US20070284006A1 - Fuel supply systems - Google Patents

Fuel supply systems Download PDF

Info

Publication number
US20070284006A1
US20070284006A1 US11/742,854 US74285407A US2007284006A1 US 20070284006 A1 US20070284006 A1 US 20070284006A1 US 74285407 A US74285407 A US 74285407A US 2007284006 A1 US2007284006 A1 US 2007284006A1
Authority
US
United States
Prior art keywords
electrically conductive
supply system
fuel
fuel supply
receptacle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/742,854
Inventor
Nobuo Suzuki
Tetsuji Inoue
Shuji Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisan Industry Co Ltd
Original Assignee
Aisan Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisan Industry Co Ltd filed Critical Aisan Industry Co Ltd
Assigned to AISAN KOGYO KABUSHIKI KAISHA reassignment AISAN KOGYO KABUSHIKI KAISHA ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: INOUE, TETSUJI, SUZUKI, NOBUO, YAMAMOTO, SHUJI
Publication of US20070284006A1 publication Critical patent/US20070284006A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/04Feeding by means of driven pumps
    • F02M37/08Feeding by means of driven pumps electrically driven
    • F02M37/10Feeding by means of driven pumps electrically driven submerged in fuel, e.g. in reservoir
    • F02M37/106Feeding by means of driven pumps electrically driven submerged in fuel, e.g. in reservoir the pump being installed in a sub-tank
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/22Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines, e.g. arrangements in the feeding system
    • F02M37/32Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines, e.g. arrangements in the feeding system characterised by filters or filter arrangements
    • F02M37/44Filters structurally associated with pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/22Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines, e.g. arrangements in the feeding system
    • F02M37/32Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines, e.g. arrangements in the feeding system characterised by filters or filter arrangements
    • F02M37/46Filters structurally associated with pressure regulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/22Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines, e.g. arrangements in the feeding system
    • F02M37/32Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines, e.g. arrangements in the feeding system characterised by filters or filter arrangements
    • F02M37/50Filters arranged in or on fuel tanks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • B60K2015/03105Fuel tanks with supplementary interior tanks inside the fuel tank
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • B60K2015/03111Swirl pots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • B60K2015/03328Arrangements or special measures related to fuel tanks or fuel handling
    • B60K2015/03401Arrangements or special measures related to fuel tanks or fuel handling for preventing electrostatic charges
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/85978With pump

Definitions

  • the present invention relates to fuel supply systems that have a controller for controlling a motor that is adapted to drive a fuel pump.
  • a known fuel supply system is disclosed, for example, in Japanese Laid-Open Patent Publication No. 8-177668.
  • the known fuel supply system includes a cover 104 that is fixedly attached to the top wall of a fuel tank 101 in order to close an opening 102 formed in the top wall.
  • the cover 104 is formed of resin and includes a tubular portion 105 extending into the inner space of the fuel tank 101 .
  • a pump case 106 is suspended from the lower end of the tubular portion 105 .
  • a fuel pump 107 is disposed within the pump case 106 .
  • a depressed portion 105 h opened to the exterior of the fuel tank 101 is formed in the tubular portion 105 .
  • a controller 108 for controlling a motor of the fuel pump 107 is received within the depressed portion 105 h.
  • the controller 108 actuates a switching element (not shown) based on a signal supplied from an ECU in order to generate a pulsed voltage that is supplied to the motor of the fuel pump, so that a mean voltage applied to the motor of the fuel pump 107 can be controlled.
  • the output of the fuel pump 107 is adjusted so as to keep a constant fuel pressure within a delivery pipe 116 , to which fuel injectors 115 are attached.
  • the controller 108 actuates the switching element in order to generate a pulsed voltage, noise may be produced during the actuation of the switching element.
  • the cover 104 in which the controller 108 is disposed, is formed of resin, the cover 104 does not serve to absorb or reduce noise. As a result, a complicated filtering circuit including choke coils and capacitors is needed, which results in increase in costs.
  • One aspect according to the present invention includes fuel supply systems for supplying a fuel from a vehicle fuel tank.
  • the system includes a fuel pump disposed within the fuel tank, a cover capable of closing an opening formed in an upper portion of the fuel tank, a receptacle disposed on the cover, and a controller capable of controlling the operation of a motor of the fuel pump.
  • the controller includes an earth terminal and noise-generating electrical elements.
  • the receptacle has an electrically conductive wall surrounding at least the electrical elements of the controller, which may produce noise. The electrically conductive wall is electrically connected to the earth terminal of the controller.
  • the noise-generating electrical elements can be shielded from the outside of the receptacle. Therefore, it is possible to eliminate the influence of the noise on the other controllers, such as an engine control unit (ECU), of a vehicle. In addition, it is not necessary to use a large-scale filtration circuit.
  • ECU engine control unit
  • the noise-generating electrical elements may include a resister, a capacitor, a coil and a switching element as well as conductors of an electric circuit board.
  • the controller is operable to produce a pulsed voltage by the actuation of a switching element in order to control a mean voltage applied to the motor.
  • the electrically conductive wall of the receptacle is formed of metal.
  • the electrically conductive wall may be formed of resin containing electrically conductive material or may include a resin layer and an electrically conductive material layer.
  • the fuel supply system further includes a spring that can resiliently hold the connecting condition between the electrically conductive wall and the earth terminal of the controller.
  • the receptacle at least partly extends into the inner space of the fuel tank, so that the fuel within the fuel tank can contact with the receptacle.
  • the fuel supply systems include a fuel pump including a motor, a controller for controlling the motor, and a receptacle that receives the controller and is mounted to the fuel tank.
  • the receptacle includes a noise-shielding wall capable of shielding noise when the noise is generated by the controller.
  • the noise-shielding wall may be an electrically conductive wall surrounding at least a part of the controller. Therefore, it is possible to inhibit noise from travelinging to the outside of the receptacle.
  • the controller includes an earth terminal that is electrically connected to the electrically conductive wall of the receptacle.
  • the controller includes an IC chip with a switching device, so that a pulsed voltage is generated by the actuation of the switching device and is supplied to the motor.
  • the IC chip is surrounded by the electrically conductive wall.
  • the IC chip may be mounted to a circuit board disposed within the receptacle.
  • the controller farther includes a noise filtration circuit including a choke coil and a capacitor mounted to the circuit board.
  • the capacitor is surrounded by the electrically conductive wall.
  • the receptacle includes a first portion extending to the outside of the fuel tank and a second portion extending into the inner space of the fuel tank.
  • the second portion includes the electrically conductive wall.
  • the first portion may be integrally formed with the cover and the second portion may be integrated with the first portion by an insertion molding process.
  • FIG. 1 is a vertical sectional view of a fuel supply system according to an embodiment of the present invention
  • FIG. 2 is an enlarged vertical sectional view of a cover or a flange of the fuel supply system and showing a sectional view taken along line II-II in FIG. 3 ;
  • FIG. 3 is a plan view of a fuel tank incorporating the fuel supply system
  • FIG. 4 is a schematic circuit configuration of a controller of the fuel supply system.
  • FIG. 5 is a schematic view of a known fuel supply system.
  • FIGS. 1 to 4 An embodiment according to the present invention will now be described with reference to FIGS. 1 to 4 .
  • a fuel supply system 10 is configured to supply a fuel from a fuel tank 11 to injectors (not shown) under pressure.
  • the fuel supply system 10 generally includes a pump assembly 20 disposed within the fuel tank 11 , and a flanged lid or cover 30 for closing an opening 13 formed in an upper wall of the fuel tank 11 .
  • the pump assembly 20 includes a reservoir cup 21 with an upper opening, a fuel pump 23 , a suction filter 24 , a high-pressure filter 25 and a pressure regulator 26 .
  • the reservoir cup 21 is disposed within the fuel tank 11 and is placed on the bottom of the fuel tank 11
  • the fuel pump 23 is disposed within the reservoir cup 21 .
  • the fuel pump 23 is configured as a motor integrated pump having an impeller pump section and a motor section.
  • the impeller pump section serves to draw, pressurize and discharge the fuel under pressure.
  • the motor section can drive the pump section.
  • the suction filter 24 f is attached to a fuel suction port 23 e of the fuel pump 23 , so that the fuel within the reservoir cup 21 is filtered by the suction filter 24 f before entering the fuel pump 23 . Due to the pumping action of the impeller that rotates within a pump chamber the fuel is drawn into the fuel pump 23 via the suction filter 24 f and the fuel suction port 23 e and is pressurized within the pump chamber.
  • the pump chamber can be defined by a groove(s) formed in the pump section along the flow path of the fuel.
  • the pressurized fuel then flows into the motor section, so that the fuel cools the motor section. Also the pressurized fuel serves to lubricates and wash the rotary portions of the motor section.
  • the pressurized fuel is discharged via a discharge port 23 u provided on the upper end of the fuel pump 23 .
  • the fuel discharged from the discharge port 23 u is delivered to the high-pressure filter 25 via a discharge-side pipeline 24 .
  • the high-pressure filter 25 can remove particles from the fuel. The particles may be contained in the fuel when the fuel flows through the motor section.
  • the fuel pressure is adjusted to a suitable value by the pressure regulator 26 and the fuel is further delivered to the injectors via an external fuel supply pipe (not shown), located outside of the fuel tank 11 , and a fuel delivery pipe (not shown). The fuel is then injected into combustion chambers of an internal combustion engine (not shown).
  • the flanged lid or cover 30 is formed mainly of resin and includes a flange body portion 32 and a receptacle portion 40 .
  • the flange body portion 32 is adapted to close the upper opening 13 of the fuel tank 11 .
  • the receptacle portion 40 serves to receive a controller 50 that can control the operation of the motor of the fuel pump 23 .
  • the flange body portion 32 has a disk-like configuration.
  • a cylindrical positioning projection 32 t is formed on the lower surface of the flange body portion 32 and is fitted into the upper opening 13 of the tank 11 (see FIG. 1 ).
  • a retainer portion 32 p extends from the peripheral edge of the positioning projection 32 t so as to be pressed against the peripheral portion of the upper opening 13 of the tank 11 from the outer side of the tank 11 .
  • the receptacle portion 40 is positioned adjacent to the peripheral portion of the cover 30 and extends upward and downward from the cover 30 as shown in FIG. 2 .
  • the receptacle portion 40 has a substantially tubular configuration and includes a closed bottom and an open top that is closed by a cover 44 , so that a substantially closed space is defined within the receptacle portion 40 . More specifically, the receptacle portion 40 has an outer-side part 41 and an inner-side part 43 .
  • the outer-side part 41 extends outward (upward as viewed in FIG. 2 ) from the flange body portion 32 .
  • the inner-side part 43 extends inward (downward as viewed in FIG. 2 ) from the flange body portion 32 into the inner space of the fuel tank 11 .
  • a connector 52 for the controller 50 is formed on the outer lateral wall of the outer-side part 41 .
  • An opening 41 k is formed on the top of the outer-side part 41 of the receptacle portion 40 in order to enable insertion of the controller 50 into the receptacle portion 40 .
  • the cover 44 made of resin is attached to the receptacle portion 40 in order to close the opening 41 k.
  • the inner-side part 43 is configured as a bottomed cylindrical housing and may be formed of electrically conductive metal material.
  • a flange-like enlarged portion 43 f is formed on the outer periphery of the upper end of the inner-side part 43 and can be joined to the outer-side part 41 when the outer-side part 41 is molded.
  • the inner-side part 43 with the enlarged portion 43 f is inserted into a mold that is prepared for molding the flange body portion 32 and the outer-side part 41 of the receptacle portion 40 .
  • the enlarged portion 43 f is positioned within a portion of the mold cavity corresponding to the lower end portion of the outer-side part 41 .
  • the enlarged portion 43 f is inserted into the resin that forms the lower end portion of the outer-side part 41 by the molding process.
  • the outer-side part 41 is integrated with the inner-side part 43 to form the bottomed cylindrical receptacle 40 by the molding process of the flange body portion 32 and the outer-side part 41 .
  • the controller 50 can be electrically connected to an engine control unit (hereinafter called “ECU”) by connecting an electrical connector CN, which extends from the ECU, to the connector 52 of the receptacle 40 .
  • ECU engine control unit
  • the controller 50 actuates a switching element (not shown) provided on an IC chip 55 .
  • a voltage signal (a battery voltage Vb in this embodiment) applied to a motor M of the motor section of the fuel pump 23 is switched on and off, so that a pulsed voltage signal is produced.
  • the voltage Vb is a voltage of a battery as a power source and also is a power source voltage of the ECU.
  • a filtration circuit 56 is provided in a power supply line P for the controller 50 in order to absorb noise that may be produced at the IC chip 55 , so that the noise is prevented from traveling to the side of the ECU.
  • the filtration circuit 56 includes a choke coil 56 t and a capacitor 56 c.
  • the filtration circuit 56 as will as the IC chip 55 is mounted to a circuit board 57 of the controller 50 (see FIG. 2 ).
  • a symbol E designates an earth terminal of the circuit board 57 .
  • IC chip 55 further includes a speed measuring device (no shown).
  • the speed measuring device can measure the rotational speed of the motor M and can output a rotational speed signal F that is supplied to the ECU for a feedback control.
  • the controller 50 is disposed within the receptacle portion 40 of the cover 30 in such a manner that the circuit board 57 is positioned to extend substantially vertically.
  • the IC chip 55 , the capacitor 56 c and the choke coil 56 t are mounted to the circuit board 57 .
  • the IC chip 55 , the circuit board 57 and a part of the choke coil 56 t are positioned within the inner-side part 43 of the receptacle 40 , which is formed of electrically conductive metal material.
  • a leaf spring 57 b formed of electrically conductive material is connected to the earth terminal E of the circuit board 57 and is resiliently deformed between the circuit board 57 and an inner wall of the inner-side part 43 , so that the leaf spring 57 b contacts with the inner wall of the inner-side part 43 . Therefore, the earth terminal E and the inner-side part 43 are electrically connected by the leaf spring 57 b.
  • a member having high heat conductivity may be disposed between the circuit board 57 and the inner wall of the inner-side part 43 , so that the heat that may be produced by the switching element of the IC chip 55 can be easily conducted to the inner-side part 43 . Because the fuel may contact with the outer surface of the inner-side part 43 , the fuel may cool the inner-side part 43 . Therefore, the fuel serves to absorb the heat produced at the IC chip 55 .
  • the electrically conductive wall of the inner-side part 43 of the receptacle 40 surrounds the electrical elements of the controller 50 , which may produce nose and include the switching element mounted to the IC chip 55 , and the capacitor 56 c disposed adjacent to the IC chip 55 .
  • the electrically conductive wall of the inner-side part 43 of the receptacle 40 serves as an electrical shield for preventing noise from traveling to the outside of the receptacle 40 via the inner-side part 43 . Therefore, it is possible to reduce the influence of the noise on the ECU or other outside controller. It is not necessary to construct the filtration circuit 50 to have a complicated construction. As a result, the influence of the noise that may be produced by the controller 50 can be effectively reduced without increase in the manufacturing cost.
  • the electrically conductive wall or the wall of the inner-side part 43 is electrically connected to the earth terminal E of the controller 50 via the electrically conductive leaf spring 57 b. Therefore, the electrical connection between the electrically conductive wall and the earth terminal E can be reliably maintained for a long time without causing accidental disconnection by an external force, such as vibrations, that may be applied to the receptacle 40 .
  • the fuel within the tank 11 can contact with the outer surface of the inner-side part 43 that extends into the inner space of the tank 11 , the fuel can cool the inner-side part 43 and can eventually cool the controller 50 disposed therein.
  • the outer-side part 41 of the receptacle 40 is formed of resin while the inner-side part 43 is formed of electrically conductive metal.
  • the outer-side part 41 also may be formed of metal.
  • the inner-side part 43 and/or the outer-side part 41 may be formed of resin that contains metal powder for providing electrical conductivity. It is also possible to form the inner-side part 43 and/or the outer-side part 41 of resin, while an electrically conductive material layer is formed on the inner wall surface.
  • cover 30 and the pump assembly 20 are separated from each other in the above embodiment, the cover 30 and the pump assembly 20 may be integrated into one assembly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

A fuel supply system includes a fuel pump disposed within the fuel tank A cover can close an opening formed in an upper portion of the fuel tank. A receptacle is provided on the cover. A controller can control the operation of a motor of the fuel pump. The controller includes an earth terminal and noise-generating electrical elements. The receptacle has an electrically conductive wall surrounding at least the electrical elements of the controller. The electrically conductive wall is electrically connected to the earth terminal of the controller.

Description

  • This application claims priority to Japanese patent application serial number 2006-132267, the contents of which are incorporated herein by reference.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to fuel supply systems that have a controller for controlling a motor that is adapted to drive a fuel pump.
  • 2. Description of the Related Art
  • A known fuel supply system is disclosed, for example, in Japanese Laid-Open Patent Publication No. 8-177668. As shown in FIG. 5, the known fuel supply system includes a cover 104 that is fixedly attached to the top wall of a fuel tank 101 in order to close an opening 102 formed in the top wall. The cover 104 is formed of resin and includes a tubular portion 105 extending into the inner space of the fuel tank 101. A pump case 106 is suspended from the lower end of the tubular portion 105. A fuel pump 107 is disposed within the pump case 106. A depressed portion 105 h opened to the exterior of the fuel tank 101 is formed in the tubular portion 105. A controller 108 for controlling a motor of the fuel pump 107 is received within the depressed portion 105 h.
  • The controller 108 actuates a switching element (not shown) based on a signal supplied from an ECU in order to generate a pulsed voltage that is supplied to the motor of the fuel pump, so that a mean voltage applied to the motor of the fuel pump 107 can be controlled. Hence, the output of the fuel pump 107 is adjusted so as to keep a constant fuel pressure within a delivery pipe 116, to which fuel injectors 115 are attached.
  • Because the controller 108 actuates the switching element in order to generate a pulsed voltage, noise may be produced during the actuation of the switching element. In addition, because the cover 104, in which the controller 108 is disposed, is formed of resin, the cover 104 does not serve to absorb or reduce noise. As a result, a complicated filtering circuit including choke coils and capacitors is needed, which results in increase in costs.
  • Thus, there is a need in the art for a fuel supply system that can effectively reduce potential noise that may be generated by a controller of a fuel pump motor.
  • SUMMARY OF THE INVENTION
  • One aspect according to the present invention includes fuel supply systems for supplying a fuel from a vehicle fuel tank. The system includes a fuel pump disposed within the fuel tank, a cover capable of closing an opening formed in an upper portion of the fuel tank, a receptacle disposed on the cover, and a controller capable of controlling the operation of a motor of the fuel pump. The controller includes an earth terminal and noise-generating electrical elements. The receptacle has an electrically conductive wall surrounding at least the electrical elements of the controller, which may produce noise. The electrically conductive wall is electrically connected to the earth terminal of the controller.
  • With this arrangement, the noise-generating electrical elements can be shielded from the outside of the receptacle. Therefore, it is possible to eliminate the influence of the noise on the other controllers, such as an engine control unit (ECU), of a vehicle. In addition, it is not necessary to use a large-scale filtration circuit.
  • The noise-generating electrical elements may include a resister, a capacitor, a coil and a switching element as well as conductors of an electric circuit board.
  • In one embodiment, the controller is operable to produce a pulsed voltage by the actuation of a switching element in order to control a mean voltage applied to the motor.
  • In another embodiment, the electrically conductive wall of the receptacle is formed of metal. Alternatively, the electrically conductive wall may be formed of resin containing electrically conductive material or may include a resin layer and an electrically conductive material layer.
  • In a further embodiment, the fuel supply system further includes a spring that can resiliently hold the connecting condition between the electrically conductive wall and the earth terminal of the controller. With this arrangement, the electrical connection between the electrically conductive wall and the earth terminal can be reliably maintained for a long time without causing accidental disconnection when an external force, such as vibrations, has been applied to the receptacle.
  • In a further embodiment, the receptacle at least partly extends into the inner space of the fuel tank, so that the fuel within the fuel tank can contact with the receptacle. With this arrangement, it is possible to cool the receptacle as well as the controller by the fuel.
  • Another aspect of the present invention includes fuel supply systems used in combination with a fuel tank. The fuel supply systems include a fuel pump including a motor, a controller for controlling the motor, and a receptacle that receives the controller and is mounted to the fuel tank. The receptacle includes a noise-shielding wall capable of shielding noise when the noise is generated by the controller. The noise-shielding wall may be an electrically conductive wall surrounding at least a part of the controller. Therefore, it is possible to inhibit noise from travailing to the outside of the receptacle.
  • In one embodiment, the controller includes an earth terminal that is electrically connected to the electrically conductive wall of the receptacle.
  • In another embodiment, the controller includes an IC chip with a switching device, so that a pulsed voltage is generated by the actuation of the switching device and is supplied to the motor. The IC chip is surrounded by the electrically conductive wall. The IC chip may be mounted to a circuit board disposed within the receptacle.
  • In a further embodiment, the controller farther includes a noise filtration circuit including a choke coil and a capacitor mounted to the circuit board. The capacitor is surrounded by the electrically conductive wall.
  • In a still further embodiment, the receptacle includes a first portion extending to the outside of the fuel tank and a second portion extending into the inner space of the fuel tank. The second portion includes the electrically conductive wall.
  • The first portion may be integrally formed with the cover and the second portion may be integrated with the first portion by an insertion molding process.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a vertical sectional view of a fuel supply system according to an embodiment of the present invention;
  • FIG. 2 is an enlarged vertical sectional view of a cover or a flange of the fuel supply system and showing a sectional view taken along line II-II in FIG. 3;
  • FIG. 3 is a plan view of a fuel tank incorporating the fuel supply system;
  • FIG. 4 is a schematic circuit configuration of a controller of the fuel supply system; and
  • FIG. 5 is a schematic view of a known fuel supply system.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Each of the additional features and teachings disclosed above and below may be utilized separately or in conjunction with other features and teachings to provide improved fuel supply systems. Representative examples of the present invention, which examples utilize many of these additional features and teachings both separately and in conjunction with one another, will now be described in detail with reference to the attached drawings. This detailed description is merely intended to teach a person of skill in the art further details for practicing preferred aspects of the present teachings and is not intended to limit the scope of the invention. Only the claims define the scope of the claimed invention. Therefore, combinations of features and steps disclosed in the following detailed description may not be necessary to practice the invention in the broadest sense, and are instead taught merely to particularly describe representative examples of the invention. Moreover, various features of the representative examples and the dependent claims may be combined in ways that are not specifically enumerated in order to provide additional useful embodiments of the present teachings.
  • An embodiment according to the present invention will now be described with reference to FIGS. 1 to 4.
  • <General Construction of Fuel Supply System>
  • A fuel supply system 10 is configured to supply a fuel from a fuel tank 11 to injectors (not shown) under pressure. As shown in FIG. 1, the fuel supply system 10 generally includes a pump assembly 20 disposed within the fuel tank 11, and a flanged lid or cover 30 for closing an opening 13 formed in an upper wall of the fuel tank 11.
  • The pump assembly 20 includes a reservoir cup 21 with an upper opening, a fuel pump 23, a suction filter 24, a high-pressure filter 25 and a pressure regulator 26. The reservoir cup 21 is disposed within the fuel tank 11 and is placed on the bottom of the fuel tank 11 The fuel pump 23 is disposed within the reservoir cup 21. In this embodiment the fuel pump 23 is configured as a motor integrated pump having an impeller pump section and a motor section. The impeller pump section serves to draw, pressurize and discharge the fuel under pressure. The motor section can drive the pump section.
  • The suction filter 24 f is attached to a fuel suction port 23 e of the fuel pump 23, so that the fuel within the reservoir cup 21 is filtered by the suction filter 24 f before entering the fuel pump 23. Due to the pumping action of the impeller that rotates within a pump chamber the fuel is drawn into the fuel pump 23 via the suction filter 24 f and the fuel suction port 23 e and is pressurized within the pump chamber. The pump chamber can be defined by a groove(s) formed in the pump section along the flow path of the fuel. The pressurized fuel then flows into the motor section, so that the fuel cools the motor section. Also the pressurized fuel serves to lubricates and wash the rotary portions of the motor section. Thereafter, the pressurized fuel is discharged via a discharge port 23 u provided on the upper end of the fuel pump 23. The fuel discharged from the discharge port 23 u is delivered to the high-pressure filter 25 via a discharge-side pipeline 24. The high-pressure filter 25 can remove particles from the fuel. The particles may be contained in the fuel when the fuel flows through the motor section. After passing through the high-pressure filter 25, the fuel pressure is adjusted to a suitable value by the pressure regulator 26 and the fuel is further delivered to the injectors via an external fuel supply pipe (not shown), located outside of the fuel tank 11, and a fuel delivery pipe (not shown). The fuel is then injected into combustion chambers of an internal combustion engine (not shown).
  • <Cover or Flange>
  • The flanged lid or cover 30 is formed mainly of resin and includes a flange body portion 32 and a receptacle portion 40. The flange body portion 32 is adapted to close the upper opening 13 of the fuel tank 11. The receptacle portion 40 serves to receive a controller 50 that can control the operation of the motor of the fuel pump 23. As shown in FIG. 3, the flange body portion 32 has a disk-like configuration. A cylindrical positioning projection 32 t is formed on the lower surface of the flange body portion 32 and is fitted into the upper opening 13 of the tank 11 (see FIG. 1). In addition, a retainer portion 32 p extends from the peripheral edge of the positioning projection 32 t so as to be pressed against the peripheral portion of the upper opening 13 of the tank 11 from the outer side of the tank 11.
  • As shown in FIG. 3, the receptacle portion 40 is positioned adjacent to the peripheral portion of the cover 30 and extends upward and downward from the cover 30 as shown in FIG. 2.
  • The receptacle portion 40 has a substantially tubular configuration and includes a closed bottom and an open top that is closed by a cover 44, so that a substantially closed space is defined within the receptacle portion 40. More specifically, the receptacle portion 40 has an outer-side part 41 and an inner-side part 43. The outer-side part 41 extends outward (upward as viewed in FIG. 2) from the flange body portion 32. The inner-side part 43 extends inward (downward as viewed in FIG. 2) from the flange body portion 32 into the inner space of the fuel tank 11. A connector 52 for the controller 50 is formed on the outer lateral wall of the outer-side part 41. An opening 41 k is formed on the top of the outer-side part 41 of the receptacle portion 40 in order to enable insertion of the controller 50 into the receptacle portion 40. The cover 44 made of resin is attached to the receptacle portion 40 in order to close the opening 41 k.
  • The inner-side part 43 is configured as a bottomed cylindrical housing and may be formed of electrically conductive metal material. A flange-like enlarged portion 43 f is formed on the outer periphery of the upper end of the inner-side part 43 and can be joined to the outer-side part 41 when the outer-side part 41 is molded. Thus, the inner-side part 43 with the enlarged portion 43 f is inserted into a mold that is prepared for molding the flange body portion 32 and the outer-side part 41 of the receptacle portion 40. The enlarged portion 43 f is positioned within a portion of the mold cavity corresponding to the lower end portion of the outer-side part 41. Therefore, the enlarged portion 43 f is inserted into the resin that forms the lower end portion of the outer-side part 41 by the molding process. In this way, the outer-side part 41 is integrated with the inner-side part 43 to form the bottomed cylindrical receptacle 40 by the molding process of the flange body portion 32 and the outer-side part 41.
  • <Controller>
  • As shown in FIG. 4, the controller 50 can be electrically connected to an engine control unit (hereinafter called “ECU”) by connecting an electrical connector CN, which extends from the ECU, to the connector 52 of the receptacle 40. Based on a signal Sg supplied from the ECU, the controller 50 actuates a switching element (not shown) provided on an IC chip 55. In response to the actuation of the switching element, a voltage signal (a battery voltage Vb in this embodiment) applied to a motor M of the motor section of the fuel pump 23 is switched on and off, so that a pulsed voltage signal is produced. Therefore, adjusting a pulse width or a value equivalent to the pulse width based on the signal Sg from the ECU can vary a mean voltage Vav applied to the motor M in order to control the output of the motor M. Hence, it is possible to keep a constant fuel pressure within the delivery pipe to which the injectors are connected. In the embodiment shown in FIG. 4, the voltage Vb is a voltage of a battery as a power source and also is a power source voltage of the ECU.
  • Because the controller 50 generates a pulsed voltage by the actuation of the switching element, noise may be produced during the actuation of the switching element. Therefore, a filtration circuit 56 is provided in a power supply line P for the controller 50 in order to absorb noise that may be produced at the IC chip 55, so that the noise is prevented from traveling to the side of the ECU. The filtration circuit 56 includes a choke coil 56 t and a capacitor 56 c. The filtration circuit 56 as will as the IC chip 55 is mounted to a circuit board 57 of the controller 50 (see FIG. 2). In FIG. 2, a symbol E designates an earth terminal of the circuit board 57.
  • IC chip 55 further includes a speed measuring device (no shown). The speed measuring device can measure the rotational speed of the motor M and can output a rotational speed signal F that is supplied to the ECU for a feedback control.
  • <Mounting Structure of Controller>
  • As shown in FIG. 2, the controller 50 is disposed within the receptacle portion 40 of the cover 30 in such a manner that the circuit board 57 is positioned to extend substantially vertically. As described above, the IC chip 55, the capacitor 56 c and the choke coil 56 t are mounted to the circuit board 57. The IC chip 55, the circuit board 57 and a part of the choke coil 56 t are positioned within the inner-side part 43 of the receptacle 40, which is formed of electrically conductive metal material. A leaf spring 57 b formed of electrically conductive material is connected to the earth terminal E of the circuit board 57 and is resiliently deformed between the circuit board 57 and an inner wall of the inner-side part 43, so that the leaf spring 57 b contacts with the inner wall of the inner-side part 43. Therefore, the earth terminal E and the inner-side part 43 are electrically connected by the leaf spring 57 b.
  • Further, although not shown in the drawings, a member having high heat conductivity may be disposed between the circuit board 57 and the inner wall of the inner-side part 43, so that the heat that may be produced by the switching element of the IC chip 55 can be easily conducted to the inner-side part 43. Because the fuel may contact with the outer surface of the inner-side part 43, the fuel may cool the inner-side part 43. Therefore, the fuel serves to absorb the heat produced at the IC chip 55.
  • <Advantages of Fuel Supply System>
  • According to the fuel supply system 10 of this embodiment; the electrically conductive wall of the inner-side part 43 of the receptacle 40 surrounds the electrical elements of the controller 50, which may produce nose and include the switching element mounted to the IC chip 55, and the capacitor 56 c disposed adjacent to the IC chip 55. In other words, the electrically conductive wall of the inner-side part 43 of the receptacle 40 serves as an electrical shield for preventing noise from traveling to the outside of the receptacle 40 via the inner-side part 43. Therefore, it is possible to reduce the influence of the noise on the ECU or other outside controller. It is not necessary to construct the filtration circuit 50 to have a complicated construction. As a result, the influence of the noise that may be produced by the controller 50 can be effectively reduced without increase in the manufacturing cost.
  • In addition, the electrically conductive wall or the wall of the inner-side part 43 is electrically connected to the earth terminal E of the controller 50 via the electrically conductive leaf spring 57 b. Therefore, the electrical connection between the electrically conductive wall and the earth terminal E can be reliably maintained for a long time without causing accidental disconnection by an external force, such as vibrations, that may be applied to the receptacle 40.
  • Further, because the fuel within the tank 11 can contact with the outer surface of the inner-side part 43 that extends into the inner space of the tank 11, the fuel can cool the inner-side part 43 and can eventually cool the controller 50 disposed therein.
  • Alterative Embodiments
  • The invention may not be limited to the above embodiment but may be modified in various ways without departing from the sprits of the invention. For example, in the above embodiment, the outer-side part 41 of the receptacle 40 is formed of resin while the inner-side part 43 is formed of electrically conductive metal. However, the outer-side part 41 also may be formed of metal.
  • In addition, the inner-side part 43 and/or the outer-side part 41 may be formed of resin that contains metal powder for providing electrical conductivity. It is also possible to form the inner-side part 43 and/or the outer-side part 41 of resin, while an electrically conductive material layer is formed on the inner wall surface.
  • Further, although the cover 30 and the pump assembly 20 are separated from each other in the above embodiment, the cover 30 and the pump assembly 20 may be integrated into one assembly.

Claims (20)

1. A fuel supply system for supplying a fuel from a vehicle fuel tank, comprising:
a fuel pump disposed within the fuel tank;
a cover capable of closing an opening formed in an upper portion of the fuel tank, wherein the cover includes a receptacle; and
a controller capable of controlling the operation of a motor of the fuel pump, wherein the controller includes an earth terminal and electrical elements that may produce noise;
wherein the receptacle has an electrically conductive wall surrounding at least the electrical elements of the controller; and
wherein the electrically conductive wall is electrically connected to the earth terminal of the controller.
2. The fuel supply system as in claim 1, wherein the controller is operable to produce a pulsed voltage by the actuation of a switching element in order to control a mean voltage applied to the motor.
3. The fuel supply system as in claim 1, wherein the electrically conductive wall of the receptacle is formed of metal.
4. The fuel supply system as in claim 1, wherein the electrically conductive wall of the receptacle is formed of resin containing electrically conductive material.
5. The fuel supply system as in claim 1, wherein the electrically conductive wall comprises a resin layer and an electrically conductive material layer.
6. The fuel supply system as in claim 1, further comprising a spring constructed to resiliently hold the connecting condition between the electrically conductive wall and the earth terminal of the controller.
7. The fuel supply system as in claim 1, wherein the receptacle at least partly extends in to the inner space of the fuel tank, so that the fuel within the fuel tank can contact with the receptacle.
8. A fuel supply system used in combination with a fuel tank, comprising:
a fuel pump including a motor;
a controller capable of controlling the motor; and
a receptacle capable of receiving the controller,
wherein the receptacle is mounted to the fuel tank and includes a noise-shielding wall capable of shielding noise of the controller.
9. The fuel supply system as in claim 8, wherein the noise-shielding wall comprises an electrically conductive wall surrounding at least a part of the controller.
10. The fuel supply system as in claim 9, wherein:
the controller includes an earth terminal; and
the earth terminal is electrically connected to the electrically conductive wall of the receptacle.
11. The fuel supply system as in claim 10, further comprising an electrically conductive spring that can resiliently contact with the electrically conductive wall and the earth terminal in order to provide electrical connection therebetween.
12. The fuel supply system as in claim 9, wherein:
the controller comprises an IC chip including a switching device, so that a pulsed voltage is generated by the actuation of the switching device and is supplied to the motor; and
the IC chip is surrounded by the electrically conductive wall.
13. The fuel supply system as in claim 12, wherein:
the IC chip is mounted to a circuit board disposed within the receptacle.
14. The fuel supply system as in claim 13, wherein:
the controller further comprises a noise filtration circuit including a choke coil and a capacitor mounted to the circuit board; and
the capacitor is surrounded by the electrically conductive wall.
15. The fuel supply system as in claim 9, wherein the electrically conductive wall of the receptacle is formed of metal.
16. The fuel supply system as in claim 9, wherein the electrically conductive wall of the receptacle is formed of electrically conductive resin.
17. The fuel supply system as in claim 9, wherein the electrically conductive wall comprises a resin wall layer and an electrically conductive material layer.
18. The fuel supply system as in claim 9, wherein:
the fuel tank has an opening permitting communication between the inner space of the fuel tank and the outside of the fuel tank;
the fuel supply system further includes a cover constructed to close the opening of the fuel tank; and
the receptacle is provided on the cover
19. The fuel supply system as in claim 18, wherein:
the receptacle comprises a first portion extending to the outside of the fuel tank and a second portion extending into an inner space of the fuel tank; and
the second portion comprises the electrically conductive wall.
20. The fuel supply system as in claim 19, wherein the first portion is integrally formed with the cover and the second portion is integrated with the first portion by an insertion molding process.
US11/742,854 2006-05-11 2007-05-01 Fuel supply systems Abandoned US20070284006A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-132267 2006-05-11
JP2006132267A JP2007303360A (en) 2006-05-11 2006-05-11 Fuel supply device

Publications (1)

Publication Number Publication Date
US20070284006A1 true US20070284006A1 (en) 2007-12-13

Family

ID=38608282

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/742,854 Abandoned US20070284006A1 (en) 2006-05-11 2007-05-01 Fuel supply systems

Country Status (4)

Country Link
US (1) US20070284006A1 (en)
JP (1) JP2007303360A (en)
CN (1) CN101070802A (en)
DE (1) DE102007021584A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080246227A1 (en) * 2005-09-13 2008-10-09 Rolf Graf Flange for Sealing an Opening of a Fuel Container of a Motor Vehicle
US20110192381A1 (en) * 2010-02-09 2011-08-11 Denso Corporation Fuel supply apparatus
US20120222655A1 (en) * 2011-03-03 2012-09-06 Denso Corporation Fuel tank locking ring mounted fuel pump controller

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4969517B2 (en) * 2008-05-29 2012-07-04 愛三工業株式会社 Fuel supply device
KR101481264B1 (en) * 2013-04-30 2015-01-09 현대자동차주식회사 Controller intergrated fuel pump module
EP2863041B1 (en) 2013-10-16 2016-03-23 Magna Steyr Fuel Systems GesmbH Tank
JP6295994B2 (en) * 2015-04-23 2018-03-20 株式会社デンソー Fuel supply device
DE102017003977A1 (en) * 2017-04-25 2018-10-25 e.solutions GmbH Housing component for an electronic device, method for manufacturing the housing component and electronic device with the housing component

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4866350A (en) * 1988-04-04 1989-09-12 Usi Lighting, Inc. Fluorescent lamp system
US5454697A (en) * 1993-03-24 1995-10-03 Aisan Kogyo Kabushiki Kaisha Electrically operated pump assembly with an externally installed control circuit
US6272915B1 (en) * 1999-04-23 2001-08-14 Baker Hughes Incorporated Dual transmitter multi-capacitance flow meter
US20050155575A1 (en) * 2003-05-08 2005-07-21 Aisan Kogyo Kabushiki Kaisha Throttle contol devices

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03127899A (en) * 1989-10-14 1991-05-30 Mitsubishi Electric Corp Mounting structure of conductive member onto case body
JPH06147046A (en) * 1992-11-09 1994-05-27 Nippondenso Co Ltd Engine fuel pump controller
JP3371409B2 (en) * 1994-12-28 2003-01-27 株式会社デンソー Mounting device for fuel pump control circuit for internal combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4866350A (en) * 1988-04-04 1989-09-12 Usi Lighting, Inc. Fluorescent lamp system
US5454697A (en) * 1993-03-24 1995-10-03 Aisan Kogyo Kabushiki Kaisha Electrically operated pump assembly with an externally installed control circuit
US6272915B1 (en) * 1999-04-23 2001-08-14 Baker Hughes Incorporated Dual transmitter multi-capacitance flow meter
US20050155575A1 (en) * 2003-05-08 2005-07-21 Aisan Kogyo Kabushiki Kaisha Throttle contol devices

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080246227A1 (en) * 2005-09-13 2008-10-09 Rolf Graf Flange for Sealing an Opening of a Fuel Container of a Motor Vehicle
US7808784B2 (en) * 2005-09-13 2010-10-05 Continental Automotive Gmbh Flange for sealing an opening of a fuel container of a motor vehicle
US20110192381A1 (en) * 2010-02-09 2011-08-11 Denso Corporation Fuel supply apparatus
US8869775B2 (en) * 2010-02-09 2014-10-28 Denso Corporation Fuel supply apparatus
US20120222655A1 (en) * 2011-03-03 2012-09-06 Denso Corporation Fuel tank locking ring mounted fuel pump controller
US9599076B2 (en) * 2011-03-03 2017-03-21 Denso International America, Inc. Fuel tank locking ring mounted fuel pump controller

Also Published As

Publication number Publication date
JP2007303360A (en) 2007-11-22
DE102007021584A1 (en) 2007-11-22
CN101070802A (en) 2007-11-14

Similar Documents

Publication Publication Date Title
US20070284006A1 (en) Fuel supply systems
US5785032A (en) Fuel supply system
US20090031995A1 (en) Fuel supply apparatus
US20080053412A1 (en) Fuel supply systems
JP4711854B2 (en) Fuel supply system for motorcycles
US7497208B2 (en) Fuel supply device having shielded in-tank fuel pump for use in automotive vehicle
US8915233B2 (en) Fuel supply equipment
JP4178354B2 (en) In-tank fuel pump
JP6005507B2 (en) Fuel supply device
JP3998017B2 (en) Fuel supply device and fuel pressure regulator
US20150152805A1 (en) Controller integrated fuel pump module
US6655364B1 (en) Fuel feed device
JPH09310648A (en) Fuel filter
JP3640001B2 (en) Fuel supply device
JP3956867B2 (en) Fuel supply device
JP4168602B2 (en) Fuel supply system for outboard motor
CN108884797B (en) Pressure regulator and fuel supply device
US20150346137A1 (en) Liquid sensor
JP2007255378A (en) Fuel feed device
JP2001280211A (en) Fuel system
US20030079783A1 (en) Fuel supplying apparatus
US9745929B2 (en) Fuel pump module
JP2007218182A (en) Relief valve and fuel supply device using same
JP3693141B2 (en) In-tank fuel pump system
JP2006220081A (en) Fuel feeding device

Legal Events

Date Code Title Description
AS Assignment

Owner name: AISAN KOGYO KABUSHIKI KAISHA, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SUZUKI, NOBUO;INOUE, TETSUJI;YAMAMOTO, SHUJI;REEL/FRAME:019322/0838

Effective date: 20070507

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION