US20070290810A1 - Backscatter interrogators, communication systems and backscatter communication methods - Google Patents
Backscatter interrogators, communication systems and backscatter communication methods Download PDFInfo
- Publication number
- US20070290810A1 US20070290810A1 US11/847,671 US84767107A US2007290810A1 US 20070290810 A1 US20070290810 A1 US 20070290810A1 US 84767107 A US84767107 A US 84767107A US 2007290810 A1 US2007290810 A1 US 2007290810A1
- Authority
- US
- United States
- Prior art keywords
- signal
- interrogator
- data signal
- backscatter
- spread
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06K—GRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K7/00—Methods or arrangements for sensing record carriers, e.g. for reading patterns
- G06K7/10—Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
- G06K7/10009—Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves
- G06K7/10366—Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves the interrogation device being adapted for miscellaneous applications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06K—GRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K7/00—Methods or arrangements for sensing record carriers, e.g. for reading patterns
- G06K7/0008—General problems related to the reading of electronic memory record carriers, independent of its reading method, e.g. power transfer
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06K—GRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K19/00—Record carriers for use with machines and with at least a part designed to carry digital markings
- G06K19/06—Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
- G06K19/067—Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
- G06K19/07—Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
- G06K19/0723—Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips the record carrier comprising an arrangement for non-contact communication, e.g. wireless communication circuits on transponder cards, non-contact smart cards or RFIDs
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/12—Supports; Mounting means
- H01Q1/22—Supports; Mounting means by structural association with other equipment or articles
- H01Q1/2208—Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/69—Spread spectrum techniques
- H04B1/707—Spread spectrum techniques using direct sequence modulation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/22—Scatter propagation systems, e.g. ionospheric, tropospheric or meteor scatter
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J13/00—Code division multiplex systems
- H04J13/0007—Code type
- H04J13/0022—PN, e.g. Kronecker
Definitions
- a backscatter communication system including an interrogator and an electronic communication device.
- the interrogator is configured to spread a data signal.
- the interrogator is further configured to amplitude modulate a carrier signal using the data signal and phase modulate the carrier signal using the data signal.
- the interrogator is arranged to output the amplitude modulated and phase modulated carrier signal.
- the electronic communication device is configured to output a reply signal responsive to reception of the amplitude modulated and phase modulated carrier signal.
- the communications device 12 can be included in any appropriate housing.
- Communications device 12 is of a small size that lends itself to applications employing small housings, such as cards, miniature tags, etc. Larger housings can also be employed.
- the communications device 12 housed in any appropriate housing, can be supported from or attached to an object in any desired manner.
- Modulator 77 can be configured to spread the data signal using the PN 1 pseudo-noise sequence.
- the first pseudo-noise sequence code (PN 1 ) is encoded with data received by communications path 73 .
- modulator 77 is thereafter configured to invert the spread data signal.
- Phase modulation of the carrier signal is responsive to selected inverting of the spread data signal.
- Encoding the pseudo-noise sequence with the data signal forms a plurality of chips. The chips individually correspond to one of two values, such as logical high (1) or logical low (0).
- Modulator 77 is configured in a preferred embodiment to selectively invert the chips of the spread signal to implement phase modulation.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Artificial Intelligence (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Electromagnetism (AREA)
- General Health & Medical Sciences (AREA)
- Near-Field Transmission Systems (AREA)
Abstract
Description
- The present invention relates to backscatter interrogators, communication systems and backscatter communication methods.
- Backscatter communication systems are known in the art. In a backscatter system, one transponder, such as an interrogator, sends out a command to a remote communications device. After the interrogator transmits the command, and is expecting a response, the interrogator switches to a CW mode (continuous wave mode). In the continuous wave mode, the interrogator does not transmit any information. Instead, the interrogator just transmits radiation at a certain frequency. In other words, the signal transmitted by the interrogator is not modulated. After a remote communications device receives a command from the interrogator, the remote communications device processes the command. The remote communications device of the backscatter system modulates the continuous wave by switching between absorbing RF radiation and reflecting RF radiation. For example, the remote communications device alternately reflects or does not reflect the signal from the interrogator to send its reply. Two halves of a dipole antenna can be either shorted together or isolated from each other to modulate the continuous wave.
- One example of a backscatter system is described in commonly assigned U.S. patent application Ser. No. 08/705,043, filed Aug. 29, 1996, and incorporated herein by reference. Another example of a backscatter system is described in U.S. Pat. No. 5,649,296 to MacLellan et al. which is also incorporated herein by reference.
- One application for backscatter communications is in wireless electronic identification systems, such as those including radio frequency identification devices. Of course, other applications for backscatter communications exist as well. Most presently available radio frequency identification devices utilize a magnetic coupling system. An identification device is usually provided with a unique identification code in order to distinguish between a number of different devices. Typically, the devices are entirely passive (have no power supply), which results in a small and portable package. However, such identification systems are only capable of operation over a relatively short range, limited by the size of a magnetic field used to supply power to the devices and to communicate with the devices.
- Another wireless electronic identification system utilizes a large, board level, active transponder device affixed to an object to be monitored which receives a signal from an interrogator. The device receives the signal, then generates and transmits a responsive signal. The interrogation signal and the responsive signal are typically radio-frequency (RF) signals produced by an RF transmitter circuit. Because active devices have their own power sources. The active devices do not need to be in close proximity to an interrogator or reader to receive power via magnetic coupling. Therefore, active transponder devices tend to be more suitable for applications requiring tracking of objects that may not be in close proximity to the interrogator, such as a railway car.
- Spread spectrum modulation techniques are known in the art. Utilization of spread spectrum modulation provides distinct advantages in some communication applications. For example, some spread spectrum modulation techniques enable desired signals to be distinguished from other signals (e.g., radar, microwave ovens, etc.) operating at approximately the same frequencies.
- Federal Communication Commission (FCC) regulations require that spread spectrum systems meet various requirements. For example, spread spectrum systems operating in the 2.4-2.485 GHz band should comply with FCC rule 15.247 which states, in relevant part, that the power spectral density cannot be more than +8 dBm in any given 3 kHz band. Further, the maximum power output is 1 Watt into a 6 dBi gain antenna. The minimum 6 dB bandwidth for a direct sequence spread spectrum is 500 kHz. In addition, the energy within restricted bands of 0-2.390 GHz and 2.4835-2.5 GHz should be lower than 500 uV/m at three meters. Communication systems operating within this specified band should be designed with regard to these regulations.
- Amplitude modulation (AM) communication techniques enable communications with the use of relatively straightforward detectors. Typically, such AM detectors can be efficiently implemented with the utilization of relatively few components. However, drawbacks exist with the utilization of amplitude modulation techniques. For example, approximately half the total power of AM communications resides within the carrier. This limits the power which can be used for communicating data if AM modulation and spread spectrum techniques are utilized within the above specified frequency band.
- Therefore, there exists a need to provide communication systems which comply with radio frequency regulations while also providing robust communications.
- The present invention includes backscatter interrogators, communication systems and backscatter communication methods.
- One aspect of the invention provides a backscatter interrogator. The backscatter interrogator includes a data path configured to communicate a data signal and a signal generator configured to generate a carrier signal. The carrier signal comprises a microwave signal in preferred embodiments. The interrogator also provides a modulator coupled with the data path and the signal generator. The modulator is configured to spread the data signal to define a spread data signal and amplitude modulate the carrier signal using the spread data signal. The modulator is further configured to phase modulate the carrier signal to reduce the power within the carrier signal.
- A second aspect of the present invention provides a backscatter interrogator including a data path configured to communicate a data signal and a signal generator configured to output a microwave carrier signal. The backscatter interrogator further includes a modulator coupled with the data path and the signal generator. One configuration of the modulator is operable to spread the data signal and selectively invert the spread data signal. The modulator is further configured to band limit the inverted spread data signal and modulate the carrier signal using the band limited data signal.
- Another aspect of the present invention provides a backscatter communication system including an interrogator and an electronic communication device. The interrogator is configured to spread a data signal. The interrogator is further configured to amplitude modulate a carrier signal using the data signal and phase modulate the carrier signal using the data signal. The interrogator is arranged to output the amplitude modulated and phase modulated carrier signal. The electronic communication device is configured to output a reply signal responsive to reception of the amplitude modulated and phase modulated carrier signal.
- Another aspect of the invention provides a backscatter communication method including the steps of providing a data signal and providing a carrier signal. This method also includes spreading the data signal, amplitude modulating the carrier signal using the spread data signal, and phase modulating the carrier signal. The amplitude modulated and phase modulated carrier signal is thereafter communicated.
- Another aspect of the invention provides a method of communication in a backscatter system including an interrogator and a communication 3 device. The method includes providing a data signal, providing a carrier signal and spreading the data signal. The method also includes modulating the carrier signal using the spread data signal, communicating the modulated carrier signal, and suppressing the carrier signal during the communicating.
- Yet another aspect of the invention provides a backscatter communication method including the steps of providing a data signal and a carrier signal. The invention also includes spreading the data signal, selectively inverting the spread data signal, amplitude modulating the carrier signal using the data signal, and communicating the modulated carrier signal.
- Preferred embodiments of the invention are described below with reference to the following accompanying drawings.
-
FIG. 1 is a block diagram illustrating a communication system embodying the invention. -
FIG. 2 is a front view of an employee badge according to one embodiment of the invention. -
FIG. 3 is a front view of a radio frequency identification tag according to another embodiment of the invention. -
FIG. 4 is a circuit schematic of a transponder included in the system ofFIG. 1 . -
FIG. 5 is a block diagram of an interrogator in accordance with one embodiment of the invention. -
FIG. 6 is a circuit schematic of RF circuitry included in the interrogator ofFIG. 5 . -
FIG. 7 is a circuit schematic of one embodiment of circuitry 8 included in the RF configuration ofFIG. 6 . -
FIG. 8 is an illustrative representation of a tri-level communication signal. - This disclosure of the invention is submitted in furtherance of the constitutional purposes of the U.S. Patent Laws “to promote the progress of science and useful arts” (Article 1, Section 8).
-
FIG. 1 illustrates awireless communications system 10 embodying the invention.Communications system 10 includes a first transponder including aninterrogator 26 and ahost computer 48 in communication withinterrogator 26.Communications system 10 further includes anelectronic communications device 12, such as the device disclosed in U.S. patent application Ser. No. 08/705,043, filed Aug. 29, 1996. In one embodiment,wireless communications device 12 comprises a wireless identification device such as the Microstamp™ integrated circuit available from Micron Communications, Inc., 3176 S. Denver Way, Boise, Id. 83705.Interrogator 26 communicates with thecommunications device 12 via an electromagnetic link, such as via an RF link (e.g., at microwave frequencies, in one embodiment). While other embodiments are possible, in the illustrated embodiment thecommunications device 12 includes atransponder 16 having areceiver 30 and a transmitter 32 (FIG. 4 ).Communications device 12 further includes apower source 18 connected totransponder 16 to supply power totransponder 16.Communications device 12 further includes at least one antenna connected totransponder 16 for wireless transmission and reception. In the illustrated embodiment,communications device 12 includes at least oneantenna 46 connected totransponder 16 for radio frequency transmission bytransponder 16, and at least one receiveantenna 44 connected totransponder 16 for radio frequency reception bytransponder 16. In the illustrated embodiment, the transmitantenna 46 is a dipole antenna, and the receiveantenna 44 is a loop antenna. In the illustrated embodiment, thetransponder 16 is in the form of an integrated circuit. However, in alternative embodiments, all of the circuitry oftransponder 16 is not necessarily all included in a single integrated circuit. -
Power source 18 is a thin film battery in the illustrated embodiment; however, in alternative embodiments, other forms of power sources can be employed. If thepower source 18 is a battery, the battery can take any suitable form. Preferably, the battery type will be selected depending on weight, size, and life requirements for a particular application. In one embodiment, thebattery 18 is, a thin profile button-type cell forming a small, thin energy cell more commonly utilized in watches and small electronic devices requiring a thin profile. A conventional button-type cell has a pair of electrodes, an anode formed by one face and a cathode formed by an opposite face. In an alternative embodiment, the battery comprises a series connected pair of button type cells. - The
communications device 12 can be included in any appropriate housing or packaging. -
FIG. 2 shows but one example of a housing in the form of acard 11 comprising plastic or other suitable material. Theplastic card 11houses communications device 12 to define anemployee identification badge 13 including thecommunications device 12. In one embodiment, the front face ofbadge 13 has visual identification features such as an employee photograph or a fingerprint in addition to identifying text. -
FIG. 3 illustrates but one alternative housing supporting thedevice 12. More particularly,FIG. 3 illustrates aminiature housing 20 encasing thedevice 12 to define a tag which can be supported by an object (e.g., hung from an object, affixed to an object, etc.). - Although two particular types of housings have been disclosed, the
communications device 12 can be included in any appropriate housing.Communications device 12 is of a small size that lends itself to applications employing small housings, such as cards, miniature tags, etc. Larger housings can also be employed. Thecommunications device 12, housed in any appropriate housing, can be supported from or attached to an object in any desired manner. -
Interrogator unit 26 includes a plurality of antennas X1, R1, as well as transmitting and receiving circuitry, similar to that implemented in thedevice 16. Thehost computer 48 acts as a master in a master-slave relationship withinterrogator 26. Thehost computer 48 includes an applications program for controlling theinterrogator 26 and interpreting responses, and a library of radio frequency identification device applications or functions. Most of the functions communicate withinterrogator 26. These functions effect radio frequency communication betweeninterrogator 26 andcommunications device 12. -
Communications system 10 includes a transmit antenna X1, and a receive antenna R1 connected tointerrogator 26. In operation, theinterrogator 26 transmits an interrogation signal or command 27 (“forward link”) via the antenna X1. Thecommunications device 12 receives the incoming interrogation signal via itsantenna 44. Upon receiving thesignal 27, thecommunications device 12 responds by generating and transmitting a responsive signal or reply signal 29 (“return link”). Theinterrogator 26 is described in greater detail below. - In one embodiment, the
responsive signal 29 is encoded with information that uniquely identifies, or labels theparticular device 12 that is transmitting, so as to identify any object or person with whichcommunications device 12 is associated. - In the embodiment illustrated in
FIG. 1 ,multiple communications devices 12 can be employed; however, there is no communication betweenmultiple devices 12. Instead, themultiple communications devices 12 communicate withinterrogator 26.FIG. 1 illustrates thecommunications device 12 as being in thehousing 20 ofFIG. 3 . The system would operate in a similar manner if thedevice 12 is provided in a housing such as thehousing 10 ofFIG. 2 , or any other appropriate housing.Multiple communications devices 12 can be used in the same field of an interrogator 26 (i.e., within communications range of an interrogator 26). Similarly,multiple interrogators 26 can be in proximity to one or more of thedevices 12. - The above described
system 10 is advantageous over prior art devices that utilize magnetic field effect systems because, with thesystem 10, a greater range can be achieved, and more information can be obtained (instead of just an identification number). - As a result, such a
system 10 can be used, for example, to monitor large warehouse inventories having many unique products needing individual discrimination to determine the presence of particular items within a large lot of tagged products. -
FIG. 4 is a high level circuit schematic of thetransponder 16 utilized in the devices ofFIGS. 1-3 . In the embodiment shown inFIG. 4 , thetransponder 16 is a monolithic integrated circuit. More particularly, in the illustrated embodiment, theintegrated circuit 16 comprises a single die, having a size of 209×116 mils2, including thereceiver 30, thetransmitter 32, a micro controller ormicroprocessor 34, a wake up timer andlogic circuit 36, a clock recovery anddata recovery circuit 38, and a bias voltage andcurrent generator 42. - In one embodiment, the
communications devices 12 switch between a “sleep” mode of operation, and higher power modes to conserve energy and extend battery life during periods of time where nointerrogation signal 27 is received bydevices 12, using the wake up timer andlogic circuitry 36. - In one embodiment, a spread
spectrum processing circuit 40 is included intransponder 16. In this embodiment, signals transmitted and received byinterrogator 26, and transmitted and received bycommunications device 12 are modulated spread spectrum signals. Spread spectrum modulation is described below. - Many modulation techniques minimize required transmission bandwidth. However, the spread spectrum modulation technique employed in the illustrated embodiment requires a transmission bandwidth that is up to several orders of magnitude greater than the minimum required signal bandwidth. Although spread spectrum modulation techniques are bandwidth inefficient in single user applications, they are advantageous where there are multiple users, as is the case with the instant radio frequency identification system 24. The spread spectrum modulation technique of the illustrated embodiment is advantageous because the interrogator signal can be distinguished from other signals (e.g., radar, microwave ovens, etc.) operating at the same frequency. The spread spectrum signals transmitted by
communications device 12 and byinterrogator 26 are pseudo random and have noise-like properties when compared with the digital command or reply. The spreading waveform is controlled by a pseudo-noise or pseudo random number (PN1) sequence or code. The PN code is a binary sequence that appears random but can be reproduced in a predetermined manner by thedevice 12. More particularly, incoming spread spectrum signals are demodulated bycommunications device 12 or byinterrogator 26 through cross correlation with a version of the pseudo random carrier that is generated bycommunications device 12 itself orinterrogator 26 itself, respectively. Cross correlation with the correct PN sequence unspreads the spread spectrum signal and restores the modulated message in the same narrow band as the original data. - A pseudo-noise or pseudo random sequence (PN sequence) is a binary sequence with an autocorrelation that resembles, over a period, the autocorrelation of a random binary sequence. The autocorrelation of a pseudo-noise sequence also roughly resembles the autocorrelation of band-limited white noise. A pseudo-noise sequence has many characteristics that are similar to those of random binary sequences. For example, a pseudo-noise sequence has a nearly equal number of zeros and ones, very low correlation between shifted versions of the sequence, and very low cross correlation between any two sequences. A pseudo-noise sequence is usually generated using sequential logic circuits. For example, a pseudo-noise sequence can be generated using a feedback shift register.
- A feedback shift register comprises consecutive stages of two state memory devices, and feedback logic. Binary sequences are shifted through the shift registers in response to clock pulses, and the output of the various stages are logically combined and fed back as the input to the first stage. The initial contents of the memory stages and the feedback logic circuit determine the successive contents of the memory.
- The illustrated embodiment employs direct sequence spread spectrum modulation. A direct sequence spread spectrum (DSSS) system spreads the baseband data by directly multiplying the baseband data pulses with a pseudo-noise sequence that is produced by a pseudo-noise generator. A single pulse or symbol of the PN waveform is called a “chip.” Synchronized data symbols, which may be information bits or binary channel code symbols, are added in modulo-2 fashion to the chips before being modulated. The receiver performs demodulation. For example, in one embodiment the data is amplitude modulated. Assuming that code synchronization has been achieved at the receiver, the received signal passes through a wideband filter and is multiplied by a local replica of the PN code sequence. This multiplication yields the unspread signal.
- A pseudo-noise sequence is usually an odd number of chips long. In the illustrated embodiment, one bit of data is represented by a thirty-one chip sequence. A zero bit of data is represented by inverting the pseudo-noise sequence.
- Spread spectrum techniques are also disclosed in “Spread Spectrum Systems,” by R. C. Dixon, published by John Wiley and Sons, Inc., incorporated herein by reference.
- In operation, the interrogator sends out a command that is spread around a certain center frequency (e.g, 2.44 GHz). After the interrogator transmits the command, and is expecting a response, the interrogator switches to a CW mode (continuous wave mode). In the continuous wave mode, the interrogator does not transmit any information. Instead, the interrogator just transmits 2.44 GHz radiation. In other words, the signal transmitted by the interrogator is not modulated. After the
communications device 12 receives the command from the interrogator, thecommunications device 12 processes the command. Ifcommunications device 12 is in a backscatter mode it alternately reflects or does not reflect the signal from the interrogator to send its reply. For example, in the illustrated embodiment, two halves of a dipole antenna are either shorted together or isolated from each other to send a reply. - In one embodiment, the clock for the entire
integrated circuit 16 is extracted from the incoming message itself by clock recovery anddata recovery circuitry 38. This clock is recovered from the incoming message, and used for timing for themicro controller 34 and all the other clock circuitry on the chip, and also for deriving the transmitter carrier or the subcarrier, depending on whether the transmitter is operating in active mode or backscatter mode. - In addition to recovering a clock, the clock recovery and
data recovery circuit 38 also performs data recovery on valid incoming signals. The valid spread spectrum incoming signal is passed through the spreadspectrum processing circuit 40, and the spreadspectrum processing circuit 40 extracts the actual ones and zeros of data from the incoming signal. More particularly, the spreadspectrum processing circuit 40 takes the chips from the spread spectrum signal, and reduces each thirty-one chip section down to a bit of one or zero, which is passed to themicro controller 34. -
Micro controller 34 includes a serial processor, or I/O facility that receives the bits from the spreadspectrum processing circuit 40. Themicro controller 34 performs further error correction. More particularly, a modified hamming code is employed, where each eight bits of data is accompanied by five check bits used by themicro controller 34 for error correction.Micro controller 34 further includes a memory, and after performing the data correction,micro controller 34 stores bytes of the data bits in memory. These bytes contain a command sent by theinterrogator 26. Themicro controller 34 responds to the command. - For example, the
interrogator 26 may send a command requesting that anycommunications device 12 in the field respond with the device's identification number. Status information is also returned tointerrogator 26 fromcommunications device 12 whencommunications device 12 responds. - The transmitted replies have a format similar to the format of incoming messages. More particularly, a reply starts with a preamble (e.g., all zeros in active mode, or alternating double zeros and double ones in backscatter mode), followed by a Barker or start code, followed by actual data.
- The incoming message and outgoing reply preferably also include a check sum or redundancy code so that
integrated circuit 16 orinterrogator 12 can confirm receipt of the entire message or reply. -
Interrogator 26 provides a communication link between a host computer andtransponder 16.Interrogator 26 connects to thehost computer 48 via an IEEE-1284 enhanced parallel port (EPP). The interrogator communicates withtransponder 16 via the RF antennas X1 and R1. - A Maximal Length Pseudo Noise (PN) Sequence is used in the Direct Sequence Spread Spectrum (DSSS) communications scheme in the forward link. In one embodiment, the sequence is generated by a linear feedback shift register. This produces a repeating multiple “chip” sequence.
- A zero bit is transmitted as one inverted full cycle of the PN sequence. A one bit is transmitted as one full non-inverted cycle of the PN sequence.
- After sending a command, the interrogator sends a continuous unmodulated RF signal with an approximate frequency of 2.44175 GHz. Return link data is Differential Phase Shift Key (DPSK) modulated onto a square wave subcarrier with a frequency of approximately 600 kHz (e.g., 596.1 kHz in one embodiment). A data 0 corresponds to one phase and data 1 corresponds to another, shifted 180 degrees from the first phase. The subcarrier is used to modulate antenna impedance of
transponder 16. For a simple dipole, a switch between the two halves of the dipole antenna is opened and closed. When the switch is closed, the antenna becomes the electrical equivalent of a single half-wavelength antenna that reflects a portion of the power being transmitted by the interrogator. When the switch is open, the antenna becomes the electrical equivalent of two quarter-wavelength antennas that reflect very little of the power transmitted by the interrogator. In one embodiment, the dipole antenna is a printed microstrip half wavelength dipole antenna. - Referring to
FIG. 5 , one embodiment ofinterrogator 26 is illustrated. The depictedinterrogator 26 includes enhanced parallel port (EPP)circuitry 50, DPSK (differential phase shift keyed)circuitry 52, and RF (radio frequency)circuitry 54, as well as a power supply (not shown) and a housing or chassis (not shown). In the illustrated embodiment, the enhancedparallel port circuitry 50, theDPSK circuitry 52, and the RF ifcircuitry 54 respectively define circuit card assemblies (CCAs). - The interrogator uses an IEEE-1284 compatible port in EPP mode to communicate with
host computer 48. TheEPP circuitry 50 provides digital logic required to coordinate sending and receiving a message withtransponder 16. TheEPP circuitry 50 buffers data to transmit fromhost computer 48, converts the data to serial data, and encodes it. TheEPP circuitry 50 then waits for data from thetransponder 16, converts it to parallel, and transfers it tohost computer 48. In one embodiment, messages include up to 64 bytes of data. - The EPP mode interface provides an asynchronous, interlocked, byte wide, bi-directional channel controlled by a host device. The EPP mode allows the host computer to transfer, at high speed, a data byte to/from the interrogator within a single host computer CPU I/O cycle (typically 0.5 microseconds per byte).
-
RF circuitry 54 interfaces with the transmit and receive antennas X1, R1. Exemplary transmit operations ofRF circuitry 54 are described with reference toFIGS. 6-8 .RF circuitry 54 modulates the data for transmission totransponder 16, provides a continuous wave (CW) carrier for backscatter communications with transponder 16 (if backscatter communications are employed), and receives and downconverts the signal received from transponder 16 (which comprises a backscatter signal in one embodiment). - Referring to
FIG. 6 ,RF circuitry 54 includes adata path 73,signal generator 75,amplifier 76 andmodulator 77. Anexemplary signal 11 generator comprises a frequency synthesizer configured to tune the RF continuous wave carrier. In the described embodiment,signal generator 75 iis configured to generate a microwave carrier signal (e.g., approximately 2.44 GHz). -
RF circuitry 54 defines a transmitter, and is configured to receive data fromEPP circuitry 50.Modulator 77 is coupled withdata path 73 andsignal generator 75.Data path 73 comprises an interconnection such as a wire configured to communicate a data signal tomodulator 77.Modulator 77 receives the data fromEPP circuitry 50 and amplitude modulates the data onto a carrier in the described embodiment. More particularly,modulator 77 turns the RF on and off (ON OFF KEY). - According to one embodiment,
modulator 77 is configured to spread the data signal to provide spread spectrum communications including a spread data signal.Modulator 77 is further configured to amplitude modulate the carrier signal using the spread data signal. In a preferred embodiment,modulator 77 is configured to phase modulate the carrier signal. Phase modulation is utilized to provide suppression of power within the carrier signal in accordance with a preferred embodiment of the invention. Following such amplitude and phase modulation,interrogator 26 is preferably configured to communicate the carrier signal. -
Modulator 77 can be configured to spread the data signal using the PN1 pseudo-noise sequence. The first pseudo-noise sequence code (PN1) is encoded with data received bycommunications path 73. In a preferred embodiment,modulator 77 is thereafter configured to invert the spread data signal. Phase modulation of the carrier signal is responsive to selected inverting of the spread data signal. Encoding the pseudo-noise sequence with the data signal forms a plurality of chips. The chips individually correspond to one of two values, such as logical high (1) or logical low (0).Modulator 77 is configured in a preferred embodiment to selectively invert the chips of the spread signal to implement phase modulation. - In one embodiment,
modulator 77 is configured to randomly invert the spread data signal.Modulator 77 is operable in the preferred embodiment to invert the spread data signal using a second pseudo-noise sequence (PN2). The second pseudo-noise sequence code (PN2) is utilized to modulate the phase of the RF carrier in the described embodiment. The second pseudo-noise sequence (PN2) utilized to provide random inversion of the spread data signal comprises a 1,023 bit sequence in one embodiment. Such can be implemented using logic circuitry and shift registers configured in a feedback arrangement in one embodiment. - Randomly changing the phase of the RF carrier signal implements phase modulation and provides the desired effect of spreading the carrier energy over a wider band width. Thus, the communication power can be increased while decreasing the amount of power present in the carrier.
- The random code or pseudo-noise sequence (PN2) utilized to implement selected inversion of the spread data signal is preferably band limited to avoid excessive spectral spreading. The carrier signal can be modulated using the band limited data signal.
-
Modulator 77 can be arranged to implement the inversion operations responsive to the spread data signal being a predetermined value. For example,modulator 77 can be configured to invert one or more chips of the spread data signal responsive to the spread data signal being a logical low value (e.g., zero Volts). The inverting is preferably coordinated or synchronized with the spread data signal. - In particular,
modulator 77 is preferably configured such that the second pseudo-noise sequence (PN2) changes state, and implements inversion of the spread data signal, at predetermined places corresponding to the spread data signal. It is preferred to restrict state changes of the PN2 pseudo-noise sequence to periods of time wherein the carrier signal is off during amplitude modulation. For example, during the presence of multiple adjacent zeros within the spread data signal, sufficient time typically exists for the second pseudo-noise sequence to complete a state change while the carrier signal is turned off. Such is preferred to reduce inducing of an amplitude variation within the output communicated signal which may cause error within the associated remote communication device inasmuch as the second pseudo-noise sequence pulses have a limited rise and fall time. - It is desired to reduce communicated energy present in restricted frequency bands in many applications.
Modulator 77 is configured in one embodiment to band limit or filter signals withinRF circuitry 54. A preferred configuration is to filter baseband signals withinmodulator 77 before conversion to RF frequencies.Modulator 77 includes a filter configured to band limit the spread data signal in the described embodiment. - Referring to
FIG. 7 , anexemplary modulator 77 is illustrated. The depictedmodulator 77 includeslogic circuitry 65, summingamplifier 64,low pass filter 66,attenuator 68, andmixer 69.Modulator 77 is coupled withEPP circuitry 50,code generator 60,code generator 61,signal generator 75, andpower amplifier 76. - The depicted
logic circuitry 65 comprises an exclusive NORdevice 62 and an exclusive ORdevice 63. Exclusive NORdevice 62 is coupled withEPP circuitry 50 viadata path 73 andcode generator 60.Device 62 is configured to encode the pseudo-noise sequence (PN1) fromcode generator 60 with data received viapath 73, and output a spread data signal. The spread data signal is applied to exclusive ORdevice 63 as well ascode generator 61. -
Code generator 61 is configured to change state according to second pseudo-noise sequence (PN2) and responsive to the spread data signal being a predetermined value. The PN2 output ofcode generator 61 is applied to exclusive ORdevice 63 and summingamplifier 64. In the described embodiment,code generator 61 is configured to change the state of the outputted signal according to pseudo-noise sequence (PN2) and responsive to the spread data being a logic low value as received from exclusive NORdevice 62. The pseudo-noise sequence (PN2) outputted fromcode generator 61 and applied to exclusive ORdevice 63 randomly inverts the spread data signal. - The output of exclusive OR
device 63 is also applied to summingamplifier 64. Summingamplifier 64 is configured to combine the pseudo-random noise sequences PN1, PN2. Summingamplifier 64 is further as configured to output a tri-level or tri-state signal to implement the amplitude modulation and phase modulation of the carriersignal using mixer 69. The carrier signal is modulated using the tri-level signal corresponding to the inverted data signal in the described embodiment. Combination of the spread data signal and the PN2 pseudo-noise sequence provided bycode generator 61 is preferred to reduce the amount of hardware utilized withinmodulator 77. Summingamplifier 64 preferably includes an offsetadjustment 67 utilized to balance the amplitude outputted frommixer 69 to provide maximum carrier suppression in the preferred embodiment. - In the depicted embodiment, the tri-level or state output of summing
amplifier 64 is applied tolow pass filter 66,attenuator 68 andmixer 69.Low pass filter 66 is configured in the described embodiment to reduce spreading of energy into restricted bands adjacent the desired band for communication. In one embodiment,low pass filter 66 comprises a seven pole filter having a cutoff frequency of 20 MHz. In particular, filter 66 preferably limits the rise and fall time of the spread data signal represented within the tri-level signal as described below. -
Attenuator 68 is configured to adjust the amplitude of the outputted signal oflow pass filter 66.Discrete components 78 are providedintermediate attenuator 68 andmixer 69. The illustrateddiscrete components 78 include a series capacitor and a resistor coupled to ground.Discrete components 78 are operable to block DC components within the output ofattenuator 68. - The tri-level signal can comprise three states in the described embodiment. A logical high value can be represented be either a positive voltage or negative voltage within the tri-level signal.
Communication device 12 is configured to interpret both positive and negative voltages as a logical high value in the described embodiment. A logical low value is preferably approximately zero Volts within the described tri-level signal. -
Mixer 69 is configured to invert the phase of the carrier signal responsive to the reception of a negative value within the tri-level signal emitted from summingamplifier 64. A positive voltage within the tri-level signal results in no change of the phase of the carrier signal.Mixer 69 turns the RF carrier signal off responsive to the tri-level signal being zero Volts. - The output of
mixer 69 is applied toamplifier 76 in the described embodiment. The depictedamplifier 76 comprises a power amplifier coupled tomodulator 77 and configured to amplify the signal.Amplifier 76 is operable responsive to control fromEPP circuitry 50 in the illustrated embodiment. - Referring to
FIG. 8 , operation ofmodulator 77 is illustrated. Plural signals 90-96 are shown inFIG. 8 .Signal 90 represents the data output ofEPP circuitry 50.Signal 91 corresponds to the first pseudo-noise sequence (PN1) signal outputted fromcode generator 60.Signal 92 represents the output of exclusive NORdevice 62.Signal 93 corresponds to the second pseudo-noise sequence (PN2) signal outputted fromcode generator 61.Signal 94 represents the output of exclusive ORdevice 63.Signal 95 represents the output of summingamplifier 64 andsignal 96 represents the output oflow pass filter 66. -
Low pass filter 66 is preferably configured to reduce the presence of harmonic information within the tri-level signal.Filter 66 can be configured to pass fundamental frequency information and any other harmonic information necessary for proper operation ofremote communication device 12. - For example,
low pass filter 66 can be configured to pass fundamental frequency and third harmonic information in one application (e.g., the remote communication device is sensitive to slow rising and falling edges). It is preferred to adjustfilter 66 to provide optimal bandwidth efficiency while effectively communicating data to the associated remoteelectronic communication device 12. - During continuous wave (CW) transmissions for the backscatter mode,
modulator 77 is configured to apply the carrier signal to transmit antenna X1.Transponder 16 is operable to backscatter the signal with a DPSK modulated sub carrier. Following receipt of the command communication signal frominterrogator 26,communication device 12 can be configured to output a reply signal. In backscatter configurations,device 12 is operable to modulate the CW emission frominterrogator 26. The backscattered reply signal is received via receive antenna R1 ofinterrogator 26. - Although not shown in
FIGS. 6-8 ,RF circuitry 54 can include a quadrature downconverter configured to coherently downconvert the received reply signal.RF circuitry 54 can also include automatic gain controls (AGCs) coupled to the quadrature downconverter and configured to set the amplitude of signals I and Q. The I and Q signals, which contain the DPSK modulated sub-carrier, are passed on toDPSK circuitry 52 for demodulation. - In compliance with the statute, the invention has been described in language more or less specific as to structural and methodical features. It is to be understood, however, that the invention is not limited to the specific features shown and described, since the means herein disclosed comprise preferred forms of putting the invention into effect. The invention is, therefore, claimed in any of its forms or modifications within the proper scope of the appended claims appropriately interpreted in accordance with the doctrine of equivalents.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/847,671 US20070290810A1 (en) | 1998-04-24 | 2007-08-30 | Backscatter interrogators, communication systems and backscatter communication methods |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/066,610 US6459726B1 (en) | 1998-04-24 | 1998-04-24 | Backscatter interrogators, communication systems and backscatter communication methods |
US09/961,113 US20020015436A1 (en) | 1998-04-24 | 2001-09-20 | Modulators, transmitters, a radio frequency identification device system and carrier signal suppression methods |
US11/781,884 US20080180253A1 (en) | 1998-04-24 | 2007-07-23 | RFID Communication System and Method of Operation |
US11/847,671 US20070290810A1 (en) | 1998-04-24 | 2007-08-30 | Backscatter interrogators, communication systems and backscatter communication methods |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/781,884 Continuation US20080180253A1 (en) | 1998-04-24 | 2007-07-23 | RFID Communication System and Method of Operation |
Publications (1)
Publication Number | Publication Date |
---|---|
US20070290810A1 true US20070290810A1 (en) | 2007-12-20 |
Family
ID=22070590
Family Applications (9)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/066,610 Expired - Lifetime US6459726B1 (en) | 1998-04-24 | 1998-04-24 | Backscatter interrogators, communication systems and backscatter communication methods |
US09/961,113 Abandoned US20020015436A1 (en) | 1998-04-24 | 2001-09-20 | Modulators, transmitters, a radio frequency identification device system and carrier signal suppression methods |
US11/781,884 Abandoned US20080180253A1 (en) | 1998-04-24 | 2007-07-23 | RFID Communication System and Method of Operation |
US11/847,654 Abandoned US20070290808A1 (en) | 1998-04-24 | 2007-08-30 | Backscatter interrogators, communication systems and backscatter communication methods |
US11/847,662 Abandoned US20070290809A1 (en) | 1998-04-24 | 2007-08-30 | Backscatter interrogators, communication systems and backscatter communication methods |
US11/847,671 Abandoned US20070290810A1 (en) | 1998-04-24 | 2007-08-30 | Backscatter interrogators, communication systems and backscatter communication methods |
US13/032,566 Abandoned US20110140858A1 (en) | 1998-04-24 | 2011-02-22 | Methods and apparatus for rfid tag communications |
US13/620,243 Expired - Fee Related US8855169B2 (en) | 1998-04-24 | 2012-09-14 | Methods and apparatus for RFID tag communications |
US14/507,699 Abandoned US20150091700A1 (en) | 1998-04-24 | 2014-10-06 | Backscatter interrogators, communication systems and backscatter communication methods |
Family Applications Before (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/066,610 Expired - Lifetime US6459726B1 (en) | 1998-04-24 | 1998-04-24 | Backscatter interrogators, communication systems and backscatter communication methods |
US09/961,113 Abandoned US20020015436A1 (en) | 1998-04-24 | 2001-09-20 | Modulators, transmitters, a radio frequency identification device system and carrier signal suppression methods |
US11/781,884 Abandoned US20080180253A1 (en) | 1998-04-24 | 2007-07-23 | RFID Communication System and Method of Operation |
US11/847,654 Abandoned US20070290808A1 (en) | 1998-04-24 | 2007-08-30 | Backscatter interrogators, communication systems and backscatter communication methods |
US11/847,662 Abandoned US20070290809A1 (en) | 1998-04-24 | 2007-08-30 | Backscatter interrogators, communication systems and backscatter communication methods |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/032,566 Abandoned US20110140858A1 (en) | 1998-04-24 | 2011-02-22 | Methods and apparatus for rfid tag communications |
US13/620,243 Expired - Fee Related US8855169B2 (en) | 1998-04-24 | 2012-09-14 | Methods and apparatus for RFID tag communications |
US14/507,699 Abandoned US20150091700A1 (en) | 1998-04-24 | 2014-10-06 | Backscatter interrogators, communication systems and backscatter communication methods |
Country Status (3)
Country | Link |
---|---|
US (9) | US6459726B1 (en) |
AU (1) | AU3560899A (en) |
WO (1) | WO1999056414A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070139164A1 (en) * | 1996-05-13 | 2007-06-21 | O'toole James E | Radio frequency data communications device |
US8000385B2 (en) | 2008-08-14 | 2011-08-16 | Computime, Ltd. | Multiple devices communicating on a single communication channel with a consecutively sequenced signal |
Families Citing this family (96)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6118789A (en) | 1998-02-19 | 2000-09-12 | Micron Technology, Inc. | Method of addressing messages and communications system |
US6275476B1 (en) * | 1998-02-19 | 2001-08-14 | Micron Technology, Inc. | Method of addressing messages and communications system |
US6061344A (en) | 1998-02-19 | 2000-05-09 | Micron Technology, Inc. | Method of addressing messages and communications system |
US6072801A (en) | 1998-02-19 | 2000-06-06 | Micron Technology, Inc. | Method of addressing messages, method of establishing wireless communications, and communications system |
USRE43382E1 (en) | 1998-02-19 | 2012-05-15 | Round Rock Research, Llc | Method of addressing messages and communications systems |
US6459726B1 (en) * | 1998-04-24 | 2002-10-01 | Micron Technology, Inc. | Backscatter interrogators, communication systems and backscatter communication methods |
WO2003062861A1 (en) | 2002-01-16 | 2003-07-31 | Tagsys Australia Pty Ltd | A system and method for communicating with electronic labels |
DE10210037A1 (en) * | 2002-03-07 | 2003-10-02 | Siemens Ag | Active backscatter transponder, communication system with such an and method for transmitting data with such an active backscatter transponder |
US7251711B2 (en) * | 2002-05-28 | 2007-07-31 | Micron Technology, Inc. | Apparatus and methods having a command sequence |
US6933849B2 (en) | 2002-07-09 | 2005-08-23 | Fred Sawyer | Method and apparatus for tracking objects and people |
US7333798B2 (en) * | 2002-08-08 | 2008-02-19 | Value Added Communications, Inc. | Telecommunication call management and monitoring system |
US8404376B2 (en) | 2002-08-09 | 2013-03-26 | Infinite Power Solutions, Inc. | Metal film encapsulation |
US9793523B2 (en) | 2002-08-09 | 2017-10-17 | Sapurast Research Llc | Electrochemical apparatus with barrier layer protected substrate |
US8236443B2 (en) | 2002-08-09 | 2012-08-07 | Infinite Power Solutions, Inc. | Metal film encapsulation |
US8445130B2 (en) | 2002-08-09 | 2013-05-21 | Infinite Power Solutions, Inc. | Hybrid thin-film battery |
US8394522B2 (en) | 2002-08-09 | 2013-03-12 | Infinite Power Solutions, Inc. | Robust metal film encapsulation |
US8431264B2 (en) | 2002-08-09 | 2013-04-30 | Infinite Power Solutions, Inc. | Hybrid thin-film battery |
US8021778B2 (en) | 2002-08-09 | 2011-09-20 | Infinite Power Solutions, Inc. | Electrochemical apparatus with barrier layer protected substrate |
US20070264564A1 (en) | 2006-03-16 | 2007-11-15 | Infinite Power Solutions, Inc. | Thin film battery on an integrated circuit or circuit board and method thereof |
SI21392A (en) * | 2002-12-24 | 2004-06-30 | Vinko Kunc | Procedure for automatic amplification adjustment of a polling device receiver in a contactless identification system |
US6985787B2 (en) * | 2002-12-31 | 2006-01-10 | Tokyo Electron Limited | Method and apparatus for monitoring parts in a material processing system |
US7042353B2 (en) * | 2003-02-03 | 2006-05-09 | Ingrid, Inc. | Cordless telephone system |
US7023341B2 (en) * | 2003-02-03 | 2006-04-04 | Ingrid, Inc. | RFID reader for a security network |
US7019639B2 (en) * | 2003-02-03 | 2006-03-28 | Ingrid, Inc. | RFID based security network |
US7053764B2 (en) * | 2003-02-03 | 2006-05-30 | Ingrid, Inc. | Controller for a security system |
US20040215750A1 (en) * | 2003-04-28 | 2004-10-28 | Stilp Louis A. | Configuration program for a security system |
US7218214B2 (en) * | 2003-10-27 | 2007-05-15 | David R. Werner | Auxiliary safety light system |
KR100605100B1 (en) * | 2003-11-05 | 2006-07-26 | 삼성전자주식회사 | Ic card, ic card processor and ic card system to improve data transmission speed |
US7432774B2 (en) * | 2004-02-27 | 2008-10-07 | Micron Technology, Inc. | Microstrip line dielectric overlay |
US7643536B2 (en) * | 2004-08-10 | 2010-01-05 | Mayo Foundation For Medical Education And Research | Asynchronus communication system for remote monitoring of objects or an environment |
EP1630713B1 (en) * | 2004-08-24 | 2020-05-20 | Sony Deutschland GmbH | Backscatter interrogator reception method and interrogator for a modulated backscatter system |
US7959769B2 (en) | 2004-12-08 | 2011-06-14 | Infinite Power Solutions, Inc. | Deposition of LiCoO2 |
ATE447777T1 (en) | 2004-12-08 | 2009-11-15 | Symmorphix Inc | DEPOSITION OF LICOO2 |
US20060203888A1 (en) * | 2005-03-10 | 2006-09-14 | Moore George S | Interface randomization methods and systems employing the same |
US8191780B2 (en) | 2005-04-07 | 2012-06-05 | Freedom Shopping, Inc. | Self checkout kiosk and retail security system |
EP1929426B1 (en) * | 2005-09-09 | 2011-03-16 | Nxp B.V. | Rfid signal reading method with delimiter pattern detection |
JP2009508173A (en) * | 2005-09-30 | 2009-02-26 | エヌエックスピー ビー ヴィ | Video-level dynamic soft clipping |
GB2437350A (en) * | 2006-04-19 | 2007-10-24 | Hewlett Packard Development Co | Data and Power Transmission via an Amplitude and Phase/Frequency Modulated Signal |
US20080131133A1 (en) * | 2006-05-17 | 2008-06-05 | Blunt Shannon D | Low sinr backscatter communications system and method |
US20080012688A1 (en) * | 2006-07-06 | 2008-01-17 | Ha Dong S | Secure rfid based ultra-wideband time-hopped pulse-position modulation |
CN101523571A (en) | 2006-09-29 | 2009-09-02 | 无穷动力解决方案股份有限公司 | Masking of and material constraint for depositing battery layers on flexible substrates |
US8197781B2 (en) | 2006-11-07 | 2012-06-12 | Infinite Power Solutions, Inc. | Sputtering target of Li3PO4 and method for producing same |
JP2010516006A (en) * | 2007-01-11 | 2010-05-13 | フリーダム ショッピング、インコーポレイテッド | Advanced RFID checkout kiosk |
US7973644B2 (en) | 2007-01-30 | 2011-07-05 | Round Rock Research, Llc | Systems and methods for RFID tag arbitration where RFID tags generate multiple random numbers for different arbitration sessions |
US8181865B2 (en) * | 2007-04-24 | 2012-05-22 | Freedom Shopping, Inc. | Radio frequency identification point of sale unassisted retail transaction and digital media kiosk |
US8134452B2 (en) * | 2007-05-30 | 2012-03-13 | Round Rock Research, Llc | Methods and systems of receiving data payload of RFID tags |
US9334557B2 (en) | 2007-12-21 | 2016-05-10 | Sapurast Research Llc | Method for sputter targets for electrolyte films |
US8268488B2 (en) | 2007-12-21 | 2012-09-18 | Infinite Power Solutions, Inc. | Thin film electrolyte for thin film batteries |
WO2009089417A1 (en) | 2008-01-11 | 2009-07-16 | Infinite Power Solutions, Inc. | Thin film encapsulation for thin film batteries and other devices |
CN101983469B (en) | 2008-04-02 | 2014-06-04 | 无穷动力解决方案股份有限公司 | Passive over/under voltage control and protection for energy storage devices associated with energy harvesting |
US20100321126A1 (en) * | 2008-04-22 | 2010-12-23 | Castle Robert John | Method of Modulating A Carrier to Transmit Power to a Device, and Modulator Adapted to do the Same |
JP5309765B2 (en) * | 2008-07-29 | 2013-10-09 | 富士通株式会社 | Information access system, information storage device, and read / write device |
JP2012500610A (en) | 2008-08-11 | 2012-01-05 | インフィニット パワー ソリューションズ, インコーポレイテッド | Energy device with integrated collector surface and method for electromagnetic energy acquisition |
WO2010030743A1 (en) | 2008-09-12 | 2010-03-18 | Infinite Power Solutions, Inc. | Energy device with integral conductive surface for data communication via electromagnetic energy and method thereof |
WO2010042594A1 (en) | 2008-10-08 | 2010-04-15 | Infinite Power Solutions, Inc. | Environmentally-powered wireless sensor module |
KR101091164B1 (en) * | 2008-11-21 | 2011-12-09 | 한국전자통신연구원 | Active RFID apparatus with improved PN code generation |
US9230259B1 (en) | 2009-03-20 | 2016-01-05 | Jpmorgan Chase Bank, N.A. | Systems and methods for mobile ordering and payment |
CN102576828B (en) | 2009-09-01 | 2016-04-20 | 萨普拉斯特研究有限责任公司 | There is the printed circuit board (PCB) of integrated thin film battery |
FR2954517B1 (en) * | 2009-12-23 | 2012-09-14 | Thales Sa | RADAR SIGNAL REPLY SYSTEM AND USE THEREOF, IN PARTICULAR TO TEST RADARS, ESPECIALLY OF MTI TYPE. |
KR101031478B1 (en) * | 2009-12-23 | 2011-04-26 | 주식회사 하이닉스반도체 | Rfid device |
EP2577777B1 (en) | 2010-06-07 | 2016-12-28 | Sapurast Research LLC | Rechargeable, high-density electrochemical device |
TWI450707B (en) * | 2010-11-09 | 2014-09-01 | Univ Chung Hua | Bio-impedance measurement apparatus and assembly |
US20120119883A1 (en) * | 2010-11-16 | 2012-05-17 | Symbol Technologies, Inc. | Rfid reader device having a read-only mode, and related operating methods |
US9780435B2 (en) | 2011-12-05 | 2017-10-03 | Adasa Inc. | Aerial inventory antenna |
US10846497B2 (en) | 2011-12-05 | 2020-11-24 | Adasa Inc. | Holonomic RFID reader |
US10476130B2 (en) | 2011-12-05 | 2019-11-12 | Adasa Inc. | Aerial inventory antenna |
US10050330B2 (en) | 2011-12-05 | 2018-08-14 | Adasa Inc. | Aerial inventory antenna |
US11093722B2 (en) | 2011-12-05 | 2021-08-17 | Adasa Inc. | Holonomic RFID reader |
US9747480B2 (en) | 2011-12-05 | 2017-08-29 | Adasa Inc. | RFID and robots for multichannel shopping |
WO2014036001A1 (en) * | 2012-08-27 | 2014-03-06 | University Of Houston System | System and method for securing backscatter wireless communication |
SI24283A (en) * | 2013-01-15 | 2014-07-31 | Ams R&D Analogni Polprevodniki, D.O.O. | Procedure and circuit of the active smart tag for communication with the interrogator |
US9680520B2 (en) | 2013-03-22 | 2017-06-13 | University Of Washington Through Its Center For Commercialization | Ambient backscatter tranceivers, apparatuses, systems, and methods for communicating using backscatter of ambient RF signals |
KR102105322B1 (en) * | 2013-06-17 | 2020-04-28 | 삼성전자주식회사 | Transmitter and receiver, wireless communication method |
WO2015123306A1 (en) | 2014-02-11 | 2015-08-20 | University Of Washington | Apparatuses, systems, and methods for communicating using mimo and spread spectrum coding in backscatter of ambient signals |
US10382161B2 (en) | 2014-02-11 | 2019-08-13 | University Of Washington | Wireless networking communication methods, systems, and devices operable using harvested power |
WO2016011421A1 (en) | 2014-07-17 | 2016-01-21 | The Regents Of The University Of California | Microwave reflector link, and cdma-spread spectrum reflector apparatus for reduction of unmodulated ambient blockers in reflected data links |
US10079616B2 (en) | 2014-12-19 | 2018-09-18 | University Of Washington | Devices and methods for backscatter communication using one or more wireless communication protocols including bluetooth low energy examples |
US9353815B1 (en) | 2015-04-17 | 2016-05-31 | Gideon Eden | Systems and methods for detecting wear of brake pads |
US9951834B1 (en) | 2017-02-09 | 2018-04-24 | Gideon Eden | Systems and methods for detecting wear of brake pads |
US9644696B2 (en) | 2015-04-17 | 2017-05-09 | Gideon Eden | Systems and methods for detecting wear of brake pads |
US10422870B2 (en) | 2015-06-15 | 2019-09-24 | Humatics Corporation | High precision time of flight measurement system for industrial automation |
US10591592B2 (en) | 2015-06-15 | 2020-03-17 | Humatics Corporation | High-precision time of flight measurement systems |
EP3335432B1 (en) * | 2015-08-12 | 2024-02-14 | University of Washington | Backscatter devices and network systems incorporating backscatter devices |
EP3375043B1 (en) * | 2015-11-09 | 2021-08-18 | Wiser Systems, Inc. | Ultra-wideband (uwb) antennas and related enclosures for the uwb antennas |
CN108701896B (en) | 2015-12-17 | 2021-03-12 | 修麦提克斯公司 | Device for realizing radio frequency positioning |
CN108496094B (en) * | 2016-01-26 | 2023-04-28 | 华盛顿大学 | Backscattering device incorporating an instance of single sideband operation |
US10652073B2 (en) | 2016-04-04 | 2020-05-12 | University Of Washington | Backscatter devices and systems providing backscattered signals including OFDM packets |
DE102016216071B4 (en) * | 2016-08-26 | 2021-09-23 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Concept for increasing performance in backscatter or load systems |
US10812130B2 (en) | 2016-10-18 | 2020-10-20 | University Of Washington | Backscatter systems, devices, and techniques utilizing CSS modulation and/or higher order harmonic cancellation |
EP3349302B1 (en) * | 2017-01-12 | 2019-11-13 | AT & S Austria Technologie & Systemtechnik Aktiengesellschaft | Ambient backscatter communication with devices having a circuit carrier with embedded communication equipment |
US10461783B2 (en) | 2017-03-16 | 2019-10-29 | University Of Washington | Radio frequency communication devices having backscatter and non-backscatter communication modes and hardware re-use |
WO2018187737A1 (en) | 2017-04-06 | 2018-10-11 | University Of Washington | Image and/or video transmission using backscatter devices |
JP2022522325A (en) * | 2018-12-19 | 2022-04-18 | アレス トレーディング ソシエテ アノニム | Communication equipment used with electronic communication elements, electronic communication elements, and their use |
KR102258309B1 (en) * | 2019-12-30 | 2021-06-01 | 성균관대학교산학협력단 | Wakeup radio systems and methods based on backscatter wakeup radio |
CN111641577B (en) * | 2020-05-08 | 2021-12-24 | 上海交通大学 | Backscattering system based on orthogonal frequency division multiple access technology |
US12080415B2 (en) | 2020-10-09 | 2024-09-03 | Humatics Corporation | Radio-frequency systems and methods for co-localization of medical devices and patients |
Citations (74)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3299424A (en) * | 1965-05-07 | 1967-01-17 | Jorgen P Vinding | Interrogator-responder identification system |
US3694776A (en) * | 1970-12-14 | 1972-09-26 | Motorola Inc | Adaptive filter wherein opposite conductivity transistors are operative in response to signals in excess of predetermined amplitude |
US3852755A (en) * | 1971-07-22 | 1974-12-03 | Raytheon Co | Remotely powered transponder having a dipole antenna array |
US3921094A (en) * | 1974-10-07 | 1975-11-18 | Bell Telephone Labor Inc | Phase-locked frequency synthesizer with means for restoring stability |
US3924320A (en) * | 1972-04-14 | 1975-12-09 | Ibm | Method to improve the reverse leakage characteristics in metal semiconductor contacts |
US4075632A (en) * | 1974-08-27 | 1978-02-21 | The United States Of America As Represented By The United States Department Of Energy | Interrogation, and detection system |
US4190838A (en) * | 1978-07-20 | 1980-02-26 | R A Electronics, Inc. | Radiation detector |
US4190383A (en) * | 1977-01-13 | 1980-02-26 | Pynford Limited | Structural element |
US4308617A (en) * | 1977-11-07 | 1981-12-29 | The Bendix Corporation | Noiselike amplitude and phase modulation coding for spread spectrum transmissions |
US4384288A (en) * | 1980-12-31 | 1983-05-17 | Walton Charles A | Portable radio frequency emitting identifier |
US4478881A (en) * | 1981-12-28 | 1984-10-23 | Solid State Devices, Inc. | Tungsten barrier contact |
US4514731A (en) * | 1981-07-14 | 1985-04-30 | Falck John B | Coded information arrangement |
US4525865A (en) * | 1983-10-03 | 1985-06-25 | General Electric Company | Programmable radio |
US4743864A (en) * | 1985-10-23 | 1988-05-10 | Hitachi, Ltd | Power saving intermittently operated phase locked loop |
US4746830A (en) * | 1986-03-14 | 1988-05-24 | Holland William R | Electronic surveillance and identification |
US4783646A (en) * | 1986-03-07 | 1988-11-08 | Kabushiki Kaisha Toshiba | Stolen article detection tag sheet, and method for manufacturing the same |
US4786903A (en) * | 1986-04-15 | 1988-11-22 | E. F. Johnson Company | Remotely interrogated transponder |
US4800543A (en) * | 1987-12-03 | 1989-01-24 | Ramtron Corporation | Timepiece communication system |
US4816839A (en) * | 1987-12-18 | 1989-03-28 | Amtech Corporation | Transponder antenna |
US4827395A (en) * | 1983-04-21 | 1989-05-02 | Intelli-Tech Corporation | Manufacturing monitoring and control systems |
US4843354A (en) * | 1987-12-28 | 1989-06-27 | Motorola, Inc. | Broad band microwave biasing networks suitable for being provided in monolithic integrated circuit form |
US4853705A (en) * | 1988-05-11 | 1989-08-01 | Amtech Technology Corporation | Beam powered antenna |
US4854328A (en) * | 1987-03-23 | 1989-08-08 | Philip Pollack | Animal monitoring telltale and information system |
US4857893A (en) * | 1986-07-18 | 1989-08-15 | Bi Inc. | Single chip transponder device |
US4862160A (en) * | 1983-12-29 | 1989-08-29 | Revlon, Inc. | Item identification tag for rapid inventory data acquisition system |
US4868908A (en) * | 1988-10-18 | 1989-09-19 | Ventritex | Power supply down-conversion, regulation and low battery detection system |
US4870419A (en) * | 1980-02-13 | 1989-09-26 | Eid Electronic Identification Systems, Ltd. | Electronic identification system |
US4888591A (en) * | 1988-10-06 | 1989-12-19 | Amtech Technology Corporation | Signal discrimination system |
US4890072A (en) * | 1988-02-03 | 1989-12-26 | Motorola, Inc. | Phase locked loop having a fast lock current reduction and clamping circuit |
US4897662A (en) * | 1988-12-09 | 1990-01-30 | Dallas Semiconductor Corporation | Integrated circuit with wireless freshness seal |
US4912471A (en) * | 1983-11-03 | 1990-03-27 | Mitron Systems Corporation | Interrogator-responder communication system |
US4926182A (en) * | 1986-05-30 | 1990-05-15 | Sharp Kabushiki Kaisha | Microwave data transmission apparatus |
US4942393A (en) * | 1988-05-27 | 1990-07-17 | Lectron Products, Inc. | Passive keyless entry system |
US4952889A (en) * | 1989-04-28 | 1990-08-28 | Motorola, Inc. | Loop filter modulated synthesizer |
US5030807A (en) * | 1990-01-16 | 1991-07-09 | Amtech Corporation | System for reading and writing data from and into remote tags |
US5528222A (en) * | 1994-09-09 | 1996-06-18 | International Business Machines Corporation | Radio frequency circuit and memory in thin flexible package |
US5539775A (en) * | 1993-03-17 | 1996-07-23 | Micron Technology, Inc. | Modulated spread spectrum in RF identification systems method |
US5705947A (en) * | 1994-06-06 | 1998-01-06 | Deog-Kyoon Jeog | Clock generator |
US5715236A (en) * | 1990-06-25 | 1998-02-03 | Qualcomm Incorporated | System and method for generating signal waveforms in a CDMA cellular telephone system |
US5719550A (en) * | 1994-05-20 | 1998-02-17 | Licentia Patent Verwaltungs-Gmbh | Arrangement for identification of a movable object having a transponder |
US5721783A (en) * | 1995-06-07 | 1998-02-24 | Anderson; James C. | Hearing aid with wireless remote processor |
US5721678A (en) * | 1993-03-23 | 1998-02-24 | Mannesmann Aktiengesellschaft | Arrangement for a use billing system |
US5726630A (en) * | 1992-11-18 | 1998-03-10 | British Technology Group Limited | Detection of multiple articles |
US5741462A (en) * | 1995-04-25 | 1998-04-21 | Irori | Remotely programmable matrices with memories |
US5754584A (en) * | 1994-09-09 | 1998-05-19 | Omnipoint Corporation | Non-coherent spread-spectrum continuous-phase modulation communication system |
US5774022A (en) * | 1996-08-29 | 1998-06-30 | Micron Communications, Inc. | Digital clock recovery loop |
US5780916A (en) * | 1995-10-10 | 1998-07-14 | University Of Delaware | Asymmetric contacted metal-semiconductor-metal photodetectors |
US5790946A (en) * | 1993-07-15 | 1998-08-04 | Rotzoll; Robert R. | Wake up device for a communications system |
US5815042A (en) * | 1995-10-03 | 1998-09-29 | Ati Technologies Inc. | Duty cycled control implemented within a frequency synthesizer |
US5862172A (en) * | 1995-03-17 | 1999-01-19 | Sony Corporation | Spread spectrum communication system and its transmitter and receiver |
US5901349A (en) * | 1995-12-15 | 1999-05-04 | Matra Communication | Mixer device with image frequency rejection |
US5907789A (en) * | 1994-01-19 | 1999-05-25 | Sony Corporation | Method of forming a contact-hole of a semiconductor element |
US5940006A (en) * | 1995-12-12 | 1999-08-17 | Lucent Technologies Inc. | Enhanced uplink modulated backscatter system |
US5952922A (en) * | 1996-12-31 | 1999-09-14 | Lucent Technologies Inc. | In-building modulated backscatter system |
US5970398A (en) * | 1996-07-30 | 1999-10-19 | Micron Communications, Inc. | Radio frequency antenna with current controlled sensitivity |
US6046683A (en) * | 1996-12-31 | 2000-04-04 | Lucent Technologies Inc. | Modulated backscatter location system |
US6084530A (en) * | 1996-12-30 | 2000-07-04 | Lucent Technologies Inc. | Modulated backscatter sensor system |
US6107910A (en) * | 1996-11-29 | 2000-08-22 | X-Cyte, Inc. | Dual mode transmitter/receiver and decoder for RF transponder tags |
US6130602A (en) * | 1996-05-13 | 2000-10-10 | Micron Technology, Inc. | Radio frequency data communications device |
US6150921A (en) * | 1996-10-17 | 2000-11-21 | Pinpoint Corporation | Article tracking system |
US6236315B1 (en) * | 1999-10-19 | 2001-05-22 | Lucent Technologies Inc. | Method and apparatus for improving the interrogation range of an RF tag |
US6246882B1 (en) * | 1998-12-22 | 2001-06-12 | Telefonaktiebolaget Lm Ericsson (Publ) | Wide area item tracking system |
US6249212B1 (en) * | 1994-10-05 | 2001-06-19 | Avid Marketing, Inc. | Universal electronic identification tag |
US6356705B1 (en) * | 1996-12-10 | 2002-03-12 | Sony Corporation | Video signal transmission method, superimposed information extraction method, video signal output device, video signal recording device, and video signal recording medium |
US6415002B1 (en) * | 1998-04-07 | 2002-07-02 | Nortel Networks Limited | Phase and amplitude modulation of baseband signals |
US6459726B1 (en) * | 1998-04-24 | 2002-10-01 | Micron Technology, Inc. | Backscatter interrogators, communication systems and backscatter communication methods |
US20030174099A1 (en) * | 2002-01-09 | 2003-09-18 | Westvaco Corporation | Intelligent station using multiple RF antennae and inventory control system and method incorporating same |
US6696879B1 (en) * | 1996-05-13 | 2004-02-24 | Micron Technology, Inc. | Radio frequency data communications device |
US6735182B1 (en) * | 1998-11-19 | 2004-05-11 | Nippon Telegraph And Telephone Corporation | Adaptive array antenna system |
US6774685B2 (en) * | 1996-05-13 | 2004-08-10 | Micron Technology, Inc. | Radio frequency data communications device |
US6836468B1 (en) * | 1996-05-13 | 2004-12-28 | Micron Technology, Inc. | Radio frequency data communications device |
US6941124B1 (en) * | 1996-05-13 | 2005-09-06 | Micron Technology, Inc. | Method of speeding power-up of an amplifier, and amplifier |
US20070152831A1 (en) * | 2006-01-05 | 2007-07-05 | Sean Eisele | 3-axis RFID tag antenna |
US20080122581A1 (en) * | 2006-05-10 | 2008-05-29 | Electronics And Telecommunications Research Institute | Passive rfid reader and operation control method therefor |
Family Cites Families (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US384568A (en) * | 1888-06-12 | evans | ||
US488591A (en) * | 1892-12-20 | Inseam-trimming machine | ||
US912628A (en) * | 1908-01-27 | 1909-02-16 | David H Sherman | Agitator. |
US2626786A (en) * | 1947-05-05 | 1953-01-27 | Leonard D Mcglothlin | Automatic consistency control means |
US2630302A (en) * | 1950-11-16 | 1953-03-03 | Celanese Corp | Mixing apparatus |
US3071351A (en) * | 1960-10-25 | 1963-01-01 | Ethan A Brown | Emulsor |
FR2005399A1 (en) * | 1968-04-02 | 1969-12-12 | Kureha Chemical Ind Co Ltd | |
US3615243A (en) * | 1969-05-22 | 1971-10-26 | Clarence W Scott | Apparatus for extracting liquid from a mobile semisolid cellular system |
US4977579A (en) | 1984-06-14 | 1990-12-11 | The United States Of America As Represented By The Secretary Of The Navy | Test set for a navigational satellite receiver |
US4724427A (en) * | 1986-07-18 | 1988-02-09 | B. I. Incorporated | Transponder device |
RU2109402C1 (en) | 1987-10-27 | 1998-04-20 | Энтон Найсен Пол | Device for two-way communication between transmitter/receiver units |
JPH0748707B2 (en) * | 1988-09-06 | 1995-05-24 | 三菱電機株式会社 | Direct sequence modulator |
US5157686A (en) * | 1990-05-24 | 1992-10-20 | Cylink Corporation | Method and apparatus for the modulation of spread spectrum radio signals |
US5157408A (en) * | 1990-05-25 | 1992-10-20 | Navcom Defence Electronics, Inc. | Low probability of interception relative position determination system |
US5568483A (en) | 1990-06-25 | 1996-10-22 | Qualcomm Incorporated | Method and apparatus for the formatting of data for transmission |
US5659569A (en) | 1990-06-25 | 1997-08-19 | Qualcomm Incorporated | Data burst randomizer |
US5511073A (en) | 1990-06-25 | 1996-04-23 | Qualcomm Incorporated | Method and apparatus for the formatting of data for transmission |
US5164983A (en) | 1991-01-28 | 1992-11-17 | American Telephone & Telegraph Company | Telemarketing complex performance management system |
US5083506A (en) * | 1991-03-06 | 1992-01-28 | Blentech Corporation | Continuous compartmented mixer |
DE4118884A1 (en) * | 1991-06-07 | 1992-12-10 | List Ag | MIXING kneader |
US5902625A (en) * | 1992-02-14 | 1999-05-11 | Leprino Foods Company | Process of making a soft or semi-soft fibrous cheese |
DE4345610B4 (en) * | 1992-06-17 | 2013-01-03 | Micron Technology Inc. | Method for producing a radio-frequency identification device (HFID) |
JPH06315020A (en) * | 1993-01-06 | 1994-11-08 | Ricoh Co Ltd | Spread spectrum communication system |
US5471212A (en) | 1994-04-26 | 1995-11-28 | Texas Instruments Incorporated | Multi-stage transponder wake-up, method and structure |
ZA95605B (en) | 1994-04-28 | 1995-12-20 | Qualcomm Inc | Method and apparatus for automatic gain control and dc offset cancellation in quadrature receiver |
AU6476296A (en) | 1995-06-01 | 1996-12-18 | Norand Corporation | Spread spectrum transceiver module utilizing multiple mode t ransmission |
US5649295A (en) * | 1995-06-19 | 1997-07-15 | Lucent Technologies Inc. | Dual mode modulated backscatter system |
US5649296A (en) | 1995-06-19 | 1997-07-15 | Lucent Technologies Inc. | Full duplex modulated backscatter system |
US6289209B1 (en) | 1996-12-18 | 2001-09-11 | Micron Technology, Inc. | Wireless communication system, radio frequency communications system, wireless communications method, radio frequency communications method |
JP3541139B2 (en) * | 1999-02-17 | 2004-07-07 | 株式会社タバタ | Underwater glasses |
KR100763653B1 (en) * | 1999-03-29 | 2007-10-04 | 대럴 씨. 혼 | Method and apparatus for controlled hydration grain cooking |
US6523727B2 (en) * | 2000-04-26 | 2003-02-25 | Peerless Machinery Corp. | Dough feeding unit |
US20050178758A1 (en) * | 2004-02-17 | 2005-08-18 | Horn Darrell C. | Modular, angular direct steam cooker |
WO2006026811A2 (en) | 2004-09-06 | 2006-03-16 | Gold Peg International Pty Ltd | Method and apparatus to produce a pasta filata cheese |
-
1998
- 1998-04-24 US US09/066,610 patent/US6459726B1/en not_active Expired - Lifetime
-
1999
- 1999-04-14 AU AU35608/99A patent/AU3560899A/en not_active Abandoned
- 1999-04-14 WO PCT/US1999/008175 patent/WO1999056414A1/en active Application Filing
-
2001
- 2001-09-20 US US09/961,113 patent/US20020015436A1/en not_active Abandoned
-
2007
- 2007-07-23 US US11/781,884 patent/US20080180253A1/en not_active Abandoned
- 2007-08-30 US US11/847,654 patent/US20070290808A1/en not_active Abandoned
- 2007-08-30 US US11/847,662 patent/US20070290809A1/en not_active Abandoned
- 2007-08-30 US US11/847,671 patent/US20070290810A1/en not_active Abandoned
-
2011
- 2011-02-22 US US13/032,566 patent/US20110140858A1/en not_active Abandoned
-
2012
- 2012-09-14 US US13/620,243 patent/US8855169B2/en not_active Expired - Fee Related
-
2014
- 2014-10-06 US US14/507,699 patent/US20150091700A1/en not_active Abandoned
Patent Citations (97)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3299424A (en) * | 1965-05-07 | 1967-01-17 | Jorgen P Vinding | Interrogator-responder identification system |
US3694776A (en) * | 1970-12-14 | 1972-09-26 | Motorola Inc | Adaptive filter wherein opposite conductivity transistors are operative in response to signals in excess of predetermined amplitude |
US3852755A (en) * | 1971-07-22 | 1974-12-03 | Raytheon Co | Remotely powered transponder having a dipole antenna array |
US3924320A (en) * | 1972-04-14 | 1975-12-09 | Ibm | Method to improve the reverse leakage characteristics in metal semiconductor contacts |
US4075632A (en) * | 1974-08-27 | 1978-02-21 | The United States Of America As Represented By The United States Department Of Energy | Interrogation, and detection system |
US3921094A (en) * | 1974-10-07 | 1975-11-18 | Bell Telephone Labor Inc | Phase-locked frequency synthesizer with means for restoring stability |
US4190383A (en) * | 1977-01-13 | 1980-02-26 | Pynford Limited | Structural element |
US4308617A (en) * | 1977-11-07 | 1981-12-29 | The Bendix Corporation | Noiselike amplitude and phase modulation coding for spread spectrum transmissions |
US4190838A (en) * | 1978-07-20 | 1980-02-26 | R A Electronics, Inc. | Radiation detector |
US4870419A (en) * | 1980-02-13 | 1989-09-26 | Eid Electronic Identification Systems, Ltd. | Electronic identification system |
US4384288A (en) * | 1980-12-31 | 1983-05-17 | Walton Charles A | Portable radio frequency emitting identifier |
US4514731A (en) * | 1981-07-14 | 1985-04-30 | Falck John B | Coded information arrangement |
US4478881A (en) * | 1981-12-28 | 1984-10-23 | Solid State Devices, Inc. | Tungsten barrier contact |
US4827395A (en) * | 1983-04-21 | 1989-05-02 | Intelli-Tech Corporation | Manufacturing monitoring and control systems |
US4525865A (en) * | 1983-10-03 | 1985-06-25 | General Electric Company | Programmable radio |
US4912471A (en) * | 1983-11-03 | 1990-03-27 | Mitron Systems Corporation | Interrogator-responder communication system |
US4862160A (en) * | 1983-12-29 | 1989-08-29 | Revlon, Inc. | Item identification tag for rapid inventory data acquisition system |
US4743864A (en) * | 1985-10-23 | 1988-05-10 | Hitachi, Ltd | Power saving intermittently operated phase locked loop |
US4783646A (en) * | 1986-03-07 | 1988-11-08 | Kabushiki Kaisha Toshiba | Stolen article detection tag sheet, and method for manufacturing the same |
US4746830A (en) * | 1986-03-14 | 1988-05-24 | Holland William R | Electronic surveillance and identification |
US4786903A (en) * | 1986-04-15 | 1988-11-22 | E. F. Johnson Company | Remotely interrogated transponder |
US4926182A (en) * | 1986-05-30 | 1990-05-15 | Sharp Kabushiki Kaisha | Microwave data transmission apparatus |
US4857893A (en) * | 1986-07-18 | 1989-08-15 | Bi Inc. | Single chip transponder device |
US4854328A (en) * | 1987-03-23 | 1989-08-08 | Philip Pollack | Animal monitoring telltale and information system |
US4800543A (en) * | 1987-12-03 | 1989-01-24 | Ramtron Corporation | Timepiece communication system |
US4816839A (en) * | 1987-12-18 | 1989-03-28 | Amtech Corporation | Transponder antenna |
US4843354A (en) * | 1987-12-28 | 1989-06-27 | Motorola, Inc. | Broad band microwave biasing networks suitable for being provided in monolithic integrated circuit form |
US4890072A (en) * | 1988-02-03 | 1989-12-26 | Motorola, Inc. | Phase locked loop having a fast lock current reduction and clamping circuit |
US4853705A (en) * | 1988-05-11 | 1989-08-01 | Amtech Technology Corporation | Beam powered antenna |
US4942393A (en) * | 1988-05-27 | 1990-07-17 | Lectron Products, Inc. | Passive keyless entry system |
US4888591A (en) * | 1988-10-06 | 1989-12-19 | Amtech Technology Corporation | Signal discrimination system |
US4868908A (en) * | 1988-10-18 | 1989-09-19 | Ventritex | Power supply down-conversion, regulation and low battery detection system |
US4897662A (en) * | 1988-12-09 | 1990-01-30 | Dallas Semiconductor Corporation | Integrated circuit with wireless freshness seal |
US4952889A (en) * | 1989-04-28 | 1990-08-28 | Motorola, Inc. | Loop filter modulated synthesizer |
US5030807A (en) * | 1990-01-16 | 1991-07-09 | Amtech Corporation | System for reading and writing data from and into remote tags |
US5841806A (en) * | 1990-06-25 | 1998-11-24 | Qualcomm Incorporated | Method and apparatus for the transmission of energy-scaled variable rate data |
US5715236A (en) * | 1990-06-25 | 1998-02-03 | Qualcomm Incorporated | System and method for generating signal waveforms in a CDMA cellular telephone system |
US5726630A (en) * | 1992-11-18 | 1998-03-10 | British Technology Group Limited | Detection of multiple articles |
US5539775A (en) * | 1993-03-17 | 1996-07-23 | Micron Technology, Inc. | Modulated spread spectrum in RF identification systems method |
US5721678A (en) * | 1993-03-23 | 1998-02-24 | Mannesmann Aktiengesellschaft | Arrangement for a use billing system |
US5790946A (en) * | 1993-07-15 | 1998-08-04 | Rotzoll; Robert R. | Wake up device for a communications system |
US5907789A (en) * | 1994-01-19 | 1999-05-25 | Sony Corporation | Method of forming a contact-hole of a semiconductor element |
US5719550A (en) * | 1994-05-20 | 1998-02-17 | Licentia Patent Verwaltungs-Gmbh | Arrangement for identification of a movable object having a transponder |
US5705947A (en) * | 1994-06-06 | 1998-01-06 | Deog-Kyoon Jeog | Clock generator |
US5754584A (en) * | 1994-09-09 | 1998-05-19 | Omnipoint Corporation | Non-coherent spread-spectrum continuous-phase modulation communication system |
US5528222A (en) * | 1994-09-09 | 1996-06-18 | International Business Machines Corporation | Radio frequency circuit and memory in thin flexible package |
US6249212B1 (en) * | 1994-10-05 | 2001-06-19 | Avid Marketing, Inc. | Universal electronic identification tag |
US5862172A (en) * | 1995-03-17 | 1999-01-19 | Sony Corporation | Spread spectrum communication system and its transmitter and receiver |
US5741462A (en) * | 1995-04-25 | 1998-04-21 | Irori | Remotely programmable matrices with memories |
US5721783A (en) * | 1995-06-07 | 1998-02-24 | Anderson; James C. | Hearing aid with wireless remote processor |
US5815042A (en) * | 1995-10-03 | 1998-09-29 | Ati Technologies Inc. | Duty cycled control implemented within a frequency synthesizer |
US5780916A (en) * | 1995-10-10 | 1998-07-14 | University Of Delaware | Asymmetric contacted metal-semiconductor-metal photodetectors |
US5940006A (en) * | 1995-12-12 | 1999-08-17 | Lucent Technologies Inc. | Enhanced uplink modulated backscatter system |
US5901349A (en) * | 1995-12-15 | 1999-05-04 | Matra Communication | Mixer device with image frequency rejection |
US6721289B1 (en) * | 1996-05-13 | 2004-04-13 | Micron Technology, Inc. | Radio frequency data communications device |
US6771613B1 (en) * | 1996-05-13 | 2004-08-03 | Micron Technology, Inc. | Radio frequency data communications device |
US7385477B2 (en) * | 1996-05-13 | 2008-06-10 | Keystone Technology Solutions, Llc | Radio frequency data communications device |
US7170867B2 (en) * | 1996-05-13 | 2007-01-30 | Micron Technology, Inc. | Radio frequency data communications device |
US7079043B2 (en) * | 1996-05-13 | 2006-07-18 | Micron Technology, Inc. | Radio frequency data communications device |
US6947513B2 (en) * | 1996-05-13 | 2005-09-20 | Micron Technology, Inc. | Radio frequency data communications device |
US6130602A (en) * | 1996-05-13 | 2000-10-10 | Micron Technology, Inc. | Radio frequency data communications device |
US6941124B1 (en) * | 1996-05-13 | 2005-09-06 | Micron Technology, Inc. | Method of speeding power-up of an amplifier, and amplifier |
US6157230A (en) * | 1996-05-13 | 2000-12-05 | Micron Technology, Inc. | Method for realizing an improved radio frequency detector for use in a radio frequency identification device, frequency lock loop, timing oscillator, method of constructing a frequency lock loop and method of operating an integrated circuit |
US6198357B1 (en) * | 1996-05-13 | 2001-03-06 | Micron Technology, Inc. | Stage having controlled variable resistance load circuit for use in voltage controlled ring oscillator |
US6198332B1 (en) * | 1996-05-13 | 2001-03-06 | Micron Technology, Inc. | Frequency doubler and method of doubling frequency |
US6836468B1 (en) * | 1996-05-13 | 2004-12-28 | Micron Technology, Inc. | Radio frequency data communications device |
US6836472B2 (en) * | 1996-05-13 | 2004-12-28 | Micron Technology, Inc. | Radio frequency data communications device |
US6249185B1 (en) * | 1996-05-13 | 2001-06-19 | Micron Technology, Inc. | Method of speeding power-up of an amplifier, and amplifier |
US6825773B1 (en) * | 1996-05-13 | 2004-11-30 | Micron Technology, Inc. | Radio frequency data communications device |
US6278698B1 (en) * | 1996-05-13 | 2001-08-21 | Micron Technology, Inc. | Radio frequency data communications device |
US6314440B1 (en) * | 1996-05-13 | 2001-11-06 | Micron Technology, Inc. | Pseudo random number generator |
US6316975B1 (en) * | 1996-05-13 | 2001-11-13 | Micron Technology, Inc. | Radio frequency data communications device |
US6337634B1 (en) * | 1996-05-13 | 2002-01-08 | Micron Technology, Inc. | Radio frequency data communications device |
US6351190B1 (en) * | 1996-05-13 | 2002-02-26 | Micron Technology, Inc. | Stage having controlled variable resistance load circuit for use in voltage controlled ring oscillator |
US6774685B2 (en) * | 1996-05-13 | 2004-08-10 | Micron Technology, Inc. | Radio frequency data communications device |
US6384648B1 (en) * | 1996-05-13 | 2002-05-07 | Micron Technology, Inc. | Radio frequency data communications device |
US6696879B1 (en) * | 1996-05-13 | 2004-02-24 | Micron Technology, Inc. | Radio frequency data communications device |
US6600428B1 (en) * | 1996-05-13 | 2003-07-29 | Micron Technology, Inc. | Radio frequency data communications device |
US6466634B1 (en) * | 1996-05-13 | 2002-10-15 | Micron Technology, Inc. | Radio frequency data communications device |
US6492192B1 (en) * | 1996-05-13 | 2002-12-10 | Micron Technology, Inc. | Method of making a Schottky diode in an integrated circuit |
US6122494A (en) * | 1996-07-30 | 2000-09-19 | Micron Technology, Inc. | Radio frequency antenna with current controlled sensitivity |
US5970398A (en) * | 1996-07-30 | 1999-10-19 | Micron Communications, Inc. | Radio frequency antenna with current controlled sensitivity |
US5774022A (en) * | 1996-08-29 | 1998-06-30 | Micron Communications, Inc. | Digital clock recovery loop |
US6150921A (en) * | 1996-10-17 | 2000-11-21 | Pinpoint Corporation | Article tracking system |
US6107910A (en) * | 1996-11-29 | 2000-08-22 | X-Cyte, Inc. | Dual mode transmitter/receiver and decoder for RF transponder tags |
US6356705B1 (en) * | 1996-12-10 | 2002-03-12 | Sony Corporation | Video signal transmission method, superimposed information extraction method, video signal output device, video signal recording device, and video signal recording medium |
US6084530A (en) * | 1996-12-30 | 2000-07-04 | Lucent Technologies Inc. | Modulated backscatter sensor system |
US6046683A (en) * | 1996-12-31 | 2000-04-04 | Lucent Technologies Inc. | Modulated backscatter location system |
US5952922A (en) * | 1996-12-31 | 1999-09-14 | Lucent Technologies Inc. | In-building modulated backscatter system |
US6415002B1 (en) * | 1998-04-07 | 2002-07-02 | Nortel Networks Limited | Phase and amplitude modulation of baseband signals |
US6459726B1 (en) * | 1998-04-24 | 2002-10-01 | Micron Technology, Inc. | Backscatter interrogators, communication systems and backscatter communication methods |
US6735182B1 (en) * | 1998-11-19 | 2004-05-11 | Nippon Telegraph And Telephone Corporation | Adaptive array antenna system |
US6246882B1 (en) * | 1998-12-22 | 2001-06-12 | Telefonaktiebolaget Lm Ericsson (Publ) | Wide area item tracking system |
US6236315B1 (en) * | 1999-10-19 | 2001-05-22 | Lucent Technologies Inc. | Method and apparatus for improving the interrogation range of an RF tag |
US20030174099A1 (en) * | 2002-01-09 | 2003-09-18 | Westvaco Corporation | Intelligent station using multiple RF antennae and inventory control system and method incorporating same |
US20070152831A1 (en) * | 2006-01-05 | 2007-07-05 | Sean Eisele | 3-axis RFID tag antenna |
US20080122581A1 (en) * | 2006-05-10 | 2008-05-29 | Electronics And Telecommunications Research Institute | Passive rfid reader and operation control method therefor |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070139164A1 (en) * | 1996-05-13 | 2007-06-21 | O'toole James E | Radio frequency data communications device |
US8000385B2 (en) | 2008-08-14 | 2011-08-16 | Computime, Ltd. | Multiple devices communicating on a single communication channel with a consecutively sequenced signal |
Also Published As
Publication number | Publication date |
---|---|
US20080180253A1 (en) | 2008-07-31 |
US6459726B1 (en) | 2002-10-01 |
WO1999056414A1 (en) | 1999-11-04 |
US20070290808A1 (en) | 2007-12-20 |
US20020015436A1 (en) | 2002-02-07 |
US8855169B2 (en) | 2014-10-07 |
US20150091700A1 (en) | 2015-04-02 |
US20130069767A1 (en) | 2013-03-21 |
US20110140858A1 (en) | 2011-06-16 |
US20070290809A1 (en) | 2007-12-20 |
AU3560899A (en) | 1999-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8855169B2 (en) | Methods and apparatus for RFID tag communications | |
US6229987B1 (en) | Method of communications in a backscatter system, interrogator, and backscatter communications system | |
US6169474B1 (en) | Method of communications in a backscatter system, interrogator, and backscatter communications system | |
US6324211B1 (en) | Interrogators communication systems communication methods and methods of processing a communication signal | |
US6356764B1 (en) | Wireless communication systems, interrogators and methods of communicating within a wireless communication system | |
US6289209B1 (en) | Wireless communication system, radio frequency communications system, wireless communications method, radio frequency communications method | |
US7982586B2 (en) | Wireless communication systems, interrogators and methods of communicating within a wireless communication system | |
USRE43242E1 (en) | Communication system, interrogators and communication methods | |
EP0750201B1 (en) | Full duplex modulated backscatter system | |
US6603391B1 (en) | Phase shifters, interrogators, methods of shifting a phase angle of a signal, and methods of operating an interrogator | |
US6914528B2 (en) | Wireless communication systems, radio frequency identification devices, methods of enhancing a communications range of a radio frequency identification device, and wireless communication methods | |
US5485154A (en) | Communication device and method(s) | |
WO1999008402A1 (en) | Wireless communication system including a plurality of selectable antennas and wireless communications method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ROUND ROCK RESEARCH, LLC,NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:023786/0416 Effective date: 20091223 Owner name: ROUND ROCK RESEARCH, LLC, NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:023786/0416 Effective date: 20091223 |
|
AS | Assignment |
Owner name: MICRON TECHNOLOGY, INC., IDAHO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KEYSTONE TECHNOLOGY SOLUTIONS, LLC;REEL/FRAME:023839/0881 Effective date: 20091222 Owner name: MICRON TECHNOLOGY, INC.,IDAHO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KEYSTONE TECHNOLOGY SOLUTIONS, LLC;REEL/FRAME:023839/0881 Effective date: 20091222 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |