US20070294932A1 - Bladder-molded fishing rod and method of manufacturing same - Google Patents
Bladder-molded fishing rod and method of manufacturing same Download PDFInfo
- Publication number
- US20070294932A1 US20070294932A1 US11/474,401 US47440106A US2007294932A1 US 20070294932 A1 US20070294932 A1 US 20070294932A1 US 47440106 A US47440106 A US 47440106A US 2007294932 A1 US2007294932 A1 US 2007294932A1
- Authority
- US
- United States
- Prior art keywords
- tubular body
- fishing rod
- bladder
- support
- mold
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000004519 manufacturing process Methods 0.000 title description 4
- 238000000034 method Methods 0.000 claims abstract description 20
- 238000000465 moulding Methods 0.000 claims abstract description 9
- 239000000463 material Substances 0.000 claims description 23
- 239000007787 solid Substances 0.000 claims description 3
- 238000005304 joining Methods 0.000 claims description 2
- 238000010438 heat treatment Methods 0.000 claims 2
- 238000007789 sealing Methods 0.000 claims 1
- 230000015572 biosynthetic process Effects 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 241000251468 Actinopterygii Species 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 0 C**[C@@](C)CN Chemical compound C**[C@@](C)CN 0.000 description 1
- 229920000271 Kevlar® Polymers 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000011152 fibreglass Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 239000004761 kevlar Substances 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- -1 such as Substances 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K87/00—Fishing rods
Definitions
- the present invention is directed, in general, to a bladder-molded fishing rod, and more specifically, to a bladder-molded fishing rod having an integrally formed support.
- Conventional tubular fishing rods are manufactured by wrapping an appropriate material around a steel mandrel and baking the wrapped mandrel in an oven until it is cured. After curing, the mandrel is removed and the rod is finished by conventional means. As such, conventional tubular fishing rods are restricted in design by the shape of the mandrel. In addition, such rods are hollow without any internal support to provide additional strength.
- U.S. Pat. No. 6,145,237 discloses a one-piece fishing rod that attempts to improve on conventional fishing rods by using bladder molding to form the rod.
- the fishing rod taught by U.S. Pat. No. 6,145,237 requires that an internal rib be loosely assembled inside an expandable rod sock along with two separate bladders. As a result, uniform pressure in both bladders is used to align the rib in the rod sock prior to and during curing. As such, an additional step of inserting the rib and bladder portions into the rod sock is required.
- a fishing rod having an internal support is provided.
- the present invention is directed to a fishing rod including a tubular body where the tubular body is folded over at least once into a contact relationship with itself to define at least a first hollow portion and a second hollow portion.
- At least one support is formed integral to the tubular body and the support separates the first hollow portion and the second hollow portion.
- the present invention is directed to a fishing rod having a tubular body formed by providing a bladder over a mandrel, wrapping a resin-impregnated material over the bladder to provide a wrapped resin-impregnated material, removing the mandrel from the wrapped resin-impregnated material, folding the wrapped resin-impregnated material onto itself at least once to form the tubular body having at least two separate bladder portions and at least one integrally formed support, and curing the tubular body in a mold.
- the present invention is directed to a method of forming a fishing rod.
- the method includes providing a bladder over a mandrel, wrapping a resin-impregnated material over the bladder to provide a wrapped resin-impregnated material, removing the mandrel from the wrapped resin-impregnated material, folding the wrapped resin-impregnated material onto itself at least once to form a tubular body.
- at least two separate bladder portions and the at least one integrally formed support are formed within the tubular body.
- the method further includes placing the tubular body into a mold and molding the tubular body to provide the fishing rod with the integrally formed support.
- FIG. 1 is a profile view of a fishing rod according to an exemplary embodiment of the present invention
- FIGS. 2A , 2 B, and 2 C are cross-sectional views taken along lines 2 A- 2 A, 2 B- 2 B, and 2 C- 2 C respectively of the fishing rod of FIG. 1 ;
- FIGS. 3A-3C are schematic views of an intermediary step of manufacturing the fishing rod of FIG. 1 ;
- FIGS. 4A and 4B are perspective views of a top portion and bottom portion of a mold, respectively, used to manufacture the fishing rod of FIG. 1 ;
- FIG. 5 is a schematic view of a mold during the manufacturing process
- FIGS. 6A and 6 b show sectional views of a fishing rod according to a second exemplary embodiment of the present.
- FIG. 7 is a side profile view of a fishing rod according to a third exemplary embodiment of the present invention.
- FIG. 8 is a cross-sectional view of another exemplary embodiment of the present invention.
- FIGS. 1 and 2 A- 2 C show an exemplary fishing rod 10 according to principles of the invention.
- fishing rod 10 includes a tubular body 12 that has a handle portion 14 , a rod portion 16 , and a tip 18 .
- a transition portion 15 connects the handle portion 14 to the rod portion 16 .
- the handle portion 14 may be about 58 cm long
- the rod portion 16 and tip 18 may be about 104 cm long
- the transition region between handle portion 14 and rod portion 16 may be about 40 cm long.
- tubular body 12 is folded over into a contact relationship with itself to define a first hollow portion 20 and a second hollow portion 22 ( FIGS. 2A and 2B ).
- a support 24 is formed integral to tubular body 12 as a result of the contact relationship and curing process. Support 24 separates first hollow portion 20 and second hollow portion 22 .
- the cross-section of tubular body 12 may vary along the length of the body.
- rod portion 16 may have a substantially elliptical cross-section having the major axis oriented in a horizontal direction and the minor axis in a vertical direction.
- tubular body 12 tapers along the length of the rod portion 116 towards tip 18 .
- the elliptical cross-section at the largest point may have a major axis of 3.4 cm and a minor axis of 1.7 cm.
- Tip 18 may also be generally elliptical in shape ( FIG. 2C ) with a major axis of approximately 1 cm and a minor axis of approximately 0.5 cm.
- the tip is shown as being solid, it is understood that a hollow tip may also be provided.
- Support 24 extends in a plane perpendicular to the major axis of the rod portion 16 . This particular formation provides increased strength of fishing rod 10 over conventional hollow fishing rods because of the inclusion of the support. In addition, because the width of rod portion 16 (the major axis) is greater than the height of rod portion 16 (the minor axis), proper orientation of the fishing rod is achieved. Therefore, when a user is attempting to reel in a fish, the spine of the fishing rod will be properly aligned, thereby improving the balance and strength of the fishing rod.
- the support 24 is shown extending along handle portion 14 and rod portion 16 , it is understood that other arrangements may be provided.
- the support may only extend the length of or only a portion of the length of rod portion 16 and not handle portion 14 .
- fishing rod 10 has been described with reference to specific dimensions, fishing rods of many different sizes and cross-sections, such as, for example, oval, triangular, square, rectangular, hexagonal ( FIG. 8 ), and other polygonal shapes, can be bladder molded. These bladder-molded fishing rods would be suitable for, but not limited to, the following applications: big game fishing, trolling, boat fishing, shore fishing, inshore fishing, coastal fishing, river fishing, lake fishing, fly fishing, jigging, popping, and ice fishing.
- FIGS. 3A-3C show the intermediary steps of forming the tubular member 12 prior to placing it in a mold.
- FIGS. 4A and 4B show exemplary mold halves that are used to form fishing rod 10 .
- FIG. 5 shows the tubular member 12 inserted into the assembled mold and being cured to create fishing rod 10 .
- the method of forming fishing rod 10 includes providing a bladder 30 over a mandrel 32 and wrapping a prepreg 34 over the bladder to provide a wrapped prepreg 36 .
- the prepreg material 34 contains a resin-impregnated material, such as, fiberglass, carbon, graphite, Kevlar, boron, any other composite materials, or any combinations thereof.
- many different prepreg layers may be used in forming the wrapped prepreg.
- mandrel 32 may be removed from wrapped prepreg 36 .
- tubular body 12 includes two separate bladder portions 30 a and 30 b that are separated by the integrally formed support 24 within tubular body 12 . Because of the wrapped prepreg 36 is folded onto itself, the support 24 is generally located in the middle of the tubular body 12 . Additional prepreg layers (not shown) may be wrapped around tubular body 12 to further build up the tubular body and to assist in forming a solid tip if desired.
- Each bladder portion 30 a , 30 b may have open ends 38 a , 38 b , respectively. If two open ends 38 a , 38 b , as shown in FIG. 3C , are provided, one of the ends 38 a may be sealed by tying a knot and the other end 38 b may be attached to a nozzle 40 . It is understood that open end 38 a may be sealed by any variety of means. It is also understood that bladder 30 may have a single opening so that only one bladder portion 30 b has an open end.
- mold 50 includes first and second mold halves 50 a , 50 b .
- Cut-outs 52 a , 52 b are formed respective mold halves 50 a , 50 b such that the cut-outs define the exterior surface of fishing rod 10 .
- Pins 54 are formed on first mold halve 50 a and corresponding depressions 56 are formed in mold have 50 b .
- Cut-outs 52 a , 52 b extend to the ends of mold halves 50 a , 50 b to allow bladder portion 30 a and/or nozzle 40 to extend outside the mold 50 .
- mold 50 is placed into a hot press 58 and a pressurized source 60 , preferably air, is connected to nozzle 40 via line 62 to inflate both bladder portions 30 a , 30 b .
- a pressurized source 60 preferably air
- mold 50 may have cut-outs 53 a and 53 b to allow more than one fishing rod to be molded at a time.
- cut-outs 52 a and 52 b may be appropriately sized for a trolling rod while cut-outs 53 a and 53 b may be appropriately sized for a light casting/spinning rod.
- Other appropriate cut-outs may be provided.
- the tubular body 12 is molded to form fishing rod 10 using a curing process.
- the pressure from the pressurized source 60 expands each of the bladder portions 30 a , 30 b to define first and second hollow portions 20 , 22 and to expand tubular body 12 to fill the cut-outs 52 a , 52 b in mold 50 .
- the pressure from the pressurized source 60 to the nozzle 40 is maintained at about 40 bar. For example, during the first three minutes, the pressure supplied by nozzle 40 increases from zero bar to approximately 40 bar. Once the pressure at the nozzle 40 reaches 40 bar, that pressure is maintained for the duration of the curing process.
- the hot press 58 applies sufficient clamping pressure to hold the mold 50 closed.
- the hot press 58 is maintained at about 150° C. to transfer sufficient heat to mold 50 .
- the temperature of the mold 50 is increased from about 80-100° C. to about 120° C.; from three to five minutes, the temperature of mold 50 increases from about 120° C. to about 130° C.; from five minutes to ten minutes, the temperature of mold 50 increases from about 130° C. to about 140° C.; from ten minutes to twenty minutes, the temperature of mold 50 increases from about 140° C. to about 145° C.; and, from twenty minutes to fifty minutes, the temperature of mold 50 is maintained at about 145° C.
- the curing process may vary depending on the prepreg material selected.
- the fishing rod 10 After the fishing rod 10 is cured, it is removed from the mold 50 . At this time, the fishing rod 10 may be finished (e.g., providing a material around handle portion 14 , attaching guides, forming a reel seat, etc.) using conventional means.
- a fishing rod 110 may include more than one internal support.
- two internal supports 124 can be formed, thereby creating four hollow portions 120 , 121 , 122 , and 123 . Additional supports can be provided by further folding tubular member 112 . Bladder portions have not been shown in FIGS. 6A and 6B for clarity.
- a fishing rod 210 may be formed in separate pieces that are connected to each other using ferrules.
- fishing rod 210 may include a separate handle portion 214 , and one or more sectioned rod portions 216 a , 216 b , 216 c , and 216 d .
- Each of the handle portion 214 and rod portions 216 a , 216 b , 216 c , and 216 d may be formed with female and/or male connectors 217 a , 217 b , respectively, and joined together via friction fits.
- Alternative means for joining the handle portion 214 and one or more of the rod portions 216 a , 216 b , 216 c , and 216 d may include forming internal and/or external threads on the handle portion and rod portions so that they may be threaded together.
- one or more of the handle portions 214 and rod portions 216 a , 216 b , 216 c , and 216 d may be formed using the bladder molding technique described above.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Environmental Sciences (AREA)
- Marine Sciences & Fisheries (AREA)
- Animal Husbandry (AREA)
- Biodiversity & Conservation Biology (AREA)
- Fishing Rods (AREA)
Abstract
A fishing rod including a tubular body where the tubular body is folded over into a contact relationship with itself to define a first hollow portion and a second hollow portion. An internal support is formed integral to the tubular body and the internal support separates the first hollow portion and the second hollow portion. The fishing rod being manufactured using bladder-molding processes.
Description
- 1. Field of the Invention
- The present invention is directed, in general, to a bladder-molded fishing rod, and more specifically, to a bladder-molded fishing rod having an integrally formed support.
- 2. Description of Related Art
- Conventional tubular fishing rods are manufactured by wrapping an appropriate material around a steel mandrel and baking the wrapped mandrel in an oven until it is cured. After curing, the mandrel is removed and the rod is finished by conventional means. As such, conventional tubular fishing rods are restricted in design by the shape of the mandrel. In addition, such rods are hollow without any internal support to provide additional strength.
- U.S. Pat. No. 6,145,237 discloses a one-piece fishing rod that attempts to improve on conventional fishing rods by using bladder molding to form the rod. However, the fishing rod taught by U.S. Pat. No. 6,145,237 requires that an internal rib be loosely assembled inside an expandable rod sock along with two separate bladders. As a result, uniform pressure in both bladders is used to align the rib in the rod sock prior to and during curing. As such, an additional step of inserting the rib and bladder portions into the rod sock is required.
- Therefore, there is a need for a bladder-molded fishing rod that is formed with an integral support where the integrally formed support may be more reliably located within the fishing rod while minimizing the assembly steps of the fishing rod.
- According to an embodiment of this invention, a fishing rod having an internal support is provided. In one aspect, the present invention is directed to a fishing rod including a tubular body where the tubular body is folded over at least once into a contact relationship with itself to define at least a first hollow portion and a second hollow portion. At least one support is formed integral to the tubular body and the support separates the first hollow portion and the second hollow portion.
- In another aspect, the present invention is directed to a fishing rod having a tubular body formed by providing a bladder over a mandrel, wrapping a resin-impregnated material over the bladder to provide a wrapped resin-impregnated material, removing the mandrel from the wrapped resin-impregnated material, folding the wrapped resin-impregnated material onto itself at least once to form the tubular body having at least two separate bladder portions and at least one integrally formed support, and curing the tubular body in a mold.
- In yet another aspect, the present invention is directed to a method of forming a fishing rod. The method includes providing a bladder over a mandrel, wrapping a resin-impregnated material over the bladder to provide a wrapped resin-impregnated material, removing the mandrel from the wrapped resin-impregnated material, folding the wrapped resin-impregnated material onto itself at least once to form a tubular body. In the process of the folding the wrapped resin-impregnated material, at least two separate bladder portions and the at least one integrally formed support are formed within the tubular body. The method further includes placing the tubular body into a mold and molding the tubular body to provide the fishing rod with the integrally formed support.
- Further scope of applicability of the present application will become more apparent from the detailed description given hereinafter. However, it should be understood that the detailed description and specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from the detailed description.
- The present invention will become more fully understood from the detailed description given hereinbelow and the accompanying drawings which are given by way of illustration only, and thus are not limitative of the present invention and wherein:
-
FIG. 1 is a profile view of a fishing rod according to an exemplary embodiment of the present invention; -
FIGS. 2A , 2B, and 2C are cross-sectional views taken alonglines 2A-2A, 2B-2B, and 2C-2C respectively of the fishing rod ofFIG. 1 ; -
FIGS. 3A-3C are schematic views of an intermediary step of manufacturing the fishing rod ofFIG. 1 ; -
FIGS. 4A and 4B are perspective views of a top portion and bottom portion of a mold, respectively, used to manufacture the fishing rod ofFIG. 1 ; -
FIG. 5 is a schematic view of a mold during the manufacturing process; -
FIGS. 6A and 6 b show sectional views of a fishing rod according to a second exemplary embodiment of the present; and -
FIG. 7 is a side profile view of a fishing rod according to a third exemplary embodiment of the present invention; and -
FIG. 8 is a cross-sectional view of another exemplary embodiment of the present invention. - FIGS. 1 and 2A-2C show an
exemplary fishing rod 10 according to principles of the invention. As shown in the figures,fishing rod 10 includes atubular body 12 that has ahandle portion 14, arod portion 16, and atip 18. Atransition portion 15 connects thehandle portion 14 to therod portion 16. In the exemplary embodiment shown, thehandle portion 14 may be about 58 cm long, therod portion 16 andtip 18 may be about 104 cm long, and the transition region betweenhandle portion 14 androd portion 16 may be about 40 cm long. - During formation of the
fishing rod 10,tubular body 12 is folded over into a contact relationship with itself to define a firsthollow portion 20 and a second hollow portion 22 (FIGS. 2A and 2B ). Asupport 24 is formed integral totubular body 12 as a result of the contact relationship and curing process. Support 24 separates firsthollow portion 20 and secondhollow portion 22. - As seen in
FIGS. 2A and 2B , the cross-section oftubular body 12 may vary along the length of the body. For example, regardinghandle portion 14, it may be desirable to provide a substantially circular cross-section having a diameter of approximately 2.4 cm.Rod portion 16 may have a substantially elliptical cross-section having the major axis oriented in a horizontal direction and the minor axis in a vertical direction. In the particular embodiment shown,tubular body 12 tapers along the length of the rod portion 116 towardstip 18. The elliptical cross-section at the largest point may have a major axis of 3.4 cm and a minor axis of 1.7 cm.Tip 18 may also be generally elliptical in shape (FIG. 2C ) with a major axis of approximately 1 cm and a minor axis of approximately 0.5 cm. Although the tip is shown as being solid, it is understood that a hollow tip may also be provided. -
Support 24 extends in a plane perpendicular to the major axis of therod portion 16. This particular formation provides increased strength offishing rod 10 over conventional hollow fishing rods because of the inclusion of the support. In addition, because the width of rod portion 16 (the major axis) is greater than the height of rod portion 16 (the minor axis), proper orientation of the fishing rod is achieved. Therefore, when a user is attempting to reel in a fish, the spine of the fishing rod will be properly aligned, thereby improving the balance and strength of the fishing rod. - Although the
support 24 is shown extending alonghandle portion 14 androd portion 16, it is understood that other arrangements may be provided. For example, the support may only extend the length of or only a portion of the length ofrod portion 16 and not handleportion 14. - Although
fishing rod 10 has been described with reference to specific dimensions, fishing rods of many different sizes and cross-sections, such as, for example, oval, triangular, square, rectangular, hexagonal (FIG. 8 ), and other polygonal shapes, can be bladder molded. These bladder-molded fishing rods would be suitable for, but not limited to, the following applications: big game fishing, trolling, boat fishing, shore fishing, inshore fishing, coastal fishing, river fishing, lake fishing, fly fishing, jigging, popping, and ice fishing. - The formation of
exemplary fishing rod 10 will be explained with reference to the remaining figures.FIGS. 3A-3C show the intermediary steps of forming thetubular member 12 prior to placing it in a mold.FIGS. 4A and 4B show exemplary mold halves that are used to formfishing rod 10. Finally,FIG. 5 shows thetubular member 12 inserted into the assembled mold and being cured to createfishing rod 10. - As seen in 3A, the method of forming
fishing rod 10 includes providing abladder 30 over amandrel 32 and wrapping aprepreg 34 over the bladder to provide a wrappedprepreg 36. Theprepreg material 34 contains a resin-impregnated material, such as, fiberglass, carbon, graphite, Kevlar, boron, any other composite materials, or any combinations thereof. In addition, many different prepreg layers (not shown) may be used in forming the wrapped prepreg. Once wrappedprepreg 36 is formed,mandrel 32 may be removed from wrappedprepreg 36. - Next, as seen in 3B, wrapped
prepreg 36 is folded onto itself to formtubular body 12. As a result of folding the wrappedprepreg 36,tubular body 12 includes twoseparate bladder portions support 24 withintubular body 12. Because of the wrappedprepreg 36 is folded onto itself, thesupport 24 is generally located in the middle of thetubular body 12. Additional prepreg layers (not shown) may be wrapped aroundtubular body 12 to further build up the tubular body and to assist in forming a solid tip if desired. - Each
bladder portion open ends open ends FIG. 3C , are provided, one of theends 38 a may be sealed by tying a knot and theother end 38 b may be attached to anozzle 40. It is understood thatopen end 38 a may be sealed by any variety of means. It is also understood thatbladder 30 may have a single opening so that only onebladder portion 30 b has an open end. - Next,
tubular body 12 is placed intomold 50. As seen inFIGS. 4A and 4B ,mold 50 includes first and second mold halves 50 a, 50 b. Cut-outs fishing rod 10.Pins 54 are formed on first mold halve 50 a andcorresponding depressions 56 are formed in mold have 50 b. Cut-outs mold halves bladder portion 30 a and/ornozzle 40 to extend outside themold 50. Once thetubular body 12 has been placed inmold 50, as shown inFIG. 5 , themold 50 is placed into ahot press 58 and apressurized source 60, preferably air, is connected tonozzle 40 vialine 62 to inflate bothbladder portions outs mold 50 may have cut-outs outs outs - Finally, the
tubular body 12 is molded to formfishing rod 10 using a curing process. During the curing process of thetubular member 12, the pressure from thepressurized source 60 expands each of thebladder portions hollow portions tubular body 12 to fill the cut-outs mold 50. Generally, the pressure from thepressurized source 60 to thenozzle 40 is maintained at about 40 bar. For example, during the first three minutes, the pressure supplied bynozzle 40 increases from zero bar to approximately 40 bar. Once the pressure at thenozzle 40reaches 40 bar, that pressure is maintained for the duration of the curing process. - At the same time as pressure is supplied to the
bladder portions hot press 58 applies sufficient clamping pressure to hold themold 50 closed. Thehot press 58 is maintained at about 150° C. to transfer sufficient heat to mold 50. During the first three minutes, the temperature of themold 50 is increased from about 80-100° C. to about 120° C.; from three to five minutes, the temperature ofmold 50 increases from about 120° C. to about 130° C.; from five minutes to ten minutes, the temperature ofmold 50 increases from about 130° C. to about 140° C.; from ten minutes to twenty minutes, the temperature ofmold 50 increases from about 140° C. to about 145° C.; and, from twenty minutes to fifty minutes, the temperature ofmold 50 is maintained at about 145° C. The curing process may vary depending on the prepreg material selected. - After the
fishing rod 10 is cured, it is removed from themold 50. At this time, thefishing rod 10 may be finished (e.g., providing a material around handleportion 14, attaching guides, forming a reel seat, etc.) using conventional means. - In a second exemplary embodiment, a
fishing rod 110 may include more than one internal support. For example, as seen inFIGS. 6A and 6B , iftubular member 112 is folded a second time, twointernal supports 124 can be formed, thereby creating fourhollow portions tubular member 112. Bladder portions have not been shown inFIGS. 6A and 6B for clarity. - According to a third exemplary embodiment, a
fishing rod 210 may be formed in separate pieces that are connected to each other using ferrules. For example, as seen inFIG. 7 ,fishing rod 210 may include aseparate handle portion 214, and one or moresectioned rod portions handle portion 214 androd portions male connectors handle portion 214 and one or more of therod portions handle portions 214 androd portions - The invention thus being described, it will be obvious that the same may be varied in many ways. Such variations are not to be regarded as a departure from the spirit and scope of the invention, and all such modifications as would be obvious to one skilled in the art are intended to be included within the scope of the following claims.
Claims (22)
1. A fishing rod comprising:
at least one tubular body, the tubular body being folded over at least once into a contact relationship with itself to define at least a first hollow portion and a second hollow portion; and
at least one support formed integral with the tubular body, the support separating the first hollow portion and the second hollow portion.
2. The fishing rod according to claim 1 , wherein the support is formed by the contact relationship.
3. The fishing rod according to claim 1 , wherein the tubular body includes a handle portion, a rod portion, and a tip.
4. The fishing rod according to claim 3 , wherein the handle portion is substantially circular in cross-section.
5. The fishing rod according to claim 3 , wherein the rod portion is substantially elliptical in cross-section.
6. The fishing rod according to claim 5 , wherein the support extends perpendicular to the major axis of the rod portion.
7. The fishing rod according to claim 1 , wherein the tubular body is folded a second time to define a third hollow portion and a fourth hollow portion.
8. The fishing rod according to claim 8 , wherein the at least one support comprises first and second supports, the first and second supports separating the hollow portions.
9. The fishing rod according to claim 1 , further comprising:
a second tubular body, the second tubular body being folded over at least once to contact itself to define at least a first hollow portion and a second hollow portion; and
at least one support formed integral with the tubular body, the support separating the first hollow portion and the second hollow portion.
10. The fishing rod according to claim 9 , further comprising means for joining the at least one tubular body to the second tubular body.
11. The fishing rod according to claim 1 , wherein the tubular body has a hexagonal cross-section.
12. A fishing rod comprising:
a tubular body formed by providing a bladder over a mandrel, wrapping a resin-impregnated material over the bladder to provide a wrapped resin-impregnated material, removing the mandrel from the wrapped resin-impregnated material, folding the wrapped resin-impregnated material onto itself at least once to form the tubular body having at least two separate bladder portions and at least one integrally formed support, and curing the tubular body in a mold.
13. The fishing rod according to claim 12 , wherein the tubular body includes a handle portion, a rod portion, and a solid tip.
14. The fishing rod according to claim 13 , wherein the handle portion is substantially circular in cross-section.
15. The fishing rod according to claim 13 , wherein the rod portion is substantially elliptical in cross-section.
16. The fishing rod according to claim 15 , wherein the support extends perpendicular to the major axis of the rod portion.
17. A method of forming a fishing rod with at least one integrally formed support, the method comprising:
providing a bladder over a mandrel;
wrapping a resin-impregnated material over the bladder to provide a wrapped resin-impregnated material;
removing the mandrel from the wrapped resin-impregnated material;
folding the wrapped resin-impregnated material onto itself at least once to form a tubular body, wherein folding the wrapped resin-impregnated material forms at least two separate bladder portions and the integrally formed support within the tubular body;
placing the tubular body into a mold; and
molding the tubular body to provide the fishing rod with the integrally formed support.
18. The method according to claim 17 , wherein each of the bladder portions includes an open end, the method includes sealing one of the open ends and attaching a nozzle to the other open end.
19. The method according to claim 18 , wherein molding the tubular body includes supplying compressed air to the nozzle to inflate both bladder portions.
20. The method according to claim 19 , wherein molding the tubular body includes heating the mold to cure the tubular body.
21. The method according to claim 20 , wherein the mold includes a first and second mold portions and molding the tubular body includes compressing the first and second mold portions together
22. The method according to claim 17 , wherein molding the tubular body includes heating the mold to cure the tubular body.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/474,401 US20070294932A1 (en) | 2006-06-26 | 2006-06-26 | Bladder-molded fishing rod and method of manufacturing same |
PCT/IB2007/001641 WO2008001178A2 (en) | 2006-06-26 | 2007-06-19 | Bladder-molded fishing rod and method of manufacturing same |
US12/552,232 US8012397B2 (en) | 2005-10-31 | 2009-09-01 | Bladder-molded fishing rod and method of manufacturing same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/474,401 US20070294932A1 (en) | 2006-06-26 | 2006-06-26 | Bladder-molded fishing rod and method of manufacturing same |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/261,495 Division US7814770B2 (en) | 2004-11-01 | 2005-10-31 | Multi-functional laundry device and controlling method for the same |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/552,232 Division US8012397B2 (en) | 2005-10-31 | 2009-09-01 | Bladder-molded fishing rod and method of manufacturing same |
Publications (1)
Publication Number | Publication Date |
---|---|
US20070294932A1 true US20070294932A1 (en) | 2007-12-27 |
Family
ID=38669964
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/474,401 Abandoned US20070294932A1 (en) | 2005-10-31 | 2006-06-26 | Bladder-molded fishing rod and method of manufacturing same |
US12/552,232 Expired - Fee Related US8012397B2 (en) | 2005-10-31 | 2009-09-01 | Bladder-molded fishing rod and method of manufacturing same |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/552,232 Expired - Fee Related US8012397B2 (en) | 2005-10-31 | 2009-09-01 | Bladder-molded fishing rod and method of manufacturing same |
Country Status (2)
Country | Link |
---|---|
US (2) | US20070294932A1 (en) |
WO (1) | WO2008001178A2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080168699A1 (en) * | 2007-01-08 | 2008-07-17 | Roberto Gazzara | Fishing Rod Having A Single Main Tube |
EP2078457A1 (en) * | 2008-01-10 | 2009-07-15 | Prince Sports, Inc. | A fishing rod having a multiple tube structure and a related manufacturing method |
US20090320352A1 (en) * | 2006-07-06 | 2009-12-31 | D-Flex Limited | Fishing rod |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9795123B2 (en) | 2013-11-11 | 2017-10-24 | Trent S. Tate | Fishing rod |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1293208A (en) * | 1918-04-04 | 1919-02-04 | British Cellulose & Chemical Mfg Company Ltd | Spar, rod, tube, pole, mast, and the like. |
US3513582A (en) * | 1967-09-01 | 1970-05-26 | Andre Carabasse | Fishing rod |
US4422259A (en) * | 1980-04-25 | 1983-12-27 | Shimano Industrial Company Limited | Elliptical shaped streamlined fishing rod |
US4686787A (en) * | 1985-02-28 | 1987-08-18 | Whipp Nicolas P L | Fishing rods |
US4860481A (en) * | 1988-04-15 | 1989-08-29 | Berkley, Inc. | Solid graphite rod tip |
US4920682A (en) * | 1986-01-27 | 1990-05-01 | Lew Childre & Sons, Inc. | One-piece integral fishing rod handle |
US4962608A (en) * | 1988-12-27 | 1990-10-16 | Loomis Gary A | Fishing rod |
US5229187A (en) * | 1989-04-10 | 1993-07-20 | Mcginn Designer Rods Pty. Ltd. | Rod construction |
US6145237A (en) * | 1998-03-26 | 2000-11-14 | Charles C. Worth Corporation | Unitary fishing rod with integral features |
US6148558A (en) * | 1996-11-30 | 2000-11-21 | Daiwa Seiko, Inc. | Fishing rod |
US6286244B1 (en) * | 1997-04-25 | 2001-09-11 | Pure Fishing, Inc. | Molded fishing rod |
US20020092225A1 (en) * | 2000-11-27 | 2002-07-18 | Akio Watanabe | Fly rod with different flexural rigidity |
US20050193617A1 (en) * | 2004-03-05 | 2005-09-08 | Ryan Eric T. | One piece polygonal carbon fiber rod with integral spine |
US20060185218A1 (en) * | 2003-02-27 | 2006-08-24 | Win Leisure Products, Inc. | Two piece bonded fishing rod blank and fishing rod |
US20080168699A1 (en) * | 2007-01-08 | 2008-07-17 | Roberto Gazzara | Fishing Rod Having A Single Main Tube |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US466787A (en) * | 1892-01-12 | Setts | ||
JPH01304931A (en) * | 1988-06-02 | 1989-12-08 | Daiwa Seiko Inc | Porous tubular member and manufacturing method thereof |
US6143236A (en) * | 1994-02-09 | 2000-11-07 | Radius Engineering, Inc. | Method for manufacturing composite shafts with injection molded, rigidized bladder with varying wall thickness |
EP1129839B1 (en) * | 2000-02-29 | 2004-11-03 | Kyoraku Co.,Ltd. | Hollow blow-moulded article, method of manufacturing such an article, and apparatus therefor |
-
2006
- 2006-06-26 US US11/474,401 patent/US20070294932A1/en not_active Abandoned
-
2007
- 2007-06-19 WO PCT/IB2007/001641 patent/WO2008001178A2/en active Application Filing
-
2009
- 2009-09-01 US US12/552,232 patent/US8012397B2/en not_active Expired - Fee Related
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1293208A (en) * | 1918-04-04 | 1919-02-04 | British Cellulose & Chemical Mfg Company Ltd | Spar, rod, tube, pole, mast, and the like. |
US3513582A (en) * | 1967-09-01 | 1970-05-26 | Andre Carabasse | Fishing rod |
US4422259A (en) * | 1980-04-25 | 1983-12-27 | Shimano Industrial Company Limited | Elliptical shaped streamlined fishing rod |
US4686787A (en) * | 1985-02-28 | 1987-08-18 | Whipp Nicolas P L | Fishing rods |
US4920682A (en) * | 1986-01-27 | 1990-05-01 | Lew Childre & Sons, Inc. | One-piece integral fishing rod handle |
US4860481A (en) * | 1988-04-15 | 1989-08-29 | Berkley, Inc. | Solid graphite rod tip |
US4962608A (en) * | 1988-12-27 | 1990-10-16 | Loomis Gary A | Fishing rod |
US5229187A (en) * | 1989-04-10 | 1993-07-20 | Mcginn Designer Rods Pty. Ltd. | Rod construction |
US6148558A (en) * | 1996-11-30 | 2000-11-21 | Daiwa Seiko, Inc. | Fishing rod |
US6286244B1 (en) * | 1997-04-25 | 2001-09-11 | Pure Fishing, Inc. | Molded fishing rod |
US6145237A (en) * | 1998-03-26 | 2000-11-14 | Charles C. Worth Corporation | Unitary fishing rod with integral features |
US20020092225A1 (en) * | 2000-11-27 | 2002-07-18 | Akio Watanabe | Fly rod with different flexural rigidity |
US20060185218A1 (en) * | 2003-02-27 | 2006-08-24 | Win Leisure Products, Inc. | Two piece bonded fishing rod blank and fishing rod |
US20050193617A1 (en) * | 2004-03-05 | 2005-09-08 | Ryan Eric T. | One piece polygonal carbon fiber rod with integral spine |
US20080168699A1 (en) * | 2007-01-08 | 2008-07-17 | Roberto Gazzara | Fishing Rod Having A Single Main Tube |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090320352A1 (en) * | 2006-07-06 | 2009-12-31 | D-Flex Limited | Fishing rod |
US8281513B2 (en) * | 2006-07-06 | 2012-10-09 | D-Flex Limited | Fishing rod |
US20080168699A1 (en) * | 2007-01-08 | 2008-07-17 | Roberto Gazzara | Fishing Rod Having A Single Main Tube |
EP2078457A1 (en) * | 2008-01-10 | 2009-07-15 | Prince Sports, Inc. | A fishing rod having a multiple tube structure and a related manufacturing method |
JP2009165472A (en) * | 2008-01-10 | 2009-07-30 | Prince Sports Inc | Fishing rod having multiple tube structure and related manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
US20090315225A1 (en) | 2009-12-24 |
WO2008001178A2 (en) | 2008-01-03 |
WO2008001178A3 (en) | 2008-02-21 |
US8012397B2 (en) | 2011-09-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5505492A (en) | Composite pole and manufacturing process for composite poles of varying non-circular cross-sections and curved center lines | |
US8012397B2 (en) | Bladder-molded fishing rod and method of manufacturing same | |
US20190022875A1 (en) | Soft robotic actuators and grippers | |
CA2428925C (en) | One-piece shaft construction and a method of construction using bladder molding | |
US20240138390A1 (en) | Method of assembly of combined fixed and slip bobber | |
WO1997037725A2 (en) | Method for manufacturing composite shafts | |
JPH04179515A (en) | Molding method of fiber-reinforced plastic | |
CN101204847A (en) | Slender glass steel flag stick and producing method and device with same | |
US20240008465A1 (en) | Artificial bait material with integral tying thread, method of making and mold | |
ES2339581T3 (en) | SEAT SADDLE FOR A BICYCLE. | |
GB2432124A (en) | A hurley | |
EP3398757B1 (en) | Composite shaft | |
JPS6223735A (en) | Manufacture of fishing rod | |
JP2023176053A (en) | Concrete tank mold and concrete tank production method | |
JP4327949B2 (en) | Manufacturing method of shaft | |
GB2440509A (en) | Method of forming a badminton racquet having a T shaped joint | |
KR20250017253A (en) | Mandrel system and method | |
JPS6176351A (en) | Method for manufacturing fiber reinforced resin structure | |
US20080168699A1 (en) | Fishing Rod Having A Single Main Tube | |
JP2020138520A (en) | Manufacturing method of tubular member for car body | |
CN108935363A (en) | Float for angling | |
JPH01304931A (en) | Porous tubular member and manufacturing method thereof | |
CN1128203A (en) | A combined core mold for manufacturing composite material hollow products | |
KR100535327B1 (en) | An underwater float | |
US20220235820A1 (en) | Device for the manufacture of elastic bushings |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |