended claims.

Claims (5)

1. A metal alloy for manufacturing a club weight member, comprising:
carbon less than 0.08% by weight;
silicon of about 0.5% to about 2.0% by weight;
manganese of about 0.5% to about 2.0% by weight;
nickel of about 5.0% to about 15.0% by weight;
chromium of about 15.0% to about 30.0% by weight;
tungsten of about 5.0% to about 15.0% by weight; and
the balance being essentially iron.
2. The metal alloy for manufacturing the club weight member as defined in claim 1, further comprising an incidental impurity of phosphorous less than 0.04%.
3. The metal alloy for manufacturing the club weight member as defined in claim 1, further comprising an incidental impurity of sulfur less than 0.04%.
4. The metal alloy for manufacturing the club weight member as defined in claim 1, further comprising molybdenum less than 1.0%.
5. The metal alloy for manufacturing the club weight member as defined in claim 1, further comprising copper less than 1.0%.
US11/480,854 2006-07-06 2006-07-06 Metal alloy for manufacturing golf club head members Abandoned US20080009368A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/480,854 US20080009368A1 (en) 2006-07-06 2006-07-06 Metal alloy for manufacturing golf club head members

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/480,854 US20080009368A1 (en) 2006-07-06 2006-07-06 Metal alloy for manufacturing golf club head members

Publications (1)

Publication Number Publication Date
US20080009368A1 true US20080009368A1 (en) 2008-01-10

Family

ID=38919723

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/480,854 Abandoned US20080009368A1 (en) 2006-07-06 2006-07-06 Metal alloy for manufacturing golf club head members

Country Status (1)

Country Link
US (1) US20080009368A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130167978A1 (en) * 2011-12-30 2013-07-04 Fusheng Precision Co., Ltd. Alloy of a Golf Club
CN107970580A (en) * 2016-10-19 2018-05-01 复盛应用科技股份有限公司 The manufacture method of glof club head
CN113546385A (en) * 2020-04-08 2021-10-26 高仕利公司 Improved striking face for a golf club head

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6346052B1 (en) * 1998-08-21 2002-02-12 Dunlop Slazenger Group Americas Golf club irons with multilayer construction
US6758764B1 (en) * 2003-07-03 2004-07-06 Nelson Precision Casting Co., Ltd. Weight member for a golf club head
US6776728B1 (en) * 2003-07-03 2004-08-17 Nelson Precision Casting Co., Ltd. Weight member for a golf club head
US7041002B2 (en) * 2002-11-05 2006-05-09 Sri Sports Limited Golf club head

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6346052B1 (en) * 1998-08-21 2002-02-12 Dunlop Slazenger Group Americas Golf club irons with multilayer construction
US7041002B2 (en) * 2002-11-05 2006-05-09 Sri Sports Limited Golf club head
US6758764B1 (en) * 2003-07-03 2004-07-06 Nelson Precision Casting Co., Ltd. Weight member for a golf club head
US6776728B1 (en) * 2003-07-03 2004-08-17 Nelson Precision Casting Co., Ltd. Weight member for a golf club head

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130167978A1 (en) * 2011-12-30 2013-07-04 Fusheng Precision Co., Ltd. Alloy of a Golf Club
CN107970580A (en) * 2016-10-19 2018-05-01 复盛应用科技股份有限公司 The manufacture method of glof club head
CN113546385A (en) * 2020-04-08 2021-10-26 高仕利公司 Improved striking face for a golf club head

Similar Documents

Publication Publication Date Title
US6334817B1 (en) Golf club head
US10655196B2 (en) Austenitic steel having excellent machinability and ultra-low temperature toughness in weld heat-affected zone, and method of manufacturing the same
KR20080038217A (en) Two-phase stainless steel
JP2009013439A (en) High toughness high-speed tool steel
US20080264526A1 (en) Hot working die steel for die-casting
CN118389950A (en) Precipitation hardening steel and its manufacture
JPH1136038A (en) Heat resistant cast steel
CN113661019B (en) Composite roll for rolling produced by centrifugal casting method and method for producing same
TW527426B (en) Martensitic stainless steel for golf club head
US20110061772A1 (en) Low-density high-toughness alloy and the fabrication method thereof
US20070084528A1 (en) Low-density high-toughness alloy and the fabrication method thereof
US20080009368A1 (en) Metal alloy for manufacturing golf club head members
JP6729522B2 (en) Thick wear-resistant steel plate, method of manufacturing the same, and method of manufacturing wear-resistant member
JP5061455B2 (en) Hot die tool steel for aluminum die casting with reduced cracking from water-cooled holes
US6117388A (en) Hot working die steel and member comprising the same for high-temperature use
US6106766A (en) Material for gas turbine disk
JP2002294410A (en) Head of golf club
CN101092676A (en) Alloy in use for rabricating head of golf pole
TWI699226B (en) Composition alloy of golf club head
JP2001262283A (en) Method for improving steam oxidation resistance of austenitic heat resisting steel for boiler, and austenitic heat resisting steel for boiler excellent in steam oxidation resistance
JPH11106860A (en) Ferritic heat resistant steel excellent in creep characteristic in heat-affected zone
JPH1036944A (en) Martensitic heat resistant steel
JP2006255016A (en) Stainless alloy of golf club head
TWI289074B (en) Stainless steel for club weight member of golf club head
CN111485084B (en) 750 HBW-grade ultrahigh-hardness protective steel plate and manufacturing method thereof

Legal Events

Date Code Title Description
AS Assignment

Owner name: FU SHENG INDUSTRIAL CO., LTD., TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SU, YAN-ZHENG;LIN, HUANG-MIN;REEL/FRAME:018086/0273

Effective date: 20060622

Owner name: NELSON PRECISION CASTING CO., LTD., TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SU, YAN-ZHENG;LIN, HUANG-MIN;REEL/FRAME:018086/0273

Effective date: 20060622

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION