US20070299339A1 - Post-biopsy cavity treatment implants and methods - Google Patents

Post-biopsy cavity treatment implants and methods Download PDF

Info

Publication number
US20070299339A1
US20070299339A1 US11/850,032 US85003207A US2007299339A1 US 20070299339 A1 US20070299339 A1 US 20070299339A1 US 85003207 A US85003207 A US 85003207A US 2007299339 A1 US2007299339 A1 US 2007299339A1
Authority
US
United States
Prior art keywords
post
implant
cavity treatment
biopsy cavity
biopsy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/850,032
Inventor
Ary Chernomorsky
James Vetter
Simon Chernomorsky
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rubicor Medical Inc
Encapsule Medical LLC
Original Assignee
Rubicor Medical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rubicor Medical Inc filed Critical Rubicor Medical Inc
Priority to US11/850,032 priority Critical patent/US20070299339A1/en
Publication of US20070299339A1 publication Critical patent/US20070299339A1/en
Assigned to HOLOGIC, INC. reassignment HOLOGIC, INC. SECURITY AGREEMENT Assignors: RUBICOR MEDICAL, INC.
Assigned to RUBICOR MEDICAL, LLC reassignment RUBICOR MEDICAL, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: RM LIQUIDATING F/K/A RUBICOR MEDICAL, INC.
Assigned to ENCAPSULE MEDICAL, LLC reassignment ENCAPSULE MEDICAL, LLC MERGER (SEE DOCUMENT FOR DETAILS). Assignors: RUBICOR MEDICAL, LLC
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M31/00Devices for introducing or retaining media, e.g. remedies, in cavities of the body
    • A61M31/005Devices for introducing or retaining media, e.g. remedies, in cavities of the body for contrast media
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/04X-ray contrast preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/146Porous materials, e.g. foams or sponges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/18Materials at least partially X-ray or laser opaque
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/0057Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/0057Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
    • A61B2017/00646Type of implements
    • A61B2017/00654Type of implements entirely comprised between the two sides of the opening
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers
    • A61B2090/3904Markers, e.g. radio-opaque or breast lesions markers specially adapted for marking specified tissue
    • A61B2090/3908Soft tissue, e.g. breast tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers
    • A61B2090/3987Applicators for implanting markers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers

Definitions

  • the present invention relates to post-biopsy cavity treatment methods and implants. More particularly, the present inventions relates to post-biopsy cavity treatment implants inserted into cavities formed in soft tissue that may be created during a biopsy or therapeutic excisional procedure.
  • Breast biopsies are routinely performed in the United States following a detection of abnormalities discovered through mammographic visualization, manual palpation or ultrasound examination.
  • mammographic visualization There are a number of traditional methods to obtain breast biopsy tissue samples, including surgical excisional biopsies and stereotactic and ultrasound guided needle breast biopsies.
  • Recently, methodologies have emerged that are based upon percutaneous minimally invasive large intact tissue sample collection. The use of these devices results in a unique cavity connected to the skin by a narrow neck.
  • post-biopsy biopsy cavities left by these procedures may both offer and require different post procedural treatments, as compared to the cavities left by needle, core biopsy procedures or open surgical procedures, due to the different nature, size and shape of the cavity created by conventional biopsy devices, as well as the narrow connection to the skin characterized by percutaneous approaches.
  • biopsy site markers and identifiers have been developed, ranging from metal clips to pellets and sponges placed during or right after the biopsy procedure.
  • these markers contain radiopaque and/or echogenic articles and include features such as metal clips and air or gas bubbles incorporated in a biodegradable matrix.
  • the present invention is a method for mapping a lymphatic system following a cavity generating procedure.
  • the method may include a step of providing a post-biopsy cavity treatment implant, the implant including a collagenous matrix having a non-uniform cross-linking density that is configured to cause the implant to swell non-uniformly when placed within an aqueous environment.
  • the implant may include a dye or a pigment therein.
  • the provided post-biopsy cavity treatment implant may then be implanted into the cavity and the cavity with the post-biopsy cavity treatment implant implanted therein may then be closed.
  • the method may then include a step of causing the dye/pigment to be released from the implant and to propagate through the lymphatic system. The propagated dye/pigment may then be visualized in the lymphatic system using a selected visualization mode.
  • the provided implant may include a reservoir disposed within the collagenous matrix, the reservoir containing a volume of the dye/pigment and the causing step may include a step of rupturing the reservoir—or otherwise causing the reservoir to leak to release the dye/pigment by, for example, squeezing the implanted post-biopsy cavity treatment implant.
  • the causing step includes a step of waiting for a predetermined period of time during which the implant degrades within the cavity and releases the dye/pigment.
  • the dye(s) and/or pigment(s) may be loaded within the collagenous matrix of the implant.
  • the visualizing mode may include ultrasound, x-ray, magnetic resonance imaging, elastography, microwave and/or the unaided eye, for example.
  • FIG. 1 shows an exemplary large intact specimen percutaneous biopsy device in operation.
  • FIG. 2 shows further aspects of the exemplary large intact specimen percutaneous biopsy device of FIG. 1 in operation.
  • FIG. 3 shows further aspects of the exemplary large intact specimen percutaneous biopsy device of FIG. 1 in operation.
  • FIG. 4 shows still further aspects of the exemplary large intact specimen percutaneous biopsy device of FIG. 1 in operation.
  • FIG. 5 shows further aspects of the exemplary large intact specimen percutaneous biopsy device of FIG. 1 in operation.
  • FIG. 6A shows further aspects of the exemplary large intact specimen percutaneous biopsy device of FIG. 1 in operation, and illustrates the creation of a cavity within the soft tissue from which the excised specimen was taken.
  • FIG. 6B is a cross sectional view of the post treatment cavity of FIG. 6A , taken along cross-sectional line II′.
  • FIG. 7 shows further aspects of the exemplary large intact specimen percutaneous biopsy device of FIG. 1 in operation, and further illustrates the creation of a cavity within the soft tissue from which the specimen was taken, with the aforementioned narrow neck or access path connecting the cavity to the skin.
  • FIG. 8 shows an exemplary delivery device for a post-biopsy cavity treatment implant, according to an embodiment of the present invention.
  • FIG. 9 shows the delivery device of FIG. 8 in operation, delivering a post-biopsy cavity treatment implant according to an embodiment of the present invention within the cavity of FIG. 7 .
  • FIG. 10A shows the cavity of FIG. 7 , after the implantation of the post-biopsy cavity treatment implant shown in FIGS. 8 and 9 , with the percutaneous incision closed.
  • FIG. 10B shows the cavity of FIG. 7 , after the implantation of the post-biopsy cavity treatment implant shown in FIGS. 8 and 9 in another orientation, with the percutaneous incision closed.
  • FIG. 10C shows the cavity of FIG. 7 , after the implantation of a post-biopsy cavity treatment implant according to another embodiment of the present invention, with the percutaneous incision closed.
  • FIG. 11 shows a post-biopsy cavity treatment implant having a predetermined pore architecture, according to an embodiment of the present invention.
  • FIG. 12 shows another post-biopsy cavity treatment implant having another predetermined pore architecture, according to another embodiment of the present invention.
  • FIG. 13A shows a post-biopsy cavity treatment implant that includes a plurality of fibers, according to another embodiment of the present invention.
  • FIG. 13B shows a cross-section of a post-biopsy cavity treatment implant, according to another embodiment of the present invention.
  • FIG. 13C shows a portion of another post-biopsy cavity treatment implant, according to a further embodiment of the present invention.
  • FIG. 13D shows another post-biopsy cavity treatment implant, according to still another embodiment of the present invention.
  • FIG. 13E shows another post-biopsy cavity treatment implant, according to still another embodiment of the present invention.
  • FIG. 14A shows a post-biopsy cavity treatment implant that includes a plurality of fibers having predetermined pore architectures, according to another embodiment of the present invention.
  • FIG. 14B shows a front view of a post-biopsy cavity treatment implant, according to another embodiment of the present invention.
  • FIG. 14C shows a portion of another post-biopsy cavity treatment implant, according to a further embodiment of the present invention.
  • FIG. 14D illustrates the stacked structure of a post-biopsy cavity treatment implant, according to a further embodiment of the present invention.
  • FIG. 14E illustrates the stacked structure of another post-biopsy cavity treatment implant, according to a further embodiment of the present invention.
  • FIG. 14F illustrates the stacked structure of a post-biopsy cavity treatment implant, according to a further embodiment of the present invention.
  • FIG. 14G illustrates the stacked structure of another post-biopsy cavity treatment implant, according to a further embodiment of the present invention.
  • FIG. 15A shows a post-biopsy cavity treatment implant that includes a radiopaque and/or echogenic member around which one or more fibers are wound, according to another embodiment of the present invention.
  • FIG. 15B shows a post-biopsy cavity treatment implant that includes a core portion surrounded by an outer shell portion, each of the core and shell portions having a predetermine core architecture, according to another embodiment of the present invention.
  • FIG. 15C is a cross-sectional representation of the implant of FIG. 15B , taken along cross-sectional line II-II′.
  • FIG. 15D shows a post-biopsy cavity treatment implant that includes a core portion having a first predetermine core architecture surrounded by an outer shell portion formed by a plurality of wound collagenous fibers having a second predetermined pore architecture, according to another embodiment of the present invention.
  • FIG. 15E shows a post-biopsy cavity treatment implant that includes a core portion having a first predetermine core architecture surrounded by an outer shell portion formed by a plurality of collagenous fibers having a second predetermined pore architecture, according to another embodiment of the present invention.
  • FIG. 15F is a cross-sectional view of the embodiment of FIG. 15D , taken along cross-sectional line I-I′.
  • FIG. 16 is a photomicrograph of a collagen matrix having a predetermined pore architecture with post-biopsy cavity treatment implants according to embodiments of the present invention may be constructed.
  • FIG. 17 is a photomicrograph of a collagen matrix having another predetermined pore architecture with post-biopsy cavity treatment implants according to embodiments of the present invention may be constructed.
  • FIG. 18 is a photomicrograph of a collagen matrix having still another predetermined pore architecture with post-biopsy cavity treatment implants according to embodiments of the present invention may be constructed.
  • FIG. 19 is a photomicrograph of a collagen matrix having a still further predetermined pore architecture with post-biopsy cavity treatment implants according to embodiments of the present invention may be constructed.
  • FIG. 20 is a photomicrograph of a collagen matrix having yet another predetermined pore architecture with post-biopsy cavity treatment implants according to embodiments of the present invention may be constructed.
  • FIG. 21 combination of photomicrographs of collagen matrices illustrating the formation of a stacked laminate structure including a first layer having a first predetermined pore architecture and a second layer having a second predetermined pore structure, according to an embodiment of the present invention.
  • FIG. 22 is a combination of photomicrographs of collagen matrices that collectively illustrate a post-biopsy cavity treatment implant having a predetermined pore density gradient and/or predetermined graduated cross-linking gradient, according to a further embodiment of the present invention.
  • FIG. 23 is a combination of photomicrographs of collagen matrices that collectively illustrate a post-biopsy cavity treatment implant according to another embodiment of the present invention.
  • FIGS. 1-7 show aspects of a percutaneous method for cutting, collecting and isolating a tissue specimen and the subsequent creation of a cavity within which embodiments of the present inventions may be implanted.
  • the excisional device shown in FIGS. 1-7 is described in commonly assigned U.S. Pat. No. 6,022,362 and in commonly assigned and co-pending application Ser. No. 10/189,277, filed Jul. 3, 2002, which patent and application are hereby incorporated herein by reference in their entireties.
  • embodiments of the present invention are described relative to a cavity created by the excisional device shown in FIGS. 1-7 , it is to be understood that the present inventions are not to be limited thereby. Indeed, embodiments of the present invention may be advantageously utilized to treat cavities of various shapes and sizes created by other devices, including devices that obtain tissue specimen through coring or ablation techniques, for example.
  • the excisional device 100 is introduced into a mass of tissue 110 through the skin 102 , with the integrated cut and collect assembly 112 thereof in a retracted position.
  • the device 100 is then advanced such that the assembly 112 is adjacent to the target lesion 108 .
  • the assembly 112 may then be energized and expanded as shown in FIG. 2 by acting upon the actuator 118 .
  • the assembly 112 is RF energized and expanded, it cuts the tissue through which it travels.
  • the excisional device 100 may then be rotated, while the assembly 112 remains energized, causing the leading edge thereof to cut through the tissue, preferably with clean margins.
  • the expanded integrated cut and collect assembly 112 deploys the membrane 114 and the cut specimen 108 is collected in the open bag formed by the close-ended deployed flexible membrane 114 .
  • the rotation of the device 100 may then be continued as needed, preferably under ultrasonic guidance.
  • the assembly 112 while still energized, is retracted to capture, encapsulate and isolate the specimen 108 within the flexible membrane 114 .
  • the specimen 108 may then be recovered by retracting the device 100 through the retraction path 127 , stretching it as necessary.
  • FIG. 7 shows a fully retracted device 100 , containing a collected and isolated specimen 108 .
  • a void or cavity 126 is created where the tissue specimen 108 used to be. Cavities as shown at 126 may require different post procedural treatments, as compared to procedures such as needle biopsies due to the different nature, size and shape created by the biopsy device. As shown in FIGS. 6A and 6B , the exemplary cavity 126 is characterized by a relatively narrow access path 127 that emerges into a larger cavity chamber 128 formed by the extension and rotation of the cut and collect assembly 112 during the above-described procedure. After the device 100 is withdrawn from the patient as shown in FIG. 7 , portions of the cavity 126 and/or access path 127 may settle and collapse somewhat, as the interior tissue walls defining the cavity 126 are no longer supported by the tissue previously occupying that space.
  • Treating the post-biopsy cavity 126 is desirable for a variety of reasons.
  • One such reason is to accommodate the unique size and shape of the cavity 126 created by the device 100 . It is desirable to influence and/or promote the healing process of the cavity, and to do so in a predictable manner.
  • One aspect of influencing the healing process of the cavity 126 is promoting the growth of new connective tissue within the cavity 126 in a predictable manner. Indeed, it is desirable to influence and promote both tissue ingrowth within the cavity and to influence the formation of hematomas and seromas.
  • Another reason for treating the post-biopsy cavity 126 is to modify it in such a manner as to render it recognizable immediately and preferably long after the procedure that created the cavity 126 .
  • the cavity 126 left untreated, may be visible under ultrasound. However, that may not be the case and it is believed to be desirable to at least partially fill the cavity 126 with a cavity treatment implant that will render the cavity 126 clearly visible under various imaging modalities, including modalities such as ultrasound, x-ray, magnetic resonance imaging, elastography, microwave and the unaided eye, for example. Such visibility may be due to the structure of a cavity treatment implant or devices implanted within the cavity and/or a recognizable pattern of tissue ingrowth caused or influenced by the continuing or past presence of post-biopsy cavity treatment implants disclosed herein.
  • inventions of the implantable post-biopsy cavity treatment implant of the present invention include hemostasis, and the ability to deliver one or more therapeutic agents to the patient at the post-biopsy cavity treatment implant site such as, for example, lido/epi, Non-Steroidal Anti-Inflammatory Drugs (NSAIDS), tissue growth factors, anti-neoplastic medications (to name a few) or combinations of the above and/or others.
  • Filling the cavity 126 may have other benefits, including cosmetic. Indeed, filling the cavity and promoting a smooth, gradual, recognizable and orderly tissue ingrowth pattern may prevent dimpling, skin depressions and the like sometimes associated with the removal of a large intact specimen during the biopsy procedure.
  • Embodiments of the present invention may also find utility in augmentation or reconstructive procedures for the breast or other soft tissue.
  • the post-biopsy cavity treatment implant may have a size and a shape that at least partially fills the cavity.
  • the present post-biopsy cavity treatment implant after insertion, may have a characteristic shape that is readily perceptible and recognizable through various modalities, including, for example, ultrasound, x-ray or magnetic resonance imaging.
  • the shape of the present post-biopsy cavity treatment implant may also influence the manner in which tissue growths therein.
  • embodiments of the present post-biopsy cavity treatment implant should be shaped and dimensioned so as to uniquely accommodate the size and shape of the cavity 126 created by the device 100 of FIGS. 1-7 .
  • embodiments of the present invention may be readily sized and shaped to specifically accommodate cavities of any shape and size created by other devices and/or biopsy or therapeutic surgical procedures.
  • the present invention may include an implantable post-biopsy cavity treatment implant having one or more of the structures, characteristic and properties described herein.
  • the implantable post-biopsy cavity treatment implant 802 in a pre-implanted state, may be loaded into an introducer, an illustrative example of which is shown at reference numeral 804 .
  • the introducer 804 may then be inserted into the tissue 110 through the access path 127 and at least partially into the cavity chamber 128 of the cavity 126 .
  • the post-biopsy cavity treatment implant 802 may then be delivered to the cavity 126 and thereafter be left in place and the introducer 804 withdrawn.
  • the pre-implanted state of the post-biopsy cavity treatment implant 802 is preferably in a state in which the post-biopsy cavity treatment implant occupies its minimum volume.
  • the pre-implanted state of the post-biopsy cavity treatment implant 802 is a lyophilized (e.g., dehydrated) state and the post-biopsy cavity treatment implant may be configured to swell when placed within aqueous environment such as the cavity 126 .
  • the post-biopsy cavity treatment implant 802 may define a proximal portion 806 that is closest to the access path 127 and a distal portion 808 that is relatively further away from the access path 127 than is the proximal portion 806 .
  • FIG. 9 shows the present post-biopsy cavity treatment implant 802 immediately after implantation in tissue (i.e., still in a state in which it occupies its minimum volume)
  • FIG. 10A shows the state of the present post-biopsy cavity treatment implant 802 a short period of time after implantation.
  • the post-biopsy cavity treatment implant 802 is no longer in its pre-implanted state.
  • the post-biopsy cavity treatment implant 802 having been placed in an aqueous environment (such as the patient's tissue), begins to swell.
  • the post-cavity treatment implant 802 may be configured to swell in a uniform manner.
  • the surgeon may inject fluids after placing the device with the intent to “wet” the present post-cavity treatment implant.
  • Substances such as saline, fibrin solution or other catalyst or activator may be used for that purpose.
  • the activator or swelling fluid could be injected preferentially at the proximal portion 806 or selectively at points in the post-cavity treatment implant to cause it to secure itself in position inside the cavity 126 .
  • an integral vial may be crushed by the surgeon to release the activating fluid (for example, an aqueous solution, dye/pigment) in the area of the proximal portion 806 for example, thus causing rapid swelling of that region.
  • the introducer 804 may define an internal lumen 811 over its length and may include a fluid injection port 812 at the proximal end of the device. Fluids such as the aforementioned saline or fibrin may then be introduced into the cavity 126 through the fluid injection port 812 and the internal lumen 811 to cause the rapid swelling of the implant or for any other reason. Delivering such fluids can be especially useful if the field within the cavity is relatively dry as can occur in the ideal case.
  • the post-biopsy cavity treatment implant 802 may be configured to swell non-uniformly. Such non-uniform swelling rates may be advantageous in insuring that the post-biopsy cavity treatment implant 802 stays where it is placed during the implantation procedure.
  • the post-biopsy cavity treatment implant 802 is structured such that the rate at which the proximal portion 806 swells faster than the rate at which the distal portion 808 swells.
  • the proximal portion 806 swells faster than the distal portion 808 , thereby serving to maintain the post-biopsy cavity treatment implant 802 within the cavity chamber 128 of the cavity 126 .
  • the distal portion 808 may be configured to be relatively more cross-linked than the proximal portion 806 thereof, resulting in the proximal portion 806 swelling more and/or faster than the distal portion 808 .
  • the proximal portion 806 of the post-biopsy cavity treatment implant 802 swells, it preferably swells from a shape in which it is easily implantable through the access path 127 to a shape and size wherein at least the proximal portion 806 thereof no longer fits through the access path 127 .
  • the surgeon may retract the introducer 804 from the cavity 126 , close the initial incision and be confident that the post-biopsy cavity treatment implant 802 has remain in its intended position, squarely within the cavity chamber 128 of the cavity 126 , and has not migrated back into the access path 127 .
  • the post-biopsy cavity treatment implant 802 may alternatively be structured such that its distal 808 portion swells faster than its proximal portion 806 such as shown in FIG. 10B , such that both the proximal and distal portions 8 f the post-biopsy cavity treatment implant swell relatively faster than the portion thereof between the proximal and distal portions or such that the proximal and distal portions 852 , 856 of the implant 850 swell relatively slower than a middle portion 854 , as shown in FIG. 10C .
  • the post-biopsy cavity treatment implant 802 may not have well defined proximal and distal portions and the post-biopsy cavity treatment implant 802 may be structured such that one portion thereof swells at a different rate than another portion thereof, for the purpose outlined above or for different purposes altogether—such as cavity shaping, for example.
  • the post-biopsy cavity treatment implant 802 may be formed from a tightly rolled up sheet of swellable material.
  • the post-biopsy cavity treatment implant 802 may be formed of stacked layers of swellable material as shown in FIG. 10C .
  • the post-biopsy cavity treatment implant 802 may be formed as a single unitary and homogeneous mass of swellable material and molded or cut (stamped) into the desired shape.
  • Other embodiments include post-biopsy cavity treatment implants formed of or including fibers, fibrils and/or bundles of fibers and/or fibrils.
  • the present post-biopsy cavity treatment implant may include or be formed of biocompatible and water swellable material, such as collagen, for example.
  • the collagen molecule is rod-shaped triple helix and consists of a three polypeptide chains coiled about each other. Besides the central triple helical region of the collagen molecule, there are terminal peptides regions known as telopeptides. These telopeptides are non-helical and are subdivided into two groups; namely, amino terminals and carboxyl terminals. Intermolecular cross-linking between triple helical molecules of collagen occurs in the telopeptides regions.
  • Cross-linking may also occur within the central triple helical region of the collagen molecule, and is known as intramolecular cross-linking. It is the control of the formation and density of such cross-links that is responsible for some of the mechanical, physicochemical and biological properties of the embodiments of the present post-biopsy cavity treatment implant disclosed herein.
  • the embodiments of the present post-biopsy cavity treatment implant may be selectively biodegradable and/or bio-absorbable such that it degrades and/or is absorbed after its predetermined useful lifetime is over.
  • An effective way of controlling rate of biodegradation of embodiments of the present post-biopsy cavity treatment implant is to control and selectively vary the number and nature (e.g., intermolecular and/or intramolecular) of cross-links in the implant material. Control of the number and nature of such collagen cross-links may be achieved by chemical and/or physical means. Chemical means include the use of such bifunctional reagents such as aldehyde or cyanamide, for example.
  • Physical means include the application of energy through dehydrothermal processing, exposure to UV light and/or limited radiation, for example. Also, a combination of both the chemical and the physical means of controlling and manipulating crosslinks may be carried out. Aldehydes such as glutaraldehydes, for example, are effective reagents of collagenous biomaterials.
  • the control and manipulation of cross-links within the collagenous matrix of the present post-surgery cavity treatment implant may also be achieved, for example, through a combination of dehydrothermal cross-linking and exposure to cyanamide.
  • the present post-surgery cavity treatment implant may, through proper control of the cross-linking density within the collagen matrix thereof, be designed and implemented to remain long term in situ at the implant site within the cavity 126 .
  • Cross-linking density may be indirectly measured, for example, via measurement of the swelling ratio where identical dry and wetted samples are weighted and weight is compared.
  • the post-biopsy cavity treatment implant may be formed of or include other biomaterials such as, for example, bioresorbable poly(ester)s such as polylactide (PLA), polyglycolide (PGA), poly(lactide-co-glycolides) (PLGA), polyglyconate, polyanhydrides and their co-polymers, PEG, cellulose, gelatins, lipids, polysaccharides, starches and/or polyorthoesters and the like.
  • the present post-biopsy cavity treatment implant may be formed of or include collagen having a predetermined structure. Such predetermined structure refers not only to the overall shape of the implant, but also to the structure of its internal collagen matrix.
  • embodiments of the present invention include a macroporous cross-linked polymer matrix having a predetermined pore architecture.
  • a “pore”, as the term is used herein, includes a localized volume of the present post-biopsy cavity treatment implant that is free of the material from which the post-biopsy cavity treatment implant is formed. Pores may define a closed and bounded volume free of the material from which the post-biopsy cavity treatment implant is formed. Alternatively, pores may not be bounded and many pores may communicate with one another throughout the internal matrix of the present post-biopsy cavity treatment implant.
  • the pore architecture therefore, may include closed and bounded voids as well as unbounded and interconnecting pores and channels.
  • the internal structure of the post-biopsy cavity treatment implant defines pores whose dimensions, shape, orientation and density (and ranges and distributions thereof), among other possible characteristics are tailored so as to maximize the visibility of the resultant post-biopsy cavity treatment implant 802 under various modalities, notably ultrasound and x-ray, for example.
  • various modalities notably ultrasound and x-ray, for example.
  • embodiments of the present post-biopsy cavity treatment implant have an internal structure that defines internal voids without requiring such gas to be forced therethrough.
  • collagenous matrices of different pore architectures and porosities There are numerous methods and technologies available for the formation collagenous matrices of different pore architectures and porosities.
  • a recognizable pattern of post-biopsy cavity treatment implant material may be formed that may be readily visualized under, for example, ultrasound, x-ray, electrograph or microwave radiation. This recognizable pattern may then influence the pattern of tissue ingrowth within the cavity 126 , forming a porous scaffold on and within which tissue may infiltrate and grow. In turn, this pattern of tissue ingrowth may be readily recognizable under ultrasound and/or other imaging modalities discussed above long after the post-biopsy cavity treatment implant has been absorbed by the body or has degraded.
  • the post-biopsy cavity treatment implant may be formed of or include a collagen matrix having a predetermined pore architecture.
  • the post-biopsy cavity treatment implant may include one or more sponges of lyophilized collagen having a predetermined pore architecture.
  • Suitable collagen material for the post-biopsy cavity treatment implant may be available from, for example, DEVRO, Integra Life Sciences, Collagen Matrix and Kensey Nash, among others.
  • the present post-biopsy cavity treatment implant after implantation in the cavity 126 , swells on contact with various body fluids therein and substantially fills a predetermined portion or the entire biopsied cavity, and does so in predictable manner.
  • Such a post-biopsy cavity treatment implant may be configured to have a hemostatic functionality to stop bleeding within the cavity 126 through a biochemical interaction with blood (such as coagulation) and/or other bodily fluids.
  • the post-biopsy cavity treatment implant may, according to further embodiments, also be used to medically treat the patient. That is, the porous matrix of the present post-biopsy cavity treatment implant may be imbibed or loaded with a therapeutic agent to deliver the agent through elution at the cavity 126 .
  • a therapeutic agent may include, for example, an antibiotic agent, an analgesic agent, a chemotherapy agent, an anti-angiogenesis agent or a steroidal agent, to name but a few of the possibilities.
