US20070269504A1 - Amphoteric liposomes - Google Patents
Amphoteric liposomes Download PDFInfo
- Publication number
- US20070269504A1 US20070269504A1 US11/590,143 US59014306A US2007269504A1 US 20070269504 A1 US20070269504 A1 US 20070269504A1 US 59014306 A US59014306 A US 59014306A US 2007269504 A1 US2007269504 A1 US 2007269504A1
- Authority
- US
- United States
- Prior art keywords
- liposomes
- lipid
- chems
- anionic
- group
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000002502 liposome Substances 0.000 title claims abstract description 194
- WTJKGGKOPKCXLL-RRHRGVEJSA-N phosphatidylcholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCC=CCCCCCCCC WTJKGGKOPKCXLL-RRHRGVEJSA-N 0.000 claims description 50
- 150000002632 lipids Chemical class 0.000 claims description 49
- WLNARFZDISHUGS-MIXBDBMTSA-N cholesteryl hemisuccinate Chemical compound C1C=C2C[C@@H](OC(=O)CCC(O)=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 WLNARFZDISHUGS-MIXBDBMTSA-N 0.000 claims description 45
- 238000000034 method Methods 0.000 claims description 41
- -1 cationic lipid Chemical class 0.000 claims description 32
- KSXTUUUQYQYKCR-LQDDAWAPSA-M 2,3-bis[[(z)-octadec-9-enoyl]oxy]propyl-trimethylazanium;chloride Chemical compound [Cl-].CCCCCCCC\C=C/CCCCCCCC(=O)OCC(C[N+](C)(C)C)OC(=O)CCCCCCC\C=C/CCCCCCCC KSXTUUUQYQYKCR-LQDDAWAPSA-M 0.000 claims description 30
- 239000000203 mixture Substances 0.000 claims description 27
- 239000004480 active ingredient Substances 0.000 claims description 22
- 102000039446 nucleic acids Human genes 0.000 claims description 21
- 108020004707 nucleic acids Proteins 0.000 claims description 21
- 150000007523 nucleic acids Chemical class 0.000 claims description 21
- 230000007935 neutral effect Effects 0.000 claims description 20
- 239000000243 solution Substances 0.000 claims description 15
- 150000001982 diacylglycerols Chemical class 0.000 claims description 13
- 102000004169 proteins and genes Human genes 0.000 claims description 13
- 108090000623 proteins and genes Proteins 0.000 claims description 12
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 claims description 11
- 235000012000 cholesterol Nutrition 0.000 claims description 6
- 239000002773 nucleotide Substances 0.000 claims description 6
- 125000003729 nucleotide group Chemical group 0.000 claims description 6
- BIABMEZBCHDPBV-UHFFFAOYSA-N dipalmitoyl phosphatidylglycerol Chemical compound CCCCCCCCCCCCCCCC(=O)OCC(COP(O)(=O)OCC(O)CO)OC(=O)CCCCCCCCCCCCCCC BIABMEZBCHDPBV-UHFFFAOYSA-N 0.000 claims description 5
- 150000008104 phosphatidylethanolamines Chemical class 0.000 claims description 5
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 5
- JZNWSCPGTDBMEW-UHFFFAOYSA-N Glycerophosphorylethanolamin Natural products NCCOP(O)(=O)OCC(O)CO JZNWSCPGTDBMEW-UHFFFAOYSA-N 0.000 claims description 4
- AWUCVROLDVIAJX-UHFFFAOYSA-N alpha-glycerophosphate Natural products OCC(O)COP(O)(O)=O AWUCVROLDVIAJX-UHFFFAOYSA-N 0.000 claims description 4
- 229940106189 ceramide Drugs 0.000 claims description 4
- TZCPCKNHXULUIY-RGULYWFUSA-N 1,2-distearoyl-sn-glycero-3-phosphoserine Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@H](COP(O)(=O)OC[C@H](N)C(O)=O)OC(=O)CCCCCCCCCCCCCCCCC TZCPCKNHXULUIY-RGULYWFUSA-N 0.000 claims description 3
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 claims description 3
- ZWZWYGMENQVNFU-UHFFFAOYSA-N Glycerophosphorylserin Natural products OC(=O)C(N)COP(O)(=O)OCC(O)CO ZWZWYGMENQVNFU-UHFFFAOYSA-N 0.000 claims description 3
- HIHOWBSBBDRPDW-PTHRTHQKSA-N [(3s,8s,9s,10r,13r,14s,17r)-10,13-dimethyl-17-[(2r)-6-methylheptan-2-yl]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1h-cyclopenta[a]phenanthren-3-yl] n-[2-(dimethylamino)ethyl]carbamate Chemical compound C1C=C2C[C@@H](OC(=O)NCCN(C)C)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HIHOWBSBBDRPDW-PTHRTHQKSA-N 0.000 claims description 3
- ATBOMIWRCZXYSZ-XZBBILGWSA-N [1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-hexadecanoyloxypropan-2-yl] (9e,12e)-octadeca-9,12-dienoate Chemical compound CCCCCCCCCCCCCCCC(=O)OCC(COP(O)(=O)OCC(O)CO)OC(=O)CCCCCCC\C=C\C\C=C\CCCCC ATBOMIWRCZXYSZ-XZBBILGWSA-N 0.000 claims description 3
- 230000000692 anti-sense effect Effects 0.000 claims description 3
- ZUVCYFMOHFTGDM-UHFFFAOYSA-N hexadecyl dihydrogen phosphate Chemical compound CCCCCCCCCCCCCCCCOP(O)(O)=O ZUVCYFMOHFTGDM-UHFFFAOYSA-N 0.000 claims description 3
- 230000000887 hydrating effect Effects 0.000 claims description 3
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 3
- 239000002904 solvent Substances 0.000 claims description 3
- 150000003408 sphingolipids Chemical class 0.000 claims description 3
- LDGWQMRUWMSZIU-LQDDAWAPSA-M 2,3-bis[(z)-octadec-9-enoxy]propyl-trimethylazanium;chloride Chemical compound [Cl-].CCCCCCCC\C=C/CCCCCCCCOCC(C[N+](C)(C)C)OCCCCCCCC\C=C/CCCCCCCC LDGWQMRUWMSZIU-LQDDAWAPSA-M 0.000 claims description 2
- YDNKGFDKKRUKPY-JHOUSYSJSA-N C16 ceramide Natural products CCCCCCCCCCCCCCCC(=O)N[C@@H](CO)[C@H](O)C=CCCCCCCCCCCCCC YDNKGFDKKRUKPY-JHOUSYSJSA-N 0.000 claims description 2
- 241000282472 Canis lupus familiaris Species 0.000 claims description 2
- CRJGESKKUOMBCT-VQTJNVASSA-N N-acetylsphinganine Chemical compound CCCCCCCCCCCCCCC[C@@H](O)[C@H](CO)NC(C)=O CRJGESKKUOMBCT-VQTJNVASSA-N 0.000 claims description 2
- 241001441550 Zeiformes Species 0.000 claims description 2
- AVTXVDFKYBVTKR-DPAQBDIFSA-N [(3s,8s,9s,10r,13r,14s,17r)-10,13-dimethyl-17-[(2r)-6-methylheptan-2-yl]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1h-cyclopenta[a]phenanthren-3-yl] dihydrogen phosphate Chemical compound C1C=C2C[C@@H](OP(O)(O)=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 AVTXVDFKYBVTKR-DPAQBDIFSA-N 0.000 claims description 2
- ZVEQCJWYRWKARO-UHFFFAOYSA-N ceramide Natural products CCCCCCCCCCCCCCC(O)C(=O)NC(CO)C(O)C=CCCC=C(C)CCCCCCCCC ZVEQCJWYRWKARO-UHFFFAOYSA-N 0.000 claims description 2
- BHYOQNUELFTYRT-DPAQBDIFSA-N cholesterol sulfate Chemical compound C1C=C2C[C@@H](OS(O)(=O)=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 BHYOQNUELFTYRT-DPAQBDIFSA-N 0.000 claims description 2
- 239000003599 detergent Substances 0.000 claims description 2
- 238000000502 dialysis Methods 0.000 claims description 2
- UMGXUWVIJIQANV-UHFFFAOYSA-M didecyl(dimethyl)azanium;bromide Chemical compound [Br-].CCCCCCCCCC[N+](C)(C)CCCCCCCCCC UMGXUWVIJIQANV-UHFFFAOYSA-M 0.000 claims description 2
- 238000001125 extrusion Methods 0.000 claims description 2
- 238000000265 homogenisation Methods 0.000 claims description 2
- 238000002347 injection Methods 0.000 claims description 2
- 239000007924 injection Substances 0.000 claims description 2
- VVGIYYKRAMHVLU-UHFFFAOYSA-N newbouldiamide Natural products CCCCCCCCCCCCCCCCCCCC(O)C(O)C(O)C(CO)NC(=O)CCCCCCCCCCCCCCCCC VVGIYYKRAMHVLU-UHFFFAOYSA-N 0.000 claims description 2
- 150000003905 phosphatidylinositols Chemical class 0.000 claims description 2
- 150000001450 anions Chemical class 0.000 claims 3
- 150000001768 cations Chemical class 0.000 claims 3
- PORPENFLTBBHSG-MGBGTMOVSA-N 1,2-dihexadecanoyl-sn-glycerol-3-phosphate Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP(O)(O)=O)OC(=O)CCCCCCCCCCCCCCC PORPENFLTBBHSG-MGBGTMOVSA-N 0.000 claims 2
- 235000014113 dietary fatty acids Nutrition 0.000 claims 2
- 229930195729 fatty acid Natural products 0.000 claims 2
- 239000000194 fatty acid Substances 0.000 claims 2
- 150000004665 fatty acids Chemical class 0.000 claims 2
- 108091032973 (ribonucleotides)n+m Proteins 0.000 claims 1
- 108020004414 DNA Proteins 0.000 claims 1
- 238000001035 drying Methods 0.000 claims 1
- 239000002800 charge carrier Substances 0.000 abstract description 28
- 239000012528 membrane Substances 0.000 abstract description 28
- 210000004027 cell Anatomy 0.000 description 32
- 239000000872 buffer Substances 0.000 description 21
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 20
- 125000002091 cationic group Chemical group 0.000 description 17
- 230000027455 binding Effects 0.000 description 16
- 210000002966 serum Anatomy 0.000 description 13
- 230000004927 fusion Effects 0.000 description 12
- 235000018102 proteins Nutrition 0.000 description 12
- 239000000725 suspension Substances 0.000 description 12
- 235000002639 sodium chloride Nutrition 0.000 description 11
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 10
- 239000007995 HEPES buffer Substances 0.000 description 10
- 125000000129 anionic group Chemical group 0.000 description 10
- 239000011780 sodium chloride Substances 0.000 description 10
- 239000000126 substance Substances 0.000 description 10
- 230000032258 transport Effects 0.000 description 10
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- SCVFZCLFOSHCOH-UHFFFAOYSA-M potassium acetate Chemical compound [K+].CC([O-])=O SCVFZCLFOSHCOH-UHFFFAOYSA-M 0.000 description 8
- 238000002360 preparation method Methods 0.000 description 8
- 150000001875 compounds Chemical class 0.000 description 7
- 238000009472 formulation Methods 0.000 description 7
- 239000002245 particle Substances 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 6
- 229920002307 Dextran Polymers 0.000 description 6
- 239000004417 polycarbonate Substances 0.000 description 6
- 229960002668 sodium chloride Drugs 0.000 description 6
- 108010067770 Endopeptidase K Proteins 0.000 description 5
- 229930006000 Sucrose Natural products 0.000 description 5
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 5
- 150000001408 amides Chemical class 0.000 description 5
- 150000001449 anionic compounds Chemical class 0.000 description 5
- 239000008280 blood Substances 0.000 description 5
- 210000004369 blood Anatomy 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 238000002523 gelfiltration Methods 0.000 description 5
- 230000003993 interaction Effects 0.000 description 5
- 239000003446 ligand Substances 0.000 description 5
- 239000005720 sucrose Substances 0.000 description 5
- 238000001890 transfection Methods 0.000 description 5
- IYMAXBFPHPZYIK-BQBZGAKWSA-N Arg-Gly-Asp Chemical compound NC(N)=NCCC[C@H](N)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(O)=O IYMAXBFPHPZYIK-BQBZGAKWSA-N 0.000 description 4
- 108090000790 Enzymes Proteins 0.000 description 4
- 102000004190 Enzymes Human genes 0.000 description 4
- 229920004890 Triton X-100 Polymers 0.000 description 4
- 239000013504 Triton X-100 Substances 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 4
- 229940088598 enzyme Drugs 0.000 description 4
- 238000001727 in vivo Methods 0.000 description 4
- 238000011534 incubation Methods 0.000 description 4
- 230000009871 nonspecific binding Effects 0.000 description 4
- 238000004806 packaging method and process Methods 0.000 description 4
- 230000008823 permeabilization Effects 0.000 description 4
- 229920000867 polyelectrolyte Polymers 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- 235000011056 potassium acetate Nutrition 0.000 description 4
- 238000010257 thawing Methods 0.000 description 4
- 238000002604 ultrasonography Methods 0.000 description 4
- 239000013598 vector Substances 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 229910019142 PO4 Inorganic materials 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 230000002776 aggregation Effects 0.000 description 3
- 238000004220 aggregation Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 3
- 210000000170 cell membrane Anatomy 0.000 description 3
- 230000000295 complement effect Effects 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 239000000706 filtrate Substances 0.000 description 3
- 238000005188 flotation Methods 0.000 description 3
- 239000012634 fragment Substances 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 230000036571 hydration Effects 0.000 description 3
- 238000006703 hydration reaction Methods 0.000 description 3
- 229920002521 macromolecule Polymers 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000002088 nanocapsule Substances 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 230000035699 permeability Effects 0.000 description 3
- 235000021317 phosphate Nutrition 0.000 description 3
- 230000004962 physiological condition Effects 0.000 description 3
- 229920000515 polycarbonate Polymers 0.000 description 3
- JGVWCANSWKRBCS-UHFFFAOYSA-N tetramethylrhodamine thiocyanate Chemical compound [Cl-].C=12C=CC(N(C)C)=CC2=[O+]C2=CC(N(C)C)=CC=C2C=1C1=CC=C(SC#N)C=C1C(O)=O JGVWCANSWKRBCS-UHFFFAOYSA-N 0.000 description 3
- 230000001225 therapeutic effect Effects 0.000 description 3
- FWOQVRURHRPVKE-ZVDJXTMWSA-M 1,2-bis[[(z)-octadec-9-enoyl]oxy]propyl-trimethylazanium;chloride Chemical compound [Cl-].CCCCCCCC\C=C/CCCCCCCC(=O)OC(C)C([N+](C)(C)C)OC(=O)CCCCCCC\C=C/CCCCCCCC FWOQVRURHRPVKE-ZVDJXTMWSA-M 0.000 description 2
- FTOAOBMCPZCFFF-UHFFFAOYSA-N 5,5-diethylbarbituric acid Chemical class CCC1(CC)C(=O)NC(=O)NC1=O FTOAOBMCPZCFFF-UHFFFAOYSA-N 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- BPYKTIZUTYGOLE-IFADSCNNSA-N Bilirubin Chemical compound N1C(=O)C(C)=C(C=C)\C1=C\C1=C(C)C(CCC(O)=O)=C(CC2=C(C(C)=C(\C=C/3C(=C(C=C)C(=O)N\3)C)N2)CCC(O)=O)N1 BPYKTIZUTYGOLE-IFADSCNNSA-N 0.000 description 2
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- 239000004471 Glycine Substances 0.000 description 2
- NTYJJOPFIAHURM-UHFFFAOYSA-N Histamine Chemical compound NCCC1=CN=CN1 NTYJJOPFIAHURM-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 2
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 2
- 102000016943 Muramidase Human genes 0.000 description 2
- 108010014251 Muramidase Proteins 0.000 description 2
- 108010062010 N-Acetylmuramoyl-L-alanine Amidase Proteins 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical class OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 2
- 239000007983 Tris buffer Substances 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- HIMXGTXNXJYFGB-UHFFFAOYSA-N alloxan Chemical class O=C1NC(=O)C(=O)C(=O)N1 HIMXGTXNXJYFGB-UHFFFAOYSA-N 0.000 description 2
- 108010072041 arginyl-glycyl-aspartic acid Proteins 0.000 description 2
- 235000003704 aspartic acid Nutrition 0.000 description 2
- 238000003556 assay Methods 0.000 description 2
- 108010041102 azocasein Proteins 0.000 description 2
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 2
- 210000001124 body fluid Anatomy 0.000 description 2
- 239000010839 body fluid Substances 0.000 description 2
- 150000001735 carboxylic acids Chemical class 0.000 description 2
- 150000001783 ceramides Chemical class 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000009089 cytolysis Effects 0.000 description 2
- 238000012899 de-mixing Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 150000001985 dialkylglycerols Chemical class 0.000 description 2
- 238000002296 dynamic light scattering Methods 0.000 description 2
- 230000001159 endocytotic effect Effects 0.000 description 2
- 210000001163 endosome Anatomy 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 238000005189 flocculation Methods 0.000 description 2
- 230000016615 flocculation Effects 0.000 description 2
- 230000000799 fusogenic effect Effects 0.000 description 2
- 235000013922 glutamic acid Nutrition 0.000 description 2
- 239000004220 glutamic acid Substances 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 229940125396 insulin Drugs 0.000 description 2
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Substances N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 2
- 239000004325 lysozyme Substances 0.000 description 2
- 229960000274 lysozyme Drugs 0.000 description 2
- 235000010335 lysozyme Nutrition 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 229930014626 natural product Natural products 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- 150000003904 phospholipids Chemical class 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 150000003573 thiols Chemical class 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical class OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 2
- GPRLSGONYQIRFK-MNYXATJNSA-N triton Chemical compound [3H+] GPRLSGONYQIRFK-MNYXATJNSA-N 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 1
- OPCHFPHZPIURNA-MFERNQICSA-N (2s)-2,5-bis(3-aminopropylamino)-n-[2-(dioctadecylamino)acetyl]pentanamide Chemical compound CCCCCCCCCCCCCCCCCCN(CC(=O)NC(=O)[C@H](CCCNCCCN)NCCCN)CCCCCCCCCCCCCCCCCC OPCHFPHZPIURNA-MFERNQICSA-N 0.000 description 1
- VDPVFJDPCFENMB-UHFFFAOYSA-N 1-aminopropane-2,2-diol Chemical class CC(O)(O)CN VDPVFJDPCFENMB-UHFFFAOYSA-N 0.000 description 1
- WTJKGGKOPKCXLL-VYOBOKEXSA-N 1-hexadecanoyl-2-(9Z-octadecenoyl)-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCC\C=C/CCCCCCCC WTJKGGKOPKCXLL-VYOBOKEXSA-N 0.000 description 1
- KQIGMPWTAHJUMN-UHFFFAOYSA-N 3-aminopropane-1,2-diol Chemical class NCC(O)CO KQIGMPWTAHJUMN-UHFFFAOYSA-N 0.000 description 1
- BZTDTCNHAFUJOG-UHFFFAOYSA-N 6-carboxyfluorescein Chemical compound C12=CC=C(O)C=C2OC2=CC(O)=CC=C2C11OC(=O)C2=CC=C(C(=O)O)C=C21 BZTDTCNHAFUJOG-UHFFFAOYSA-N 0.000 description 1
- BDDLHHRCDSJVKV-UHFFFAOYSA-N 7028-40-2 Chemical compound CC(O)=O.CC(O)=O.CC(O)=O.CC(O)=O BDDLHHRCDSJVKV-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 1
- KXDHJXZQYSOELW-UHFFFAOYSA-N Carbamic acid Chemical class NC(O)=O KXDHJXZQYSOELW-UHFFFAOYSA-N 0.000 description 1
- BHYOQNUELFTYRT-UHFFFAOYSA-N Cholesterol sulfate Natural products C1C=C2CC(OS(O)(=O)=O)CCC2(C)C2C1C1CCC(C(C)CCCC(C)C)C1(C)CC2 BHYOQNUELFTYRT-UHFFFAOYSA-N 0.000 description 1
- 241000252203 Clupea harengus Species 0.000 description 1
- 102000001189 Cyclic Peptides Human genes 0.000 description 1
- 108010069514 Cyclic Peptides Proteins 0.000 description 1
- NYHBQMYGNKIUIF-UUOKFMHZSA-N Guanosine Chemical class C1=NC=2C(=O)NC(N)=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O NYHBQMYGNKIUIF-UUOKFMHZSA-N 0.000 description 1
- 101000806511 Homo sapiens Protein DEPP1 Proteins 0.000 description 1
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 1
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- PVNIIMVLHYAWGP-UHFFFAOYSA-N Niacin Chemical class OC(=O)C1=CC=CN=C1 PVNIIMVLHYAWGP-UHFFFAOYSA-N 0.000 description 1
- 108091005461 Nucleic proteins Proteins 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 101710093543 Probable non-specific lipid-transfer protein Proteins 0.000 description 1
- 102100037469 Protein DEPP1 Human genes 0.000 description 1
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical group C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 1
- 241000700157 Rattus norvegicus Species 0.000 description 1
- 229920005654 Sephadex Polymers 0.000 description 1
- 239000012507 Sephadex™ Substances 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- 229930182558 Sterol Natural products 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- WDLRUFUQRNWCPK-UHFFFAOYSA-N Tetraxetan Chemical compound OC(=O)CN1CCN(CC(O)=O)CCN(CC(O)=O)CCN(CC(O)=O)CC1 WDLRUFUQRNWCPK-UHFFFAOYSA-N 0.000 description 1
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 1
- 239000004473 Threonine Substances 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical class OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- MWEZHNCHKXEIBJ-RWFZIKKDSA-N [(3s,8s,9s,10r,13r,14s,17r)-10,13-dimethyl-17-[(2r)-6-methylheptan-2-yl]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1h-cyclopenta[a]phenanthren-3-yl] 2-(trimethylazaniumyl)ethyl phosphate Chemical compound C1C=C2C[C@@H](OP([O-])(=O)OCC[N+](C)(C)C)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 MWEZHNCHKXEIBJ-RWFZIKKDSA-N 0.000 description 1
- HMNZFMSWFCAGGW-XPWSMXQVSA-N [3-[hydroxy(2-hydroxyethoxy)phosphoryl]oxy-2-[(e)-octadec-9-enoyl]oxypropyl] (e)-octadec-9-enoate Chemical compound CCCCCCCC\C=C\CCCCCCCC(=O)OCC(COP(O)(=O)OCCO)OC(=O)CCCCCCC\C=C\CCCCCCCC HMNZFMSWFCAGGW-XPWSMXQVSA-N 0.000 description 1
- JZSWZDBPGBBRNA-UHFFFAOYSA-N [hydroxymethyl(methyl)amino]methanol Chemical class OCN(C)CO JZSWZDBPGBBRNA-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 150000003838 adenosines Chemical class 0.000 description 1
- GFFGJBXGBJISGV-UHFFFAOYSA-N adenyl group Chemical group N1=CN=C2N=CNC2=C1N GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 125000000909 amidinium group Chemical group 0.000 description 1
- 235000001014 amino acid Nutrition 0.000 description 1
- 229940024606 amino acid Drugs 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000012062 aqueous buffer Substances 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 235000009582 asparagine Nutrition 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- 229960002319 barbital Drugs 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000036765 blood level Effects 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 125000003917 carbamoyl group Chemical group [H]N([H])C(*)=O 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical class OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 150000001767 cationic compounds Chemical class 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 210000003850 cellular structure Anatomy 0.000 description 1
- YMKDRGPMQRFJGP-UHFFFAOYSA-M cetylpyridinium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCC[N+]1=CC=CC=C1 YMKDRGPMQRFJGP-UHFFFAOYSA-M 0.000 description 1
- 229960001927 cetylpyridinium chloride Drugs 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 210000004978 chinese hamster ovary cell Anatomy 0.000 description 1
- 150000001840 cholesterol esters Chemical class 0.000 description 1
- 229960001231 choline Drugs 0.000 description 1
- YHHSONZFOIEMCP-UHFFFAOYSA-M choline phosphate(1-) Chemical compound C[N+](C)(C)CCOP([O-])([O-])=O YHHSONZFOIEMCP-UHFFFAOYSA-M 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 235000021310 complex sugar Nutrition 0.000 description 1
- 238000013270 controlled release Methods 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- OGQYPPBGSLZBEG-UHFFFAOYSA-N dimethyl(dioctadecyl)azanium Chemical class CCCCCCCCCCCCCCCCCC[N+](C)(C)CCCCCCCCCCCCCCCCCC OGQYPPBGSLZBEG-UHFFFAOYSA-N 0.000 description 1
- PSLWZOIUBRXAQW-UHFFFAOYSA-M dimethyl(dioctadecyl)azanium;bromide Chemical compound [Br-].CCCCCCCCCCCCCCCCCC[N+](C)(C)CCCCCCCCCCCCCCCCCC PSLWZOIUBRXAQW-UHFFFAOYSA-M 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000009881 electrostatic interaction Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 230000012202 endocytosis Effects 0.000 description 1
- 210000003038 endothelium Anatomy 0.000 description 1
- 150000002169 ethanolamines Chemical class 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 150000003947 ethylamines Chemical class 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 235000004554 glutamine Nutrition 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- UYTPUPDQBNUYGX-UHFFFAOYSA-N guanine Chemical class O=C1NC(N)=NC2=C1N=CN2 UYTPUPDQBNUYGX-UHFFFAOYSA-N 0.000 description 1
- 229960001340 histamine Drugs 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 125000004029 hydroxymethyl group Chemical group [H]OC([H])([H])* 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 238000009830 intercalation Methods 0.000 description 1
- 230000002687 intercalation Effects 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 125000003010 ionic group Chemical group 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- CRVGTESFCCXCTH-UHFFFAOYSA-N methyl diethanolamine Chemical class OCCN(C)CCO CRVGTESFCCXCTH-UHFFFAOYSA-N 0.000 description 1
- 239000000693 micelle Substances 0.000 description 1
- 210000000865 mononuclear phagocyte system Anatomy 0.000 description 1
- 150000002780 morpholines Chemical class 0.000 description 1
- 235000001968 nicotinic acid Nutrition 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 1
- 125000001095 phosphatidyl group Chemical group 0.000 description 1
- 150000008105 phosphatidylcholines Chemical class 0.000 description 1
- 229940067605 phosphatidylethanolamines Drugs 0.000 description 1
- 229940067626 phosphatidylinositols Drugs 0.000 description 1
- 150000003014 phosphoric acid esters Chemical group 0.000 description 1
- 150000004885 piperazines Chemical class 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- XJMOSONTPMZWPB-UHFFFAOYSA-M propidium iodide Chemical compound [I-].[I-].C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CCC[N+](C)(CC)CC)=C1C1=CC=CC=C1 XJMOSONTPMZWPB-UHFFFAOYSA-M 0.000 description 1
- 235000019833 protease Nutrition 0.000 description 1
- 150000003212 purines Chemical class 0.000 description 1
- 150000003230 pyrimidines Chemical class 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 125000000467 secondary amino group Chemical group [H]N([*:1])[*:2] 0.000 description 1
- 235000004400 serine Nutrition 0.000 description 1
- 239000002195 soluble material Substances 0.000 description 1
- 230000009870 specific binding Effects 0.000 description 1
- 150000003432 sterols Chemical class 0.000 description 1
- 235000003702 sterols Nutrition 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- IIACRCGMVDHOTQ-UHFFFAOYSA-N sulfamic acid Chemical class NS(O)(=O)=O IIACRCGMVDHOTQ-UHFFFAOYSA-N 0.000 description 1
- 125000001273 sulfonato group Chemical group [O-]S(*)(=O)=O 0.000 description 1
- 238000013268 sustained release Methods 0.000 description 1
- 239000012730 sustained-release form Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 125000001302 tertiary amino group Chemical group 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- 235000008521 threonine Nutrition 0.000 description 1
- RWQNBRDOKXIBIV-UHFFFAOYSA-N thymine Chemical class CC1=CNC(=O)NC1=O RWQNBRDOKXIBIV-UHFFFAOYSA-N 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 150000003628 tricarboxylic acids Chemical class 0.000 description 1
- YNJBWRMUSHSURL-UHFFFAOYSA-N trichloroacetic acid Chemical compound OC(=O)C(Cl)(Cl)Cl YNJBWRMUSHSURL-UHFFFAOYSA-N 0.000 description 1
- GKODZWOPPOTFGA-UHFFFAOYSA-N tris(hydroxyethyl)aminomethane Chemical class OCCC(N)(CCO)CCO GKODZWOPPOTFGA-UHFFFAOYSA-N 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 235000002374 tyrosine Nutrition 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7088—Compounds having three or more nucleosides or nucleotides
- A61K31/7105—Natural ribonucleic acids, i.e. containing only riboses attached to adenine, guanine, cytosine or uracil and having 3'-5' phosphodiester links
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7088—Compounds having three or more nucleosides or nucleotides
- A61K31/711—Natural deoxyribonucleic acids, i.e. containing only 2'-deoxyriboses attached to adenine, guanine, cytosine or thymine and having 3'-5' phosphodiester links
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/10—Dispersions; Emulsions
- A61K9/127—Liposomes
- A61K9/1271—Non-conventional liposomes, e.g. PEGylated liposomes, liposomes coated with polymers
- A61K9/1272—Non-conventional liposomes, e.g. PEGylated liposomes, liposomes coated with polymers with substantial amounts of non-phosphatidyl, i.e. non-acylglycerophosphate, surfactants as bilayer-forming substances, e.g. cationic lipids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2982—Particulate matter [e.g., sphere, flake, etc.]
- Y10T428/2984—Microcapsule with fluid core [includes liposome]
Definitions
- This invention relates to amphoteric liposomes, which simultaneously comprise positive and negative membrane-based or membrane-forming charge carriers as well as to the use of these liposomes.
- lipids comprises three classes of natural products, which can be isolated from biological membranes: phospholipids, sphingolipids and cholesterol with its derivatives. However, it also comprises synthetically produced materials with similar characteristics. As representatives of these, diacyl glycerols, dialkyl glycerols, 3-amino-1,2-dihydroxypropane esters or ethers and also N,N-dialkylamines are mentioned.
- liposomes are of technical interest for the preparation of liposomes.
- liposomes On of the uses of these liposomes is as a container for active ingredients in pharmaceutical preparations.
- an efficient and stable packaging of the cargo, compatibility with body fluids and a controllable and optionally site-specific release of the content are desirable.
- pH-sensitive liposomes comprise, in particular, cholesterol hemisuccinate (CHEMS).
- Cholesterol hemisuccinate is used in admixture with phosphatidyl ethanolamine for the preparation of pH-sensitive liposomes (Tachibana et al. (1998); BBRC 251: 538-544, U.S. patent 4,891,208).
- Such liposomes can be endocytized by many cells and in this way are able to transport cargo molecules into the interior of cells, without injuring the integrity of the cellular membrane.
- the anionic character of CHEMS is a significant disadvantage.
- the liposomes, prepared with it, have an overall negative charge and absorbed by cells only with a low efficiency. Therefore, in spite of the transfer mechanism described above, they are hardly suitable for transporting macromolecules into cells.
- Cationic liposomes with the highest possible and constant surface charge are used to transport active ingredients into cells (transfection).
- the overall positive charge of such particles leads to an electrostatic adhesion to cells and, consequently, to an efficient transport into cells.
- the use of these compounds and of the liposomes, produced therewith is, however, limited to in vitro or ex vitro uses, since such positively charged liposomes form uncontrolled aggregates with serum components.
- Cationic liposomes show good bonding of nucleic acids and proteins and are in a position to bring these active ingredients into cells. It is a disadvantage that they cannot be used for in vivo applications.
- amphoteric liposomes which comprise at least one positive and at least one negative charge carrier, which differs from the positive one, the isoelectric point of the liposomes being between 4 and 8. This objective is accomplished owing to the fact that liposomes are prepared with a pH-dependent, changing charge.
- Liposomal structures with the desired properties are formed, for example, when the amount of membrane-forming or membrane-based cationic charge carriers exceeds that of the anionic charge carriers at a low pH and the ratio is reversed at a higher pH. This is always the case when the ionizable components have a pKa value between 4 and 9. As the, pH of the medium drops, all cationic charge carriers are charged more and all anionic charge carriers lose their charge.
- the membrane-forming or membrane-based charge carriers have the following general structure of an amphiphile:
- membrane anchors include, in particular, the diacyl glycerols, diacyl phosphoglycerols (phospholipids) and sterols, but also the dialkyl glycerols, the dialkyl- or diacyl-1-amino-2,3-dihydroxypropanes, long-chain alkyls or acyls with 8 to 25 carbon atoms, sphingolipids, ceramides, etc.
- the charge groups which combine with the these anchors, can be divided into the following 6 groups:
- weakly anionic compounds are: His-Chol-histaminyl-cholesterol hemisuccinate, Mo-Chol morpholine-N-ethylamino-cholesterol hemisuccinate or histidinyl-PE.
- neutral compounds are: cholesterol, ceramides, phosphatidyl cholines, phosphatidyl ethanolamines, tetraether lipids or diacyl glycerols.
- weakly anionic compounds are: CHEMS cholesterol hemisuccinate, alkyl carboxylic acids with 8 to 25 carbon atoms or diacyl glycerol hemisuccinate.
- Additional weakly anionic compounds are the amides of aspartic acid, or glutamic acid and PE as well as PS and its amides with glycine, alanine, glutamine, asparagine, serine, cysteine, threonine, tyrosine, glutamic acid, aspartic acid or other amino acids or aminodicarboxylic acids.
- the esters of hydroxycarboxylic acids or hydroxydicarboxylic acids and PS are also weakly anionic compounds.
- Strongly anionic compounds are, for example: SDS sodium dodecyl sulfate, cholesterol sulfate, cholesterol phosphate, cholesteryl phosphocholine, phosphatidyl glycerols, phosphatid acids, phosphatidyl inositols, diacyl glycerol phosphates, diacyl glycerol sulfates, cetyl phosphate or lyosophospholipids.
- Amphoteric compounds are, for example,
- the inventive liposomes contain variable amounts of such membrane-forming or membrane-based amphiphilic materials, so that they have an amphoteric character. This means that the liposomes can change the sign of the charge completely.
- the structures can also be constructed so that, in particular, as the pH drops, the charge on the molecule as a whole is actually changed from negative to positive.
- a reversal of charge is advantageous particularly when the liposomes, produced with these structures, are to be used in physiological interrelationships.
- Only liposomes with an overall negative charge are compatible with blood and serum components.
- a positive charge leads to aggregations.
- Liposomes with a positive charge are, however, very good fusogenically and can transport active ingredients into cells.
- a pH-dependent reversal of charge therefore permits compounds to be constructed, which are compatible with serum because they have a negative charge; however, after their endocytotic absorption, their charge is reversed and they become fusogenic only in the cell.
- amphoteric liposomes have an isoelectric point between 5 and 7.
- amphoteric liposomes which comprise at least one amphoteric charge carrier, the amphoteric charge carrier having an isoelectric point of between 4 and 8.
- amphoteric charge carrier of the liposomes has an isoelectric point of between 5 and 7.
- the invention also relates to amphoteric liposomes, the liposomes comprising at least one amphoteric charge carrier and an anionic arid/or cationic charge carrier.
- amphoteric liposomes have an isoelectric point between 5 and 7.
- the inventive liposomes comprise phosphatidyl choline, phosphatidyl ethanolamine, diacyl glycerol, cholesterol, tetraether lipid, ceramide, sphigolipid, and/or diacyl glycerol.
- preparation of the liposomes can, of course, be carried out with many lipid combinations of the inventive teachings.
- liposomes can be synthesized using a large amount of CHEMS (about 40%) and a smaller amount of DOTAP (about 30%).
- CHEMS about 40%
- DOTAP about 30%
- An alternative formulation is the mixing of CHEMS with HisChol the stronger charging of the positive charge carrier HisChol going along synergistically with the discharging of the negative CHEMS.
- Hist-Chol which in itself is amphoteric, is incorporated in a neutral membrane of, for example, phosphatidyl choline, an amphoteric liposome with an isoelectric point, which largely corresponds to that of Hist-Chol, also results.
- the liposomes have an average size of between 50 and 1000 nm, preferably of between 70 and 250 nm and particularly between 60 and 130 nm.
- the amphoteric liposomes are synthesized by methods known in the art, such as the injection of ethanol into a lipid solution in an aqueous buffer, by hydrating dry lipid films or by detergent dialysis.
- the size of the liposomes can vary, generally between 50 nm and 10,000 nm. Homogeneous populations can be produced by high-pressure homogenization or by extrusion.
- the liposomes comprise an active ingredient.
- the active ingredient is a protein, a peptide, a DNA, an RNA, an antisense nucleotide and/or a decoy nucleotide.
- At least 80% of the active ingredient in the interior of the liposome is at least 80% of the active ingredient in the interior of the liposome.
- the invention also relates to a method for charging a liposome with active ingredient, a defined pH being used for the encapsulation and the pH being adjusted to a second value for separating the unbound material.
- the invention furthermore also relates to a method for charging a liposome with active ingredient, the liposomes being permeabilized and closed at a defined pH.
- the invention also relates to the use of the liposomes for the preparation of nanocapsules by depositing polymers or polyelectrolytes on the lipid layer. Such substances can be precipitated once or several times on the surface. With a repeated deposition, which optionally can be carried out in the absence of cross-linking agents, liposomal nanocapsules of the type described in the WO 00/28972 or in the WO01/64330 are formed. It is advantageous that the electrostatic interaction with the polyelectrolyte can be interrupted when the substances described here are used. It is known that the interaction of a polyelectrolyte with charge carriers of the liposomal membrane can lead to the de-mixing of membrane components and to the formation of lipid clusters.
- this de-mixing is associated with a permeabilization of the liposome.
- inventive substances enable this interaction to be switched off after the coating process.
- the liposomes are enclosed only sterically in the nanocapsules if the pH is increased at this time and there no longer is any interaction between the membrane and the polyelectrolyte. Cluster formation of the lipids and the permeabilization of the membrane, associated therewith, can thus be avoided.
- the invention also relates to the use of the inventive liposomes for packaging and releasing active ingredients.
- the liposomes bring about, in particular, the efficient packaging of active ingredients, such as nucleic acids.
- Nucleic acids are incubated with said lipids particularly at a low pH (about 3 to 6). After the formation of the liposomes, nucleic acids, adhering to the outside, can be washed off by changing to a high pH (about 7 to 9).
- the pH of the medium is adjusted to a value here, which lies between the pI of the liposome and that of the protein. It has proven to be particularly advantageous, if the two pI values are more than one unit apart.
- the liposomes are used to prepare release systems in diagnostics.
- the liposomes are used as transfection systems, that is, for bringing active ingredients into cells.
- the liposomes are used for the controlled release of their contents by fusion or permeabilization of the membrane.
- liposomes of a lipid which by itself is not membrane-forming, can be stabilized by the incorporation of charge carriers, such as PE. If the charge carrier is transformed into a neutral, uncharged or zwitterionic state, the permeability of the membrane is increased.
- charge carriers such as PE.
- Known liposomes of the state of the art PE/CHEMS, Tachibana et al.
- Amphoteric liposomes can be produced by the measures listed above in such a manner, that their neutral point lies at any desirable pH between 4 and 9. Under these conditions, the liposomes are permeable and can deliver cargo to the medium.
- the liposomal formulations can be produced, processed and stored under conditions of lesser permeability.
- liposomes are produced so that they release of their cargo under conditions of a physiological pH, but enclose their cargo securely at a low pH.
- Such liposomes are suitable particularly for the preparation of formulations with slow release kinetics, the release being initiated only by contact with body fluids and not during storage or transport.
- a preferred embodiment of the inventive teaching therefore consists of the use of such liposomes for therapeutic purposes, especially for such uses, which employ the specific targeting of the liposomes.
- the slight nonspecific binding is a prerequisite here for transporting the liposomes to the target place.
- a high nonspecific binding would prevent any transport of the liposomes to the target place.
- a specific binding can be attained by further measures of the state of the art, that is, by selecting the size of the liposomes or also by binding the ligands to the liposomal surface, which binds to a target receptor of the cell surface.
- Ligands may, for example, be antibodies or their fragments, sugars, hormones, vitamins, peptides, such as arg-gly-asp (RGD), growth factors, bilirubin or other components.
- the preferred variation of the inventive teachings relates to the use of the liposomes for therapeutic or diagnostic applications under in vivo conditions.
- such liposomes are ones, which have a slight nonspecific binding and, with that, a slight tendency to fuse under physiological conditions, but are combined strongly and with a high fusion competence under changed conditions.
- Such liposomes are amphoteric liposomes, which have an overall anionic particle charge under physiological conditions and an increasingly cationic charge at a pH below 6.5. Such pH values occur during the endocytosis of the liposomes into cells. Such pH values also occur in the interior of tumors and in the external layers of the skin. Low pH values can also be obtained by perfusing an organ ex vivo for a certain period of time.
- a high binding strength and fusion competence is therefore limited to those liposomes, which were already taken up by cells or special tissue.
- the binding strength and increasing fusion competence support the fusion of the liposomal membrane with the cell membrane. This event leads to a direct release of the cargo into the interior of the cell without releasing components of the lysis of the endosome and, with that, endangering the cargo or cell components.
- the liposomes are: used as a vector for the in vivo, in vitro and ex vivo transfection of cells.
- the inventive liposomes have several advantages. Cationically chargeable liposomes of 40 percent HisChol and PC bind the nucleic acids, such as DNA, to their membrane even under conditions of a neutral pH. Surprisingly, this binding is suppressed completely if the above-mentioned liposomes are produced using 5 percent of PG in addition and then have amphoteric properties. However, the binding of nucleic acids to the membrane can be restored once again by decreasing the pH.
- the inventive liposomes are therefore particularly well suited for the pH-dependent binding of nucleic acids.
- the fusion competence of the inventive liposomes depends on the pH of the medium. In comparison to biological membranes of cells, the fusion competence is determined by the lipid selected and also by the charging of the liposomes. Usually, a binding step precedes the actual fusion. However, strong binding of the liposomes to cell membranes is not always desirable and should take place, as described above, only under controlled conditions in particular cells or tissue.
- the liposomes cane therefore by used to construct liposomal vectors for the transport of active ingredients into cells.
- All materials which do not form micelles, come into consideration as active ingredients.
- Water-soluble materials are particularly suitable as active ingredients. They include many proteins and peptides, especially antibodies or enzymes or antigens, all nucleic acids, independently of their molecular weight and their derivation from RNA or DNA. However, they include also other biological macromolecules, such as complex sugars, natural products and other compounds, as well as low molecular weight active ingredients of synthetic or natural origin, which otherwise cannot penetrate through the cell membrane as barrier. With the help of vectors, such materials can then be transported into the interior of cells and initiate actions, which are not possible without this transport.
- liposomes can be prepared, the fusion and binding properties of which differ at different pH values. Serum-compatible liposomes, which are laden with a large amount of active ingredients and transport these into the interior of cells, can therefore be produced in this way.
- someone, skilled in the art is able to combine elements of the inventive teachings with one another and, with that, produce liposomes, which are optimally suitable for a particular purpose.
- His-Chol (5 mg) and 7.8 mg of POPC and 2 mg of DPPG are dissolved in 4 ml of a 1:1 (v/v) mixture of chloroform and methanol and dried completely in a rotary evaporator.
- the lipid film is hydrated with 4.3 mL of the appropriate buffer (10 mM KAc, 10 mM HEPES, 150 mM NaCl, pH 7.5, in a lipid concentration of 5 mM by a five-minute treatment with ultrasound. Subsequently, the suspension is frozen and, after thawing, extruded several times (Avestin LiposoFast, polycarbonate filter with a 200 nm pore width).
- the final concentration of the liposomes is adjusted to a value of 0.2 mM.
- the buffer system is used at a pH of 7.5 or 4.2.
- the zeta potentials measured lie between ⁇ 18 mV (at pH 7.5) and +35 mV (at pH 4.2).
- POPC, DOTAP and CHEMS are dissolved in the molar ratios given below in 4 mL of a 1:1 (v/v) mixture of chloroform and methanol and evaporated completely in the rotary evaporator.
- the lipid film is hydrated with 4.3 mL of the appropriate buffer (10 mM KAc, 10 mM HEPES, 150 mM NaCl, pH 7.5, in a total lipid concentration of 5 mM by a five-minute treatment with ultrasound. Subsequently, the suspension is frozen and, after thawing, excluded repeatedly (Avestin LiposoFast, polycarbonate filter with a 200 nm pore width).
- the Table below shows the zeta potentials as a function of pH.
- the height of the zeta potential and its slope can be selected within why limits by means of a suitable composition.
- His-Chol (5 mg) and 9.8 mg of POPC are dissolved in 4 ml of a 1:1 (v/v) mixture of chloroform and methanol and dried completely in a rotary evaporator.
- the lipid film is hydrated with 4.3 mL of the appropriate buffer (10 mM KAc, 10 mM HEPES, 150 mM NaCl, pH 7.5, in a lipid concentration of 5 mM by a five-minute treatment with ultrasound. Subsequently, the suspension is frozen and, after thawing, extruded several times (Avestin LiposoFast, polycarbonate filter with a 200 nm pore width).
- Lipid films are prepared as in Example 1. A lipid mixture, which did not contain any DPPG, was used as comparison sample. The lipid films were hydrated in buffer (10 mM of phosphate, 150 mM of sodium chloride, pH of 7.4) and extruded as above. Human serum is diluted with an equal amount of buffer (10 mm of phosphate, 150 mM of sodium chloride, pH of 7.4), particular components and fat being removed by centrifuging (20 minutes, 13,000 rpm, 4° C.); the clear serum is filtered sterile with a filter having a pore width of 0.2 ⁇ m.
- the liposomes, prepared above are added to the serum in concentration of 1 mM and incubated for 15 minutes at 37° C. After the incubation, the suspension of the DPPG-containing liposomes is uniformly cloudy; however, flocculation cannot be observed. The diameter of the liposomes is determined by means of dynamic light scattering and is changed by less than 10% from that of the starting sample. The suspension of the DPPG-free liposomes clearly shows flocculation.
- POPC/DOTAP/CHEMS liposomes of different decomposition were prepared by the method of Example 2: POPC 100% (as control), POPC/DOTAP/CHEMS 60:30:10, 60:20:20 and 60:10:30 (in mole %). Any CF, which is not enclosed, was removed by gel filtration. For the measurement, the liposomes were diluted to 0.1 mM in serum and incubated at 37° C.
- Liposomes of the following compositions are prepared as in Example 1 (all data is in mole %).
- the liposomes are suspended in a concentration of 0.2 mM in buffer (10 mM of potassium acetate, 10 mM of HEPES, pH 4.2 or 7.5).
- a DNA solution (45 ⁇ L, 1 mg of DNA (Hering sperm, SIGMA D3 159) in 1 mL of water) are added in each case to 1 mL of the different liposomes samples and mixed quickly. After an incubation period of 15 minutes, the sample is filled up with 6 mL of the appropriate buffer and the zeta potential of the liposomes is measured (Table 4).
- the binding of the DNA was carried out at a pH of 4.2 by the method of the above example and the zeta potentials were determined. Subsequently, the pH of the samples was adjusted to a value of 7.5 and the zeta potential was measured once again.
- Two liposome formulations having compositions of POPC60/DOTAP15/CHEMS25 and POPC85/DOTAP15 respectively, are prepared as dry lipid films as described above. In each case, the total amount of lipid was. 4 ⁇ moles.
- Herings DNA was dissolved in 10 mM of potassium acetate, 10 mM of HEPES and 100 mM of sodium chloride at a pH of 4.0. The DNA (4 mg) was added directly to the lipid films. The resulting liposomes were frozen and thawed repeatedly and subsequently extruded through a 200 nm filter.
- Each 500 ⁇ L of particles was mixed with 2.5 mL of a sucrose solution (0.8M sucrose in the above buffer, at a pH of 4.0 or 7.5). Over this, 1.5 mL of a 0.5 M sucrose solution and 0.5 mL of the buffer were placed.
- a sucrose solution 0.8M sucrose in the above buffer, at a pH of 4.0 or 7.5.
- Liposomes were then separated by flotation from unbound DNA. After the flotation, the liposomes were removed from the buffer/0.5 M sucrose interface. The amount of bound DNA was determined by intercalation of propidium iodide. The Stewart assay was used to determine the amount of lipid. Only the PC used responds in the Stewart assay. The other lipids were not calculated by means of this value. The results are shown in the Table below (Table 5). TABLE 5 Liposome pH 4.0 pH 7.5 POPC/DOTA/ 2 ⁇ g DNA/ ⁇ g DOTAP 1.2 ⁇ g DNA/ ⁇ g DOTAP CHEMS 60/15/25 POPC/DOTAP 2.3 ⁇ g DNA/ ⁇ g DOTAP 2.3 ⁇ g DNA/ ⁇ g DOTAP 85/15
- DNA cannot be detached once again from constitutively cationic liposomes by changing the pH or by additionally increasing the ionic strength and always remains on the outside.
- Liposomes with the following compositions are prepared as in Example 1 (all data in mole %): A) POPC 60 HisChol 40 B) POPC 55 HisChol 40 CHEMS 5 X) POPC 100 Y) POPC 60 DPPG 40
- the facultative cationic liposomes A or B are incubated with the neutral liposomes X or the anionic liposomes Y in the buffer (10 mM HEPES, 10 mM potassium acetate, pH 4.2 or 7.5).
- the possible fusion of liposomes is analyzed by size measurement by means of dynamic light scattering (Table 6). TABLE 6 Liposome 1 X X Y Y Liposome 2 A B A B pH 4.2 161.6 nm 191.9 nm 1689.3 nm 2373.2 nm pH 7.5 191.8 nm 202.4 nm 250.0 nm 206.3 nm
- the starting sizes of the liposomes were 161.8 nm at pH 4.2 and 165.9 nm at pH 7.5
- the size of the pairs with the complementary charge (YA and YB) differs clearly from the size of the mixed suspensions with the neutral liposome X.
- the extent of the interaction is determined by the magnitude of the charge of the facultative cationic liposomes.
- the extent of the fusion to larger units does not depend on the fusogenic lipid PE.
- DOPE 13.75 ⁇ moles
- 2.5 Emotes of CHEMS and 10 ⁇ moles of HisChol are dissolved in isopropanol and the solvent is drawn off under a vacuum.
- a solution (2.5 mL) of proteinase K in buffer (1 mg/mL of proteinase K, 10 mM of potassium acetate, 10 mM HEPES, 150 mM of sodium chloride, pH 4.2) is added to the dried lipid film. After the film is hydrated, the liposomes formed are extruded through a 400 nm membrane. Proteinase, which is not enclosed, is removed by floatation of the liposome in the sucrose gradient.
- the liposomes, so produced, are incubated with 7.5 mL of buffer at a pH of 4.2 and 7.2 (buffer as above, starting pH 4.2 and 8.0). After the combination, the proteinase K released is removed using a 0.1 ⁇ m membrane. The liposomes, remaining in the filter, are then treated with 7.5 mL of a solution of Triton X-100 in buffer (as above, pH 8.0).
- Liposomes having the composition POPC50/DOTAP10/CHEMS40 (all data in mole %) are prepared as in the preceding examples.
- the liposome suspension so prepared, is adjusted to a pH of 4.0 by the addition of acetic acid. Subsequently the liposomes are separated by flotation from protein, which has not been incorporated.
- the proportion of enclosed protein is given in the Table below (Table 8). TABLE 8 pH during Inclusion % of Material Enclosed 5.0 4 6.0 21 7.0 75 8.0 80
- Liposomes of the composition used show a pI of 5; the lysozyme is a basic protein with a pI of 11.5.
- the two partners therefore have opposite charges at a pH between 6 and 8.
- An efficient inclusion in the liposomes is brought about by electrostatic attraction. Protein, not encapsulated, was removed at a pH of 4. The interaction between the partners is cancelled at this pH.
- HeLa cells or CHO cells were plated into each cavity of a 6-well titer plate and cultured for three days.
- Liposomes (POPC/DOTAP/CHEMS 60/30/10) were prepared in the presence of fluorescence-labeled dextran (TRITC dextran 10 mg/mL in the hydration buffer). TRITC dextran, which had not been incorporated, was removed by gel filtration. The liposomes, so prepared, were added to the cells and incubated for 6 hours at 37° C. Subsequently, the cells were washed twice with buffer. The absorption of dextran was followed in the microscopic image. The results are shown in FIG. 1 .
- Liposomes having the composition of POPC/DOTAP/Chems/N-glutaryl-DPPE (50:10:30:10 (mole %)) are prepared as in Example 2. At the same time, they are hydrated with a solution of 3 mg/mL of TRITC-Dextran (having a molecular weight of about 4,400) in HEPES 10 mM and 150 mM of sodium chloride at a pH of 7.5. TRITC-Dextran, which is not enclosed, is removed by gel filtration through a Sephadex G-75 column.
- Human endothelium cells were cultured in a special medium.
- the liposomes, modified with ligand, and control liposomes without RGD ligand were added as a 0.5 mM suspension to the cells. After 2 hours, the liposomes are removed and the cell chambers rinsed 3 times with PBS buffer and viewed under the fluorescence microscope.
- the TRITC fluorescence of cells, which had been treated with RDG liposomes, is distinctly more red than that of the control liposomes.
- Liposome suspensions (50 mM) were prepared by hydrating a lipid film of the corresponding formulation (addition of 0.03 moles of [14]C-DPPC) with 2 mL of a solution of 1 mg [3]H-insulin in HEPES 10 mM, sodium-chloride 150 nm at a pH of 7.5). After 3 freezing and thawing cycles, the suspensions were extruded repeatedly through a 400 nm membrane (LiposoFast, Avestin). [3]H-Insulin which had not been enclosed, was removed by gel filtration though a G-75 Sephadex-column and subsequent concentration over CENTRIPREP (Millipore) centrifuging units.
- Liposome suspension (0.5 mL) was administered to 4 experimental animals per formulation and blood samples were taken after 5 minutes, 15 minutes, 60 minutes, 3 hours, 12 hours and 24 hours.
- the radioactivity of the membrane fraction and of the soluble cargo was measured by scintillation and gave the following values: Elimination half-life times from the blood POPC/Chol greater than 120 minutes POPC/DOTAP/Chems greater than 120 minutes POPC/Hist-Chol greater than 120 minutes
- the inventive liposomes fulfill the basic prerequisites for a vector system. They are not acutely toxic and not absorbed immediately by their reticuloendothelial system. Up to the end of the experiment, the ratio of the 3[H] to the 14[C] radioactivity of the blood samples was constant. Release of the cargo by complement lysis therefore does not take place in any of the cases.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Public Health (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Molecular Biology (AREA)
- Epidemiology (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- Dispersion Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Organic Chemistry (AREA)
- Medicinal Preparation (AREA)
- Cosmetics (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Description
- This application is a continuation of U.S. application Ser. No. 10/081,617 filed Feb. 21, 2002, which claims benefit of German Application 101 09 897.9, filed Feb. 21, 2001.
- This invention relates to amphoteric liposomes, which simultaneously comprise positive and negative membrane-based or membrane-forming charge carriers as well as to the use of these liposomes.
- The concept of lipids comprises three classes of natural products, which can be isolated from biological membranes: phospholipids, sphingolipids and cholesterol with its derivatives. However, it also comprises synthetically produced materials with similar characteristics. As representatives of these, diacyl glycerols, dialkyl glycerols, 3-amino-1,2-dihydroxypropane esters or ethers and also N,N-dialkylamines are mentioned.
- These substances are of technical interest for the preparation of liposomes. On of the uses of these liposomes is as a container for active ingredients in pharmaceutical preparations. For this purpose, an efficient and stable packaging of the cargo, compatibility with body fluids and a controllable and optionally site-specific release of the content are desirable.
- It is a disadvantage that it is difficult to combine the two requirements. The tighter and more stable the packaging, the more difficult it is to release the enclosed active ingredient once again. For this reason, liposomes were developed, which change their properties in reaction to external stimuli. Heat-sensitive and pH-sensitive liposomes are known. The pH-sensitive liposomes are of special interest, since this parameter may change under physiological circumstances, such as during the endocytotic absorption of a liposome in cells or during passage through the gastrointestinal tract. According to the state of the art, pH-sensitive liposomes comprise, in particular, cholesterol hemisuccinate (CHEMS).
- Cholesterol hemisuccinate is used in admixture with phosphatidyl ethanolamine for the preparation of pH-sensitive liposomes (Tachibana et al. (1998); BBRC 251: 538-544, U.S. patent 4,891,208). Such liposomes can be endocytized by many cells and in this way are able to transport cargo molecules into the interior of cells, without injuring the integrity of the cellular membrane.
- The anionic character of CHEMS is a significant disadvantage. The liposomes, prepared with it, have an overall negative charge and absorbed by cells only with a low efficiency. Therefore, in spite of the transfer mechanism described above, they are hardly suitable for transporting macromolecules into cells.
- Cationic liposomes with the highest possible and constant surface charge are used to transport active ingredients into cells (transfection). The overall positive charge of such particles leads to an electrostatic adhesion to cells and, consequently, to an efficient transport into cells. The use of these compounds and of the liposomes, produced therewith is, however, limited to in vitro or ex vitro uses, since such positively charged liposomes form uncontrolled aggregates with serum components.
- The limitation to very few pK values, generally to that of the carboxyl group in the cholesterol hemisuccinate (approximately 4.5) is a disadvantage of the pH-sensitive liposomes, which are available according to the state of the art. A further disadvantage of the compounds is the limitation to negative charge carriers. These are not suitable for binding nucleic acids and, frequently also, proteins efficiently.
- Cationic liposomes show good bonding of nucleic acids and proteins and are in a position to bring these active ingredients into cells. It is a disadvantage that they cannot be used for in vivo applications.
- It was therefore an objective to produce the liposomal structures, which
- i) permit an efficient inclusion of active in agents,
- ii) can transport these active ingredients into biological cells,
- iii) are compatible with use under in vivo conditions and
- iv) can be produced simply and inexpensively.
- The inventive object is accomplished by amphoteric liposomes, which comprise at least one positive and at least one negative charge carrier, which differs from the positive one, the isoelectric point of the liposomes being between 4 and 8. This objective is accomplished owing to the fact that liposomes are prepared with a pH-dependent, changing charge.
- Liposomal structures with the desired properties are formed, for example, when the amount of membrane-forming or membrane-based cationic charge carriers exceeds that of the anionic charge carriers at a low pH and the ratio is reversed at a higher pH. This is always the case when the ionizable components have a pKa value between 4 and 9. As the, pH of the medium drops, all cationic charge carriers are charged more and all anionic charge carriers lose their charge.
- The following abbreviations are used in connection with the invention:
- CHEMS cholesterol hemisuccinate
- PC phosphatidyl choline
- PE phosphatidyl ethanolamine
- PS phosphatidyl serine
- PG phosphatidyl glycerol
- Hist-Chol histidinyl cholesterol hemisuccinate
- The membrane-forming or membrane-based charge carriers have the following general structure of an amphiphile:
- charge group-membrane anchor
- The naturally known systems or their technically modified forms come into consideration as membrane anchors. These include, in particular, the diacyl glycerols, diacyl phosphoglycerols (phospholipids) and sterols, but also the dialkyl glycerols, the dialkyl- or diacyl-1-amino-2,3-dihydroxypropanes, long-chain alkyls or acyls with 8 to 25 carbon atoms, sphingolipids, ceramides, etc. These membrane anchors are known in the art. The charge groups, which combine with the these anchors, can be divided into the following 6 groups:
- Strongly cationic, pKa>9, net positive charge: on the basis of their chemical nature, these are, for example, ammonium, amidinium, guanidium or pyridinium groups or timely, secondary or tertiary amino functions.
- Weakly cationic, pKa<9, net positive charge: on the basis of their chemical nature, these are, in particular, nitrogen bases such as piperazines, imidazoles and morpholines, purines or pyrimidines. Such molecular fragments, which occur in biological systems, preferably are, for example, 4-imidazoles (histamine), 2-, 6-, or 9-purines (adenines, guanines, adenosines or guanosines), 1-, 2-or 4-pyrimidines (uraciles, thymines, cytosines, uridines, thymidines, cytidines) or also pyridine-3-carboxylic acids (nicotinic esters or amides).
- Nitrogen bases with preferred pKa values are also formed by substituting nitrogen atoms one or more times with low molecular weight alkane hydroxyls, such as hydroxymethyl or hydroxyethyl groups. For example, aminodihydroxypropanes, triethanolamines, tris-(hydroxymethyl)methylamines, bis-(hydroxymethyl)methylamines, tris-(hydroxyethyl)methylamines, bis-(hydroxyethyl)methylamines or the corresponding substituted ethylamines.
- Neutral or zwitterionic, at a pH from 4 to 9: on the basis of their chemical nature, these are neutral groups, such as hydroxyls, amides, thiols or zwitterinonic groups of a strongly cationic and a strongly anionic group, such as phosphocholine or aminocarboxylic acids, aminosulfonic acids, betaines or other structures.
- Weakly anionic, pKa>4, net negative charge: on the basis of their chemical nature, these are, in particular, the carboxylic acids. These include the aliphatic, linear or branched mono-, di- or tricarboxylic acids with up to 12 carbon atoms and 0, 1 or 2 ethylenically unsaturated bonds. Carboxylic acids of suitable behavior are also found as substitutes of aromatic systems.
- Other anionic groups are hydroxyls or thiols, which can dissociate and occur in ascorbic acid, N-substituted alloxane, N-substituted barbituric acid, veronal, phenol or as a thiol group.
- Strongly cationic, pKa<4, net negative charge: on the basis of their chemical nature, these are functional groups such as sulfonate or phosphate esters.
- Amphoteric charge carriers, pI between 4.5 and 8.5, net positive charge below the p1, net negative charge above the pI: on the basis of their chemical nature, these charge carriers are composed of two or more fragments of the groups named above. For carrying out the invention, it is, initially, immaterial whether the charged groups are on one and the same membrane anchor or if these groups are on different anchors. Amphoteric charge carriers with a pI between 5 and 7 are particularly preferred for implementing the invention.
- Strongly cationic compounds are, for example:
- DC-Chol 3-β-[N-(N′,N′-dimethylethane) carbamoyl]cholesterol,
- TC-Chol 3-β-[N-(N′,N′,N′-trimethylaminoethane) carbamoyl cholesterol
- BGSC bisguanidinium-spermidine-cholesterol
- BGTC bis-guadinium-tren-cholesterol,
- DOTAP (1,2-dioleoyloxypropyl)-N,N,N-trimethylammonium chloride
- DOSPER (1,3-dioleoyloxy-2-(6-carboxy-spermyl)-propylamide
- DOTMA (1,2-dioleoyloxypropyl)-N,N,N-trimethylammonium chloride) (Lipofectin®)
- DORIE (1,2-dioleoyloxypropyl)-3-dimethylhydroxyethylammonium bromide
- DOSC (1,2-dioleoyl-3-succinyl-sn-glyceryl choline ester)
- DOGSDSO (1,2-dioleoyl-sn-glycero-3-succinyl-2-hydroxyethyl disulfide ormithine)
- DDAB dimethyldioctadecylammonium bromide
- DOGS ((C18)2GlySper3+) N,N-dioctadecylarnido-glycol-spermin (Transfectam®) (C18)2Gly+ N,N-dioctadecylamido-glycine
- CTAB cetyltrimethylammonium bromide
- CpyC cetylpyridinium chloride
- DOEPC 1,2-dioleoly-sn-glycero-3-ethylphosphocholine or other O-alkyl-phosphatidylcholine or ethanolamines,
- amides from lysine, arginine or omithine and phosphatidyl ethanolaamine.
- Examples of weakly anionic compounds are: His-Chol-histaminyl-cholesterol hemisuccinate, Mo-Chol morpholine-N-ethylamino-cholesterol hemisuccinate or histidinyl-PE.
- Examples of neutral compounds are: cholesterol, ceramides, phosphatidyl cholines, phosphatidyl ethanolamines, tetraether lipids or diacyl glycerols.
- Examples of weakly anionic compounds are: CHEMS cholesterol hemisuccinate, alkyl carboxylic acids with 8 to 25 carbon atoms or diacyl glycerol hemisuccinate. Additional weakly anionic compounds are the amides of aspartic acid, or glutamic acid and PE as well as PS and its amides with glycine, alanine, glutamine, asparagine, serine, cysteine, threonine, tyrosine, glutamic acid, aspartic acid or other amino acids or aminodicarboxylic acids. According to the same principle, the esters of hydroxycarboxylic acids or hydroxydicarboxylic acids and PS are also weakly anionic compounds.
- Strongly anionic compounds are, for example: SDS sodium dodecyl sulfate, cholesterol sulfate, cholesterol phosphate, cholesteryl phosphocholine, phosphatidyl glycerols, phosphatid acids, phosphatidyl inositols, diacyl glycerol phosphates, diacyl glycerol sulfates, cetyl phosphate or lyosophospholipids.
- Amphoteric compounds are, for example,
- Hist-Chol Nα-histidinyl-cholesterol hemisuccinate,
- EDTA-Chol cholesterol ester of ethylenediaamine tetraacetic acid
- Hist-PS Nα-histidinyl-phosphatidylserine or N-alkylcarnosine.
- The inventive liposomes contain variable amounts of such membrane-forming or membrane-based amphiphilic materials, so that they have an amphoteric character. This means that the liposomes can change the sign of the charge completely. The amount of charge carrier of a liposome, present at a given pH of the medium, can be calculated using the following formula:
z=Σni((qi−1)+10(pK−pH)/(1+10(pK−pH))
in which - qi is the absolute charge of the individual ionic groups below their pK (for example, carboxyl=0, simple nitrogen base=1, phosphate group of the second dissociation step=−1, etc.)
- ni is the number of these groups in the liposome.
- At the isoelectric point, the net charge of the liposome is 0. Structures with a largely selectable isoelectric point can be produced by mixing anionic and cationic portions.
- The structures can also be constructed so that, in particular, as the pH drops, the charge on the molecule as a whole is actually changed from negative to positive. Such a reversal of charge is advantageous particularly when the liposomes, produced with these structures, are to be used in physiological interrelationships. Only liposomes with an overall negative charge are compatible with blood and serum components. A positive charge leads to aggregations. Liposomes with a positive charge are, however, very good fusogenically and can transport active ingredients into cells. A pH-dependent reversal of charge therefore permits compounds to be constructed, which are compatible with serum because they have a negative charge; however, after their endocytotic absorption, their charge is reversed and they become fusogenic only in the cell.
- In a preferred embodiment of an embodiment of the invention, the amphoteric liposomes have an isoelectric point between 5 and 7.
- The invention also relates to amphoteric liposomes, which comprise at least one amphoteric charge carrier, the amphoteric charge carrier having an isoelectric point of between 4 and 8.
- In a preferred variation, the amphoteric charge carrier of the liposomes has an isoelectric point of between 5 and 7.
- The invention also relates to amphoteric liposomes, the liposomes comprising at least one amphoteric charge carrier and an anionic arid/or cationic charge carrier.
- It is appropriate that, in a preferred variation, the amphoteric liposomes have an isoelectric point between 5 and 7.
- In a special variation of the invention, the inventive liposomes comprise phosphatidyl choline, phosphatidyl ethanolamine, diacyl glycerol, cholesterol, tetraether lipid, ceramide, sphigolipid, and/or diacyl glycerol. However, the preparation of the liposomes can, of course, be carried out with many lipid combinations of the inventive teachings. For examples, liposomes can be synthesized using a large amount of CHEMS (about 40%) and a smaller amount of DOTAP (about 30%). At the pK of the carboxyl group of the CHEMS, the negative charge of this component is already suppressed so far, that the positive charge carrier predominates overall. An alternative formulation is the mixing of CHEMS with HisChol the stronger charging of the positive charge carrier HisChol going along synergistically with the discharging of the negative CHEMS.
- If Hist-Chol, which in itself is amphoteric, is incorporated in a neutral membrane of, for example, phosphatidyl choline, an amphoteric liposome with an isoelectric point, which largely corresponds to that of Hist-Chol, also results.
- It is known to those skilled in the art how the important parameters can be adapted by manifold variations of the inventive teachings:
- (i) the charge density of the liposomes at the end points of the of the charge reversals by the amount and the pKa values of the charge carriers used,
- (ii) the slope of the charge reversal curve by the ratio of the two charge carriers, by their absolute amounts and by an optimally synergistic effect of two complementary pH-sensitive lipids and
- (iii) the passing of the zeta potential through zero due to the ratio of the two charge carriers or also due to the position of the pK value or values.
- In a further variation of the invention, the liposomes have an average size of between 50 and 1000 nm, preferably of between 70 and 250 nm and particularly between 60 and 130 nm. The amphoteric liposomes are synthesized by methods known in the art, such as the injection of ethanol into a lipid solution in an aqueous buffer, by hydrating dry lipid films or by detergent dialysis. The size of the liposomes can vary, generally between 50 nm and 10,000 nm. Homogeneous populations can be produced by high-pressure homogenization or by extrusion.
- In a preferred variation of the invention, the liposomes comprise an active ingredient.
- Advisably, in a preferred variation, the active ingredient is a protein, a peptide, a DNA, an RNA, an antisense nucleotide and/or a decoy nucleotide.
- In a further preferred variation of the invention, at least 80% of the active ingredient in the interior of the liposome.
- The invention also relates to a method for charging a liposome with active ingredient, a defined pH being used for the encapsulation and the pH being adjusted to a second value for separating the unbound material.
- The invention furthermore also relates to a method for charging a liposome with active ingredient, the liposomes being permeabilized and closed at a defined pH.
- The invention also relates to the use of the liposomes for the preparation of nanocapsules by depositing polymers or polyelectrolytes on the lipid layer. Such substances can be precipitated once or several times on the surface. With a repeated deposition, which optionally can be carried out in the absence of cross-linking agents, liposomal nanocapsules of the type described in the WO 00/28972 or in the WO01/64330 are formed. It is advantageous that the electrostatic interaction with the polyelectrolyte can be interrupted when the substances described here are used. It is known that the interaction of a polyelectrolyte with charge carriers of the liposomal membrane can lead to the de-mixing of membrane components and to the formation of lipid clusters. In many cases, this de-mixing is associated with a permeabilization of the liposome. The inventive substances enable this interaction to be switched off after the coating process. The liposomes are enclosed only sterically in the nanocapsules if the pH is increased at this time and there no longer is any interaction between the membrane and the polyelectrolyte. Cluster formation of the lipids and the permeabilization of the membrane, associated therewith, can thus be avoided.
- The invention also relates to the use of the inventive liposomes for packaging and releasing active ingredients. In this variation, the liposomes bring about, in particular, the efficient packaging of active ingredients, such as nucleic acids. Nucleic acids are incubated with said lipids particularly at a low pH (about 3 to 6). After the formation of the liposomes, nucleic acids, adhering to the outside, can be washed off by changing to a high pH (about 7 to 9).
- An analogous procedure can be used to package proteins. Advantageously, the pH of the medium is adjusted to a value here, which lies between the pI of the liposome and that of the protein. It has proven to be particularly advantageous, if the two pI values are more than one unit apart.
- In a further variation of the invention, the liposomes are used to prepare release systems in diagnostics.
- In a further preferred variation of the invention, the liposomes are used as transfection systems, that is, for bringing active ingredients into cells.
- In a further variation of the invention, the liposomes are used for the controlled release of their contents by fusion or permeabilization of the membrane. For example, liposomes of a lipid, which by itself is not membrane-forming, can be stabilized by the incorporation of charge carriers, such as PE. If the charge carrier is transformed into a neutral, uncharged or zwitterionic state, the permeability of the membrane is increased. Known liposomes of the state of the art (PE/CHEMS, Tachibana et al.) permit such a permeabilization at the low pH values, which are attained under physiological conditions only in the interior of endosomes or during passage through the stomach. Amphoteric liposomes can be produced by the measures listed above in such a manner, that their neutral point lies at any desirable pH between 4 and 9. Under these conditions, the liposomes are permeable and can deliver cargo to the medium.
- However, the liposomal formulations can be produced, processed and stored under conditions of lesser permeability. In a preferred embodiment of the invention, liposomes are produced so that they release of their cargo under conditions of a physiological pH, but enclose their cargo securely at a low pH. Such liposomes are suitable particularly for the preparation of formulations with slow release kinetics, the release being initiated only by contact with body fluids and not during storage or transport.
- A preferred embodiment of the inventive teaching therefore consists of the use of such liposomes for therapeutic purposes, especially for such uses, which employ the specific targeting of the liposomes. The slight nonspecific binding is a prerequisite here for transporting the liposomes to the target place. In contrast to this, a high nonspecific binding would prevent any transport of the liposomes to the target place. A specific binding can be attained by further measures of the state of the art, that is, by selecting the size of the liposomes or also by binding the ligands to the liposomal surface, which binds to a target receptor of the cell surface. Ligands may, for example, be antibodies or their fragments, sugars, hormones, vitamins, peptides, such as arg-gly-asp (RGD), growth factors, bilirubin or other components.
- The preferred variation of the inventive teachings relates to the use of the liposomes for therapeutic or diagnostic applications under in vivo conditions. Preferably, such liposomes are ones, which have a slight nonspecific binding and, with that, a slight tendency to fuse under physiological conditions, but are combined strongly and with a high fusion competence under changed conditions. Such liposomes are amphoteric liposomes, which have an overall anionic particle charge under physiological conditions and an increasingly cationic charge at a pH below 6.5. Such pH values occur during the endocytosis of the liposomes into cells. Such pH values also occur in the interior of tumors and in the external layers of the skin. Low pH values can also be obtained by perfusing an organ ex vivo for a certain period of time. A high binding strength and fusion competence is therefore limited to those liposomes, which were already taken up by cells or special tissue. The binding strength and increasing fusion competence support the fusion of the liposomal membrane with the cell membrane. This event leads to a direct release of the cargo into the interior of the cell without releasing components of the lysis of the endosome and, with that, endangering the cargo or cell components.
- Furthermore, the use of the liposomes as a sustained release formulation and/or as a circulating depot is appropriate. The liposomes can also be used advantageously for intravenous or peritoneal application. In a particularly preferred variation of the invention, the liposomes are: used as a vector for the in vivo, in vitro and ex vivo transfection of cells.
- The inventive liposomes have several advantages. Cationically chargeable liposomes of 40 percent HisChol and PC bind the nucleic acids, such as DNA, to their membrane even under conditions of a neutral pH. Surprisingly, this binding is suppressed completely if the above-mentioned liposomes are produced using 5 percent of PG in addition and then have amphoteric properties. However, the binding of nucleic acids to the membrane can be restored once again by decreasing the pH. The inventive liposomes are therefore particularly well suited for the pH-dependent binding of nucleic acids.
- Furthermore, it was surprisingly found that a series of proteins also behaves in the manner described for nucleic acids. For example, antibodies bind not at a neutral pH, but under slightly acidic conditions effectively to the membrane of the inventive liposomes. Such a behavior cannot be observed in the case of pH-sensitive liposomes from a neutral lipid and CHEMS nor from such a liposomes from a neutral lipid and HisChol. It is therefore a special property of the amphoteric liposomes. Surprisingly, it was also found that inventive liposomes, contrary to the known, constitutive, cationic liposomes, are compatible with serum. An appropriate embodiment of the inventive teachings therefore consists of the use of such liposomes for therapeutic properties. It is an advantage of the liposomes that, in comparison to known, constitutive, cationic liposomes, the nonspecific binding to cells is significantly less.
- It is, however, also surprising that the fusion competence of the inventive liposomes depends on the pH of the medium. In comparison to biological membranes of cells, the fusion competence is determined by the lipid selected and also by the charging of the liposomes. Usually, a binding step precedes the actual fusion. However, strong binding of the liposomes to cell membranes is not always desirable and should take place, as described above, only under controlled conditions in particular cells or tissue.
- The liposomes cane therefore by used to construct liposomal vectors for the transport of active ingredients into cells. All materials, which do not form micelles, come into consideration as active ingredients. Water-soluble materials are particularly suitable as active ingredients. They include many proteins and peptides, especially antibodies or enzymes or antigens, all nucleic acids, independently of their molecular weight and their derivation from RNA or DNA. However, they include also other biological macromolecules, such as complex sugars, natural products and other compounds, as well as low molecular weight active ingredients of synthetic or natural origin, which otherwise cannot penetrate through the cell membrane as barrier. With the help of vectors, such materials can then be transported into the interior of cells and initiate actions, which are not possible without this transport.
- Accordingly, with the help of the inventive teachings, liposomes can be prepared, the fusion and binding properties of which differ at different pH values. Serum-compatible liposomes, which are laden with a large amount of active ingredients and transport these into the interior of cells, can therefore be produced in this way. Someone, skilled in the art, is able to combine elements of the inventive teachings with one another and, with that, produce liposomes, which are optimally suitable for a particular purpose.
- The invention is described in greater detail in the following by means of examples without being limited to these examples.
- Preparation and Charge Properties of Amphoteric Liposomes with Charge Carriers, which can be Charged Positively and are Constantly Charged Negatively
- His-Chol (5 mg) and 7.8 mg of POPC and 2 mg of DPPG are dissolved in 4 ml of a 1:1 (v/v) mixture of chloroform and methanol and dried completely in a rotary evaporator. The lipid film is hydrated with 4.3 mL of the appropriate buffer (10 mM KAc, 10 mM HEPES, 150 mM NaCl, pH 7.5, in a lipid concentration of 5 mM by a five-minute treatment with ultrasound. Subsequently, the suspension is frozen and, after thawing, extruded several times (Avestin LiposoFast, polycarbonate filter with a 200 nm pore width). For measuring the zeta potential, the final concentration of the liposomes is adjusted to a value of 0.2 mM. For the dilution, the buffer system, named above, is used at a pH of 7.5 or 4.2. The zeta potentials measured lie between −18 mV (at pH 7.5) and +35 mV (at pH 4.2).
- Preparation and Charge Properties compatible of Amphoteric Liposomes with Constant Positive and Variable Negative Charge Carriers
- POPC, DOTAP and CHEMS are dissolved in the molar ratios given below in 4 mL of a 1:1 (v/v) mixture of chloroform and methanol and evaporated completely in the rotary evaporator. The lipid film is hydrated with 4.3 mL of the appropriate buffer (10 mM KAc, 10 mM HEPES, 150 mM NaCl, pH 7.5, in a total lipid concentration of 5 mM by a five-minute treatment with ultrasound. Subsequently, the suspension is frozen and, after thawing, excluded repeatedly (Avestin LiposoFast, polycarbonate filter with a 200 nm pore width). The Table below shows the zeta potentials as a function of pH.
Composition of the liposomes in mole percent liposome 1 POPC 50 DOTAP 40 Chems 10 liposome 2 POPC 50 DOTAP 30 Chems 20 liposome 3 POPC 50 DOTAP 25 Chems 25 liposome 4 POPC 50 DOTAP 20 Chems 30 liposome 5 POPC 50 DOTAP 40 Chems 10 -
TABLE 1 Zeta Potentials in mV Liposome Liposome Liposome Liposome Liposome pH 1 2 3 4 5 4 44.2 38.4 34.7 31.7 16.2 5 39.9 25.6 27.2 22.1 3.3 6 37 21.4 16.4 2.5 −7.3 7.5 29.2 1.8 −7.9 −18.9 −34.6 - The height of the zeta potential and its slope can be selected within why limits by means of a suitable composition.
- Preparation and Charge Properties of Amphoteric Liposomes with Complete Switchability in One Compound
- His-Chol (5 mg) and 9.8 mg of POPC are dissolved in 4 ml of a 1:1 (v/v) mixture of chloroform and methanol and dried completely in a rotary evaporator. The lipid film is hydrated with 4.3 mL of the appropriate buffer (10 mM KAc, 10 mM HEPES, 150 mM NaCl, pH 7.5, in a lipid concentration of 5 mM by a five-minute treatment with ultrasound. Subsequently, the suspension is frozen and, after thawing, extruded several times (Avestin LiposoFast, polycarbonate filter with a 200 nm pore width). The course of the zeta potential at different pH values and ionic strengths is shown in the table below (Table 2).
TABLE 2 pH Without Salt 100 mM of NaCl 4 45.6 20.2 5 26.9 2.2 6 −4.1 −5.2 7 −31.4 −15.3 8 −45.7 −25.4 - Serum Aggregation
- Lipid films are prepared as in Example 1. A lipid mixture, which did not contain any DPPG, was used as comparison sample. The lipid films were hydrated in buffer (10 mM of phosphate, 150 mM of sodium chloride, pH of 7.4) and extruded as above. Human serum is diluted with an equal amount of buffer (10 mm of phosphate, 150 mM of sodium chloride, pH of 7.4), particular components and fat being removed by centrifuging (20 minutes, 13,000 rpm, 4° C.); the clear serum is filtered sterile with a filter having a pore width of 0.2 μm.
- The liposomes, prepared above are added to the serum in concentration of 1 mM and incubated for 15 minutes at 37° C. After the incubation, the suspension of the DPPG-containing liposomes is uniformly cloudy; however, flocculation cannot be observed. The diameter of the liposomes is determined by means of dynamic light scattering and is changed by less than 10% from that of the starting sample. The suspension of the DPPG-free liposomes clearly shows flocculation.
- Serum Stability of the Membrane
- Aside from serum aggregation, the precipitation of an active ingredient (carboxyfluorescein, CF) in the presence of human serum was also investigated. For this purpose, POPC/DOTAP/CHEMS liposomes of different decomposition were prepared by the method of Example 2: POPC 100% (as control), POPC/DOTAP/CHEMS 60:30:10, 60:20:20 and 60:10:30 (in mole %). Any CF, which is not enclosed, was removed by gel filtration. For the measurement, the liposomes were diluted to 0.1 mM in serum and incubated at 37° C. A 30 μl sample was removed at certain times and diluted to 300 μL with 100 mM of tris buffer, having a pH of 8.2 and the fluorescence was measured. The 100% values were obtained by dissolving the liposomes with 10 μl of Triton X-100 (10% in water). The enclosed CF as a function of time is shown in the Table below.
- The liposomes lose only a little CF into the serum during the 4-hour period of measurement. POPC/DOTAP/CHEMS 60:30:10 and 60:20:20 still contain about 75%, POPC and POPC/DOTAP/CHEMS 60:10:30 even 100% of their original CF content (see Table 3).
TABLE 3 POPC/DOTAP/ POPC/DOTAP/ POPC/DOTAP/ Time in CHEMS CHEMS CHEMS Min. POPC 60:30:10 60:20:10 60:10:30 0 100% 100% 100% 100% 15 91% 84% 95% 107% 60 94% 81% 87% 110% 120 96% 80% 76% 105% 240 96% 80% 77% 107% - Binding DNA
- Liposomes of the following compositions (in mole %) are prepared as in Example 1 (all data is in mole %).
A: 60 POPC 40 HisChol B: 55 POPC 40 HisChol 5 CHEMS C: 60 POPC 20 HisChol 20 CHEMS - The liposomes are suspended in a concentration of 0.2 mM in buffer (10 mM of potassium acetate, 10 mM of HEPES, pH 4.2 or 7.5). A DNA solution (45 μL, 1 mg of DNA (Hering sperm, SIGMA D3 159) in 1 mL of water) are added in each case to 1 mL of the different liposomes samples and mixed quickly. After an incubation period of 15 minutes, the sample is filled up with 6 mL of the appropriate buffer and the zeta potential of the liposomes is measured (Table 4).
TABLE 4 pH 4.2 pH 7.5 Lipid −DNA +DNA −DNA +DNA A +47.6 −32.0 +2.4 −44.4 B +47.8 −28.1 +0.1 −38.4 C +34.0 −28.6 −10.1 −24.7 - Under the conditions of an excess of cationic charges (pH 4:2), there is a strong reversal of the charge of the particles. At a neutral pH of 7.5, the CHEMS in high concentration (liposome C) can overcompensate the charge of the HisChol and the particles have a negative zeta potential. Only slight amounts of DNA bind to such particles.
- Liposomes having the compositions POPC/DOTAP/CHEMS in the ratio of 60:15:25 and POPC/DCChol/CHEMS in the ratio of 60:15:25 (in mole %), were prepared by the method of Example 2. The binding of the DNA was carried out at a pH of 4.2 by the method of the above example and the zeta potentials were determined. Subsequently, the pH of the samples was adjusted to a value of 7.5 and the zeta potential was measured once again.
Mixture Zeta (mV) a) POPC/DCChol/CHEMS 60:15:25 (pH 4.2) (aggregate) −43.5 b) POPC/DOTAP/CHEMS −43.7 c) POPC/DCChol/CHEMS −18.5 d) POPC/DOTAP/CHEMS −14.5 - In the presence of DNA, a negative zeta potential is measured at a low pH; however, the original particles were charged positively. After the change to the neutral pH, this charge, which is due to the DNA, is decreased. The zeta potentials approach that of the untreated liposomes (−11 mV at a pH of 7.5).
- DNA Inclusion and Detachment of Material not Encapsulated
- Two liposome formulations, having compositions of POPC60/DOTAP15/CHEMS25 and POPC85/DOTAP15 respectively, are prepared as dry lipid films as described above. In each case, the total amount of lipid was. 4 μmoles. For hydration, Herings DNA was dissolved in 10 mM of potassium acetate, 10 mM of HEPES and 100 mM of sodium chloride at a pH of 4.0. The DNA (4 mg) was added directly to the lipid films. The resulting liposomes were frozen and thawed repeatedly and subsequently extruded through a 200 nm filter.
- Each 500 μL of particles was mixed with 2.5 mL of a sucrose solution (0.8M sucrose in the above buffer, at a pH of 4.0 or 7.5). Over this, 1.5 mL of a 0.5 M sucrose solution and 0.5 mL of the buffer were placed.
- Liposomes were then separated by flotation from unbound DNA. After the flotation, the liposomes were removed from the buffer/0.5 M sucrose interface. The amount of bound DNA was determined by intercalation of propidium iodide. The Stewart assay was used to determine the amount of lipid. Only the PC used responds in the Stewart assay. The other lipids were not calculated by means of this value. The results are shown in the Table below (Table 5).
TABLE 5 Liposome pH 4.0 pH 7.5 POPC/DOTA/ 2 μg DNA/μg DOTAP 1.2 μg DNA/μg DOTAP CHEMS 60/15/25 POPC/DOTAP 2.3 μg DNA/μg DOTAP 2.3 μg DNA/μg DOTAP 85/15 - With the amphoteric liposomes, only about half of the bound DNA floats up after the change in pH to 7.5. This material is the actually enclosed material. Similar results are obtained by digesting with DNAse
- DNA cannot be detached once again from constitutively cationic liposomes by changing the pH or by additionally increasing the ionic strength and always remains on the outside.
- Fusion Properties
- Liposomes with the following compositions are prepared as in Example 1 (all data in mole %):
A) POPC 60 HisChol 40 B) POPC 55 HisChol 40 CHEMS 5 X) POPC 100 Y) POPC 60 DPPG 40 - The facultative cationic liposomes A or B are incubated with the neutral liposomes X or the anionic liposomes Y in the buffer (10 mM HEPES, 10 mM potassium acetate, pH 4.2 or 7.5). The possible fusion of liposomes is analyzed by size measurement by means of dynamic light scattering (Table 6).
TABLE 6 Liposome 1 X X Y Y Liposome 2 A B A B pH 4.2 161.6 nm 191.9 nm 1689.3 nm 2373.2 nm pH 7.5 191.8 nm 202.4 nm 250.0 nm 206.3 nm - The starting sizes of the liposomes were 161.8 nm at pH 4.2 and 165.9 nm at pH 7.5
- A) 183.2 nm
- X) 195.2 nm
- Y) 183.2 nm
- The size of the pairs with the complementary charge (YA and YB) differs clearly from the size of the mixed suspensions with the neutral liposome X. The extent of the interaction is determined by the magnitude of the charge of the facultative cationic liposomes. The extent of the fusion to larger units does not depend on the fusogenic lipid PE.
- Permeability to Macromolecules
- DOPE (13.75 μmoles), 2.5 Emotes of CHEMS and 10 μmoles of HisChol are dissolved in isopropanol and the solvent is drawn off under a vacuum. A solution (2.5 mL) of proteinase K in buffer (1 mg/mL of proteinase K, 10 mM of potassium acetate, 10 mM HEPES, 150 mM of sodium chloride, pH 4.2) is added to the dried lipid film. After the film is hydrated, the liposomes formed are extruded through a 400 nm membrane. Proteinase, which is not enclosed, is removed by floatation of the liposome in the sucrose gradient. The liposomes, so produced, are incubated with 7.5 mL of buffer at a pH of 4.2 and 7.2 (buffer as above, starting pH 4.2 and 8.0). After the combination, the proteinase K released is removed using a 0.1 μm membrane. The liposomes, remaining in the filter, are then treated with 7.5 mL of a solution of Triton X-100 in buffer (as above, pH 8.0).
- All filtrates are tested for the presence of proteinase K. For this purpose, a solution of azocasein (6 mg/mL of azocasein in 1 M urea, 200 mM tris sulfate, pH 8.5) is used. This solution (500 μL) is mixed with 100 μL of filtrate or buffer and incubated for 30 minutes at 37° C. The reaction is terminated by the addition of 10% trichloroacetic acid. Precipitated proteins are removed by centrifuging. The coloration is measured at 390 nm (Table 7).
TABLE 7 Absorption at 390 nm pH of Incubation Triton X-100 Blank 4.2 − 0.0192 4.2 + 0.2345 7.2 − 0.2210 7.2 + 0.0307 - If the incubation of the liposomes is carried out at a pH of about 4.2, very little if any proteinase K is released. Only the dissolution of the liposomes with Triton X-100 leads to the release of the enzyme. If the liposomes are incubated at a pH of 7.2, the bulk of the enzyme is released already without the addition of the Triton and is found in the first filtrate. Hardly any additional enzyme is then dissolved from the liposomes by the addition of Triton.
- Protein Binding
- Liposomes, having the composition POPC50/DOTAP10/CHEMS40 (all data in mole %) are prepared as in the preceding examples. A solution of 0.26 mg/mL of lysozyme in buffer (10 mM MES of pH 5.0 or pH 6.0 or 10 mM of HEPES of pH 7.0 or pH 8.0) is used to hydrate the lipid film. After the hydration, all samples were frozen and thawed repeatedly. Subsequently the liposomes are homogenized by ultrasound and extruded through a 200 nm filter.
- The liposome suspension, so prepared, is adjusted to a pH of 4.0 by the addition of acetic acid. Subsequently the liposomes are separated by flotation from protein, which has not been incorporated. The proportion of enclosed protein is given in the Table below (Table 8).
TABLE 8 pH during Inclusion % of Material Enclosed 5.0 4 6.0 21 7.0 75 8.0 80 - Liposomes of the composition used show a pI of 5; the lysozyme is a basic protein with a pI of 11.5. The two partners therefore have opposite charges at a pH between 6 and 8. An efficient inclusion in the liposomes is brought about by electrostatic attraction. Protein, not encapsulated, was removed at a pH of 4. The interaction between the partners is cancelled at this pH.
- Transfection Into Cells
- HeLa cells or CHO cells (3×105) were plated into each cavity of a 6-well titer plate and cultured for three days. Liposomes (POPC/DOTAP/CHEMS 60/30/10) were prepared in the presence of fluorescence-labeled dextran (TRITC dextran 10 mg/mL in the hydration buffer). TRITC dextran, which had not been incorporated, was removed by gel filtration. The liposomes, so prepared, were added to the cells and incubated for 6 hours at 37° C. Subsequently, the cells were washed twice with buffer. The absorption of dextran was followed in the microscopic image. The results are shown in
FIG. 1 . - Ligand Binding and Transfection
- Liposomes, having the composition of POPC/DOTAP/Chems/N-glutaryl-DPPE (50:10:30:10 (mole %)) are prepared as in Example 2. At the same time, they are hydrated with a solution of 3 mg/mL of TRITC-Dextran (having a molecular weight of about 4,400) in HEPES 10 mM and 150 mM of sodium chloride at a pH of 7.5. TRITC-Dextran, which is not enclosed, is removed by gel filtration through a Sephadex G-75 column. Activation of the N-glutaryl DEPPs with EDC (1-ethyl-3-(3-dimethylaminopropyl carbodiimide) (3.5 mg of EDC per 400 μL of liposome suspension) and subsequent stirring in the dark for 5 hours brings about the binding of the cyclic peptide RCDCRGDCFC to the liposomal surface. The RGD peptide (250 μg in 150 μL of buffer) was then added and stirring was continued overnight. The liposomes were separated by gel filtration from the peptide, which had not been bound.
- Human endothelium cells (HUVEC) were cultured in a special medium. The liposomes, modified with ligand, and control liposomes without RGD ligand were added as a 0.5 mM suspension to the cells. After 2 hours, the liposomes are removed and the cell chambers rinsed 3 times with PBS buffer and viewed under the fluorescence microscope. The TRITC fluorescence of cells, which had been treated with RDG liposomes, is distinctly more red than that of the control liposomes.
- Pharmacokinetics (Blood Level and Organ Distribution of pH-Switchable Liposomes)
- Liposomes of POPC/Chol (60:40), POPC/Hist-Chol/Chol (60:20:20) and POPC/DOTAP/Chems (60:10:30) (500 μL) were injected into the tail vein of male Wistar rats.
- Liposome suspensions (50 mM) were prepared by hydrating a lipid film of the corresponding formulation (addition of 0.03 moles of [14]C-DPPC) with 2 mL of a solution of 1 mg [3]H-insulin in HEPES 10 mM, sodium-chloride 150 nm at a pH of 7.5). After 3 freezing and thawing cycles, the suspensions were extruded repeatedly through a 400 nm membrane (LiposoFast, Avestin). [3]H-Insulin which had not been enclosed, was removed by gel filtration though a G-75 Sephadex-column and subsequent concentration over CENTRIPREP (Millipore) centrifuging units.
- Liposome suspension (0.5 mL) was administered to 4 experimental animals per formulation and blood samples were taken after 5 minutes, 15 minutes, 60 minutes, 3 hours, 12 hours and 24 hours. The radioactivity of the membrane fraction and of the soluble cargo was measured by scintillation and gave the following values:
Elimination half-life times from the blood POPC/Chol greater than 120 minutes POPC/DOTAP/Chems greater than 120 minutes POPC/Hist-Chol greater than 120 minutes - With their relatively long half-life in the blood, the inventive liposomes fulfill the basic prerequisites for a vector system. They are not acutely toxic and not absorbed immediately by their reticuloendothelial system. Up to the end of the experiment, the ratio of the 3[H] to the 14[C] radioactivity of the blood samples was constant. Release of the cargo by complement lysis therefore does not take place in any of the cases.
Claims (31)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/590,143 US20070269504A1 (en) | 2001-02-21 | 2006-10-31 | Amphoteric liposomes |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10109897A DE10109897A1 (en) | 2001-02-21 | 2001-02-21 | Optional cationic liposomes and their use |
DE10109897.9 | 2001-02-21 | ||
US10/081,617 US7371404B2 (en) | 2001-02-21 | 2002-02-21 | Amphoteric liposomes and their use |
US11/590,143 US20070269504A1 (en) | 2001-02-21 | 2006-10-31 | Amphoteric liposomes |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/081,617 Division US7371404B2 (en) | 2001-02-21 | 2002-02-21 | Amphoteric liposomes and their use |
Publications (1)
Publication Number | Publication Date |
---|---|
US20070269504A1 true US20070269504A1 (en) | 2007-11-22 |
Family
ID=7675950
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/081,617 Expired - Lifetime US7371404B2 (en) | 2001-02-21 | 2002-02-21 | Amphoteric liposomes and their use |
US11/590,357 Expired - Lifetime US7780983B2 (en) | 2001-02-21 | 2006-10-31 | Amphoteric liposomes |
US11/590,143 Abandoned US20070269504A1 (en) | 2001-02-21 | 2006-10-31 | Amphoteric liposomes |
US12/806,342 Abandoned US20110293695A1 (en) | 2001-02-21 | 2010-08-09 | Amphoteric liposomes |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/081,617 Expired - Lifetime US7371404B2 (en) | 2001-02-21 | 2002-02-21 | Amphoteric liposomes and their use |
US11/590,357 Expired - Lifetime US7780983B2 (en) | 2001-02-21 | 2006-10-31 | Amphoteric liposomes |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/806,342 Abandoned US20110293695A1 (en) | 2001-02-21 | 2010-08-09 | Amphoteric liposomes |
Country Status (11)
Country | Link |
---|---|
US (4) | US7371404B2 (en) |
EP (1) | EP1363601B1 (en) |
JP (5) | JP2004525898A (en) |
CN (1) | CN1241549C (en) |
AT (1) | ATE363893T1 (en) |
AU (1) | AU2002234643B2 (en) |
BR (1) | BRPI0207775B1 (en) |
CA (1) | CA2438116C (en) |
DE (2) | DE10109897A1 (en) |
ES (1) | ES2289079T3 (en) |
WO (1) | WO2002066012A2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070252295A1 (en) * | 2001-02-21 | 2007-11-01 | Steffen Panzner | Amphoteric liposomes |
US20080031937A1 (en) * | 2002-02-21 | 2008-02-07 | Steffen Panzner | Amphoteric liposomes and their use |
US20080311181A1 (en) * | 2004-03-28 | 2008-12-18 | Gerold Endert | Serum-Stable Amphoteric Liposomes |
US20120107389A1 (en) * | 2009-03-31 | 2012-05-03 | Jayanta Bhattacharyya | Amphoteric liposomal compositions for cellular delivery of small rna molecules for use in rna interference |
CN111132753A (en) * | 2017-09-04 | 2020-05-08 | 一丸自然美建有限公司 | pH-sensitive liposome and method for producing same |
Families Citing this family (120)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10207177A1 (en) * | 2002-02-19 | 2003-09-04 | Novosom Ag | Optionally cationic lipids |
EP1549352A4 (en) * | 2002-05-06 | 2005-07-27 | Nucleonics Inc | Methods for delivery of nucleic acids |
US7718189B2 (en) | 2002-10-29 | 2010-05-18 | Transave, Inc. | Sustained release of antiinfectives |
DE10255106A1 (en) * | 2002-11-24 | 2004-06-09 | Novosom Ag | Liposomal glucocorticoids |
EP1547580A1 (en) * | 2003-12-23 | 2005-06-29 | MediGene Oncology GmbH | Loading of a camptothecin drug into colloidal nanoparticles |
US8815599B2 (en) | 2004-06-01 | 2014-08-26 | Pronai Therapeutics, Inc. | Methods and compositions for the inhibition of gene expression |
WO2006048329A1 (en) * | 2004-11-05 | 2006-05-11 | Novosom Ag | Improvements in or relating to pharmaceutical compositions comprising an oligonucleotide as an active agent |
EP1764090A1 (en) * | 2005-09-15 | 2007-03-21 | Novosom AG | Amphoteric liposomes for local drug applications |
US20060159737A1 (en) * | 2004-11-19 | 2006-07-20 | Steffen Panzner | Pharmaceutical compositions for local administration |
EP1676569A1 (en) * | 2004-12-30 | 2006-07-05 | Pevion Biotech Ltd. | Lyophilization of virosomes |
US20120021042A1 (en) * | 2005-09-15 | 2012-01-26 | Steffen Panzner | Efficient Method For Loading Amphoteric Liposomes With Nucleic Acid Active Substances |
US20080088046A1 (en) * | 2006-10-13 | 2008-04-17 | Steffen Panzner | Amphoteric liposomes, a method of formulating an amphoteric liposome and a method of loading an amphoteric liposome |
WO2007031333A2 (en) | 2005-09-15 | 2007-03-22 | Novosom Ag | Improvements in or relating to amphoteric liposomes |
EP1911443A1 (en) * | 2006-10-13 | 2008-04-16 | Novosom AG | Amphoteric liposomes, method of formulating an amphoteric liposome and a method of loading an amphoteric liposome |
EP1764089A1 (en) * | 2005-09-15 | 2007-03-21 | Novosom AG | Serum stable liposomes comprising amphoter II lipid mixtures |
US8093369B2 (en) * | 2005-10-11 | 2012-01-10 | Ben Gurion University Of The Negev Research And Development Authority Ltd. | Compositions for silencing the expression of VDAC1 and uses thereof |
EP1957044B1 (en) * | 2005-12-01 | 2013-03-13 | Pronai Therapeutics, Inc. | Amphoteric liposome formulation |
JP5623016B2 (en) | 2005-12-01 | 2014-11-12 | プロネイ・セラピューティクス・インコーポレイテッドPronaitherapeutics, Inc. | Cancer therapy and pharmaceutical composition used therefor |
AU2006322076C1 (en) | 2005-12-08 | 2013-11-14 | Insmed Incorporated | Lipid-based compositions of antiinfectives for treating pulmonary infections |
EP2012750B1 (en) * | 2006-04-06 | 2018-02-21 | Insmed Incorporated | Methods for coacervation induced liposomal encapsulation and formulations thereof |
AU2007306556B2 (en) | 2006-10-13 | 2014-04-10 | Marina Biotech, Inc. | Improvements in or relating to amphoteric liposomes |
US20140178462A1 (en) * | 2006-10-13 | 2014-06-26 | Marina Biotech, Inc. | Amphoteric liposomes comprising neutral lipids |
EP2125031B1 (en) * | 2006-12-19 | 2017-11-01 | Marina Biotech, Inc. | Lipids and lipid assemblies comprising transfection enhancer elements |
EP2125024B1 (en) | 2007-03-23 | 2013-02-13 | TO-BBB Holding B.V. | Targeted intracellular delivery of antiviral agents |
US20080260895A1 (en) * | 2007-04-17 | 2008-10-23 | Vermeire Drew A | Milk replacer composition and product and method for producing the same |
HUE040417T2 (en) * | 2007-05-04 | 2019-03-28 | Marina Biotech Inc | Amino acid lipids and uses thereof |
US20100196455A1 (en) | 2007-05-04 | 2010-08-05 | Transave, Inc. | Compositions of Multicationic Drugs for Reducing Interactions with Polyanionic Biomolecules and Methods of Use Thereof |
US9119783B2 (en) | 2007-05-07 | 2015-09-01 | Insmed Incorporated | Method of treating pulmonary disorders with liposomal amikacin formulations |
US9114081B2 (en) | 2007-05-07 | 2015-08-25 | Insmed Incorporated | Methods of treating pulmonary disorders with liposomal amikacin formulations |
EP2170932A4 (en) | 2007-06-20 | 2012-10-10 | Phylogica Ltd | Compositions and uses thereof for the treatment of acute respiratory distress syndrome (ards) and clinical disorders associated with therewith |
DE102007029471A1 (en) | 2007-06-20 | 2008-12-24 | Novosom Ag | New optional cationic sterols |
AU2008295666B2 (en) * | 2007-09-07 | 2013-05-16 | Synvolux Ip B.V. | Improved liposomes and uses thereof |
CA2702103A1 (en) * | 2007-10-12 | 2009-04-16 | Novosom Ag | Improvements in or relating to amphotaric liposomes comprising neutral lipids |
CN102112110A (en) * | 2008-06-06 | 2011-06-29 | 米尔纳医疗股份有限公司 | Novel compositions for the in vivo delivery of RNAi agents |
AU2009305639B2 (en) * | 2008-10-16 | 2016-06-23 | Marina Biotech, Inc. | Processes and compositions for liposomal and efficient delivery of gene silencing therapeutics |
JP5392707B2 (en) * | 2009-03-31 | 2014-01-22 | 株式会社Nttドコモ | Membrane vesicle division system |
WO2010135714A2 (en) | 2009-05-22 | 2010-11-25 | The Methodist Hospital Research Institute | Methods for modulating adipocyte expression using microrna compositions |
CN102481256B (en) | 2009-07-09 | 2015-02-25 | 玛瑞纳生物技术有限公司 | Amphoteric liposomes comprising imino lipids |
EP2277508B1 (en) * | 2009-07-09 | 2012-04-25 | Marina Biotech, Inc. | Emulation of lipoprotein structures |
PT3338765T (en) * | 2009-12-01 | 2019-03-18 | Translate Bio Inc | Steroid derivative for the delivery of mrna in human genetic diseases |
WO2011120023A1 (en) | 2010-03-26 | 2011-09-29 | Marina Biotech, Inc. | Nucleic acid compounds for inhibiting survivin gene expression uses thereof |
WO2011133584A2 (en) | 2010-04-19 | 2011-10-27 | Marina Biotech, Inc. | Nucleic acid compounds for inhibiting hras gene expression and uses thereof |
WO2011139842A2 (en) | 2010-04-28 | 2011-11-10 | Marina Biotech, Inc. | Nucleic acid compounds for inhibiting fgfr3 gene expression and uses thereof |
EP2600901B1 (en) | 2010-08-06 | 2019-03-27 | ModernaTX, Inc. | A pharmaceutical formulation comprising engineered nucleic acids and medical use thereof |
HRP20220796T1 (en) | 2010-10-01 | 2022-10-14 | ModernaTX, Inc. | Ribonucleic acids containing n1-methyl-pseudouracils and uses thereof |
US8853377B2 (en) | 2010-11-30 | 2014-10-07 | Shire Human Genetic Therapies, Inc. | mRNA for use in treatment of human genetic diseases |
WO2012109495A1 (en) | 2011-02-09 | 2012-08-16 | Metabolic Solutions Development Company, Llc | Cellular targets of thiazolidinediones |
CA2831613A1 (en) | 2011-03-31 | 2012-10-04 | Moderna Therapeutics, Inc. | Delivery and formulation of engineered nucleic acids |
CA2834577A1 (en) | 2011-05-23 | 2012-11-29 | Phylogica Limited | Method of determining, identifying or isolating cell-penetrating peptides |
AU2012267531B2 (en) | 2011-06-08 | 2017-06-22 | Translate Bio, Inc. | Lipid nanoparticle compositions and methods for mRNA delivery |
US9464124B2 (en) | 2011-09-12 | 2016-10-11 | Moderna Therapeutics, Inc. | Engineered nucleic acids and methods of use thereof |
EP3492109B1 (en) | 2011-10-03 | 2020-03-04 | ModernaTX, Inc. | Modified nucleosides, nucleotides, and nucleic acids, and uses thereof |
RS63244B1 (en) * | 2011-12-16 | 2022-06-30 | Modernatx Inc | Modified mrna compositions |
CN102532259A (en) * | 2012-03-09 | 2012-07-04 | 中国药科大学 | Oligopeptide-based cationic lipid derivative and application thereof in pharmaceutical preparation |
CN102603866B (en) * | 2012-03-15 | 2014-01-15 | 中国药科大学 | Oligopeptide-based pH-sensitive amphoteric ion and application thereof in medicament |
US9283287B2 (en) | 2012-04-02 | 2016-03-15 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of nuclear proteins |
US9572897B2 (en) | 2012-04-02 | 2017-02-21 | Modernatx, Inc. | Modified polynucleotides for the production of cytoplasmic and cytoskeletal proteins |
WO2013151664A1 (en) | 2012-04-02 | 2013-10-10 | modeRNA Therapeutics | Modified polynucleotides for the production of proteins |
US9303079B2 (en) | 2012-04-02 | 2016-04-05 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of cytoplasmic and cytoskeletal proteins |
KR102092361B1 (en) | 2012-05-21 | 2020-03-23 | 인스메드 인코포레이티드 | Systems for treating pulmonary infections |
EP3536787A1 (en) | 2012-06-08 | 2019-09-11 | Translate Bio, Inc. | Nuclease resistant polynucleotides and uses thereof |
IN2012DE01792A (en) * | 2012-06-11 | 2015-10-16 | Council Scient Ind Res | |
US10942184B2 (en) | 2012-10-23 | 2021-03-09 | Caris Science, Inc. | Aptamers and uses thereof |
CA2928520C (en) | 2012-10-23 | 2023-03-14 | Caris Life Sciences Switzerland Holdings, S.A.R.L. | Aptamers and uses thereof |
JP2016509572A (en) | 2012-11-05 | 2016-03-31 | プロナイ セラピューティクス インコーポレイテッド | Methods of using biomarkers for the treatment of cancer by modulating BCL2 expression |
PL2922554T3 (en) | 2012-11-26 | 2022-06-20 | Modernatx, Inc. | Terminally modified rna |
MX2015006681A (en) | 2012-11-29 | 2016-04-06 | Insmed Inc | Stabilized vancomycin formulations. |
EP2935628B1 (en) | 2012-12-19 | 2018-03-21 | Caris Life Sciences Switzerland Holdings GmbH | Compositions and methods for aptamer screening |
HUE042640T2 (en) | 2013-03-14 | 2019-07-29 | Translate Bio Inc | Cftr mrna compositions and related methods and uses |
JP6586075B2 (en) | 2013-03-14 | 2019-10-02 | トランスレイト バイオ, インコーポレイテッド | Method for purifying messenger RNA |
US8980864B2 (en) | 2013-03-15 | 2015-03-17 | Moderna Therapeutics, Inc. | Compositions and methods of altering cholesterol levels |
AU2014228166A1 (en) | 2013-03-15 | 2015-09-24 | Mirna Therapeutics, Inc. | Combination cancer treatments utilizing micrornas and EGFR-TKI inhibitors |
EP3013975A1 (en) | 2013-06-24 | 2016-05-04 | Mirna Therapeutics, Inc. | Biomarkers of mir-34 activity |
JP5914418B2 (en) | 2013-06-26 | 2016-05-11 | 富士フイルム株式会社 | Lipid particle, nucleic acid delivery carrier, composition for producing nucleic acid delivery carrier, lipid particle production method and gene introduction method |
EP3052106A4 (en) | 2013-09-30 | 2017-07-19 | ModernaTX, Inc. | Polynucleotides encoding immune modulating polypeptides |
SG11201602503TA (en) | 2013-10-03 | 2016-04-28 | Moderna Therapeutics Inc | Polynucleotides encoding low density lipoprotein receptor |
EP3060258A1 (en) | 2013-10-22 | 2016-08-31 | Shire Human Genetic Therapies, Inc. | Mrna therapy for phenylketonuria |
ES2707966T3 (en) | 2013-10-22 | 2019-04-08 | Translate Bio Inc | MRNA therapy for the deficiency in argininosuccinate synthesis |
EP3126496A1 (en) | 2014-04-01 | 2017-02-08 | Mirna Therapeutics, Inc. | Microrna dosing regimens |
BR112016024644A2 (en) | 2014-04-23 | 2017-10-10 | Modernatx Inc | nucleic acid vaccines |
KR20220158867A (en) | 2014-04-25 | 2022-12-01 | 샤이어 휴먼 지네틱 테라피즈 인크. | Methods for purification of messenger rna |
ES2981634T3 (en) | 2014-05-15 | 2024-10-09 | Insmed Incorporated | Methods for treating nontuberculous pulmonary mycobacterial infections |
JP6240570B2 (en) | 2014-07-17 | 2017-11-29 | 富士フイルム株式会社 | Lipid particles and nucleic acid delivery carriers |
US10722599B2 (en) | 2015-02-04 | 2020-07-28 | Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd. | Lipid assemblies and uses thereof and some pH and electrostatic modulating lipids to be used in said assemblies |
US11564893B2 (en) | 2015-08-17 | 2023-01-31 | Modernatx, Inc. | Methods for preparing particles and related compositions |
RS63030B1 (en) | 2015-09-17 | 2022-04-29 | Modernatx Inc | Compounds and compositions for intracellular delivery of therapeutic agents |
EP3964200A1 (en) | 2015-12-10 | 2022-03-09 | ModernaTX, Inc. | Compositions and methods for delivery of therapeutic agents |
LT3394030T (en) | 2015-12-22 | 2022-04-11 | Modernatx, Inc. | Compounds and compositions for intracellular delivery of agents |
US11583504B2 (en) | 2016-11-08 | 2023-02-21 | Modernatx, Inc. | Stabilized formulations of lipid nanoparticles |
EP3585417B1 (en) | 2017-02-27 | 2023-02-22 | Translate Bio, Inc. | Method of making a codon-optimized cftr mrna |
DK3596042T3 (en) | 2017-03-15 | 2022-04-11 | Modernatx Inc | CRYSTAL FORMS OF AMINOLIPIDS |
WO2018170336A1 (en) | 2017-03-15 | 2018-09-20 | Modernatx, Inc. | Lipid nanoparticle formulation |
MX2019011004A (en) | 2017-03-15 | 2020-08-10 | Modernatx Inc | Compounds and compositions for intracellular delivery of therapeutic agents. |
WO2018213476A1 (en) | 2017-05-16 | 2018-11-22 | Translate Bio, Inc. | Treatment of cystic fibrosis by delivery of codon-optimized mrna encoding cftr |
US12077501B2 (en) | 2017-06-14 | 2024-09-03 | Modernatx, Inc. | Compounds and compositions for intracellular delivery of agents |
EP3638215A4 (en) | 2017-06-15 | 2021-03-24 | Modernatx, Inc. | Rna formulations |
AU2018326799A1 (en) | 2017-08-31 | 2020-02-27 | Modernatx, Inc. | Methods of making lipid nanoparticles |
US20200208152A1 (en) | 2017-09-08 | 2020-07-02 | Mina Therapeutics Limited | Stabilized sarna compositions and methods of use |
CN111246845A (en) | 2017-10-20 | 2020-06-05 | 生物技术Rna制药有限公司 | Preparation and storage of liposomal RNA formulations suitable for therapeutic use |
TW201936201A (en) | 2017-12-14 | 2019-09-16 | 美商堅固生物科技公司 | Non-viral production and delivery of genes |
EP3773505A4 (en) | 2018-03-30 | 2021-12-22 | Insmed Incorporated | Methods for continuous manufacture of liposomal drug products |
US11566246B2 (en) | 2018-04-12 | 2023-01-31 | Mina Therapeutics Limited | SIRT1-saRNA compositions and methods of use |
US20190381034A1 (en) * | 2018-06-14 | 2019-12-19 | Ming Fang | Pharmaceutical composition and method for acute on chronic liver failure and related liver diseases |
CA3108544A1 (en) | 2018-08-24 | 2020-02-27 | Translate Bio, Inc. | Methods for purification of messenger rna |
US20210292766A1 (en) | 2018-08-29 | 2021-09-23 | University Of Massachusetts | Inhibition of Protein Kinases to Treat Friedreich Ataxia |
CN113271926A (en) | 2018-09-20 | 2021-08-17 | 摩登纳特斯有限公司 | Preparation of lipid nanoparticles and methods of administration thereof |
US20220211740A1 (en) | 2019-04-12 | 2022-07-07 | Mina Therapeutics Limited | Sirt1-sarna compositions and methods of use |
KR20220101077A (en) | 2019-09-19 | 2022-07-19 | 모더나티엑스, 인크. | Branched tail lipid compounds and compositions for intracellular delivery of therapeutics |
AU2021253959A1 (en) | 2020-04-09 | 2022-11-17 | Verve Therapeutics, Inc. | Base editing of PCSK9 and methods of using same for treatment of disease |
WO2021255262A1 (en) | 2020-06-19 | 2021-12-23 | Sylentis Sau | siRNA AND COMPOSITIONS FOR PROPHYLACTIC AND THERAPEUTIC TREATMENT OF VIRUS DISEASES |
JP2023549011A (en) | 2020-09-15 | 2023-11-22 | ヴァーヴ・セラピューティクス,インコーポレーテッド | Lipid formulations for gene editing |
GB2603454A (en) | 2020-12-09 | 2022-08-10 | Ucl Business Ltd | Novel therapeutics for the treatment of neurodegenerative disorders |
EP4015634A1 (en) | 2020-12-15 | 2022-06-22 | Sylentis, S.A.U. | Sirna and compositions for prophylactic and therapeutic treatment of virus diseases |
US11524023B2 (en) | 2021-02-19 | 2022-12-13 | Modernatx, Inc. | Lipid nanoparticle compositions and methods of formulating the same |
US20240175033A1 (en) | 2021-03-26 | 2024-05-30 | Mina Therapeutics Limited | TMEM173 saRNA Compositions and Methods of Use |
WO2023099884A1 (en) | 2021-12-01 | 2023-06-08 | Mina Therapeutics Limited | Pax6 sarna compositions and methods of use |
GB202117758D0 (en) | 2021-12-09 | 2022-01-26 | Ucl Business Ltd | Therapeutics for the treatment of neurodegenerative disorders |
WO2023170435A1 (en) | 2022-03-07 | 2023-09-14 | Mina Therapeutics Limited | Il10 sarna compositions and methods of use |
WO2024134199A1 (en) | 2022-12-22 | 2024-06-27 | Mina Therapeutics Limited | Chemically modified sarna compositions and methods of use |
WO2024133635A1 (en) | 2022-12-23 | 2024-06-27 | Biontech Delivery Technologies Gmbh | Composition |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4891208A (en) * | 1985-04-10 | 1990-01-02 | The Liposome Company, Inc. | Steroidal liposomes |
US5283122A (en) * | 1984-04-19 | 1994-02-01 | University Of Tennessee Research Corporation | Fused liposome and acid induced method for liposome fusion |
US5753263A (en) * | 1993-04-02 | 1998-05-19 | Anticancer, Inc. | Method to deliver compositions conferring resistance to alopecia to hair follicles |
US6258792B1 (en) * | 1996-04-12 | 2001-07-10 | University Of Pittsburgh | Cationic cholesteryl derivatives containing cyclic polar groups |
US6379698B1 (en) * | 1999-04-06 | 2002-04-30 | Isis Pharmaceuticals, Inc. | Fusogenic lipids and vesicles |
US6534484B1 (en) * | 1995-06-07 | 2003-03-18 | Inex Pharmaceuticals Corp. | Methods for encapsulating plasmids in lipid bilayers |
US20070252295A1 (en) * | 2001-02-21 | 2007-11-01 | Steffen Panzner | Amphoteric liposomes |
US20080031937A1 (en) * | 2002-02-21 | 2008-02-07 | Steffen Panzner | Amphoteric liposomes and their use |
US7384923B2 (en) * | 1999-05-14 | 2008-06-10 | Lipoxen Technologies Limited | Liposomes |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4599227A (en) * | 1983-11-07 | 1986-07-08 | Wisconsin Alumni Research Foundation | Injectable pharmaceutical preparation for the induction of multiple follicular growth |
EP0169812B1 (en) | 1984-07-25 | 1989-08-23 | Ciba-Geigy Ag | Phosphatidyl compounds, process for their preparation and their use |
US5077211A (en) * | 1988-07-06 | 1991-12-31 | Applied Genetics, Inc. | Purification and administration of dna repair enzymes |
US5290563A (en) * | 1989-07-27 | 1994-03-01 | Laboratoire Des Stallergenes | Method for combining a mixture of heterogeneous substances with liposomes |
US5165994A (en) | 1990-06-05 | 1992-11-24 | University Of Delaware | Spontaneous equilbrium surfactant vesicles |
US5302389A (en) * | 1992-08-17 | 1994-04-12 | Board Of Regents, The University Of Texas System | Method for treating UV-induced suppression of contact hypersensitivity by administration of T4 endonuclease |
US5993850A (en) * | 1994-09-13 | 1999-11-30 | Skyepharma Inc. | Preparation of multivesicular liposomes for controlled release of encapsulated biologically active substances |
EP0904282B1 (en) * | 1996-04-12 | 2001-12-05 | University Of Pittsburgh | Novel cationic cholesteryl derivatives containing cyclic polar groups |
ES2187812T3 (en) * | 1996-09-13 | 2003-06-16 | Lipoxen Technologies Ltd | COMPOSITION OF LIPOSOMES. |
US5962015A (en) * | 1997-05-02 | 1999-10-05 | Kobo Products S.A.R.L. | Stabilized liposomes |
JP4656675B2 (en) * | 1997-05-14 | 2011-03-23 | ユニバーシティー オブ ブリティッシュ コロンビア | High rate encapsulation of charged therapeutic agents in lipid vesicles |
WO1999004819A1 (en) * | 1997-07-24 | 1999-02-04 | Inex Pharmaceuticals Corporation | Liposomal compositions for the delivery of nucleic acid catalysts |
FR2766706B1 (en) * | 1997-07-30 | 2001-05-25 | Biovector Therapeutics Sa | STABLE PARTICULATE COMPLEXES OF NEUTRAL OR NEGATIVE GLOBAL LOAD OF MULTILAMELLAR STRUCTURE COMPOSED OF AT LEAST ONE BIOLOGICALLY ACTIVE GLOBALLY ANIONIC SUBSTANCE AND A CATIONIC COMPONENT, THEIR PREPARATION AND USE |
US6106858A (en) * | 1997-09-08 | 2000-08-22 | Skyepharma, Inc. | Modulation of drug loading in multivescular liposomes |
JPH11302199A (en) * | 1998-04-16 | 1999-11-02 | Sankyo Co Ltd | Drug carrier composed of graft copolymer |
JP2000198731A (en) * | 1998-10-29 | 2000-07-18 | Sankyo Co Ltd | Liposome reduced in toxicity |
DE19852928C1 (en) | 1998-11-17 | 2000-08-03 | Steffen Panzner | Structures in the form of hollow spheres |
DE10010264A1 (en) | 2000-03-02 | 2001-09-13 | Novosom Gmbh | Production of nano- or micro-capsules used in the production of liposomes coated with polyelectrolytes comprises electrically recharging template particles with polyelectrolytes |
WO2007031333A2 (en) * | 2005-09-15 | 2007-03-22 | Novosom Ag | Improvements in or relating to amphoteric liposomes |
-
2001
- 2001-02-21 DE DE10109897A patent/DE10109897A1/en not_active Withdrawn
-
2002
- 2002-02-21 CN CNB028052137A patent/CN1241549C/en not_active Expired - Fee Related
- 2002-02-21 CA CA2438116A patent/CA2438116C/en not_active Expired - Lifetime
- 2002-02-21 JP JP2002565572A patent/JP2004525898A/en active Pending
- 2002-02-21 US US10/081,617 patent/US7371404B2/en not_active Expired - Lifetime
- 2002-02-21 DE DE50210271T patent/DE50210271D1/en not_active Expired - Lifetime
- 2002-02-21 BR BRPI0207775A patent/BRPI0207775B1/en not_active IP Right Cessation
- 2002-02-21 AU AU2002234643A patent/AU2002234643B2/en not_active Ceased
- 2002-02-21 AT AT02701290T patent/ATE363893T1/en active
- 2002-02-21 ES ES02701290T patent/ES2289079T3/en not_active Expired - Lifetime
- 2002-02-21 WO PCT/EP2002/001880 patent/WO2002066012A2/en active IP Right Grant
- 2002-02-21 EP EP02701290A patent/EP1363601B1/en not_active Expired - Lifetime
-
2006
- 2006-10-31 US US11/590,357 patent/US7780983B2/en not_active Expired - Lifetime
- 2006-10-31 US US11/590,143 patent/US20070269504A1/en not_active Abandoned
-
2010
- 2010-08-09 US US12/806,342 patent/US20110293695A1/en not_active Abandoned
- 2010-09-21 JP JP2010211089A patent/JP5480764B2/en not_active Expired - Fee Related
-
2013
- 2013-11-18 JP JP2013237869A patent/JP2014031383A/en active Pending
-
2014
- 2014-08-18 JP JP2014165961A patent/JP2014218520A/en active Pending
-
2016
- 2016-01-07 JP JP2016001813A patent/JP2016104786A/en active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5283122A (en) * | 1984-04-19 | 1994-02-01 | University Of Tennessee Research Corporation | Fused liposome and acid induced method for liposome fusion |
US4891208A (en) * | 1985-04-10 | 1990-01-02 | The Liposome Company, Inc. | Steroidal liposomes |
US5753263A (en) * | 1993-04-02 | 1998-05-19 | Anticancer, Inc. | Method to deliver compositions conferring resistance to alopecia to hair follicles |
US6534484B1 (en) * | 1995-06-07 | 2003-03-18 | Inex Pharmaceuticals Corp. | Methods for encapsulating plasmids in lipid bilayers |
US6258792B1 (en) * | 1996-04-12 | 2001-07-10 | University Of Pittsburgh | Cationic cholesteryl derivatives containing cyclic polar groups |
US6379698B1 (en) * | 1999-04-06 | 2002-04-30 | Isis Pharmaceuticals, Inc. | Fusogenic lipids and vesicles |
US7384923B2 (en) * | 1999-05-14 | 2008-06-10 | Lipoxen Technologies Limited | Liposomes |
US20070252295A1 (en) * | 2001-02-21 | 2007-11-01 | Steffen Panzner | Amphoteric liposomes |
US7371404B2 (en) * | 2001-02-21 | 2008-05-13 | Novosom Ag | Amphoteric liposomes and their use |
US20080031937A1 (en) * | 2002-02-21 | 2008-02-07 | Steffen Panzner | Amphoteric liposomes and their use |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070252295A1 (en) * | 2001-02-21 | 2007-11-01 | Steffen Panzner | Amphoteric liposomes |
US7780983B2 (en) | 2001-02-21 | 2010-08-24 | Novosom Ag | Amphoteric liposomes |
US20080031937A1 (en) * | 2002-02-21 | 2008-02-07 | Steffen Panzner | Amphoteric liposomes and their use |
US7858117B2 (en) | 2002-02-21 | 2010-12-28 | Novosom Ag | Amphoteric liposomes and their use |
US20080311181A1 (en) * | 2004-03-28 | 2008-12-18 | Gerold Endert | Serum-Stable Amphoteric Liposomes |
US8236770B2 (en) | 2004-03-28 | 2012-08-07 | Marina Biotech, Inc. | Serum-stable amphoteric liposomes |
US20120107389A1 (en) * | 2009-03-31 | 2012-05-03 | Jayanta Bhattacharyya | Amphoteric liposomal compositions for cellular delivery of small rna molecules for use in rna interference |
CN111132753A (en) * | 2017-09-04 | 2020-05-08 | 一丸自然美建有限公司 | pH-sensitive liposome and method for producing same |
Also Published As
Publication number | Publication date |
---|---|
JP2016104786A (en) | 2016-06-09 |
JP2011021026A (en) | 2011-02-03 |
EP1363601B1 (en) | 2007-06-06 |
EP1363601A2 (en) | 2003-11-26 |
ATE363893T1 (en) | 2007-06-15 |
US7371404B2 (en) | 2008-05-13 |
AU2002234643B2 (en) | 2007-06-21 |
US20110293695A1 (en) | 2011-12-01 |
JP2014218520A (en) | 2014-11-20 |
BRPI0207775B1 (en) | 2015-10-20 |
JP5480764B2 (en) | 2014-04-23 |
ES2289079T3 (en) | 2008-02-01 |
CA2438116C (en) | 2011-10-11 |
BR0207775A (en) | 2004-03-30 |
WO2002066012A3 (en) | 2002-12-19 |
JP2014031383A (en) | 2014-02-20 |
US7780983B2 (en) | 2010-08-24 |
CA2438116A1 (en) | 2002-08-29 |
WO2002066012A2 (en) | 2002-08-29 |
DE50210271D1 (en) | 2007-07-19 |
JP2004525898A (en) | 2004-08-26 |
US20030099697A1 (en) | 2003-05-29 |
DE10109897A1 (en) | 2002-11-07 |
CN1492756A (en) | 2004-04-28 |
US20070252295A1 (en) | 2007-11-01 |
CN1241549C (en) | 2006-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7780983B2 (en) | Amphoteric liposomes | |
US7858117B2 (en) | Amphoteric liposomes and their use | |
US7312206B2 (en) | Sterol derivatives, liposomes comprising sterol derivatives and method for loading liposomes with active substances | |
US5753613A (en) | Compositions for the introduction of polyanionic materials into cells | |
WO1991017424A1 (en) | Intracellular delivery of biologically active substances by means of self-assembling lipid complexes | |
US20060002991A1 (en) | Ph-sensitive cationic lipids, and liposomes and nanocapsules containing the same | |
Koynova et al. | Recent patents in cationic lipid carriers for delivery of nucleic acids | |
EP2211840A2 (en) | Amphoteric liposomes comprising neutral lipids | |
Palmer et al. | Transfection properties of stabilized plasmid–lipid particles containing cationic PEG lipids | |
KOSHIZAKA et al. | Novel liposomes for efficient transfection of β-galactosidase gene into COS-1 cells | |
US8097276B2 (en) | Method for coating particle with lipid film | |
US20140178462A1 (en) | Amphoteric liposomes comprising neutral lipids | |
WO1998044909A1 (en) | Improved methods of delivery using cationic lipids and helper lipids | |
WO1998000112A1 (en) | Organised assemblies containing entrapped negatively charged polyelectrolytes | |
AJ et al. | Liposomes: Emerging Trends in Novel Drug Delivery with Present and Future Challenges |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: NOVOSOM AG, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PANZNER, STEFFEN;FANKHANEL, STEFAN;ESSLER, FRANK;AND OTHERS;REEL/FRAME:022589/0023 Effective date: 20020531 |
|
AS | Assignment |
Owner name: NOVOSOM AG, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PANZNER, STEFFEN;FANKHANEL, STEFAN;ESSLER, FRANK;AND OTHERS;REEL/FRAME:023196/0421;SIGNING DATES FROM 20090603 TO 20090612 Owner name: NOVOSOM AG, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PANZNER, STEFFEN;FANKHANEL, STEFAN;ESSLER, FRANK;AND OTHERS;SIGNING DATES FROM 20090603 TO 20090612;REEL/FRAME:023196/0421 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: NOVOSOM AG, GERMANY Free format text: DOCUMENT RE-RECORDED TO REMOVE PROPERTY NUMBERS 10/081,617 AND 7,371,404 FROM THE DOCUMENT PREVIOUSLY RECORDED ON REEL 023196, FRAME 0421. ASSIGNORS HEREBY CONFIRM THE ASSIGNMENT OF THE ENTIRE INTEREST;ASSIGNORS:PANZNER, STEFFEN;FANKHANEL, STEFAN;ESSLER, FRANK;AND OTHERS;SIGNING DATES FROM 20090603 TO 20090612;REEL/FRAME:025781/0460 |
|
AS | Assignment |
Owner name: MARINA BIOTECH, INC., WASHINGTON Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NOVOSOM AG;REEL/FRAME:025486/0831 Effective date: 20100727 |