  • the post-biopsy cavity treatment implant 802 shown in FIGS. 9 and 10 may be formed of one or more thin sheets of collagen material having a predetermined (and controlled) pore architecture that has been rolled up into a cylinder shape. As the post-biopsy cavity treatment implant 802 swells with water from the cavity 126 , it may unroll partially or entirely, and at least partially fill the cavity 126 , including at least a portion of the cavity chamber 128 . Some of the access path 127 may also be filled as the post-biopsy cavity treatment implant 802 swells.
  • the post-biopsy cavity treatment implant 802 according to embodiments of the present invention, has a predetermined pore architecture or a combination of predetermined pore architectures, as will be described hereunder with reference to the drawings.
  • post-biopsy cavity treatment implant is formed of or contains collagen, it being understood that the embodiments of the present invention disclosed herein are not limited to collagen and that aspects of the present inventions may readily be applied to such non-collagen containing post-biopsy cavity treatment implants.
  • FIG. 11 shows a post-biopsy cavity treatment implant 1100 having predetermined pore architectures, according to an embodiment of the present invention.
  • the post-biopsy cavity treatment implant 1100 may include a first portion 1102 and a second portion 1104 .
  • the collagen matrix of the first portion 1102 of the device 1100 defines a plurality of pores 1106 having a first predetermined pore architecture and the collagen matrix of the second portion 1104 of the device 1100 defines a plurality of pores 1108 having a second predetermined pore architecture.
  • the dimensions of the layers or portions may be selected at will, preferably accounting for the dimensions of the cavity into which the device is to be inserted.
  • the first pore architecture features pores 1106 that are relatively small, have a narrow pore size distribution and are substantially randomly oriented.
  • the second pore architecture features pores 1108 that have a relatively larger size, have a wider pore size distribution, are predominantly oriented along the axis indicated by double-headed arrow 1110 and are less densely distributed than the pores 1106 of the first portion 1102 of the post-biopsy cavity treatment implant 1100 .
  • the interface 1103 Between the first and second portions 1102 and 1104 lays the interface 1103 .
  • the post-biopsy cavity treatment implant 1100 may be formed of a first collagen matrix having a first predetermined pore architecture and a second collagen matrix having a second pore architecture.
  • the two collagen matrices may each be formed from separate collagen dispersions, each of which may be caused to form pores having predetermined characteristics and may each be lyophilized and formed (e.g., molded, cut or stamped) into the desired shape (in the illustrative case of FIG. 11 , a substantially cylindrical shape).
  • the two collagen plugs formed thereby may then be stacked one on the other, re-wetted and again lyophilized through a lyophilization process in a specifically shaped mold (for example) to form the stacked laminate structure shown in FIG. 11 .
  • Other methods of making the post-biopsy cavity treatment implant 1100 may occur to those of skill in this art.
  • the post-biopsy cavity treatment implant 1100 is not formed of a rolled up sheet of material, as is the post-biopsy cavity treatment implant 802 in FIGS. 9 and 10 . Instead, the post-biopsy cavity treatment implant 1100 is formed of solid matrices of collagenous material.
  • the pore architecture of the first and second portions 1102 , 1104 may be varied at will by, for example, changing the porosity and/or cross-linking of the collagen chains, the pore density, the distribution of pore size, the orientation of the pores and the shape of the pores, to mention a few of the possible pore parameters.
  • one end of the post-biopsy cavity treatment implant 1100 may be caused to swell at a faster rate than the other end thereof. This is the case illustrated in FIG. 10 .
  • the cross-sectional characteristics of the post-biopsy cavity treatment implant 1100 may be changed.
  • the first portion 1102 may form a cylindrical inner core of collagenous material having a first predetermined pore architecture and the second portion 1104 may form a cylindrical outer shell around the inner core and may define a second pore architecture.
  • the outer surface of the post-biopsy cavity treatment implant 1100 may swell at a different rate (e.g., faster) than the rate at which the inner core swells.
  • the pore architectures may be chosen to maximize not only water absorption, but also to promote tissue ingrowth, to facilitate imaging and/or may be tailored to contain and release a pharmaceutical agent at a controllable rate and/or under predetermined conditions.
  • the inner core may be formed of or include a non-collagenous material (such as a polylactic or polyglycolic material, for example) and the outer shell may include a collagenous material, for example.
  • the outer shell may include a solid matrix of collagenous material having a predetermined pore architecture and/or may include wound fibers of collagenous material having a predetermined pore architecture, for example.
  • FIG. 12 shows a post-biopsy cavity treatment implant 1200 having predetermined pore architectures, according to another embodiment of the present invention.
  • the post-biopsy cavity treatment implant 1200 includes a first portion 1202 and a second portion 1204 , each of which has a predetermined pore architecture.
  • the present post-biopsy cavity treatment implants may have more than the two portions shown in both FIGS. 11 and 12 (or may define only a single portion).
  • the post-biopsy cavity treatment implant 1200 is shaped as a substantially rectangular sponge.
  • the first portion 1202 is stacked on the second portion 1204 .
  • the first and second portions may have pore architectures that facilitates tissue ingrowth, wound healing and are readily visualizable and/or recognizable under one or more imaging modalities.
  • the different pore architectures of post-biopsy cavity treatment implants according to embodiments of the present invention may also be chosen so as to maximize the visibility of the interface (such as reference numeral 1203 in FIG. 12 ) therebetween under the desired imaging modality such as, for example, ultrasound.
  • Post-biopsy cavity treatment implants need not be formed as a solid mass of collagen ( FIGS. 11, 12 ) or as a rolled up sheet of collagen ( FIGS. 9, 10 ).
  • FIGS. 13A, 13B and 13 C show various other configurations for the present implant.
  • embodiments of the present invention may include or be formed of a bundle of fibers or fibrils 1302 of (for example) collagenous material having one or more predetermined pore architectures. The pores defined within the collagen matrix of all or some of the fibers are not shown in FIGS. 13A-13C , but are nevertheless present.
  • Post-biopsy cavity treatment implants may also be formed from the bundle 1300 of FIG.
  • a post-biopsy cavity treatment implant may be formed of a volume of collagenous material having a predetermined pore architecture or a combination of several bounded volumes of collagenous materials, each with a predetermined pore architecture.
  • several sponges having the structure shown in FIG. 13C may be stacked onto each other to define a laminate structure having a layered, composite pore architecture.
  • FIG. 13D shows another embodiment of the present post-biopsy cavity treatment implant.
  • the implant 1306 includes a first portion 1308 and a second portion 1310 .
  • the first portion 1308 may include a solid matrix of collagenous material 1312 having a first predetermined pore architecture.
  • the second portion 1310 may include a plurality of fibers or fibrils 1314 .
  • the plurality of fibers may also be formed of or include collagenous material, and this collagenous material may have the same pore architecture as the first portion 1308 or a different pore architecture.
  • the plurality of fibers may be formed or include non-collagenous material, such as polylactic or polyglycolic acid, for example.
  • the second portion 1310 may swell at a faster rate than the first portion 1310 , as the constituent fibers 1314 thereof may be exposed to the aqueous environment of the cavity over their entire surface. This swelling rate differential between the first and second portions 1308 , 1310 may serve to further secure the implant 1306 within the cavity.
  • the physician may choose to introduce a volume of an aqueous solution, such as saline, into the cavity to speed the swelling of the implant 1306 .
  • the implant 1306 may be formed from a collagen dispersion in a mold configured to form the first portion 1308 and the second portion 1310 and lyophilized.
  • the fibers 1314 may be formed after lyophilization by cutting the implant 1306 so as to form the plurality of fibers 1314 .
  • the first and second portions 1308 , 1310 may be formed by superimposition of the first and second portions 1310 , 1310 , as discussed above. Other means of forming the first and second portions 1310 , 1312 may occur to those of skill in this art.
  • FIG. 13E shows another embodiment of the present post-biopsy cavity treatment implant.
  • the implant 1316 is similar to the embodiment of FIG. 13D , but for the addition of a third portion 1318 on another surface of the first portion 1308 .
  • the third portion 1318 may be formed as detailed above relative to second portion 1310 .
  • the pore architecture of the third portion 1318 may be the same as that of the first portion 1308 and the second portion 1310 , or may be different therefrom.
  • FIGS. 13D and 13E may be envisaged.
  • the embodiment of the implant 1316 of FIGS. 13E may be modified to include additional fibers or fibrils projecting from other surfaces of the first portion 1308 .
  • Other modifications may occur to those of skill in this art, and all such modifications are deemed to fall within the scope of the present invention.
  • FIG. 14A through 14E show other illustrative embodiments of the post-biopsy cavity treatment implants according to the present invention.
  • two or more bundles of fibers of collagenous material may be used in the formation of post-biopsy cavity treatment implants according to embodiments of the present invention.
  • the pores within the fibers of the first bundle 1402 may collectively define a first pore architecture
  • the pores within the fibers of a second bundle 1404 may collectively define a second pore architecture that is different from the first pore architecture.
  • the two bundles 1402 , 1404 may then be joined together, for example, by re-wetting the bundles, stacking them and lyophilizing the composite structure.
  • the length and diameter of the fibers may be selected and varied at will.
  • the fibers or bundles thereof may even be woven together.
  • post-biopsy cavity treatment implants may be formed.
  • the bundles of fibers may be arranged in a cylindrical shape, for example.
  • Such a cylindrical shape may include an inner core 1406 of fibers having a first pore architecture and an outer shell 1408 surrounding the inner core 1406 .
  • the outer shell may include fibers having a second pore architecture that is different from the pore architecture of the inner core 1406 .
  • FIG. 14C shows a detail of a post-biopsy cavity treatment implant having a first portion 1402 of fibers having a first pore architecture and a second portion 1404 having a second pore architecture, formed, for example, by cutting the composite structure of FIG. 14A at 1410 .
  • the fibers may be arranged such that the constituent fibers thereof closer to the center of the post-biopsy cavity treatment implant conform to a first pore architecture whereas the outside constituent fibers thereof conform to a second pore architecture that is different from the first pore architecture.
  • the post-biopsy cavity treatment implant may be have a layered laminate structure in which sheets formed of fibers (or woven fibers) having a first pore architecture are stacked onto sheets formed of fibers having a second pore architecture.
  • FIG. 14E many variations on this theme are possible.
  • the orientation of the fibers (and thus of the pores defined by the collagenous matrix thereof) may be varied.
  • the fibers of the first (top or outer, for example) portion of the post-biopsy cavity treatment implant may be oriented in a first direction
  • the fibers of the second (bottom or inner, for example) portion of the post-biopsy cavity treatment implant may be oriented along a direction that is different from the first direction (perpendicular thereto, for example). Imaging such post-biopsy cavity treatment implants within a cavity (such as shown at 126 in FIGS.
  • any fluids contained in the cavity 126 may appear substantially black, because the sound waves travel directly through such anechoic media, and a gradation of visible structures defined by comparatively hypoechoic layers or portions of the post-biopsy cavity treatment implant whose echogenicity is lower than the surrounding area and defined by hyperechoic layers or portions of the post-biopsy cavity treatment implant whose echogenicity is higher than the surrounding area.
  • FIGS. 14F and 14G illustrate the stacked structure of a post-biopsy cavity treatment implant, according to further embodiments of the present invention.
  • the embodiments of FIGS. 14F and 14G are similar to the embodiments shown in FIGS. 14D and 14E , but for the structure of the stacked sheets of collagenous material.
  • the stacked sheets of collagenous material are not formed of fibers or fibrils, but instead are each formed of a solid mass of collagenous material.
  • the sheets may have the same or different pore architectures.
  • the sheets of collagenous material may define pore architectures in which the predominant orientation of the pores is varied.
  • some of the sheets may have a pore architecture in which the pores are predominantly oriented along the y-axis ( FIG. 14F ) or along the x-axis ( FIG. 14G ), for example.
  • the constituent sheets of collagenous materials may define pore architectures in which other pore characteristics (size, shape, density, for example) are varied according to a predetermined pattern to influence tissue growth, visualization, etc.
  • the resulting laminate structure may be formed (e.g., molded or cut) in the desired shape of the implant. For example, the resulting laminate structure may then be rolled into a cylindrical shape, as suggested in FIGS. 8 and 9 , for example.
  • FIG. 15A shows a post-biopsy cavity treatment implant according to another embodiment of the present invention.
  • the post-biopsy cavity treatment implant 1500 includes an inner portion 1502 and an outer portion 1504 .
  • the inner portion 1502 may be radiopaque.
  • the inner portion 1502 may be or include a metallic element.
  • the metallic element may have a simple bar shape as shown, or may have a more complex shape such as, for example, a ring.
  • the inner portion 1502 may have other structures to, for example, adhere or hook onto the walls of the cavity 126 .
  • Wound around the inner portion 1502 is one or more fibers 1504 of swellable (collagenous, for example) material having one or more predetermined pore architectures and/or one or more controlled crosslinking densities.
  • the inner portion may be completely encased within the wound bundles of fibers or fibrils 1504 or may be only partially encased, as shown in FIG. 15A .
  • the inner element 1502 may have a predetermined echogenicity so as to be immediately recognizable under ultrasound.
  • the inner element 1502 may include an inner reservoir configured to contain a volume of therapeutic agent.
  • the inner element 1502 may be bioabsorbable and may be configured to release the contained pharmaceutical agent at a controlled rate.
  • a plurality of fibers 1504 (having the same or different pore architectures) may be wound about the inner element 1502 , the windings thereof being oriented at a given inclination or mutually different inclinations.
  • the embodiments of FIGS. 11 through 14 E may advantageously be provided with an inner element as shown at 1502 and/or as described immediately above.
  • FIG. 15B and the cross-sectional representation of FIG. 15C show another embodiment of the present post-biopsy cavity treatment implant.
  • the implant 1506 may include a first inner portion 1508 forming an inner core and a second outer portion 1510 forming an outer shell around the first inner portion 1508 . Both the first and second portions may be formed of or include a collagenous material.
  • the first portion 1508 may have a first predetermined pore architecture and the second portion 1510 may have a second predetermined pore architecture that is different from pore architecture of the first portion 1508 .
  • the first portion 1508 may have a greater pore density (number of pores per unit volume) than the second portion 1510 .
  • the pore architecture of the first portion 1508 is such that the collagenous material thereof defines pores that are both smaller and more densely packed than those defined by the collagenous material of the second portion 1510 .
  • FIGS. 15B and 15C show the implant 1506 as shaped as a right cylinder, the implant 1506 may be molded into most any shape, to accommodate most any cavity shape. In this manner, the implant may be configured such that its ultimate size and shape after implantation and swelling, substantially matches the size and shape of the cavity in which it is implanted. As shown in the cross-sectional representation of FIG.
  • the first portion 1508 of the implant 1506 may define an inner reservoir 1512 (created as a void within the first portion 1508 or as a discrete biocompatible reservoir or pouch having a predetermined biodegradability rate).
  • the inner reservoir 1512 may be pre-loaded with a dye/pigment and/or a pharmaceutical agent, as indicated at 1514 in FIG. 15C .
  • the pharmaceutical agent may be configured to slowly release into the cavity 126 as soon as the implant is inserted therein and/or may be configured to require a physician or a RN to pinch or squeeze (or otherwise breach) the implant 1506 to rupture the reservoir 1512 to release the dye/pigment and/or pharmaceutical agent 1514 contained therein.
  • FIG. 15D shows another embodiment of the implant according to the present invention.
  • the implant 1516 includes a first portion 1508 defining a first pore architecture, such as described above relative to FIGS. 15B and 15C .
  • the implant 1516 may include a reservoir 1512 , and the reservoir 1512 may contain a volume of dye/pigment and/or one or more therapeutic agents.
  • Wound around the first portion 1508 is one or more fibers or fibrils of collagenous material defining a second pore architecture that may be different from the first pore architecture.
  • the fibers or fibrils 1520 may completely encase the first portion 1508 or may do so only partially, as shown in FIG. 15D .
  • FIGS. 15E and 15F show another embodiment of the present invention.
  • the implant 1518 also includes a first portion 1508 defining a first pore architecture, as described relative to FIGS. 15B-15D above. At least partially surrounding the first portion 1508 are a plurality of fibers or fibrils 1508 that define a second pore architecture that may be different from the first pore architecture. Several layers of such fibers or fibrils 1508 may be disposed around the first portion 1508 , as suggested by the cross-sectional view of FIG. 15F .
  • the post-biopsy cavity treatment implants discussed herein may be rendered selectively radiopaque by the selective mechanical, chemical or physical incorporation of a radiopaque articles or particles into the collagenous matrix of embodiments of the present post-biopsy cavity treatment implant.
  • the post-biopsy cavity treatment implant may define pores having a predetermined and recognizable architecture and may incorporate some radiopaque compound or particles such as, for example barium sulfate or other commonly used radiopaque or radioactive materials.
  • Embodiments of the present invention may also include recognizable articles or substances within the collagenous matrix such as, for example, dyes and/or pigments (i.e., including both synthetic dyes and natural pigments).
  • the dyes/pigments may be incorporated within the collagenous dispersion that forms the constituent layers or portions of the embodiments of the post-biopsy cavity treatment implants disclosed herein.
  • Such dyes/pigments may form mapping compounds that may be gradually released into the body upon implantation of the present post-surgery cavity treatment implant and may form the basis of lymphatic mapping in the future. In this manner, lymphatic mapping may be carried out immediately after a biopsy procedure via elution of the mapping compound (e.g., dyes/pigments and/or radioactive agent) deposited into the collagenous matrix of the implant.
  • the mapping compound e.g., dyes/pigments and/or radioactive agent
  • this elution of mapping compound from the post-biopsy cavity treatment implant may enable the physician to skip the conventional step of injecting dyes/pigments into the patient, which dye/pigment injection step is conventionally carried out prior to a (sentinel) lymph node status evaluation procedure.
  • Embodiments of the post-biopsy cavity treatment implant according to present invention may include metal-less dyes/pigments as well radiopaque, radioactive or paramagnetic metal-containing dyes/pigments such as, for example, porphyrins and/or porphyrin derivatives (such as chlorophyll and/or chlorophyll derivatives, for example) that are bound to the collagenous matrix.
  • porphyrins and/or porphyrin derivatives may be tailored, for example, to enhance crosslinking and enhance wound healing and/or to control biodegradation, among other reasons.
  • a metal with paramagnetic properties such as Mn, for example
  • Impregnation of the present post-biopsy cavity treatment implant with porphyrins or porphyrin derivatives gives the post-biopsy cavity treatment implant a lymphatic mapping functionality due to the elution of the porphyrins or porphyrin derivatives into the surrounding tissue lymphatic drainage system.
  • the present post-biopsy cavity treatment implants may define or include an internal reservoir configured to contain a volume of a mapping compound and/or a beneficial therapeutic agent.
  • the physician or RN may pinch or squeeze the post-biopsy cavity treatment implant to express the mapping compound(s) and/or agent(s) into the surrounding tissue via lymphatic system to the sentinel node and other lymphatics.
  • the mapping compound and/or therapeutic agent may much more gradually find its way into the surrounding tissue through elution following a gradual biodegradation of the reservoir.
  • FIGS. 16-20 are photomicrographs of collagenous matrices having various pore architectures.
  • the porosity of the collagenous material is not formed by bubbles forced through the collagen dispersion prior to lyophilization thereof. Indeed, it is the structure of the collagen material itself that creates and defines the voids or pores (anechoic regions that appear black in the photomicrographs) within the material.
  • FIGS. 17 and 19 show relatively round pores having a wide size distribution
  • FIGS. 16 and 18 show a relatively denser collagen matrix having a smaller pore size distribution.
  • FIG. 20 shows an example of a collagenous matrix that is relatively less dense than, for example, the matrix shown in FIG. 18 .
  • FIGS. 21-23 are combinations of photomicrographs to illustrate further embodiments of the post-biopsy cavity treatment implants according to the present invention.
  • FIGS. 21 shows a post-biopsy cavity treatment implant 2100 that includes a first portion 2102 having a first pore architecture and, stacked thereon, a second portion 2104 having a second pore architecture.
  • the pore architecture of the first portion 2102 may be characterized as being relatively denser than the pore architecture of the second portion 2104 .
  • the post-biopsy cavity treatment implant 2100 may be structured such that the first portion has a higher porosity (is less dense) than that of the second portion 2104 .
  • the thicknesses of the first and second portions 2102 , 2104 may be varied at will. More than two layers of collagenous material may be provided.
  • FIG. 22 shows a post-biopsy cavity treatment implant 2200 having a graduated porosity profile.
  • a post-biopsy cavity treatment implant 2200 may be formed by lining up a plurality of collagen matrices having of progressively lower densities. That is, matrix 2002 has the highest density (amount of collagen per unit volume), matrix 2204 has the next highest density, matrix 2206 has the next to lowest porosity and matrix 2208 has the lowest porosity of the entire post-biopsy cavity treatment implant 2200 .
  • the degree to which each matrix is crosslinked may be varied and controlled. For example, each matrix may be crosslinked to a different degree through the use of, for example, gluteraldehyde.
  • matrix 2202 may be configured to have about 0.0085% gluteraldehyde
  • matrix 2204 may be configured with about 0.0075% gluteraldehyde
  • matrix 2206 may be configured with about 0.0065% gluteraldehyde
  • matrix 2208 may be configured with about 0.0055% gluteraldehyde, for example.
  • Other concentrations are possible, as are different reagents.
  • FIG. 23 shows a composite post-biopsy cavity treatment implant 2300 having a more complex structure, according to another embodiment of the present invention.
  • the post-biopsy cavity treatment implant 2300 includes three distinct collagen matrices, as shown at 2302 , 2306 and 2308 . As shown, each of the matrices 2302 , 2306 and 2308 has a unique pore architecture. Indeed, the portion of the post-biopsy cavity treatment implant referenced at numeral 2302 has a dense appearance, in which the pores have a high aspect ration and are aligned substantially parallel to the length of the device 2300 .
  • the post-biopsy cavity treatment implant 2300 also includes a second portion 2304 that includes two unique collagenous matrices referenced at 2306 and 2308 , each having different pore architectures.
  • matrix 2306 features a wide distribution of pore shapes and sizes
  • matrix 2308 features comparatively larger, generally rounder pores than those of matrix 2306 .
  • Each of these matrices 2302 , 2306 and 2308 may have a unique ultrasonic or x-ray signature and/or contain dyes/pigments or radiopaque materials or compounds.
  • the interfaces therebetween may also provide the physician with position and orientation information of the post-biopsy cavity treatment implant within the cavity.
  • interfaces between dissimilar materials between matrices 2302 and 2306 between matrices 2302 and 2308 as well as a distinct interface between adjoining matrices 2306 and 2308 , each of which may be readily visible under, for example, ultrasound.
  • the interfaces between the external surfaces of all three matrices 2302 , 2306 and 2308 with the surrounding tissue may also provide the physician with additional visual clues are to the position and orientation of the post-biopsy cavity treatment implant 2300 within the cavity in which it is implanted.
  • the interfaces described herein, as well as the different rates of swelling may be achieved through control of the porosity and/or as through the control of crosslinking.
  • a single post-biopsy cavity treatment implant may include constituent portions controlled to have a predetermined pore architecture and/or predetermined portions having controlled crosslinking.
  • irregular closed features within the drawings are intended to suggest pores of various configurations and densities, they are alternatively intended to indicate crosslinking. Therefore, illustrated differences in these irregular closed features between adjacent portions of an implant may also be interpreted as being differences in crosslinking densities between adjacent portions in the implant.
  • post-biopsy cavity treatment implants disclosed herein is not limited to filling post biopsy cavities. Indeed, the present post-biopsy cavity treatment implants also find utility in the correction of defects caused by poorly healed cavities, whatever their origin or cause.
  • the present post-biopsy cavity treatment implants may be placed in cavities in which it is desired that the collagen matrices be replaced, over time, with (human or animal) autogenous tissue.
  • the embodiments of the present invention may be used for the repair of tissue that has been damaged due to tissue removal, thereby providing a favorable tissue scaffold in which autogenous tissue may infiltrate and grow.
  • embodiments of the post-biopsy cavity treatment implants according to the present invention may serve to absorb exudates within the cavity, thereby further facilitating the healing process.
  • the post-biopsy cavity treatment implants disclosed herein may be configured to have a unique “signaturing” capability, in which a specific code appears under a given imaging modality.
  • the specific code may be formed within or molded into the structure of the collagen matrix or matrices.
  • a combination of the elements with different crosslinking patterns e.g., bundles of cylindrical fibers or layers of collagen sponges
  • the code may be embodied as a discrete echogenic or radiopaque constituent element of the implant.
  • the codes may confer information to the radiologist or treating physician when viewed under x-ray or ultrasound.
  • the post-biopsy cavity treatment implants having predetermined pore architectures and/or controlled crosslinking densities according to the disclosed embodiments may include a biocompatibly-sealed integrated circuit that may be interrogated electronically to convey information to the physician.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Vascular Medicine (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Prostheses (AREA)
  • Materials For Medical Uses (AREA)
  • Instructional Devices (AREA)

Abstract

A method for mapping a lymphatic system following a cavity generating procedure, may include a step of providing a post-biopsy cavity treatment implant, the implant including a collagenous matrix having a non-uniform cross-linking density that is configured to cause the implant to swell non-uniformly when placed within an aqueous environment, the implant including a dye or a pigment contained therein. The provided post-biopsy cavity treatment implant may then be implanted into the cavity and the cavity closed. The dye/pigment may then be caused to be released from the implant and to propagate through the lymphatic system. The propagated dye/pigment may then be visualized in the lymphatic system using a selected visualization mode.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This is a divisional of co-pending application Ser. No. 10/627,960, filed Jul. 25, 2003, which application is hereby incorporated herein by reference in its entirety.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to post-biopsy cavity treatment methods and implants. More particularly, the present inventions relates to post-biopsy cavity treatment implants inserted into cavities formed in soft tissue that may be created during a biopsy or therapeutic excisional procedure.
  • 2. Description of the Related Art
  • Breast biopsies are routinely performed in the United States following a detection of abnormalities discovered through mammographic visualization, manual palpation or ultrasound examination. There are a number of traditional methods to obtain breast biopsy tissue samples, including surgical excisional biopsies and stereotactic and ultrasound guided needle breast biopsies. Recently, methodologies have emerged that are based upon percutaneous minimally invasive large intact tissue sample collection. The use of these devices results in a unique cavity connected to the skin by a narrow neck. However, it is becoming apparent, therefore, that the post-biopsy biopsy cavities left by these procedures may both offer and require different post procedural treatments, as compared to the cavities left by needle, core biopsy procedures or open surgical procedures, due to the different nature, size and shape of the cavity created by conventional biopsy devices, as well as the narrow connection to the skin characterized by percutaneous approaches.
  • In certain cases, locating a previously biopsied area is highly desirable. Therefore, to mark the biopsy site, a variety of biopsy site markers and identifiers have been developed, ranging from metal clips to pellets and sponges placed during or right after the biopsy procedure. Usually, these markers contain radiopaque and/or echogenic articles and include features such as metal clips and air or gas bubbles incorporated in a biodegradable matrix. From the foregoing, it is apparent that improved methods and devices are needed to treat the cavities left by biopsy devices that are configured to retrieve large intact specimens.
  • SUMMARY OF THE INVENTION
  • The present invention, according to an embodiment thereof, is a method for mapping a lymphatic system following a cavity generating procedure. The method may include a step of providing a post-biopsy cavity treatment implant, the implant including a collagenous matrix having a non-uniform cross-linking density that is configured to cause the implant to swell non-uniformly when placed within an aqueous environment. The implant may include a dye or a pigment therein. The provided post-biopsy cavity treatment implant may then be implanted into the cavity and the cavity with the post-biopsy cavity treatment implant implanted therein may then be closed. The method may then include a step of causing the dye/pigment to be released from the implant and to propagate through the lymphatic system. The propagated dye/pigment may then be visualized in the lymphatic system using a selected visualization mode.
  • According to another embodiment of the present invention, the provided implant may include a reservoir disposed within the collagenous matrix, the reservoir containing a volume of the dye/pigment and the causing step may include a step of rupturing the reservoir—or otherwise causing the reservoir to leak to release the dye/pigment by, for example, squeezing the implanted post-biopsy cavity treatment implant. The causing step includes a step of waiting for a predetermined period of time during which the implant degrades within the cavity and releases the dye/pigment. The dye(s) and/or pigment(s) may be loaded within the collagenous matrix of the implant. For example, the visualizing mode may include ultrasound, x-ray, magnetic resonance imaging, elastography, microwave and/or the unaided eye, for example.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • For a further understanding of the objects and advantages of the present invention, reference should be made to the following detailed description, taken in conjunction with the accompanying figures, in which:
  • FIG. 1 shows an exemplary large intact specimen percutaneous biopsy device in operation.
  • FIG. 2 shows further aspects of the exemplary large intact specimen percutaneous biopsy device of FIG. 1 in operation.
  • FIG. 3 shows further aspects of the exemplary large intact specimen percutaneous biopsy device of FIG. 1 in operation.
  • FIG. 4 shows still further aspects of the exemplary large intact specimen percutaneous biopsy device of FIG. 1 in operation.
  • FIG. 5 shows further aspects of the exemplary large intact specimen percutaneous biopsy device of FIG. 1 in operation.
  • FIG. 6A shows further aspects of the exemplary large intact specimen percutaneous biopsy device of FIG. 1 in operation, and illustrates the creation of a cavity within the soft tissue from which the excised specimen was taken.
  • FIG. 6B is a cross sectional view of the post treatment cavity of FIG. 6A, taken along cross-sectional line II′.
  • FIG. 7 shows further aspects of the exemplary large intact specimen percutaneous biopsy device of FIG. 1 in operation, and further illustrates the creation of a cavity within the soft tissue from which the specimen was taken, with the aforementioned narrow neck or access path connecting the cavity to the skin.
  • FIG. 8 shows an exemplary delivery device for a post-biopsy cavity treatment implant, according to an embodiment of the present invention.
  • FIG. 9 shows the delivery device of FIG. 8 in operation, delivering a post-biopsy cavity treatment implant according to an embodiment of the present invention within the cavity of FIG. 7.
  • FIG. 10A shows the cavity of FIG. 7, after the implantation of the post-biopsy cavity treatment implant shown in FIGS. 8 and 9, with the percutaneous incision closed.
  • FIG. 10B shows the cavity of FIG. 7, after the implantation of the post-biopsy cavity treatment implant shown in FIGS. 8 and 9 in another orientation, with the percutaneous incision closed.
  • FIG. 10C shows the cavity of FIG. 7, after the implantation of a post-biopsy cavity treatment implant according to another embodiment of the present invention, with the percutaneous incision closed.
  • FIG. 11 shows a post-biopsy cavity treatment implant having a predetermined pore architecture, according to an embodiment of the present invention.
  • FIG. 12 shows another post-biopsy cavity treatment implant having another predetermined pore architecture, according to another embodiment of the present invention.
  • FIG. 13A shows a post-biopsy cavity treatment implant that includes a plurality of fibers, according to another embodiment of the present invention.
  • FIG. 13B shows a cross-section of a post-biopsy cavity treatment implant, according to another embodiment of the present invention.
  • FIG. 13C shows a portion of another post-biopsy cavity treatment implant, according to a further embodiment of the present invention.
  • FIG. 13D shows another post-biopsy cavity treatment implant, according to still another embodiment of the present invention.
  • FIG. 13E shows another post-biopsy cavity treatment implant, according to still another embodiment of the present invention.
  • FIG. 14A shows a post-biopsy cavity treatment implant that includes a plurality of fibers having predetermined pore architectures, according to another embodiment of the present invention.
  • FIG. 14B shows a front view of a post-biopsy cavity treatment implant, according to another embodiment of the present invention.
  • FIG. 14C shows a portion of another post-biopsy cavity treatment implant, according to a further embodiment of the present invention.
  • FIG. 14D illustrates the stacked structure of a post-biopsy cavity treatment implant, according to a further embodiment of the present invention.
  • FIG. 14E illustrates the stacked structure of another post-biopsy cavity treatment implant, according to a further embodiment of the present invention.
  • FIG. 14F illustrates the stacked structure of a post-biopsy cavity treatment implant, according to a further embodiment of the present invention.
  • FIG. 14G illustrates the stacked structure of another post-biopsy cavity treatment implant, according to a further embodiment of the present invention.
  • FIG. 15A shows a post-biopsy cavity treatment implant that includes a radiopaque and/or echogenic member around which one or more fibers are wound, according to another embodiment of the present invention.
  • FIG. 15B shows a post-biopsy cavity treatment implant that includes a core portion surrounded by an outer shell portion, each of the core and shell portions having a predetermine core architecture, according to another embodiment of the present invention.
  • FIG. 15C is a cross-sectional representation of the implant of FIG. 15B, taken along cross-sectional line II-II′.
  • FIG. 15D shows a post-biopsy cavity treatment implant that includes a core portion having a first predetermine core architecture surrounded by an outer shell portion formed by a plurality of wound collagenous fibers having a second predetermined pore architecture, according to another embodiment of the present invention.
  • FIG. 15E shows a post-biopsy cavity treatment implant that includes a core portion having a first predetermine core architecture surrounded by an outer shell portion formed by a plurality of collagenous fibers having a second predetermined pore architecture, according to another embodiment of the present invention.
  • FIG. 15F is a cross-sectional view of the embodiment of FIG. 15D, taken along cross-sectional line I-I′.
  • FIG. 16 is a photomicrograph of a collagen matrix having a predetermined pore architecture with post-biopsy cavity treatment implants according to embodiments of the present invention may be constructed.
  • FIG. 17 is a photomicrograph of a collagen matrix having another predetermined pore architecture with post-biopsy cavity treatment implants according to embodiments of the present invention may be constructed.
  • FIG. 18 is a photomicrograph of a collagen matrix having still another predetermined pore architecture with post-biopsy cavity treatment implants according to embodiments of the present invention may be constructed.
  • FIG. 19 is a photomicrograph of a collagen matrix having a still further predetermined pore architecture with post-biopsy cavity treatment implants according to embodiments of the present invention may be constructed.
  • FIG. 20 is a photomicrograph of a collagen matrix having yet another predetermined pore architecture with post-biopsy cavity treatment implants according to embodiments of the present invention may be constructed.
  • FIG. 21 combination of photomicrographs of collagen matrices illustrating the formation of a stacked laminate structure including a first layer having a first predetermined pore architecture and a second layer having a second predetermined pore structure, according to an embodiment of the present invention.
  • FIG. 22 is a combination of photomicrographs of collagen matrices that collectively illustrate a post-biopsy cavity treatment implant having a predetermined pore density gradient and/or predetermined graduated cross-linking gradient, according to a further embodiment of the present invention.
  • FIG. 23 is a combination of photomicrographs of collagen matrices that collectively illustrate a post-biopsy cavity treatment implant according to another embodiment of the present invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • FIGS. 1-7 show aspects of a percutaneous method for cutting, collecting and isolating a tissue specimen and the subsequent creation of a cavity within which embodiments of the present inventions may be implanted. The excisional device shown in FIGS. 1-7 is described in commonly assigned U.S. Pat. No. 6,022,362 and in commonly assigned and co-pending application Ser. No. 10/189,277, filed Jul. 3, 2002, which patent and application are hereby incorporated herein by reference in their entireties. Although embodiments of the present invention are described relative to a cavity created by the excisional device shown in FIGS. 1-7, it is to be understood that the present inventions are not to be limited thereby. Indeed, embodiments of the present invention may be advantageously utilized to treat cavities of various shapes and sizes created by other devices, including devices that obtain tissue specimen through coring or ablation techniques, for example.
  • As shown in FIG. 1, the excisional device 100 is introduced into a mass of tissue 110 through the skin 102, with the integrated cut and collect assembly 112 thereof in a retracted position. The device 100 is then advanced such that the assembly 112 is adjacent to the target lesion 108. The assembly 112 may then be energized and expanded as shown in FIG. 2 by acting upon the actuator 118. As the assembly 112 is RF energized and expanded, it cuts the tissue through which it travels. As shown at FIG. 3, the excisional device 100 may then be rotated, while the assembly 112 remains energized, causing the leading edge thereof to cut through the tissue, preferably with clean margins. The expanded integrated cut and collect assembly 112 deploys the membrane 114 and the cut specimen 108 is collected in the open bag formed by the close-ended deployed flexible membrane 114. As shown in FIGS. 4 and 5, the rotation of the device 100 may then be continued as needed, preferably under ultrasonic guidance. To fully sever the specimen 108 from the surrounding tissue 110, the assembly 112, while still energized, is retracted to capture, encapsulate and isolate the specimen 108 within the flexible membrane 114. As shown in FIG. 6A, the specimen 108 may then be recovered by retracting the device 100 through the retraction path 127, stretching it as necessary. FIG. 7 shows a fully retracted device 100, containing a collected and isolated specimen 108.
  • As shown in FIGS. 6A-7, after the procedure described above or after any procedure in which a substantial volume of tissue specimen is taken, a void or cavity 126 is created where the tissue specimen 108 used to be. Cavities as shown at 126 may require different post procedural treatments, as compared to procedures such as needle biopsies due to the different nature, size and shape created by the biopsy device. As shown in FIGS. 6A and 6B, the exemplary cavity 126 is characterized by a relatively narrow access path 127 that emerges into a larger cavity chamber 128 formed by the extension and rotation of the cut and collect assembly 112 during the above-described procedure. After the device 100 is withdrawn from the patient as shown in FIG. 7, portions of the cavity 126 and/or access path 127 may settle and collapse somewhat, as the interior tissue walls defining the cavity 126 are no longer supported by the tissue previously occupying that space.
  • Treating the post-biopsy cavity 126 is desirable for a variety of reasons. One such reason is to accommodate the unique size and shape of the cavity 126 created by the device 100. It is desirable to influence and/or promote the healing process of the cavity, and to do so in a predictable manner. One aspect of influencing the healing process of the cavity 126 is promoting the growth of new connective tissue within the cavity 126 in a predictable manner. Indeed, it is desirable to influence and promote both tissue ingrowth within the cavity and to influence the formation of hematomas and seromas. Another reason for treating the post-biopsy cavity 126 is to modify it in such a manner as to render it recognizable immediately and preferably long after the procedure that created the cavity 126. The cavity 126, left untreated, may be visible under ultrasound. However, that may not be the case and it is believed to be desirable to at least partially fill the cavity 126 with a cavity treatment implant that will render the cavity 126 clearly visible under various imaging modalities, including modalities such as ultrasound, x-ray, magnetic resonance imaging, elastography, microwave and the unaided eye, for example. Such visibility may be due to the structure of a cavity treatment implant or devices implanted within the cavity and/or a recognizable pattern of tissue ingrowth caused or influenced by the continuing or past presence of post-biopsy cavity treatment implants disclosed herein. Other desirable attributes of embodiments of the implantable post-biopsy cavity treatment implant of the present invention include hemostasis, and the ability to deliver one or more therapeutic agents to the patient at the post-biopsy cavity treatment implant site such as, for example, lido/epi, Non-Steroidal Anti-Inflammatory Drugs (NSAIDS), tissue growth factors, anti-neoplastic medications (to name a few) or combinations of the above and/or others. Filling the cavity 126 may have other benefits, including cosmetic. Indeed, filling the cavity and promoting a smooth, gradual, recognizable and orderly tissue ingrowth pattern may prevent dimpling, skin depressions and the like sometimes associated with the removal of a large intact specimen during the biopsy procedure. Embodiments of the present invention may also find utility in augmentation or reconstructive procedures for the breast or other soft tissue.
  • According to an embodiment of the present invention, the post-biopsy cavity treatment implant may have a size and a shape that at least partially fills the cavity. Advantageously, the present post-biopsy cavity treatment implant, after insertion, may have a characteristic shape that is readily perceptible and recognizable through various modalities, including, for example, ultrasound, x-ray or magnetic resonance imaging. The shape of the present post-biopsy cavity treatment implant may also influence the manner in which tissue growths therein. Preferably, embodiments of the present post-biopsy cavity treatment implant should be shaped and dimensioned so as to uniquely accommodate the size and shape of the cavity 126 created by the device 100 of FIGS. 1-7. However, embodiments of the present invention may be readily sized and shaped to specifically accommodate cavities of any shape and size created by other devices and/or biopsy or therapeutic surgical procedures.
  • According to an embodiment thereof, the present invention may include an implantable post-biopsy cavity treatment implant having one or more of the structures, characteristic and properties described herein. As shown in FIG. 8, the implantable post-biopsy cavity treatment implant 802, in a pre-implanted state, may be loaded into an introducer, an illustrative example of which is shown at reference numeral 804. The introducer 804 may then be inserted into the tissue 110 through the access path 127 and at least partially into the cavity chamber 128 of the cavity 126. The post-biopsy cavity treatment implant 802 may then be delivered to the cavity 126 and thereafter be left in place and the introducer 804 withdrawn. The pre-implanted state of the post-biopsy cavity treatment implant 802 is preferably in a state in which the post-biopsy cavity treatment implant occupies its minimum volume. According to an embodiment of the present invention, the pre-implanted state of the post-biopsy cavity treatment implant 802 is a lyophilized (e.g., dehydrated) state and the post-biopsy cavity treatment implant may be configured to swell when placed within aqueous environment such as the cavity 126. The post-biopsy cavity treatment implant 802 may define a proximal portion 806 that is closest to the access path 127 and a distal portion 808 that is relatively further away from the access path 127 than is the proximal portion 806.
  • Whereas FIG. 9 shows the present post-biopsy cavity treatment implant 802 immediately after implantation in tissue (i.e., still in a state in which it occupies its minimum volume), FIG. 10A shows the state of the present post-biopsy cavity treatment implant 802 a short period of time after implantation. As shown, the post-biopsy cavity treatment implant 802 is no longer in its pre-implanted state. Indeed, the post-biopsy cavity treatment implant 802, having been placed in an aqueous environment (such as the patient's tissue), begins to swell. According to an embodiment of the present invention, the post-cavity treatment implant 802 may be configured to swell in a uniform manner. In another example, the surgeon may inject fluids after placing the device with the intent to “wet” the present post-cavity treatment implant. Substances such as saline, fibrin solution or other catalyst or activator may be used for that purpose. The activator or swelling fluid could be injected preferentially at the proximal portion 806 or selectively at points in the post-cavity treatment implant to cause it to secure itself in position inside the cavity 126. Alternatively, as part of the insertion device (such as, for example, the introducer 804), an integral vial may be crushed by the surgeon to release the activating fluid (for example, an aqueous solution, dye/pigment) in the area of the proximal portion 806 for example, thus causing rapid swelling of that region. Alternately, the introducer 804 may define an internal lumen 811 over its length and may include a fluid injection port 812 at the proximal end of the device. Fluids such as the aforementioned saline or fibrin may then be introduced into the cavity 126 through the fluid injection port 812 and the internal lumen 811 to cause the rapid swelling of the implant or for any other reason. Delivering such fluids can be especially useful if the field within the cavity is relatively dry as can occur in the ideal case. According to another embodiment of the present invention, the post-biopsy cavity treatment implant 802 may be configured to swell non-uniformly. Such non-uniform swelling rates may be advantageous in insuring that the post-biopsy cavity treatment implant 802 stays where it is placed during the implantation procedure. In the embodiment shown in FIG. 10A, the post-biopsy cavity treatment implant 802 is structured such that the rate at which the proximal portion 806 swells faster than the rate at which the distal portion 808 swells. When implanted in a cavity 126 such as shown in FIGS. 6A, 6B, 7, 9 and 10, the proximal portion 806 swells faster than the distal portion 808, thereby serving to maintain the post-biopsy cavity treatment implant 802 within the cavity chamber 128 of the cavity 126. This may be achieved by, for example, controlling the cross-linking densities or creating a gradient of cross-linking densities within the post-biopsy cavity treatment implant 802, where certain regions of the post-biopsy cavity treatment implant 802 are controlled to have a greater cross-linking density than other regions, resulting in a non-uniform swelling pattern over the extent of the device 802. For example, the distal portion 808 may be configured to be relatively more cross-linked than the proximal portion 806 thereof, resulting in the proximal portion 806 swelling more and/or faster than the distal portion 808. As the proximal portion 806 of the post-biopsy cavity treatment implant 802 swells, it preferably swells from a shape in which it is easily implantable through the access path 127 to a shape and size wherein at least the proximal portion 806 thereof no longer fits through the access path 127. As this swelling occurs rapidly after the post-biopsy cavity treatment implant 802 comes into contact with the fluids present within the cavity 126, the surgeon may retract the introducer 804 from the cavity 126, close the initial incision and be confident that the post-biopsy cavity treatment implant 802 has remain in its intended position, squarely within the cavity chamber 128 of the cavity 126, and has not migrated back into the access path 127.
  • The post-biopsy cavity treatment implant 802 may alternatively be structured such that its distal 808 portion swells faster than its proximal portion 806 such as shown in FIG. 10B, such that both the proximal and distal portions 8 f the post-biopsy cavity treatment implant swell relatively faster than the portion thereof between the proximal and distal portions or such that the proximal and distal portions 852, 856 of the implant 850 swell relatively slower than a middle portion 854, as shown in FIG. 10C. Alternatively still, the post-biopsy cavity treatment implant 802 may not have well defined proximal and distal portions and the post-biopsy cavity treatment implant 802 may be structured such that one portion thereof swells at a different rate than another portion thereof, for the purpose outlined above or for different purposes altogether—such as cavity shaping, for example. As suggested in FIGS. 9 and 10A, 10B, the post-biopsy cavity treatment implant 802 may be formed from a tightly rolled up sheet of swellable material. Alternatively, the post-biopsy cavity treatment implant 802 may be formed of stacked layers of swellable material as shown in FIG. 10C. Alternatively still, the post-biopsy cavity treatment implant 802 may be formed as a single unitary and homogeneous mass of swellable material and molded or cut (stamped) into the desired shape. Other embodiments include post-biopsy cavity treatment implants formed of or including fibers, fibrils and/or bundles of fibers and/or fibrils.
  • According to embodiments of the present invention, the present post-biopsy cavity treatment implant may include or be formed of biocompatible and water swellable material, such as collagen, for example. The collagen molecule is rod-shaped triple helix and consists of a three polypeptide chains coiled about each other. Besides the central triple helical region of the collagen molecule, there are terminal peptides regions known as telopeptides. These telopeptides are non-helical and are subdivided into two groups; namely, amino terminals and carboxyl terminals. Intermolecular cross-linking between triple helical molecules of collagen occurs in the telopeptides regions. Cross-linking may also occur within the central triple helical region of the collagen molecule, and is known as intramolecular cross-linking. It is the control of the formation and density of such cross-links that is responsible for some of the mechanical, physicochemical and biological properties of the embodiments of the present post-biopsy cavity treatment implant disclosed herein.
  • The embodiments of the present post-biopsy cavity treatment implant may be selectively biodegradable and/or bio-absorbable such that it degrades and/or is absorbed after its predetermined useful lifetime is over. An effective way of controlling rate of biodegradation of embodiments of the present post-biopsy cavity treatment implant is to control and selectively vary the number and nature (e.g., intermolecular and/or intramolecular) of cross-links in the implant material. Control of the number and nature of such collagen cross-links may be achieved by chemical and/or physical means. Chemical means include the use of such bifunctional reagents such as aldehyde or cyanamide, for example. Physical means include the application of energy through dehydrothermal processing, exposure to UV light and/or limited radiation, for example. Also, a combination of both the chemical and the physical means of controlling and manipulating crosslinks may be carried out. Aldehydes such as glutaraldehydes, for example, are effective reagents of collagenous biomaterials. The control and manipulation of cross-links within the collagenous matrix of the present post-surgery cavity treatment implant may also be achieved, for example, through a combination of dehydrothermal cross-linking and exposure to cyanamide. For example, the present post-surgery cavity treatment implant may, through proper control of the cross-linking density within the collagen matrix thereof, be designed and implemented to remain long term in situ at the implant site within the cavity 126. Cross-linking density may be indirectly measured, for example, via measurement of the swelling ratio where identical dry and wetted samples are weighted and weight is compared.
  • According to further embodiments of the present invention, the post-biopsy cavity treatment implant may be formed of or include other biomaterials such as, for example, bioresorbable poly(ester)s such as polylactide (PLA), polyglycolide (PGA), poly(lactide-co-glycolides) (PLGA), polyglyconate, polyanhydrides and their co-polymers, PEG, cellulose, gelatins, lipids, polysaccharides, starches and/or polyorthoesters and the like. According to an embodiment of the present invention, the present post-biopsy cavity treatment implant may be formed of or include collagen having a predetermined structure. Such predetermined structure refers not only to the overall shape of the implant, but also to the structure of its internal collagen matrix. Indeed, embodiments of the present invention include a macroporous cross-linked polymer matrix having a predetermined pore architecture. A “pore”, as the term is used herein, includes a localized volume of the present post-biopsy cavity treatment implant that is free of the material from which the post-biopsy cavity treatment implant is formed. Pores may define a closed and bounded volume free of the material from which the post-biopsy cavity treatment implant is formed. Alternatively, pores may not be bounded and many pores may communicate with one another throughout the internal matrix of the present post-biopsy cavity treatment implant. The pore architecture, therefore, may include closed and bounded voids as well as unbounded and interconnecting pores and channels. The internal structure of the post-biopsy cavity treatment implant according to embodiment of the present invention defines pores whose dimensions, shape, orientation and density (and ranges and distributions thereof), among other possible characteristics are tailored so as to maximize the visibility of the resultant post-biopsy cavity treatment implant 802 under various modalities, notably ultrasound and x-ray, for example. Unlike polymeric matrices that contain bubbles of gas through a process in which gas is forced through dispersion in a hydrated state, embodiments of the present post-biopsy cavity treatment implant have an internal structure that defines internal voids without requiring such gas to be forced therethrough. There are numerous methods and technologies available for the formation collagenous matrices of different pore architectures and porosities. By tailoring the dimensions, shape, orientation and density of the pores of the present implant, a recognizable pattern of post-biopsy cavity treatment implant material may be formed that may be readily visualized under, for example, ultrasound, x-ray, electrograph or microwave radiation. This recognizable pattern may then influence the pattern of tissue ingrowth within the cavity 126, forming a porous scaffold on and within which tissue may infiltrate and grow. In turn, this pattern of tissue ingrowth may be readily recognizable under ultrasound and/or other imaging modalities discussed above long after the post-biopsy cavity treatment implant has been absorbed by the body or has degraded.
  • According to an embodiment of the present invention, the post-biopsy cavity treatment implant may be formed of or include a collagen matrix having a predetermined pore architecture. For example, the post-biopsy cavity treatment implant may include one or more sponges of lyophilized collagen having a predetermined pore architecture. Suitable collagen material for the post-biopsy cavity treatment implant may be available from, for example, DEVRO, Integra Life Sciences, Collagen Matrix and Kensey Nash, among others. The present post-biopsy cavity treatment implant, after implantation in the cavity 126, swells on contact with various body fluids therein and substantially fills a predetermined portion or the entire biopsied cavity, and does so in predictable manner.
  • Such a post-biopsy cavity treatment implant may be configured to have a hemostatic functionality to stop bleeding within the cavity 126 through a biochemical interaction with blood (such as coagulation) and/or other bodily fluids. The post-biopsy cavity treatment implant may, according to further embodiments, also be used to medically treat the patient. That is, the porous matrix of the present post-biopsy cavity treatment implant may be imbibed or loaded with a therapeutic agent to deliver the agent through elution at the cavity 126. Such a therapeutic agent may include, for example, an antibiotic agent, an analgesic agent, a chemotherapy agent, an anti-angiogenesis agent or a steroidal agent, to name but a few of the possibilities.
  • The post-biopsy cavity treatment implant 802 shown in FIGS. 9 and 10 may be formed of one or more thin sheets of collagen material having a predetermined (and controlled) pore architecture that has been rolled up into a cylinder shape. As the post-biopsy cavity treatment implant 802 swells with water from the cavity 126, it may unroll partially or entirely, and at least partially fill the cavity 126, including at least a portion of the cavity chamber 128. Some of the access path 127 may also be filled as the post-biopsy cavity treatment implant 802 swells. The post-biopsy cavity treatment implant 802, according to embodiments of the present invention, has a predetermined pore architecture or a combination of predetermined pore architectures, as will be described hereunder with reference to the drawings. The description of the figures below assumes that the post-biopsy cavity treatment implant is formed of or contains collagen, it being understood that the embodiments of the present invention disclosed herein are not limited to collagen and that aspects of the present inventions may readily be applied to such non-collagen containing post-biopsy cavity treatment implants.
  • FIG. 11 shows a post-biopsy cavity treatment implant 1100 having predetermined pore architectures, according to an embodiment of the present invention. As shown therein, the post-biopsy cavity treatment implant 1100 may include a first portion 1102 and a second portion 1104. The collagen matrix of the first portion 1102 of the device 1100 defines a plurality of pores 1106 having a first predetermined pore architecture and the collagen matrix of the second portion 1104 of the device 1100 defines a plurality of pores 1108 having a second predetermined pore architecture. The dimensions of the layers or portions may be selected at will, preferably accounting for the dimensions of the cavity into which the device is to be inserted. As shown, the first pore architecture features pores 1106 that are relatively small, have a narrow pore size distribution and are substantially randomly oriented. In contrast, the second pore architecture features pores 1108 that have a relatively larger size, have a wider pore size distribution, are predominantly oriented along the axis indicated by double-headed arrow 1110 and are less densely distributed than the pores 1106 of the first portion 1102 of the post-biopsy cavity treatment implant 1100. Between the first and second portions 1102 and 1104 lays the interface 1103. As shown, the post-biopsy cavity treatment implant 1100 may be formed of a first collagen matrix having a first predetermined pore architecture and a second collagen matrix having a second pore architecture. The two collagen matrices may each be formed from separate collagen dispersions, each of which may be caused to form pores having predetermined characteristics and may each be lyophilized and formed (e.g., molded, cut or stamped) into the desired shape (in the illustrative case of FIG. 11, a substantially cylindrical shape). The two collagen plugs formed thereby may then be stacked one on the other, re-wetted and again lyophilized through a lyophilization process in a specifically shaped mold (for example) to form the stacked laminate structure shown in FIG. 11. Other methods of making the post-biopsy cavity treatment implant 1100 may occur to those of skill in this art. Not only may the predetermined pore architectures of the first portion 1102 and of the second portion 1104 cause these portions to be visible under, for example, ultrasound, but the interface 1103 therebetween may also be visualizable and recognizable under, for example, ultrasound as the boundary between two regions having a pronounced density differential. As can be seen, the post-biopsy cavity treatment implant 1100 is not formed of a rolled up sheet of material, as is the post-biopsy cavity treatment implant 802 in FIGS. 9 and 10. Instead, the post-biopsy cavity treatment implant 1100 is formed of solid matrices of collagenous material. It is to be understood that the pore architecture of the first and second portions 1102, 1104 may be varied at will by, for example, changing the porosity and/or cross-linking of the collagen chains, the pore density, the distribution of pore size, the orientation of the pores and the shape of the pores, to mention a few of the possible pore parameters. By judiciously choosing the pore architectures of the first and second portions 1102, 1104, one end of the post-biopsy cavity treatment implant 1100 may be caused to swell at a faster rate than the other end thereof. This is the case illustrated in FIG. 10.
  • Moreover, the cross-sectional characteristics of the post-biopsy cavity treatment implant 1100 may be changed. For example, the first portion 1102 may form a cylindrical inner core of collagenous material having a first predetermined pore architecture and the second portion 1104 may form a cylindrical outer shell around the inner core and may define a second pore architecture. In this manner, the outer surface of the post-biopsy cavity treatment implant 1100 may swell at a different rate (e.g., faster) than the rate at which the inner core swells. Moreover, the pore architectures may be chosen to maximize not only water absorption, but also to promote tissue ingrowth, to facilitate imaging and/or may be tailored to contain and release a pharmaceutical agent at a controllable rate and/or under predetermined conditions. Alternatively, the inner core may be formed of or include a non-collagenous material (such as a polylactic or polyglycolic material, for example) and the outer shell may include a collagenous material, for example. The outer shell may include a solid matrix of collagenous material having a predetermined pore architecture and/or may include wound fibers of collagenous material having a predetermined pore architecture, for example.
  • FIG. 12 shows a post-biopsy cavity treatment implant 1200 having predetermined pore architectures, according to another embodiment of the present invention. As shown, the post-biopsy cavity treatment implant 1200 includes a first portion 1202 and a second portion 1204, each of which has a predetermined pore architecture. It is to be noted that the present post-biopsy cavity treatment implants may have more than the two portions shown in both FIGS. 11 and 12 (or may define only a single portion). As shown, the post-biopsy cavity treatment implant 1200 is shaped as a substantially rectangular sponge. The first portion 1202 is stacked on the second portion 1204. As with the embodiment shown in FIG. 11, the first and second portions may have pore architectures that facilitates tissue ingrowth, wound healing and are readily visualizable and/or recognizable under one or more imaging modalities. The different pore architectures of post-biopsy cavity treatment implants according to embodiments of the present invention may also be chosen so as to maximize the visibility of the interface (such as reference numeral 1203 in FIG. 12) therebetween under the desired imaging modality such as, for example, ultrasound.
  • Post-biopsy cavity treatment implants according to embodiments of the present invention need not be formed as a solid mass of collagen (FIGS. 11, 12) or as a rolled up sheet of collagen (FIGS. 9, 10). FIGS. 13A, 13B and 13C show various other configurations for the present implant. As shown therein, embodiments of the present invention may include or be formed of a bundle of fibers or fibrils 1302 of (for example) collagenous material having one or more predetermined pore architectures. The pores defined within the collagen matrix of all or some of the fibers are not shown in FIGS. 13A-13C, but are nevertheless present. The bundle 1300 of fibers shown in FIG. 13A may be used to form post-biopsy cavity treatment implants by, for example, forming them into a rope-like structure as shown in FIG. 13B. In the cross-sectional representation of FIG. 13B, the longitudinal axis of the individual constituent fibers is perpendicular to the plane of the page on which they are printed. Post-biopsy cavity treatment implants may also be formed from the bundle 1300 of FIG. 13A by cutting (at 1304, for example) the bundle 1300 into a plurality of sections at an angle that is (for example) perpendicular to the longitudinal axis of the fibers 1302, so as to form a post-biopsy cavity treatment implant whose constituent fibers run from one end of the post-biopsy cavity treatment implant to the other end thereof, as shown in the detail representation of FIG. 13C. According to an embodiment of the present invention, a post-biopsy cavity treatment implant may be formed of a volume of collagenous material having a predetermined pore architecture or a combination of several bounded volumes of collagenous materials, each with a predetermined pore architecture. For example, several sponges having the structure shown in FIG. 13C may be stacked onto each other to define a laminate structure having a layered, composite pore architecture.
  • FIG. 13D shows another embodiment of the present post-biopsy cavity treatment implant. As shown, the implant 1306 includes a first portion 1308 and a second portion 1310. According to an embodiment of the present invention, the first portion 1308 may include a solid matrix of collagenous material 1312 having a first predetermined pore architecture. The second portion 1310 may include a plurality of fibers or fibrils 1314. The plurality of fibers may also be formed of or include collagenous material, and this collagenous material may have the same pore architecture as the first portion 1308 or a different pore architecture. The plurality of fibers may be formed or include non-collagenous material, such as polylactic or polyglycolic acid, for example. In the case wherein the plurality of fibers 1314 are formed of a collagenous material, after implantation in an aqueous environment such as a cavity within a patient, the second portion 1310 may swell at a faster rate than the first portion 1310, as the constituent fibers 1314 thereof may be exposed to the aqueous environment of the cavity over their entire surface. This swelling rate differential between the first and second portions 1308, 1310 may serve to further secure the implant 1306 within the cavity. In the case wherein the cavity is relatively dry, the physician may choose to introduce a volume of an aqueous solution, such as saline, into the cavity to speed the swelling of the implant 1306. The implant 1306 may be formed from a collagen dispersion in a mold configured to form the first portion 1308 and the second portion 1310 and lyophilized. Alternatively, the fibers 1314 may be formed after lyophilization by cutting the implant 1306 so as to form the plurality of fibers 1314. Alternatively still, the first and second portions 1308, 1310 may be formed by superimposition of the first and second portions 1310, 1310, as discussed above. Other means of forming the first and second portions 1310, 1312 may occur to those of skill in this art.
  • FIG. 13E shows another embodiment of the present post-biopsy cavity treatment implant. As shown therein, the implant 1316 is similar to the embodiment of FIG. 13D, but for the addition of a third portion 1318 on another surface of the first portion 1308. The third portion 1318 may be formed as detailed above relative to second portion 1310. The pore architecture of the third portion 1318 may be the same as that of the first portion 1308 and the second portion 1310, or may be different therefrom. It should be noted that various modifications to the embodiments of FIGS. 13D and 13E may be envisaged. For example, the embodiment of the implant 1316 of FIGS. 13E may be modified to include additional fibers or fibrils projecting from other surfaces of the first portion 1308. Other modifications may occur to those of skill in this art, and all such modifications are deemed to fall within the scope of the present invention.
  • FIG. 14A through 14E show other illustrative embodiments of the post-biopsy cavity treatment implants according to the present invention. As shown in FIG. 14A, two or more bundles of fibers of collagenous material (for example—the fibers may be made of or include other materials) may be used in the formation of post-biopsy cavity treatment implants according to embodiments of the present invention. As shown, the pores within the fibers of the first bundle 1402 may collectively define a first pore architecture, whereas the pores within the fibers of a second bundle 1404 may collectively define a second pore architecture that is different from the first pore architecture. The two bundles 1402, 1404 may then be joined together, for example, by re-wetting the bundles, stacking them and lyophilizing the composite structure. The length and diameter of the fibers may be selected and varied at will. The fibers or bundles thereof may even be woven together. From this composite structure, post-biopsy cavity treatment implants may be formed. As shown in FIG. 14B, the bundles of fibers may be arranged in a cylindrical shape, for example. Such a cylindrical shape may include an inner core 1406 of fibers having a first pore architecture and an outer shell 1408 surrounding the inner core 1406. The outer shell may include fibers having a second pore architecture that is different from the pore architecture of the inner core 1406. FIG. 14C shows a detail of a post-biopsy cavity treatment implant having a first portion 1402 of fibers having a first pore architecture and a second portion 1404 having a second pore architecture, formed, for example, by cutting the composite structure of FIG. 14A at 1410. Alternatively still, the fibers may be arranged such that the constituent fibers thereof closer to the center of the post-biopsy cavity treatment implant conform to a first pore architecture whereas the outside constituent fibers thereof conform to a second pore architecture that is different from the first pore architecture. As shown in the exploded views of FIGS. 14D and 14E, the post-biopsy cavity treatment implant may be have a layered laminate structure in which sheets formed of fibers (or woven fibers) having a first pore architecture are stacked onto sheets formed of fibers having a second pore architecture. As shown in FIG. 14E, many variations on this theme are possible. As shown therein, the orientation of the fibers (and thus of the pores defined by the collagenous matrix thereof) may be varied. For instance, whereas the fibers of the first (top or outer, for example) portion of the post-biopsy cavity treatment implant may be oriented in a first direction, whereas the fibers of the second (bottom or inner, for example) portion of the post-biopsy cavity treatment implant may be oriented along a direction that is different from the first direction (perpendicular thereto, for example). Imaging such post-biopsy cavity treatment implants within a cavity (such as shown at 126 in FIGS. 9 and 10, for example) using sonography may yield an image in which any fluids contained in the cavity 126 may appear substantially black, because the sound waves travel directly through such anechoic media, and a gradation of visible structures defined by comparatively hypoechoic layers or portions of the post-biopsy cavity treatment implant whose echogenicity is lower than the surrounding area and defined by hyperechoic layers or portions of the post-biopsy cavity treatment implant whose echogenicity is higher than the surrounding area.
  • FIGS. 14F and 14G illustrate the stacked structure of a post-biopsy cavity treatment implant, according to further embodiments of the present invention. The embodiments of FIGS. 14F and 14G are similar to the embodiments shown in FIGS. 14D and 14E, but for the structure of the stacked sheets of collagenous material. In FIGS. 14F and 14G, the stacked sheets of collagenous material are not formed of fibers or fibrils, but instead are each formed of a solid mass of collagenous material. The sheets may have the same or different pore architectures. Moreover, the sheets of collagenous material may define pore architectures in which the predominant orientation of the pores is varied. For example, some of the sheets may have a pore architecture in which the pores are predominantly oriented along the y-axis (FIG. 14F) or along the x-axis (FIG. 14G), for example. Alternatively, the constituent sheets of collagenous materials may define pore architectures in which other pore characteristics (size, shape, density, for example) are varied according to a predetermined pattern to influence tissue growth, visualization, etc. The resulting laminate structure may be formed (e.g., molded or cut) in the desired shape of the implant. For example, the resulting laminate structure may then be rolled into a cylindrical shape, as suggested in FIGS. 8 and 9, for example.
  • FIG. 15A shows a post-biopsy cavity treatment implant according to another embodiment of the present invention. As shown, the post-biopsy cavity treatment implant 1500 includes an inner portion 1502 and an outer portion 1504. The inner portion 1502 may be radiopaque. For example, the inner portion 1502 may be or include a metallic element. The metallic element may have a simple bar shape as shown, or may have a more complex shape such as, for example, a ring. The inner portion 1502 may have other structures to, for example, adhere or hook onto the walls of the cavity 126. Wound around the inner portion 1502 is one or more fibers 1504 of swellable (collagenous, for example) material having one or more predetermined pore architectures and/or one or more controlled crosslinking densities. The inner portion may be completely encased within the wound bundles of fibers or fibrils 1504 or may be only partially encased, as shown in FIG. 15A. The inner element 1502, rather than being radiopaque, may have a predetermined echogenicity so as to be immediately recognizable under ultrasound. The inner element 1502, moreover, may include an inner reservoir configured to contain a volume of therapeutic agent. For example, the inner element 1502 may be bioabsorbable and may be configured to release the contained pharmaceutical agent at a controlled rate. A plurality of fibers 1504 (having the same or different pore architectures) may be wound about the inner element 1502, the windings thereof being oriented at a given inclination or mutually different inclinations. Moreover, the embodiments of FIGS. 11 through 14E may advantageously be provided with an inner element as shown at 1502 and/or as described immediately above.
  • FIG. 15B and the cross-sectional representation of FIG. 15C show another embodiment of the present post-biopsy cavity treatment implant. As shown therein, the implant 1506 may include a first inner portion 1508 forming an inner core and a second outer portion 1510 forming an outer shell around the first inner portion 1508. Both the first and second portions may be formed of or include a collagenous material. The first portion 1508 may have a first predetermined pore architecture and the second portion 1510 may have a second predetermined pore architecture that is different from pore architecture of the first portion 1508. For example, the first portion 1508 may have a greater pore density (number of pores per unit volume) than the second portion 1510. In the exemplary implant 1506 shown in FIGS. 15B and 15C, the pore architecture of the first portion 1508 is such that the collagenous material thereof defines pores that are both smaller and more densely packed than those defined by the collagenous material of the second portion 1510. Although FIGS. 15B and 15C show the implant 1506 as shaped as a right cylinder, the implant 1506 may be molded into most any shape, to accommodate most any cavity shape. In this manner, the implant may be configured such that its ultimate size and shape after implantation and swelling, substantially matches the size and shape of the cavity in which it is implanted. As shown in the cross-sectional representation of FIG. 15C, the first portion 1508 of the implant 1506 may define an inner reservoir 1512 (created as a void within the first portion 1508 or as a discrete biocompatible reservoir or pouch having a predetermined biodegradability rate). The inner reservoir 1512 may be pre-loaded with a dye/pigment and/or a pharmaceutical agent, as indicated at 1514 in FIG. 15C. The pharmaceutical agent may be configured to slowly release into the cavity 126 as soon as the implant is inserted therein and/or may be configured to require a physician or a RN to pinch or squeeze (or otherwise breach) the implant 1506 to rupture the reservoir 1512 to release the dye/pigment and/or pharmaceutical agent 1514 contained therein.
  • FIG. 15D shows another embodiment of the implant according to the present invention. The implant 1516 includes a first portion 1508 defining a first pore architecture, such as described above relative to FIGS. 15B and 15C. The implant 1516 may include a reservoir 1512, and the reservoir 1512 may contain a volume of dye/pigment and/or one or more therapeutic agents. Wound around the first portion 1508 is one or more fibers or fibrils of collagenous material defining a second pore architecture that may be different from the first pore architecture. The fibers or fibrils 1520 may completely encase the first portion 1508 or may do so only partially, as shown in FIG. 15D. FIGS. 15E and 15F show another embodiment of the present invention. In this embodiment, the implant 1518 also includes a first portion 1508 defining a first pore architecture, as described relative to FIGS. 15B-15D above. At least partially surrounding the first portion 1508 are a plurality of fibers or fibrils 1508 that define a second pore architecture that may be different from the first pore architecture. Several layers of such fibers or fibrils 1508 may be disposed around the first portion 1508, as suggested by the cross-sectional view of FIG. 15F.
  • Most any of the portions or layers of the embodiments disclosed herein may be configured to contain one or more dyes/pigments and/or pharmaceutical agents. The post-biopsy cavity treatment implants discussed herein may be rendered selectively radiopaque by the selective mechanical, chemical or physical incorporation of a radiopaque articles or particles into the collagenous matrix of embodiments of the present post-biopsy cavity treatment implant. For example, the post-biopsy cavity treatment implant may define pores having a predetermined and recognizable architecture and may incorporate some radiopaque compound or particles such as, for example barium sulfate or other commonly used radiopaque or radioactive materials.
  • Embodiments of the present invention may also include recognizable articles or substances within the collagenous matrix such as, for example, dyes and/or pigments (i.e., including both synthetic dyes and natural pigments). The dyes/pigments may be incorporated within the collagenous dispersion that forms the constituent layers or portions of the embodiments of the post-biopsy cavity treatment implants disclosed herein. Such dyes/pigments may form mapping compounds that may be gradually released into the body upon implantation of the present post-surgery cavity treatment implant and may form the basis of lymphatic mapping in the future. In this manner, lymphatic mapping may be carried out immediately after a biopsy procedure via elution of the mapping compound (e.g., dyes/pigments and/or radioactive agent) deposited into the collagenous matrix of the implant. In the case wherein a cancer is detected or suspected in the tissue specimen retrieved by the biopsy procedure, this elution of mapping compound from the post-biopsy cavity treatment implant may enable the physician to skip the conventional step of injecting dyes/pigments into the patient, which dye/pigment injection step is conventionally carried out prior to a (sentinel) lymph node status evaluation procedure. Embodiments of the post-biopsy cavity treatment implant according to present invention may include metal-less dyes/pigments as well radiopaque, radioactive or paramagnetic metal-containing dyes/pigments such as, for example, porphyrins and/or porphyrin derivatives (such as chlorophyll and/or chlorophyll derivatives, for example) that are bound to the collagenous matrix. The porphyrins and/or porphyrin derivatives may be tailored, for example, to enhance crosslinking and enhance wound healing and/or to control biodegradation, among other reasons. A metal with paramagnetic properties (such as Mn, for example) may be placed within the porphyrins or porphyrin derivatives so that another mode of recognition may be achieved. Impregnation of the present post-biopsy cavity treatment implant with porphyrins or porphyrin derivatives (for example, copper chlorophyllin) gives the post-biopsy cavity treatment implant a lymphatic mapping functionality due to the elution of the porphyrins or porphyrin derivatives into the surrounding tissue lymphatic drainage system.
  • According to other embodiments of the present invention, the present post-biopsy cavity treatment implants may define or include an internal reservoir configured to contain a volume of a mapping compound and/or a beneficial therapeutic agent. Following the biopsy procedure and the subsequent implantation of the present post-biopsy cavity treatment implant having a predetermined pore architecture into the biopsy cavity and following a histopathology report on the excised biopsy specimen, the physician or RN may pinch or squeeze the post-biopsy cavity treatment implant to express the mapping compound(s) and/or agent(s) into the surrounding tissue via lymphatic system to the sentinel node and other lymphatics. In the absence of such squeezing or pinching, the mapping compound and/or therapeutic agent may much more gradually find its way into the surrounding tissue through elution following a gradual biodegradation of the reservoir.
  • FIGS. 16-20 are photomicrographs of collagenous matrices having various pore architectures. As shown, the porosity of the collagenous material is not formed by bubbles forced through the collagen dispersion prior to lyophilization thereof. Indeed, it is the structure of the collagen material itself that creates and defines the voids or pores (anechoic regions that appear black in the photomicrographs) within the material. FIGS. 17 and 19 show relatively round pores having a wide size distribution, whereas FIGS. 16 and 18 show a relatively denser collagen matrix having a smaller pore size distribution. FIG. 20 shows an example of a collagenous matrix that is relatively less dense than, for example, the matrix shown in FIG. 18.
  • FIGS. 21-23 are combinations of photomicrographs to illustrate further embodiments of the post-biopsy cavity treatment implants according to the present invention. FIGS. 21 shows a post-biopsy cavity treatment implant 2100 that includes a first portion 2102 having a first pore architecture and, stacked thereon, a second portion 2104 having a second pore architecture. As shown, the pore architecture of the first portion 2102 may be characterized as being relatively denser than the pore architecture of the second portion 2104. Alternatively, the post-biopsy cavity treatment implant 2100 may be structured such that the first portion has a higher porosity (is less dense) than that of the second portion 2104. The thicknesses of the first and second portions 2102, 2104 may be varied at will. More than two layers of collagenous material may be provided.
  • FIG. 22 shows a post-biopsy cavity treatment implant 2200 having a graduated porosity profile. Such a post-biopsy cavity treatment implant 2200 may be formed by lining up a plurality of collagen matrices having of progressively lower densities. That is, matrix 2002 has the highest density (amount of collagen per unit volume), matrix 2204 has the next highest density, matrix 2206 has the next to lowest porosity and matrix 2208 has the lowest porosity of the entire post-biopsy cavity treatment implant 2200. Alternatively, the degree to which each matrix is crosslinked may be varied and controlled. For example, each matrix may be crosslinked to a different degree through the use of, for example, gluteraldehyde. For example, matrix 2202 may be configured to have about 0.0085% gluteraldehyde, matrix 2204 may be configured with about 0.0075% gluteraldehyde, matrix 2206 may be configured with about 0.0065% gluteraldehyde and matrix 2208 may be configured with about 0.0055% gluteraldehyde, for example. Other concentrations are possible, as are different reagents. After superimposing all four such matrices 2202, 2204, 2206 and 2208, a (in this case, piece-wise linear) cross-linking and/or porosity gradient may be achieved across the embodiment of the present post-biopsy cavity treatment implant shown at 2200.
  • FIG. 23 shows a composite post-biopsy cavity treatment implant 2300 having a more complex structure, according to another embodiment of the present invention. The post-biopsy cavity treatment implant 2300 includes three distinct collagen matrices, as shown at 2302, 2306 and 2308. As shown, each of the matrices 2302, 2306 and 2308 has a unique pore architecture. Indeed, the portion of the post-biopsy cavity treatment implant referenced at numeral 2302 has a dense appearance, in which the pores have a high aspect ration and are aligned substantially parallel to the length of the device 2300. The post-biopsy cavity treatment implant 2300 also includes a second portion 2304 that includes two unique collagenous matrices referenced at 2306 and 2308, each having different pore architectures. Whereas matrix 2306 features a wide distribution of pore shapes and sizes, matrix 2308 features comparatively larger, generally rounder pores than those of matrix 2306. Each of these matrices 2302, 2306 and 2308 may have a unique ultrasonic or x-ray signature and/or contain dyes/pigments or radiopaque materials or compounds. Moreover, not only may the various matrices be visible under selected modalities, the interfaces therebetween may also provide the physician with position and orientation information of the post-biopsy cavity treatment implant within the cavity. Indeed, there are distinct interfaces between dissimilar materials between matrices 2302 and 2306, between matrices 2302 and 2308 as well as a distinct interface between adjoining matrices 2306 and 2308, each of which may be readily visible under, for example, ultrasound. It is to be noted that the interfaces between the external surfaces of all three matrices 2302, 2306 and 2308 with the surrounding tissue may also provide the physician with additional visual clues are to the position and orientation of the post-biopsy cavity treatment implant 2300 within the cavity in which it is implanted. The interfaces described herein, as well as the different rates of swelling may be achieved through control of the porosity and/or as through the control of crosslinking. A single post-biopsy cavity treatment implant may include constituent portions controlled to have a predetermined pore architecture and/or predetermined portions having controlled crosslinking. Although the irregular closed features within the drawings are intended to suggest pores of various configurations and densities, they are alternatively intended to indicate crosslinking. Therefore, illustrated differences in these irregular closed features between adjacent portions of an implant may also be interpreted as being differences in crosslinking densities between adjacent portions in the implant.
  • Use of the post-biopsy cavity treatment implants disclosed herein is not limited to filling post biopsy cavities. Indeed, the present post-biopsy cavity treatment implants also find utility in the correction of defects caused by poorly healed cavities, whatever their origin or cause. The present post-biopsy cavity treatment implants may be placed in cavities in which it is desired that the collagen matrices be replaced, over time, with (human or animal) autogenous tissue. Hence, the embodiments of the present invention may be used for the repair of tissue that has been damaged due to tissue removal, thereby providing a favorable tissue scaffold in which autogenous tissue may infiltrate and grow. In addition, embodiments of the post-biopsy cavity treatment implants according to the present invention may serve to absorb exudates within the cavity, thereby further facilitating the healing process.
  • While the foregoing detailed description has described preferred embodiments of the present invention, it is to be understood that the above description is illustrative only and not limiting of the disclosed invention. For example, the post-biopsy cavity treatment implants disclosed herein may be configured to have a unique “signaturing” capability, in which a specific code appears under a given imaging modality. The specific code may be formed within or molded into the structure of the collagen matrix or matrices. For example, a combination of the elements with different crosslinking patterns (e.g., bundles of cylindrical fibers or layers of collagen sponges) may be used for both pattern recognition and predictable filling of the post biopsy procedure cavity. Alternatively, the code may be embodied as a discrete echogenic or radiopaque constituent element of the implant. The codes may confer information to the radiologist or treating physician when viewed under x-ray or ultrasound. Alternatively still, the post-biopsy cavity treatment implants having predetermined pore architectures and/or controlled crosslinking densities according to the disclosed embodiments may include a biocompatibly-sealed integrated circuit that may be interrogated electronically to convey information to the physician. Those of skill in this art may recognize other alternative embodiments and all such alternative embodiments are deemed to fall within the scope of the present invention.

Claims (6)

1. A method for mapping a lymphatic system following a cavity generating procedure, comprising:
providing a post-biopsy cavity treatment implant, the implant including a collagenous matrix having a non-uniform cross-linking density that is configured to cause the implant to swell non-uniformly when placed within an aqueous environment, the implant including a dye or a pigment contained therein;
implanting the provided post-biopsy cavity treatment implant into the cavity;
closing the cavity with the post-biopsy cavity treatment implant implanted therein;
causing the dye/pigment to be released from the implant and to propagate through the lymphatic system, and
visualizing the propagated dye/pigment in the lymphatic system using a selected visualization mode.
2. The method of claim 1, wherein the implant in the providing step includes a reservoir disposed within the collagenous matrix, the reservoir containing a volume of the dye/pigment and wherein the causing step includes a step of rupturing the reservoir to release the dye/pigment.
3. The method of claim 2, wherein the rupturing step includes a step of squeezing the implanted post-biopsy cavity treatment implant.
4. The method of claim 1, wherein the causing step includes a step of waiting for a predetermined period of time during which the implant degrades within the cavity and releases the dye/pigment.
5. The method of claim 1, wherein the at least one of dye and pigment is loaded within the collagenous matrix of the implant.
6. The method of claim 1, wherein visualizing mode in the visualizing step includes at least one of ultrasound, x-ray, magnetic resonance imaging, elastography, microwave and the unaided eye.
US11/850,032 2003-07-25 2007-09-05 Post-biopsy cavity treatment implants and methods Abandoned US20070299339A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/850,032 US20070299339A1 (en) 2003-07-25 2007-09-05 Post-biopsy cavity treatment implants and methods

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/627,960 US20050020899A1 (en) 2003-07-25 2003-07-25 Post-biopsy cavity treatmetn implants and methods
US11/850,032 US20070299339A1 (en) 2003-07-25 2007-09-05 Post-biopsy cavity treatment implants and methods

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/627,960 Division US20050020899A1 (en) 2003-07-25 2003-07-25 Post-biopsy cavity treatmetn implants and methods

Publications (1)

Publication Number Publication Date
US20070299339A1 true US20070299339A1 (en) 2007-12-27

Family

ID=34080706

Family Applications (5)

Application Number Title Priority Date Filing Date
US10/627,960 Abandoned US20050020899A1 (en) 2003-07-25 2003-07-25 Post-biopsy cavity treatmetn implants and methods
US11/850,032 Abandoned US20070299339A1 (en) 2003-07-25 2007-09-05 Post-biopsy cavity treatment implants and methods
US11/850,033 Abandoned US20070299541A1 (en) 2003-07-25 2007-09-05 Post-biopsy cavity treatment implants and methods
US13/564,713 Expired - Fee Related US8491630B2 (en) 2003-07-25 2012-08-01 Post-biopsy cavity treatment implants and methods
US13/928,310 Abandoned US20130289388A1 (en) 2003-07-25 2013-06-26 Post-biopsy cavity treatment implants and methods

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/627,960 Abandoned US20050020899A1 (en) 2003-07-25 2003-07-25 Post-biopsy cavity treatmetn implants and methods

Family Applications After (3)

Application Number Title Priority Date Filing Date
US11/850,033 Abandoned US20070299541A1 (en) 2003-07-25 2007-09-05 Post-biopsy cavity treatment implants and methods
US13/564,713 Expired - Fee Related US8491630B2 (en) 2003-07-25 2012-08-01 Post-biopsy cavity treatment implants and methods
US13/928,310 Abandoned US20130289388A1 (en) 2003-07-25 2013-06-26 Post-biopsy cavity treatment implants and methods

Country Status (6)

Country Link
US (5) US20050020899A1 (en)
EP (1) EP1651097A2 (en)
JP (1) JP2007516004A (en)
AU (1) AU2004264800A1 (en)
CA (1) CA2529697A1 (en)
WO (1) WO2005016112A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016094324A1 (en) * 2014-12-08 2016-06-16 Lomerson Robert B Method for preventing, treating, and curing cancer

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7537788B2 (en) * 2003-07-25 2009-05-26 Rubicor Medical, Inc. Post-biopsy cavity treatment implants and methods
WO2006119256A2 (en) * 2005-04-29 2006-11-09 Cook Biotech Incorporated Volumetric grafts for treatment of fistulae and related methods and systems
US7850710B2 (en) * 2006-05-23 2010-12-14 St. Jude Medical Puerto Rico Llc Puncture closure apparatuses, sealing plugs, and related methods
ES2602361T3 (en) * 2008-10-28 2017-02-20 Implite Ltd Breast reconstruction prosthesis
US11937777B2 (en) 2009-09-30 2024-03-26 Lohmann & Rauscher Gmbh & Co., Kg Vacuum sponge drainage
WO2011038949A1 (en) * 2009-09-30 2011-04-07 Gunnar Loske Vacuum sponge drainage
EP2670312B1 (en) 2011-02-04 2020-11-18 University of Massachusetts Negative pressure wound closure device
US9421132B2 (en) 2011-02-04 2016-08-23 University Of Massachusetts Negative pressure wound closure device
US9089312B2 (en) * 2011-03-10 2015-07-28 Western New England University Tamponade for biopsy surgery and method of operation
CN103619366B (en) 2011-04-15 2018-02-16 马萨诸塞州大学 Surgical cavity drainage and closed-system
CA2874396A1 (en) 2012-05-22 2014-01-23 Smith & Nephew Plc Wound closure device
AU2013264938B2 (en) 2012-05-22 2017-11-23 Smith & Nephew Plc Apparatuses and methods for wound therapy
AU2013264937B2 (en) 2012-05-24 2018-04-19 Smith & Nephew Inc. Devices and methods for treating and closing wounds with negative pressure
KR20150015532A (en) * 2012-05-30 2015-02-10 뉴욕 유니버시티 Tissue repair devices and scaffolds
RU2015104581A (en) 2012-07-16 2016-09-10 Смит Энд Нефью, Инк. DEVICE FOR CLOSING THE Wound USING NEGATIVE PRESSURE
EP2897662B1 (en) 2012-09-20 2020-05-06 Lohmann & Rauscher GmbH Vacuum treatment array and film for producing a vacuum treatment array
US11883246B2 (en) * 2012-11-21 2024-01-30 Trustees Of Boston University Tissue markers and uses thereof
US9486194B2 (en) * 2013-01-04 2016-11-08 St. Jude Medical Puerto Rico Llc Vascular closure device with improved side loading
KR20150138164A (en) 2013-01-30 2015-12-09 임플라이트 리미티드 Human implantable tissue expanders
RU2015142873A (en) 2013-03-13 2017-04-19 Смит Энд Нефью Инк. DEVICE AND SYSTEMS FOR CLOSING A Wound USING NEGATIVE PRESSURE, AND METHODS FOR APPLICATION IN TREATING A WAN USING NEGATIVE PRESSURE
WO2014140578A1 (en) 2013-03-14 2014-09-18 Smith & Nephew Plc Compressible wound fillers and systems and methods of use in treating wounds with negative pressure
AU2014340232B2 (en) 2013-10-21 2019-07-11 Smith & Nephew Inc. Negative pressure wound closure device
US10201642B2 (en) 2014-01-21 2019-02-12 Smith & Nephew Plc Collapsible dressing for negative pressure wound treatment
AU2016254119A1 (en) 2015-04-29 2017-10-05 Smith & Nephew Inc. Negative pressure wound closure device
US10575991B2 (en) 2015-12-15 2020-03-03 University Of Massachusetts Negative pressure wound closure devices and methods
US10814049B2 (en) 2015-12-15 2020-10-27 University Of Massachusetts Negative pressure wound closure devices and methods
US10537417B2 (en) * 2016-07-07 2020-01-21 Collagen Matrix, Inc. Density gradient biopolymeric matrix implants
WO2020124038A1 (en) 2018-12-13 2020-06-18 University Of Massachusetts Negative pressure wound closure devices and methods
US12083246B2 (en) 2019-02-08 2024-09-10 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Composite gels and methods of use thereof

Citations (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3902497A (en) * 1974-03-25 1975-09-02 American Cyanamid Co Body absorbable sponge and method of making
US3993072A (en) * 1974-08-28 1976-11-23 Alza Corporation Microporous drug delivery device
US4193813A (en) * 1976-09-07 1980-03-18 Medi-Coll, Inc. Method for making collagen sponge
US4466442A (en) * 1981-10-16 1984-08-21 Schering Aktiengesellschaft Carrier liquid solutions for the production of gas microbubbles, preparation thereof, and use thereof as contrast medium for ultrasonic diagnostics
US4619261A (en) * 1984-08-09 1986-10-28 Frederico Guerriero Hydrostatic pressure device for bleeding control through an inflatable, stitchable and retrievable balloon-net system
US5081997A (en) * 1989-03-09 1992-01-21 Vance Products Incorporated Echogenic devices, material and method
US5123414A (en) * 1989-12-22 1992-06-23 Unger Evan C Liposomes as contrast agents for ultrasonic imaging and methods for preparing the same
US5186922A (en) * 1985-03-15 1993-02-16 See/Shell Biotechnology, Inc. Use of biodegradable microspheres labeled with imaging energy constrast materials
US5195988A (en) * 1988-05-26 1993-03-23 Haaga John R Medical needle with removable sheath
US5281408A (en) * 1991-04-05 1994-01-25 Unger Evan C Low density microspheres and their use as contrast agents for computed tomography
US5302397A (en) * 1991-11-19 1994-04-12 Amsden Brian G Polymer-based drug delivery system
US5326350A (en) * 1992-05-11 1994-07-05 Li Shu Tung Soft tissue closure systems
US5334216A (en) * 1992-12-10 1994-08-02 Howmedica Inc. Hemostatic plug
US5334381A (en) * 1989-12-22 1994-08-02 Unger Evan C Liposomes as contrast agents for ultrasonic imaging and methods for preparing the same
US5376376A (en) * 1992-01-13 1994-12-27 Li; Shu-Tung Resorbable vascular wound dressings
US5383466A (en) * 1993-05-14 1995-01-24 Becton, Dickinson And Company Instrument having enhanced ultrasound visibility
US5478352A (en) * 1990-10-01 1995-12-26 Quinton Instrument Company Insertion assembly and method of inserting a vessel plug into the body of a patient
US5487392A (en) * 1993-11-15 1996-01-30 Haaga; John R. Biopxy system with hemostatic insert
US5510418A (en) * 1988-11-21 1996-04-23 Collagen Corporation Glycosaminoglycan-synthetic polymer conjugates
US5522840A (en) * 1992-11-23 1996-06-04 Krajicek; Milan Device for the non-surgical seal of the interstice in the wall of a vessel
US5676925A (en) * 1992-03-06 1997-10-14 Nycomed Imaging As Contrast agents comprising gas-containing or gas-generating polymer microparticles or microballoons
US5676146A (en) * 1996-09-13 1997-10-14 Osteotech, Inc. Surgical implant containing a resorbable radiopaque marker and method of locating such within a body
US5752974A (en) * 1995-12-18 1998-05-19 Collagen Corporation Injectable or implantable biomaterials for filling or blocking lumens and voids of the body
US5807581A (en) * 1994-02-09 1998-09-15 Collagen Corporation Collagen-based injectable drug delivery system and its use
US5856367A (en) * 1994-02-18 1999-01-05 Minnesota Mining And Manufacturing Company Biocompatible porous matrix of bioabsorbable material
US6068600A (en) * 1996-12-06 2000-05-30 Quadrant Healthcare (Uk) Limited Use of hollow microcapsules
US6068857A (en) * 1993-09-09 2000-05-30 Schering Aktiengesellchaft Microparticles containing active ingredients, agents containing these microparticles, their use for ultrasound-controlled release of active ingredients, as well as a process for their production
US6071301A (en) * 1998-05-01 2000-06-06 Sub Q., Inc. Device and method for facilitating hemostasis of a biopsy tract
US6090996A (en) * 1997-08-04 2000-07-18 Collagen Matrix, Inc. Implant matrix
US6106473A (en) * 1996-11-06 2000-08-22 Sts Biopolymers, Inc. Echogenic coatings
US6136293A (en) * 1990-04-02 2000-10-24 Bracco International B.V. Stable microbubbles suspensions containing saturated lamellar phospholipids
US6140452A (en) * 1994-05-06 2000-10-31 Advanced Bio Surfaces, Inc. Biomaterial for in situ tissue repair
US6161034A (en) * 1999-02-02 2000-12-12 Senorx, Inc. Methods and chemical preparations for time-limited marking of biopsy sites
US6183497B1 (en) * 1998-05-01 2001-02-06 Sub-Q, Inc. Absorbable sponge with contrasting agent
US6183496B1 (en) * 1998-11-02 2001-02-06 Datascope Investment Corp. Collapsible hemostatic plug
US6193951B1 (en) * 1997-04-30 2001-02-27 Point Biomedical Corporation Microparticles useful as ultrasonic contrast agents
US20010003791A1 (en) * 1999-02-02 2001-06-14 Heller Ehrman White & Mcauliffe Ultrasonic and x-ray detectable biopsy site marker and apparatus for applying it
US6264695B1 (en) * 1999-09-30 2001-07-24 Replication Medical, Inc. Spinal nucleus implant
US6270464B1 (en) * 1998-06-22 2001-08-07 Artemis Medical, Inc. Biopsy localization method and device
US6306154B1 (en) * 1997-06-18 2001-10-23 Bhk Holding Hemostatic system for body cavities
US20010044583A1 (en) * 1989-12-22 2001-11-22 Unger Evan C. Gas filled liposomes and their use as ultrasonic contrast agents
US6333029B1 (en) * 1999-06-30 2001-12-25 Ethicon, Inc. Porous tissue scaffoldings for the repair of regeneration of tissue
US20020019597A1 (en) * 1998-02-10 2002-02-14 Dubrul William R. Intraoperative tissue treatment methods
US20020022781A1 (en) * 1998-11-06 2002-02-21 Gregory Mclntire Products and methods for brachytherapy
US6354782B1 (en) * 1997-06-05 2002-03-12 Leonard D. Barry Container crane hoist and system
US20020035324A1 (en) * 1998-12-24 2002-03-21 Sirimanne D. Laksen Subcutaneous cavity marking device and method
US6371904B1 (en) * 1998-12-24 2002-04-16 Vivant Medical, Inc. Subcutaneous cavity marking device and method
US20020058960A1 (en) * 1998-04-08 2002-05-16 Hudson John Overton Hemostatic system for body cavities
US6394965B1 (en) * 2000-08-15 2002-05-28 Carbon Medical Technologies, Inc. Tissue marking using biocompatible microparticles
US20020077653A1 (en) * 1998-04-08 2002-06-20 Hudson John Overton Hemostatic system for body cavities
US6443898B1 (en) * 1989-12-22 2002-09-03 Imarx Pharmaceutical Corp. Therapeutic delivery systems
US20020151796A1 (en) * 2001-02-09 2002-10-17 Edouard Koulik Echogenic devices and methods of making and using such devices
US20020188196A1 (en) * 1999-02-02 2002-12-12 Burbank Fred H. Cavity-filling biopsy site markers
US20030004563A1 (en) * 2001-06-29 2003-01-02 Jackson Gregg A. Polymeric stent suitable for imaging by MRI and fluoroscopy
US20030013989A1 (en) * 2001-06-29 2003-01-16 Joseph Obermiller Porous sponge matrix medical devices and methods
US20030036697A1 (en) * 1999-08-13 2003-02-20 Ottoboni Thomas B. Hollow microspheres with controlled fragility for medical use
US6544496B1 (en) * 1983-12-21 2003-04-08 Amersham Health As Diagnostic and contrast agent
US20030095997A1 (en) * 2000-03-09 2003-05-22 Zbigniew Ruszczak Natural polymer-based material for use in human and veterinary medicine and method of manufacturing
US20030100830A1 (en) * 2001-11-27 2003-05-29 Sheng-Ping Zhong Implantable or insertable medical devices visible under magnetic resonance imaging

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR123F (en) * 1963-10-17 1900-01-01
US3948254A (en) * 1971-11-08 1976-04-06 Alza Corporation Novel drug delivery device
US4135935A (en) * 1973-09-17 1979-01-23 Ernst Leitz Wetzlar Gmbh Sintered composite material, a process of making same, and a method of using same
US4622952A (en) * 1983-01-13 1986-11-18 Gordon Robert T Cancer treatment method
US4861714A (en) * 1985-04-04 1989-08-29 Verax Corporation Weighted collagen microsponge for immobilizing bioactive material
AU2593192A (en) * 1992-09-14 1994-04-12 Oystein Fodstad Detection of specific target cells in specialized or mixed cell population and solutions containing mixed cell populations
US5388588A (en) * 1993-05-04 1995-02-14 Nabai; Hossein Biopsy wound closure device and method
AUPM897594A0 (en) * 1994-10-25 1994-11-17 Daratech Pty Ltd Controlled release container
US6309420B1 (en) * 1997-10-14 2001-10-30 Parallax Medical, Inc. Enhanced visibility materials for implantation in hard tissue
US6187329B1 (en) * 1997-12-23 2001-02-13 Board Of Regents Of The University Of Texas System Variable permeability bone implants, methods for their preparation and use
ATE248002T1 (en) * 1997-12-31 2003-09-15 Alza Corp SYSTEM FOR MONITORING AN OSMOTIC DRUG DELIVERY DEVICE
US20010045575A1 (en) * 1998-05-01 2001-11-29 Mark Ashby Device and method for facilitating hemostasis of a biopsy tract
US6315753B1 (en) * 1998-05-01 2001-11-13 Sub-Q, Inc. System and method for facilitating hemostasis of blood vessel punctures with absorbable sponge
US6673333B1 (en) * 2000-05-04 2004-01-06 Research Corporation Technologies, Inc. Functional MRI agents for cancer imaging
US20020062154A1 (en) * 2000-09-22 2002-05-23 Ayers Reed A. Non-uniform porosity tissue implant
US6709493B2 (en) * 2001-03-26 2004-03-23 Gore Enterprise Holdings, Inc. Device for reducing the presence of moisture within an enclosure containing a heat source
ATE294535T1 (en) * 2001-07-26 2005-05-15 Univ Oregon Health Sciences CLOSURE DEVICE FOR A VESSEL AND ATTACHMENT DEVICE

Patent Citations (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3902497A (en) * 1974-03-25 1975-09-02 American Cyanamid Co Body absorbable sponge and method of making
US3993072A (en) * 1974-08-28 1976-11-23 Alza Corporation Microporous drug delivery device
US4193813A (en) * 1976-09-07 1980-03-18 Medi-Coll, Inc. Method for making collagen sponge
US4466442A (en) * 1981-10-16 1984-08-21 Schering Aktiengesellschaft Carrier liquid solutions for the production of gas microbubbles, preparation thereof, and use thereof as contrast medium for ultrasonic diagnostics
US6544496B1 (en) * 1983-12-21 2003-04-08 Amersham Health As Diagnostic and contrast agent
US4619261A (en) * 1984-08-09 1986-10-28 Frederico Guerriero Hydrostatic pressure device for bleeding control through an inflatable, stitchable and retrievable balloon-net system
US5186922A (en) * 1985-03-15 1993-02-16 See/Shell Biotechnology, Inc. Use of biodegradable microspheres labeled with imaging energy constrast materials
US5195988A (en) * 1988-05-26 1993-03-23 Haaga John R Medical needle with removable sheath
US5510418A (en) * 1988-11-21 1996-04-23 Collagen Corporation Glycosaminoglycan-synthetic polymer conjugates
US5081997A (en) * 1989-03-09 1992-01-21 Vance Products Incorporated Echogenic devices, material and method
US5123414A (en) * 1989-12-22 1992-06-23 Unger Evan C Liposomes as contrast agents for ultrasonic imaging and methods for preparing the same
US20010044583A1 (en) * 1989-12-22 2001-11-22 Unger Evan C. Gas filled liposomes and their use as ultrasonic contrast agents
US5334381A (en) * 1989-12-22 1994-08-02 Unger Evan C Liposomes as contrast agents for ultrasonic imaging and methods for preparing the same
US6443898B1 (en) * 1989-12-22 2002-09-03 Imarx Pharmaceutical Corp. Therapeutic delivery systems
US6136293A (en) * 1990-04-02 2000-10-24 Bracco International B.V. Stable microbubbles suspensions containing saturated lamellar phospholipids
US5478352A (en) * 1990-10-01 1995-12-26 Quinton Instrument Company Insertion assembly and method of inserting a vessel plug into the body of a patient
US5547656B1 (en) * 1991-04-05 1999-07-20 Imarx Pharmaceutical Corp Low density microspheres and their use as contrast agents for computed tomography and in other applications
US5547656A (en) * 1991-04-05 1996-08-20 Imarx Pharmaceutical Corp. Low density microspheres and their use as contrast agents for computed tomography, and in other applications
US5281408A (en) * 1991-04-05 1994-01-25 Unger Evan C Low density microspheres and their use as contrast agents for computed tomography
US5302397A (en) * 1991-11-19 1994-04-12 Amsden Brian G Polymer-based drug delivery system
US5376376A (en) * 1992-01-13 1994-12-27 Li; Shu-Tung Resorbable vascular wound dressings
US5676925A (en) * 1992-03-06 1997-10-14 Nycomed Imaging As Contrast agents comprising gas-containing or gas-generating polymer microparticles or microballoons
US5571181A (en) * 1992-05-11 1996-11-05 Li; Shu-Tung Soft tissue closure systems
US5326350A (en) * 1992-05-11 1994-07-05 Li Shu Tung Soft tissue closure systems
US5522840A (en) * 1992-11-23 1996-06-04 Krajicek; Milan Device for the non-surgical seal of the interstice in the wall of a vessel
US5334216A (en) * 1992-12-10 1994-08-02 Howmedica Inc. Hemostatic plug
US5383466A (en) * 1993-05-14 1995-01-24 Becton, Dickinson And Company Instrument having enhanced ultrasound visibility
US6068857A (en) * 1993-09-09 2000-05-30 Schering Aktiengesellchaft Microparticles containing active ingredients, agents containing these microparticles, their use for ultrasound-controlled release of active ingredients, as well as a process for their production
US5487392A (en) * 1993-11-15 1996-01-30 Haaga; John R. Biopxy system with hemostatic insert
US5807581A (en) * 1994-02-09 1998-09-15 Collagen Corporation Collagen-based injectable drug delivery system and its use
US5856367A (en) * 1994-02-18 1999-01-05 Minnesota Mining And Manufacturing Company Biocompatible porous matrix of bioabsorbable material
US6140452A (en) * 1994-05-06 2000-10-31 Advanced Bio Surfaces, Inc. Biomaterial for in situ tissue repair
US5752974A (en) * 1995-12-18 1998-05-19 Collagen Corporation Injectable or implantable biomaterials for filling or blocking lumens and voids of the body
US5676146A (en) * 1996-09-13 1997-10-14 Osteotech, Inc. Surgical implant containing a resorbable radiopaque marker and method of locating such within a body
US5676146B1 (en) * 1996-09-13 2000-04-18 Osteotech Inc Surgical implant containing a resorbable radiopaque marker and method of locating such within a body
US6106473A (en) * 1996-11-06 2000-08-22 Sts Biopolymers, Inc. Echogenic coatings
US6068600A (en) * 1996-12-06 2000-05-30 Quadrant Healthcare (Uk) Limited Use of hollow microcapsules
US6193951B1 (en) * 1997-04-30 2001-02-27 Point Biomedical Corporation Microparticles useful as ultrasonic contrast agents
US6354782B1 (en) * 1997-06-05 2002-03-12 Leonard D. Barry Container crane hoist and system
US6306154B1 (en) * 1997-06-18 2001-10-23 Bhk Holding Hemostatic system for body cavities
US6090996A (en) * 1997-08-04 2000-07-18 Collagen Matrix, Inc. Implant matrix
US20020019597A1 (en) * 1998-02-10 2002-02-14 Dubrul William R. Intraoperative tissue treatment methods
US20020077653A1 (en) * 1998-04-08 2002-06-20 Hudson John Overton Hemostatic system for body cavities
US20020058960A1 (en) * 1998-04-08 2002-05-16 Hudson John Overton Hemostatic system for body cavities
US6071301A (en) * 1998-05-01 2000-06-06 Sub Q., Inc. Device and method for facilitating hemostasis of a biopsy tract
US6183497B1 (en) * 1998-05-01 2001-02-06 Sub-Q, Inc. Absorbable sponge with contrasting agent
US6270464B1 (en) * 1998-06-22 2001-08-07 Artemis Medical, Inc. Biopsy localization method and device
US6183496B1 (en) * 1998-11-02 2001-02-06 Datascope Investment Corp. Collapsible hemostatic plug
US20020022781A1 (en) * 1998-11-06 2002-02-21 Gregory Mclntire Products and methods for brachytherapy
US20020035324A1 (en) * 1998-12-24 2002-03-21 Sirimanne D. Laksen Subcutaneous cavity marking device and method
US6371904B1 (en) * 1998-12-24 2002-04-16 Vivant Medical, Inc. Subcutaneous cavity marking device and method
US20020107437A1 (en) * 1998-12-24 2002-08-08 Sirimanne D. Laksen Subcutaneous cavity marking device and method
US20020188196A1 (en) * 1999-02-02 2002-12-12 Burbank Fred H. Cavity-filling biopsy site markers
US20020038087A1 (en) * 1999-02-02 2002-03-28 Senorx, Inc. Imageable biopsy site marker
US6567689B2 (en) * 1999-02-02 2003-05-20 Senorx, Inc. Methods and chemical preparations for time-limited marking of biopsy sites
US6347241B2 (en) * 1999-02-02 2002-02-12 Senorx, Inc. Ultrasonic and x-ray detectable biopsy site marker and apparatus for applying it
US6161034A (en) * 1999-02-02 2000-12-12 Senorx, Inc. Methods and chemical preparations for time-limited marking of biopsy sites
US6427081B1 (en) * 1999-02-02 2002-07-30 Senorx, Inc. Methods and chemical preparations for time-limited marking of biopsy sites
US20010003791A1 (en) * 1999-02-02 2001-06-14 Heller Ehrman White & Mcauliffe Ultrasonic and x-ray detectable biopsy site marker and apparatus for applying it
US20020161298A1 (en) * 1999-02-02 2002-10-31 Senorx, Inc. Methods and chemical preparations for time-limited marking of biopsy sites
US6333029B1 (en) * 1999-06-30 2001-12-25 Ethicon, Inc. Porous tissue scaffoldings for the repair of regeneration of tissue
US20030036697A1 (en) * 1999-08-13 2003-02-20 Ottoboni Thomas B. Hollow microspheres with controlled fragility for medical use
US6264695B1 (en) * 1999-09-30 2001-07-24 Replication Medical, Inc. Spinal nucleus implant
US20030095997A1 (en) * 2000-03-09 2003-05-22 Zbigniew Ruszczak Natural polymer-based material for use in human and veterinary medicine and method of manufacturing
US20020082517A1 (en) * 2000-08-15 2002-06-27 Carbon Medical Technologies, Inc. Tissue marking using biocompatible microparticles
US6394965B1 (en) * 2000-08-15 2002-05-28 Carbon Medical Technologies, Inc. Tissue marking using biocompatible microparticles
US20020151796A1 (en) * 2001-02-09 2002-10-17 Edouard Koulik Echogenic devices and methods of making and using such devices
US20030004563A1 (en) * 2001-06-29 2003-01-02 Jackson Gregg A. Polymeric stent suitable for imaging by MRI and fluoroscopy
US20030013989A1 (en) * 2001-06-29 2003-01-16 Joseph Obermiller Porous sponge matrix medical devices and methods
US20030100830A1 (en) * 2001-11-27 2003-05-29 Sheng-Ping Zhong Implantable or insertable medical devices visible under magnetic resonance imaging

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016094324A1 (en) * 2014-12-08 2016-06-16 Lomerson Robert B Method for preventing, treating, and curing cancer

Also Published As

Publication number Publication date
US20130289388A1 (en) 2013-10-31
AU2004264800A2 (en) 2005-02-24
CA2529697A1 (en) 2005-02-24
EP1651097A2 (en) 2006-05-03
WO2005016112A3 (en) 2005-09-01
US20070299541A1 (en) 2007-12-27
WO2005016112A2 (en) 2005-02-24
US20120296207A1 (en) 2012-11-22
US20050020899A1 (en) 2005-01-27
AU2004264800A1 (en) 2005-02-24
JP2007516004A (en) 2007-06-21
US8491630B2 (en) 2013-07-23

Similar Documents

Publication Publication Date Title
US8491630B2 (en) Post-biopsy cavity treatment implants and methods
US8092779B2 (en) Post-biopsy cavity treatment implants and methods
US7744852B2 (en) Methods and systems for marking post biopsy cavity sites
US20240173097A1 (en) Biopsy site marker
EP2101670B1 (en) Biopsy marker with in situ-generated imaging properties
US6730042B2 (en) Biopsy localization method and device
US20020058882A1 (en) Biopsy localization method and device
AU5877200A (en) Absorbable sponge with contrasting agent

Legal Events

Date Code Title Description
AS Assignment

Owner name: HOLOGIC, INC., MASSACHUSETTS

Free format text: SECURITY AGREEMENT;ASSIGNOR:RUBICOR MEDICAL, INC.;REEL/FRAME:020845/0034

Effective date: 20080421

Owner name: HOLOGIC, INC.,MASSACHUSETTS

Free format text: SECURITY AGREEMENT;ASSIGNOR:RUBICOR MEDICAL, INC.;REEL/FRAME:020845/0034

Effective date: 20080421

AS Assignment

Owner name: RUBICOR MEDICAL, LLC,CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:RM LIQUIDATING F/K/A RUBICOR MEDICAL, INC.;REEL/FRAME:024358/0197

Effective date: 20100329

Owner name: RUBICOR MEDICAL, LLC, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:RM LIQUIDATING F/K/A RUBICOR MEDICAL, INC.;REEL/FRAME:024358/0197

Effective date: 20100329

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: ENCAPSULE MEDICAL, LLC, CALIFORNIA

Free format text: MERGER;ASSIGNOR:RUBICOR MEDICAL, LLC;REEL/FRAME:029663/0773

Effective date: 20120822