US20070252911A1 - Digital camera dock - Google Patents
Digital camera dock Download PDFInfo
- Publication number
- US20070252911A1 US20070252911A1 US11/566,251 US56625106A US2007252911A1 US 20070252911 A1 US20070252911 A1 US 20070252911A1 US 56625106 A US56625106 A US 56625106A US 2007252911 A1 US2007252911 A1 US 2007252911A1
- Authority
- US
- United States
- Prior art keywords
- digital camera
- dock
- attachment surface
- attachment
- connector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 230000001105 regulatory effect Effects 0.000 claims description 2
- 230000006870 function Effects 0.000 description 12
- 230000000994 depressogenic effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N1/00—Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
- H04N1/00127—Connection or combination of a still picture apparatus with another apparatus, e.g. for storage, processing or transmission of still picture signals or of information associated with a still picture
- H04N1/00278—Connection or combination of a still picture apparatus with another apparatus, e.g. for storage, processing or transmission of still picture signals or of information associated with a still picture with a printing apparatus, e.g. a laser beam printer
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N2201/00—Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof
- H04N2201/0008—Connection or combination of a still picture apparatus with another apparatus
- H04N2201/0034—Details of the connection, e.g. connector, interface
- H04N2201/0048—Type of connection
- H04N2201/0058—Docking-station, cradle or the like
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N2201/00—Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof
- H04N2201/0077—Types of the still picture apparatus
- H04N2201/0084—Digital still camera
Definitions
- the present invention relates to a digital camera dock, and more particularly, to a dock which is electrically connected to a digital camera to thus provide the digital camera with various functions, such as a recharging function, a printing function, and the like.
- a digital camera dock (hereinafter simply referred to as a “dock”) which is connected to a digital camera and provides the digital camera with a recharging function and a printing function has hitherto been developed.
- the recharging dock supplies recharging power to the digital camera through use of an a.c. power source.
- a recharged state of a built-in battery of the digital camera is displayed on an indicator of the digital camera or an indicator of the dock.
- the user can recharge the digital camera by means of simply attaching the digital camera to the recharging dock.
- the recharging dock may also have a file transfer function of reading image data stored in memory of the digital camera and transferring the image data to the memory of a personal computer.
- the printer dock receives the image data stored in the memory of the digital camera and outputs the image data while the data are printed on a sheet of photographic paper.
- desired image data can be printed without involvement of a computer.
- the printer dock may also have the function of recharging a digital camera.
- FIG. 20 shows that the digital camera 10 is attached to a dock 12 .
- the dock 12 is a printer dock having a print sheet tray 14 .
- a custom insert 16 prepared for each digital camera 10 is attached to an upper surface of the dock 12 ; i.e., an attachment surface of the digital camera 10 .
- the digital camera 10 is attached to the dock 12 while the custom insert is taken as a guide. More specifically, the custom insert 16 is attached to the attachment section of the dock 12 , and the digital camera 10 is attached to the custom insert 16 .
- FIG. 21 shows the configuration of the custom insert 16 and that of the dock 12 .
- the custom insert 16 has a guide wall 16 a complying with the outer shape of the digital camera 10 ; an opening section 16 b formed in the guide wall 16 a ; and a protuberance section 16 c loosely fitting into a tripod threaded hole of the digital camera 10 .
- the opening section 16 b is formed at a position which opposes a connector 12 a of the dock 12 when the custom insert 16 is attached to the dock 12 .
- the connector 12 a of the dock 12 is inserted into the opening section 16 b and becomes exposed outside, to thus enable connection with a connector of the digital camera 10 .
- Hooks 16 d are provided at the four corners of the bottom face of the custom insert 16 and fit into holes 12 b formed in the dock 12 , thereby fastening the custom insert 16 to the dock 12 .
- the custom insert 16 is attached to the dock 12 , the custom insert 16 is positioned in the attachment section of the dock 12 , thereby fitting the hooks 16 d into the holes 12 b .
- the hooks 16 d are formed from resin; and are inserted and locked into the holes 12 b as a result of being deformed during the course of fitting.
- Japanese Utility Model Laid-Open Publication No. Hei 6-45278 describes a configuration for connecting connectors together.
- One of the connectors is provided with a guide pin and a spring-tensioned movable pin.
- the other connector is provided with a plane contact and a guide hole.
- a guide to be provided on the dock including the guide section of the custom insert, must be provided so as to protrude higher than the connector of the dock, in order to exhibit a function of guiding a connection with the connector. Imposing restrictions on the dock greatly affect the internal configuration of the digital camera, which in turn hinders miniaturization of the digital camera.
- the present invention has been conceived in view of the above drawbacks in the related art, and provides a dock which can obviate a necessity for a custom insert.
- the present invention provides a digital camera dock to which a digital camera is to be attached and which has a function of printing an image captured by the digital camera or recharging an internal battery of the digital camera, the dock comprising:
- an attachment surface to which the digital camera is to be attached being supported so as to become vertically movable
- a first holding unit for fixedly holding the attachment surface in a first, upper position
- a second holding unit for fixedly holding the attachment surface in a second, lower position
- control unit for releasing the first holding unit to thus enable vertical movement of the attachment surface, which in a stable state is fixedly held in the first position by means of the first holding unit, when the digital camera is attached onto the attachment surface, and for actuating the second holding unit to thus fixedly hold the attachment surface in the second position when the attachment surface has lowered to thus establish an electrical connection with the digital camera via a connector.
- the present invention also provides a digital camera dock to which a digital camera is to be attached and which has a function of printing an image captured by the digital camera or recharging an internal battery of the digital camera, the dock comprising:
- the movable pins project and are impelled upwardly in a stable state, fit to hole sections formed in a bottom of the digital camera during attachment of the digital camera, and move downwardly along with the digital camera to thus act as guides for regulating a relative position between the digital camera and the connector.
- the present invention obviates a necessity for use of a custom insert, and lessens restrictions on a digital camera.
- FIG. 1 is a perspective view of a printer dock of an embodiment of the present invention
- FIG. 2 is a view showing a state of a movable pin achieved before attachment of a digital camera
- FIG. 3 is a view showing a state of the movable pin achieved at the time of attachment of the digital camera
- FIG. 4 is a view showing a state of the movable pin achieved after attachment of the digital camera
- FIG. 5 is a view showing a state of the movable pin when a custom insert is in use
- FIG. 6 is a perspective view of a printer dock of another embodiment of the present invention.
- FIG. 7 is a plan view of the dock
- FIG. 8 is a view showing a state of a movable pin achieved at the time of attachment of the digital camera
- FIG. 9 is a view showing a state of the movable pin achieved after attachment of the digital camera.
- FIG. 10 is a perspective view of a printer dock of still another embodiment of the present invention.
- FIG. 11 is a plan view of the dock
- FIG. 12 is a block diagram of a trigger lever
- FIG. 13 is state descriptive view (Part 1) of the trigger lever achieved at the time of attachment of the digital camera
- FIG. 14 is state descriptive view (Part 2) of the trigger lever achieved at the time of attachment of the digital camera
- FIG. 15 is state descriptive view (Part 3) of the trigger lever achieved at the time of attachment of the digital camera
- FIG. 16 is state descriptive view (Part 4) of the trigger lever achieved at the time of attachment of the digital camera
- FIG. 17 is state descriptive view (Part 5) of the trigger lever achieved at the time of attachment of the digital camera
- FIG. 18 is a descriptive view of a dock whose attachment surface is tiltable
- FIG. 19 is a descriptive view of a dock whose attachment surface is rotatable
- FIG. 20 is a descriptive view of the digital camera attached to the dock.
- FIG. 21 is a perspective view of a custom insert.
- FIG. 1 shows the configuration of a dock for use with a digital camera according to a first embodiment.
- the printer dock provides the digital camera with a recharging function and a printing function.
- the printer dock 12 has a dock-side connector 12 a and holes 12 b into which a custom insert 16 is to be fitted.
- the reason why the holes 12 b are provided is because a conventional custom insert can also be made usable in the present embodiment, although the custom insert is not required in the present embodiment.
- Two movable pins 12 c , 12 d are formed in a digital camera attachment section of the printer dock 12 in such a way that the connector 12 a is interposed between the pins 12 c and 12 d .
- the movable pins 12 c and 12 d are elastically supported by springs so as to be vertically movable.
- the movable pins 12 c , 12 d have different diameters, and in the drawing the movable pin 12 c is larger in diameter than the movable pin 12 d .
- the movable pins 12 c and 12 d may also be made equal to each other in terms of a diameter.
- the movable pins 12 c and 12 d are elastically impelled upwardly in a stable state.
- a guide line (indicated by a broken line in the drawing) is printed on a digital camera attachment surface for facilitating attachment of the digital camera and guiding the same. The user attaches the digital camera 10 to the printer dock 12 along the guide line.
- the two movable pins 12 c and 12 d fit into holes formed in the bottom surface of the digital camera 10 .
- the movable pins 12 c and 12 d are forcefully inserted against resilient force along with attachment of the digital camera 10 .
- Limitations are imposed on longitudinal and lateral movements of the movable pins 12 c and 12 d .
- the digital camera 10 is connected to the connector 12 a while being subjected to longitudinal and lateral positional restrictions above the printer dock 12 .
- FIGS. 2 through 4 show the states of the movable pins 12 c and 12 d achieved at the time of attachment of the digital camera 10 .
- FIG. 2 shows the state of the digital camera 10 achieved before attachment of the same.
- the movable pins 12 c and 12 d are impelled upwardly by means of springs inserted into a stepped section. Further, the heights of the movable pins 12 c and 12 d are restricted by means of E rings provided at the bottoms of the movable pins.
- holes 10 c and 10 d are formed in the digital camera 10 , wherein the movable pins 12 c and 12 d are fitted to the bottoms of the respective holes 10 c and 10 d .
- FIG 3 shows the state of the printer dock when the digital camera 10 is attached to the dock.
- the leading ends of the movable pins 12 c and 12 d enter the holes 10 c and 10 d formed in the bottom surface of the digital camera 10 .
- the user presses the digital camera 10 downward. Since the longitudinal, lateral movements of the movable pins 12 c and 12 d are restricted, the user depresses the digital camera 10 while using the movable pins 12 c and 12 d as guides.
- FIG. 4 shows the state of the printer dock 12 achieved after attachment of the digital camera 10 .
- the movable pins 12 c , 12 d fit into the bottom surface of the digital camera 10 by means of pin-receiving sections 10 e , 10 f provided on the bottom surface of the digital camera 10 .
- the movable pins 12 c and 12 d play the role of protecting the connector 12 a .
- a required depth to which the movable pins 12 c and 12 d fit into the bottom surface of the digital camera 10 is determined by the geometry of the camera.
- the movable pins 12 c and 12 d are provided on both sides of the connector 12 a such that the connector 12 a is sandwiched between the movable pins.
- the digital camera 10 being attached to the printer dock 12 while the movable pins 12 c and 12 d are taken as guides, attachment of the custom insert is obviated.
- FIG. 5 shows the configuration of the printer dock 12 employed when the custom insert 16 shown in FIG. 21 is attached to the printer dock 12 and the digital camera 10 is additionally attached to the same.
- the custom insert 16 can be attached to the printer dock 12 , and the digital camera 10 can be connected to the connector 12 a.
- the two movable pins 12 c and 12 d are configured so as to be movable in only the vertical direction.
- any of the movable pins may also be configured so as to be movable in the longitudinal or lateral direction as well.
- FIG. 6 shows a case where the movable pin 12 d of the movable pins 12 c and 12 d is configured so as to be movable in the lateral direction as well as in the vertical direction.
- the movable pin 12 d is impelled upwardly in a stable state by means of a spring, and is impelled toward the connector 12 a by means of the spring.
- FIGS. 7 through 9 show the states of the movable pins 12 c and 12 d achieved at the time of attachment of the digital camera 10 .
- the movable pins 12 c and 12 d are positioned on both sides of the connector 12 a . As shown in FIG.
- the movable pin 12 c enters the hole 10 c formed in the bottom of the digital camera 10 .
- the movable pin 12 d is impelled toward the connector 12 a by means of the spring, and the movable pin 12 d is situated at a position slightly closer to the connector 12 a than to the hole 10 d . Accordingly, at the time of attachment of the digital camera 10 , the extremity of the movable pin 12 d comes into contact with the brim of the hole 10 d .
- FIG. 9 shows the state of the printer dock 12 achieved after attachment of the digital camera 10 .
- the movable pin 12 d is pressed into the hole 10 d so as to move in the direction departing from the connector 12 a . Consequently, the movable pin 12 d is pressed against the side surface of the hole 10 d by means of the spring, and the digital camera 10 is held by means of the pressing force exerted by the movable pin 12 d.
- the digital camera 10 is attached to the printer dock 12 while the two vertically-movable pins 12 c , 12 d formed in the printer dock 12 are used as guides.
- the movable pins 12 c , 12 d can also be caused to serve as guides which vertically actuate the attachment surface of the printer dock 12 in place of the movable pins.
- FIG. 10 shows a configuration for guiding the digital camera 10 by means of vertical actuation of the attachment surface.
- An opening is formed at a position on the attachment surface of the printer dock 12 facing the connector 12 a , and the connector 12 a is exposed through the opening.
- Fixing pins 12 e and 12 f are formed on respective sides of the opening of the connector 12 a on the attachment surface.
- the fixing pins 12 e and 12 f have the minimum height required when serving as guides during attachment of the digital camera 10 .
- the fixing pins engage with holes formed in the bottom of the digital camera 10 , to thus define the attachment position of the digital camera 10 to a certain extent.
- the attachment surface is impelled upwardly by means of a spring and is fixed in an elevated position by means of a latch.
- a first button 12 g used for releasing the latch that restricts the vertical movement of the attachment surface is depressed by the bottom surface of the digital camera 10 , whereby the latch is released to thus bring the attachment surface into a downwardly-movable state.
- the connector 12 a becomes exposed upwardly through the inside of the opening formed in the attachment surface, thereby establishing a connection with the connector of the digital camera 10 .
- FIG. 11 shows a plan view of the printer dock 12 .
- FIG. 12 shows the configuration of the latch mechanism shown in FIG. 11 .
- a connector holder 102 is fastened to a dock case 101 of the printer dock 12 and provided with the connector 12 a .
- the dock case 101 is equipped with a slide plate 104 used for vertically actuating a camera support plate 201 .
- the slide plate 104 is restricted by four bosses 104 a provided on the dock case 101 and horizontally actuated in the drawing.
- the slide plate 104 is impelled in the direction of the arrow in the drawing by means of a spring 105 .
- the slide plate 104 operates in synchronism with a latch 106 provided on the dock case 101 .
- the latch 106 undergoes rotational force in the direction of the arrow in the drawing by means of an unillustrated spring.
- Four bosses 201 a are provided, two on the right and the other two on the left, on the camera support plate 201 that is vertically actuated along with the digital camera 10 on the dock case 101 .
- the camera support plate 201 is vertically actuated along with vertical grooves 101 a formed in the dock case.
- the four bosses 201 a are supported by the flat surface of the slide plate 104 and a sloped section 105 a . When the boss 201 a is supported on the flat surface of the slide plate 104 , the camera support plate 201 is held in an elevated first position.
- the boss 201 a can move along the slope; namely, the boss 201 a can move downwardly along a vertical groove 101 a .
- the camera support plate 201 is held in a lower, second position.
- a trigger lever 202 is attached to the camera support plate 201 , and actuation of the slide plate 104 is commenced by means of movement of the bottom of the digital camera 10 .
- an attachment-side protuberance of the trigger lever 202 is brought into contact with the bottom of the digital camera by means of pushing action of the digital camera 10 .
- the trigger lever 202 is pivoted around a shaft by means of the pressing force originating from the bottom of the digital camera.
- the slide plate 104 is actuated in the rightward direction, thereby changing a positional relationship with the bosses 201 a .
- the trigger lever 202 undergoes force in the direction of the arrow originating from an unillustrated spring.
- FIGS. 13 through 17 show operation performed during attachment of the digital camera 10 .
- the bosses 201 a of the camera support plate 201 are supported on the flat surface of the slide plate 104 in a stable state.
- the camera support plate 201 is situated at an elevated first position. Since the slide plate 104 undergoes restoration force of the spring 105 in the leftward direction of the drawing, the camera support plate 201 is held in the first position.
- the digital camera 10 is attached in this state while the fixing pins 12 e and 12 f on the camera support plate 201 are taken as guides.
- the bottom of the digital camera 10 comes into contact with the protuberance of the trigger lever 202 provided on the camera support plate 201 , to thus depress the trigger lever 202 .
- the trigger lever 202 pivots around the shaft provided on the camera support plate 201 , and an edge portion 202 a of the trigger lever 202 is brought into contact with the slide plate 104 by means of rotational movement, whereupon the slide plate 104 is moved in the rightward direction of the drawing.
- the slide plate 104 is continually moved in the rightward direction by means of the trigger lever 202 .
- the four bosses 201 a formed in the camera support plate 201 are moved to the slope section from the flat surface section on the slide plate 104 .
- the camera support plate 201 can be moved downwardly.
- the slide plate 104 is moved rightward against the restoration force of the spring 105 by means of the bosses 104 a of the camera support plate 201 , by means of operation for further pushing the digital camera 10 .
- the slide plate 104 is restored to the state shown in FIG. 13 by means of the spring 105 .
- the latch 106 provided on the dock case 101 acts so as to latch the slide plate 104 .
- the slide plate 104 is locked, and attachment of the digital camera 10 is maintained.
- the latch 106 is released by means of operating an unillustrated button, whereby the slide plate 104 is moved leftward by means of restoration force of the spring 105 . Upward movement of the camera support plate 201 is allowed, to thus disengage the connection of the connector.
- the vertical movement of the camera support plate 201 is restricted by the slide plate 104 . Downward movement of the camera support plate 201 is allowed when the digital camera 10 is attached and pushed. When the digital camera 10 has been pushed down to a predetermined position, the slide plate 104 is locked, thereby enabling reliable connection of the connector 10 a of the digital camera 10 with the dock-side connector 12 a.
- the attachment surface of the dock can also be made tiltable through only an arbitrary angle as shown in FIG. 18 , or rotatable within a horizontal plane through only an arbitrary angle as shown in FIG. 19 .
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Studio Devices (AREA)
Abstract
Description
- This application claims priority to Japanese Patent Application No. 2006-126571 filed on Apr. 28, 2006, which is incorporated herein by reference in its entirety.
- The present invention relates to a digital camera dock, and more particularly, to a dock which is electrically connected to a digital camera to thus provide the digital camera with various functions, such as a recharging function, a printing function, and the like.
- A digital camera dock (hereinafter simply referred to as a “dock”) which is connected to a digital camera and provides the digital camera with a recharging function and a printing function has hitherto been developed. For instance, the recharging dock supplies recharging power to the digital camera through use of an a.c. power source. A recharged state of a built-in battery of the digital camera is displayed on an indicator of the digital camera or an indicator of the dock. The user can recharge the digital camera by means of simply attaching the digital camera to the recharging dock. The recharging dock may also have a file transfer function of reading image data stored in memory of the digital camera and transferring the image data to the memory of a personal computer. The printer dock receives the image data stored in the memory of the digital camera and outputs the image data while the data are printed on a sheet of photographic paper. By means of simply attaching the digital camera to a printer dock, desired image data can be printed without involvement of a computer. The printer dock may also have the function of recharging a digital camera.
- When the digital camera is attached to the dock, there are many cases where a custom insert previously prepared for each digital camera is attached to a dock in order to guide the digital camera during attachment or to protect the connection with a connector after attachment of the digital camera.
-
FIG. 20 shows that thedigital camera 10 is attached to adock 12. Thedock 12 is a printer dock having aprint sheet tray 14. Acustom insert 16 prepared for eachdigital camera 10 is attached to an upper surface of thedock 12; i.e., an attachment surface of thedigital camera 10. Thedigital camera 10 is attached to thedock 12 while the custom insert is taken as a guide. More specifically, thecustom insert 16 is attached to the attachment section of thedock 12, and thedigital camera 10 is attached to thecustom insert 16. -
FIG. 21 shows the configuration of thecustom insert 16 and that of thedock 12. Thecustom insert 16 has aguide wall 16 a complying with the outer shape of thedigital camera 10; anopening section 16 b formed in theguide wall 16 a; and aprotuberance section 16 c loosely fitting into a tripod threaded hole of thedigital camera 10. Theopening section 16 b is formed at a position which opposes aconnector 12 a of thedock 12 when thecustom insert 16 is attached to thedock 12. Theconnector 12 a of thedock 12 is inserted into theopening section 16 b and becomes exposed outside, to thus enable connection with a connector of thedigital camera 10.Hooks 16 d are provided at the four corners of the bottom face of thecustom insert 16 and fit intoholes 12 b formed in thedock 12, thereby fastening thecustom insert 16 to thedock 12. Specifically, when thecustom insert 16 is attached to thedock 12, thecustom insert 16 is positioned in the attachment section of thedock 12, thereby fitting thehooks 16 d into theholes 12 b. Thehooks 16 d are formed from resin; and are inserted and locked into theholes 12 b as a result of being deformed during the course of fitting. - Japanese Utility Model Laid-Open Publication No. Hei 6-45278 describes a configuration for connecting connectors together. One of the connectors is provided with a guide pin and a spring-tensioned movable pin. The other connector is provided with a plane contact and a guide hole.
- However, in the configuration where a custom insert is provided for each digital camera, a guide to be provided on the dock, including the guide section of the custom insert, must be provided so as to protrude higher than the connector of the dock, in order to exhibit a function of guiding a connection with the connector. Imposing restrictions on the dock greatly affect the internal configuration of the digital camera, which in turn hinders miniaturization of the digital camera.
- The present invention has been conceived in view of the above drawbacks in the related art, and provides a dock which can obviate a necessity for a custom insert.
- The present invention provides a digital camera dock to which a digital camera is to be attached and which has a function of printing an image captured by the digital camera or recharging an internal battery of the digital camera, the dock comprising:
- an attachment surface to which the digital camera is to be attached being supported so as to become vertically movable;
- a first holding unit for fixedly holding the attachment surface in a first, upper position;
- a second holding unit for fixedly holding the attachment surface in a second, lower position; and
- a control unit for releasing the first holding unit to thus enable vertical movement of the attachment surface, which in a stable state is fixedly held in the first position by means of the first holding unit, when the digital camera is attached onto the attachment surface, and for actuating the second holding unit to thus fixedly hold the attachment surface in the second position when the attachment surface has lowered to thus establish an electrical connection with the digital camera via a connector.
- The present invention also provides a digital camera dock to which a digital camera is to be attached and which has a function of printing an image captured by the digital camera or recharging an internal battery of the digital camera, the dock comprising:
- a connector for establishing an electrical connection with the digital camera;
- movable pins which are formed in the vicinity of the connector and supported in an impelled manner so as to be vertically movable; and
- an attachment surface to which the digital camera is to be attached and which has the connector and the movable pins, wherein
- the movable pins project and are impelled upwardly in a stable state, fit to hole sections formed in a bottom of the digital camera during attachment of the digital camera, and move downwardly along with the digital camera to thus act as guides for regulating a relative position between the digital camera and the connector.
- The present invention obviates a necessity for use of a custom insert, and lessens restrictions on a digital camera.
- The invention will be more clearly comprehended by reference to the embodiments provided below. However, the scope of the invention is not limited to those embodiments.
- Preferred embodiments of the present invention will be described in detail based on the following figures, wherein:
-
FIG. 1 is a perspective view of a printer dock of an embodiment of the present invention; -
FIG. 2 is a view showing a state of a movable pin achieved before attachment of a digital camera; -
FIG. 3 is a view showing a state of the movable pin achieved at the time of attachment of the digital camera; -
FIG. 4 is a view showing a state of the movable pin achieved after attachment of the digital camera; -
FIG. 5 is a view showing a state of the movable pin when a custom insert is in use; -
FIG. 6 is a perspective view of a printer dock of another embodiment of the present invention; -
FIG. 7 is a plan view of the dock; -
FIG. 8 is a view showing a state of a movable pin achieved at the time of attachment of the digital camera; -
FIG. 9 is a view showing a state of the movable pin achieved after attachment of the digital camera; -
FIG. 10 is a perspective view of a printer dock of still another embodiment of the present invention; -
FIG. 11 is a plan view of the dock; -
FIG. 12 is a block diagram of a trigger lever; -
FIG. 13 is state descriptive view (Part 1) of the trigger lever achieved at the time of attachment of the digital camera; -
FIG. 14 is state descriptive view (Part 2) of the trigger lever achieved at the time of attachment of the digital camera; -
FIG. 15 is state descriptive view (Part 3) of the trigger lever achieved at the time of attachment of the digital camera; -
FIG. 16 is state descriptive view (Part 4) of the trigger lever achieved at the time of attachment of the digital camera; -
FIG. 17 is state descriptive view (Part 5) of the trigger lever achieved at the time of attachment of the digital camera; -
FIG. 18 is a descriptive view of a dock whose attachment surface is tiltable; -
FIG. 19 is a descriptive view of a dock whose attachment surface is rotatable; -
FIG. 20 is a descriptive view of the digital camera attached to the dock; and -
FIG. 21 is a perspective view of a custom insert. - Embodiments of the present invention will be described hereinbelow by reference to the drawings.
-
FIG. 1 shows the configuration of a dock for use with a digital camera according to a first embodiment. The printer dock provides the digital camera with a recharging function and a printing function. - As shown in
FIG. 1 , theprinter dock 12 has a dock-side connector 12 a and holes 12 b into which acustom insert 16 is to be fitted. The reason why theholes 12 b are provided is because a conventional custom insert can also be made usable in the present embodiment, although the custom insert is not required in the present embodiment. Twomovable pins printer dock 12 in such a way that theconnector 12 a is interposed between thepins movable pins movable pin 12 c is larger in diameter than themovable pin 12 d. The movable pins 12 c and 12 d may also be made equal to each other in terms of a diameter. The movable pins 12 c and 12 d are elastically impelled upwardly in a stable state. A guide line (indicated by a broken line in the drawing) is printed on a digital camera attachment surface for facilitating attachment of the digital camera and guiding the same. The user attaches thedigital camera 10 to theprinter dock 12 along the guide line. - At the time of attachment of the
digital camera 10, the twomovable pins digital camera 10. The movable pins 12 c and 12 d are forcefully inserted against resilient force along with attachment of thedigital camera 10. Limitations are imposed on longitudinal and lateral movements of themovable pins digital camera 10 is connected to theconnector 12 a while being subjected to longitudinal and lateral positional restrictions above theprinter dock 12. -
FIGS. 2 through 4 show the states of themovable pins digital camera 10.FIG. 2 shows the state of thedigital camera 10 achieved before attachment of the same. The movable pins 12 c and 12 d are impelled upwardly by means of springs inserted into a stepped section. Further, the heights of themovable pins connector 10 a, holes 10 c and 10 d are formed in thedigital camera 10, wherein themovable pins respective holes FIG. 3 shows the state of the printer dock when thedigital camera 10 is attached to the dock. At the time of attachment of thedigital camera 10, the leading ends of themovable pins holes digital camera 10. In this state, the user presses thedigital camera 10 downward. Since the longitudinal, lateral movements of themovable pins digital camera 10 while using themovable pins movable pins movable pins connector 12 a, theconnector 10 a of thedigital camera 10 accurately opposes theconnector 12 a of theprinter dock 12 as a result of thedigital camera 10 being pushed while themovable pins FIG. 4 shows the state of theprinter dock 12 achieved after attachment of thedigital camera 10. The movable pins 12 c, 12 d fit into the bottom surface of thedigital camera 10 by means of pin-receivingsections digital camera 10. After attachment of thedigital camera 10, themovable pins connector 12 a. A required depth to which themovable pins digital camera 10 is determined by the geometry of the camera. - As mentioned above, the
movable pins connector 12 a such that theconnector 12 a is sandwiched between the movable pins. As a result of thedigital camera 10 being attached to theprinter dock 12 while themovable pins - Since some users are accustomed to use of the
custom insert 16, there may also arise a case where use of thecustom insert 16 is desired. Even in such a case, the desire can be addressed by means of setting the extent to which themovable pins custom insert 16.FIG. 5 shows the configuration of theprinter dock 12 employed when thecustom insert 16 shown inFIG. 21 is attached to theprinter dock 12 and thedigital camera 10 is additionally attached to the same. The extent to which themovable pins custom insert 16; i.e., the pins sink to such an extent that the connector of thedigital camera 10 can be connected to the dock-side connector 12 a via thecustom insert 16. As a result, thecustom insert 16 can be attached to theprinter dock 12, and thedigital camera 10 can be connected to theconnector 12 a. - In the first embodiment, the two
movable pins -
FIG. 6 shows a case where themovable pin 12 d of themovable pins movable pin 12 d is impelled upwardly in a stable state by means of a spring, and is impelled toward theconnector 12 a by means of the spring.FIGS. 7 through 9 show the states of themovable pins digital camera 10. As indicated by the plan view ofFIG. 7 , themovable pins connector 12 a. As shown inFIG. 8 , at the time of attachment of thedigital camera 10, themovable pin 12 c enters thehole 10 c formed in the bottom of thedigital camera 10. Meanwhile, themovable pin 12 d is impelled toward theconnector 12 a by means of the spring, and themovable pin 12 d is situated at a position slightly closer to theconnector 12 a than to thehole 10 d. Accordingly, at the time of attachment of thedigital camera 10, the extremity of themovable pin 12 d comes into contact with the brim of thehole 10 d. Pursuant to depression of thedigital camera 10, themovable pin 12 receives the force in a direction departing from theconnector 12 a, and moves in the direction departing from theconnector 12 a against the restoration force of the spring.FIG. 9 shows the state of theprinter dock 12 achieved after attachment of thedigital camera 10. As indicated by the arrow in the drawing, themovable pin 12 d is pressed into thehole 10 d so as to move in the direction departing from theconnector 12 a. Consequently, themovable pin 12 d is pressed against the side surface of thehole 10 d by means of the spring, and thedigital camera 10 is held by means of the pressing force exerted by themovable pin 12 d. - In the first and second embodiments, the
digital camera 10 is attached to theprinter dock 12 while the two vertically-movable pins printer dock 12 are used as guides. However, themovable pins printer dock 12 in place of the movable pins. -
FIG. 10 shows a configuration for guiding thedigital camera 10 by means of vertical actuation of the attachment surface. An opening is formed at a position on the attachment surface of theprinter dock 12 facing theconnector 12 a, and theconnector 12 a is exposed through the opening. Fixing pins 12 e and 12 f are formed on respective sides of the opening of theconnector 12 a on the attachment surface. The fixing pins 12 e and 12 f have the minimum height required when serving as guides during attachment of thedigital camera 10. The fixing pins engage with holes formed in the bottom of thedigital camera 10, to thus define the attachment position of thedigital camera 10 to a certain extent. In a stable state, the attachment surface is impelled upwardly by means of a spring and is fixed in an elevated position by means of a latch. When thedigital camera 10 is attached to the two fixingpins first button 12 g used for releasing the latch that restricts the vertical movement of the attachment surface is depressed by the bottom surface of thedigital camera 10, whereby the latch is released to thus bring the attachment surface into a downwardly-movable state. By means of downward movement of the attachment surface, theconnector 12 a becomes exposed upwardly through the inside of the opening formed in the attachment surface, thereby establishing a connection with the connector of thedigital camera 10. -
FIG. 11 shows a plan view of theprinter dock 12.FIG. 12 shows the configuration of the latch mechanism shown inFIG. 11 . Aconnector holder 102 is fastened to adock case 101 of theprinter dock 12 and provided with theconnector 12 a. Thedock case 101 is equipped with aslide plate 104 used for vertically actuating acamera support plate 201. Theslide plate 104 is restricted by fourbosses 104 a provided on thedock case 101 and horizontally actuated in the drawing. Theslide plate 104 is impelled in the direction of the arrow in the drawing by means of aspring 105. Theslide plate 104 operates in synchronism with alatch 106 provided on thedock case 101. Thelatch 106 undergoes rotational force in the direction of the arrow in the drawing by means of an unillustrated spring. Fourbosses 201 a are provided, two on the right and the other two on the left, on thecamera support plate 201 that is vertically actuated along with thedigital camera 10 on thedock case 101. Thecamera support plate 201 is vertically actuated along withvertical grooves 101 a formed in the dock case. The fourbosses 201 a are supported by the flat surface of theslide plate 104 and asloped section 105 a. When theboss 201 a is supported on the flat surface of theslide plate 104, thecamera support plate 201 is held in an elevated first position. When theslide plate 104 has moved and theboss 201 a is supported on the sloped surface of theslide plate 104, theboss 201 a can move along the slope; namely, theboss 201 a can move downwardly along avertical groove 101 a. When theboss 201 a has reached the bottom of thevertical groove 101 a, thecamera support plate 201 is held in a lower, second position. Atrigger lever 202 is attached to thecamera support plate 201, and actuation of theslide plate 104 is commenced by means of movement of the bottom of thedigital camera 10. Specifically, an attachment-side protuberance of thetrigger lever 202 is brought into contact with the bottom of the digital camera by means of pushing action of thedigital camera 10. Thetrigger lever 202 is pivoted around a shaft by means of the pressing force originating from the bottom of the digital camera. By means of rotation of thetrigger lever 202, theslide plate 104 is actuated in the rightward direction, thereby changing a positional relationship with thebosses 201 a. Thetrigger lever 202 undergoes force in the direction of the arrow originating from an unillustrated spring. -
FIGS. 13 through 17 show operation performed during attachment of thedigital camera 10. First, as shown inFIG. 13 , thebosses 201 a of thecamera support plate 201 are supported on the flat surface of theslide plate 104 in a stable state. Thecamera support plate 201 is situated at an elevated first position. Since theslide plate 104 undergoes restoration force of thespring 105 in the leftward direction of the drawing, thecamera support plate 201 is held in the first position. Thedigital camera 10 is attached in this state while the fixing pins 12 e and 12 f on thecamera support plate 201 are taken as guides. - As shown in
FIG. 14 , when thedigital camera 10 is attached, the bottom of thedigital camera 10 comes into contact with the protuberance of thetrigger lever 202 provided on thecamera support plate 201, to thus depress thetrigger lever 202. Thetrigger lever 202 pivots around the shaft provided on thecamera support plate 201, and anedge portion 202 a of thetrigger lever 202 is brought into contact with theslide plate 104 by means of rotational movement, whereupon theslide plate 104 is moved in the rightward direction of the drawing. - As shown in
FIG. 15 , when thedigital camera 10 is pushed further, theslide plate 104 is continually moved in the rightward direction by means of thetrigger lever 202. By means of movement of theslide plate 104, the fourbosses 201 a formed in thecamera support plate 201 are moved to the slope section from the flat surface section on theslide plate 104. As a result, thecamera support plate 201 can be moved downwardly. - Next, as shown in
FIG. 16 , theslide plate 104 is moved rightward against the restoration force of thespring 105 by means of thebosses 104 a of thecamera support plate 201, by means of operation for further pushing thedigital camera 10. When pushing of thedigital camera 10 is aborted in this state and thedigital camera 10 is lifted, theslide plate 104 is restored to the state shown inFIG. 13 by means of thespring 105. - Finally, as shown in
FIG. 17 , when thedigital camera 10 is pushed to a predetermined position, thelatch 106 provided on thedock case 101 acts so as to latch theslide plate 104. Thus, theslide plate 104 is locked, and attachment of thedigital camera 10 is maintained. - During removal of the
digital camera 10, thelatch 106 is released by means of operating an unillustrated button, whereby theslide plate 104 is moved leftward by means of restoration force of thespring 105. Upward movement of thecamera support plate 201 is allowed, to thus disengage the connection of the connector. - As mentioned above, the vertical movement of the
camera support plate 201 is restricted by theslide plate 104. Downward movement of thecamera support plate 201 is allowed when thedigital camera 10 is attached and pushed. When thedigital camera 10 has been pushed down to a predetermined position, theslide plate 104 is locked, thereby enabling reliable connection of theconnector 10 a of thedigital camera 10 with the dock-side connector 12 a. - In the present embodiment, the attachment surface of the dock can also be made tiltable through only an arbitrary angle as shown in
FIG. 18 , or rotatable within a horizontal plane through only an arbitrary angle as shown inFIG. 19 . - The invention has been described in detail with particular reference to certain preferred embodiments thereof, but it will be understood that variations and modifications can be effected within the spirit and scope of the invention.
-
- 10 digital camera
- 10 a connector
- 10 c hole
- 10 d hole
- 10 e pin receiving section
- 10 f pin receiving section
- 12 printer dock
- 12 a connector
- 12 b hole
- 12 c movable pin
- 12 d movable pin
- 12 e fixing pin
- 12 f fixing pin
- 12 g first button
- 14 print sheet tray
- 16 custom insert
- 16 a guide wall
- 16 b opening section
- 16 c protuberance section
- 16 d hook
- 101 dock case
- 101 a vertical groove
- 102 connector
- 104 slide plate
- 104 a boss
- 105 spring
- 105 a sloped section
- 106 latch
- 201 camera support plate
- 201 a boss
- 202 trigger lever
- 202 a edge portion
Claims (5)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/464,147 US8711227B2 (en) | 2006-04-28 | 2009-05-12 | Digital camera dock having movable guide pins |
US12/464,134 US8665335B2 (en) | 2006-04-28 | 2009-05-12 | Digital camera dock having a movable attachment surface |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006126571A JP2007300387A (en) | 2006-04-28 | 2006-04-28 | Base mount for digital camera |
JP2006-126571 | 2006-04-28 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/464,134 Division US8665335B2 (en) | 2006-04-28 | 2009-05-12 | Digital camera dock having a movable attachment surface |
US12/464,147 Division US8711227B2 (en) | 2006-04-28 | 2009-05-12 | Digital camera dock having movable guide pins |
Publications (1)
Publication Number | Publication Date |
---|---|
US20070252911A1 true US20070252911A1 (en) | 2007-11-01 |
Family
ID=38668804
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/566,251 Abandoned US20070252911A1 (en) | 2006-04-28 | 2006-12-04 | Digital camera dock |
US12/464,134 Expired - Fee Related US8665335B2 (en) | 2006-04-28 | 2009-05-12 | Digital camera dock having a movable attachment surface |
US12/464,147 Expired - Fee Related US8711227B2 (en) | 2006-04-28 | 2009-05-12 | Digital camera dock having movable guide pins |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/464,134 Expired - Fee Related US8665335B2 (en) | 2006-04-28 | 2009-05-12 | Digital camera dock having a movable attachment surface |
US12/464,147 Expired - Fee Related US8711227B2 (en) | 2006-04-28 | 2009-05-12 | Digital camera dock having movable guide pins |
Country Status (2)
Country | Link |
---|---|
US (3) | US20070252911A1 (en) |
JP (1) | JP2007300387A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090073642A1 (en) * | 2007-09-07 | 2009-03-19 | Microsoft Corporation | Adaptive dock for use with personal media players |
WO2018157018A1 (en) * | 2017-02-27 | 2018-08-30 | Ryan Fuller | Wireless camera system |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10236699B2 (en) * | 2016-08-16 | 2019-03-19 | Logitech Europe, S.A. | Device charging system |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6313839B1 (en) * | 1998-10-23 | 2001-11-06 | Hewlett-Packard Company | Method and apparatus for performing Z buffer depth comparison operations |
US20020071035A1 (en) * | 2000-12-07 | 2002-06-13 | Sobol Robert E. | Digital camera docking station |
US20040061699A1 (en) * | 2002-09-27 | 2004-04-01 | Broadizon, Inc. | Method and apparatus for accelerating occlusion culling in a graphics computer |
US6819328B1 (en) * | 1999-11-05 | 2004-11-16 | Renesas Technology Corp. | Graphic accelerator with interpolate function |
US20050122338A1 (en) * | 2003-12-05 | 2005-06-09 | Michael Hong | Apparatus and method for rendering graphics primitives using a multi-pass rendering approach |
US20050185205A1 (en) * | 2004-02-20 | 2005-08-25 | Neal Eckhaus | Digital printer for transferring and printing images from a digital camera and a computer |
US20060114253A1 (en) * | 2004-06-28 | 2006-06-01 | Microsoft Corporation | System and process for generating a two-layer, 3D representation of a scene |
US7079151B1 (en) * | 2002-02-08 | 2006-07-18 | Adobe Systems Incorporated | Compositing graphical objects |
US20080036763A1 (en) * | 2006-08-09 | 2008-02-14 | Mediatek Inc. | Method and system for computer graphics with out-of-band (oob) background |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE458893B (en) | 1987-09-15 | 1989-05-16 | Hasselblad Ab Victor | ELECTRICAL CONTACT BLOCK |
JPH0645278A (en) | 1992-07-23 | 1994-02-18 | Nec Corp | Manufacture of semiconductor device |
JP3402681B2 (en) | 1993-06-02 | 2003-05-06 | サンエー技研株式会社 | Positioning method in exposure |
US20040201774A1 (en) * | 2001-05-15 | 2004-10-14 | Gennetten K. Douglas | Docked camera becomes electronic picture frame |
US7253840B2 (en) | 2001-06-11 | 2007-08-07 | Fujifilm Corporation | Cradle for digital camera |
JP2005057312A (en) * | 2001-08-06 | 2005-03-03 | Matsushita Electric Ind Co Ltd | Digital camera data transmission stand |
JP2004088729A (en) | 2002-06-25 | 2004-03-18 | Fuji Photo Film Co Ltd | Digital camera system |
US20040204166A1 (en) * | 2002-12-31 | 2004-10-14 | Youngbo Engineering, Inc. | Hands-free cradle with elevator assembly |
US20040233282A1 (en) | 2003-05-22 | 2004-11-25 | Stavely Donald J. | Systems, apparatus, and methods for surveillance of an area |
US20050088572A1 (en) * | 2003-10-28 | 2005-04-28 | Pandit Amol S. | System and method for a camera docking station |
JP2005321998A (en) * | 2004-05-07 | 2005-11-17 | Sony Corp | Docking device and docking structure for portable computer |
JP2006147305A (en) * | 2004-11-18 | 2006-06-08 | Mitsumi Electric Co Ltd | Floating connector |
US7201594B2 (en) * | 2004-12-10 | 2007-04-10 | Radiall | Connection assembly comprising a support provided with an opening and a connector housing mounted on the support |
DE102007009644B4 (en) | 2007-02-26 | 2015-08-20 | Knorr-Bremse Systeme für Nutzfahrzeuge GmbH | Mechatronic assembly with plug connection |
US7643283B2 (en) | 2007-09-07 | 2010-01-05 | Microsoft Corporation | Adaptive dock for use with personal media players |
JP4399004B2 (en) * | 2007-12-26 | 2010-01-13 | 株式会社東芝 | Support device and electronic device system |
JP4623748B2 (en) * | 2008-04-18 | 2011-02-02 | Smk株式会社 | Connector having floating structure |
-
2006
- 2006-04-28 JP JP2006126571A patent/JP2007300387A/en active Pending
- 2006-12-04 US US11/566,251 patent/US20070252911A1/en not_active Abandoned
-
2009
- 2009-05-12 US US12/464,134 patent/US8665335B2/en not_active Expired - Fee Related
- 2009-05-12 US US12/464,147 patent/US8711227B2/en not_active Expired - Fee Related
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6313839B1 (en) * | 1998-10-23 | 2001-11-06 | Hewlett-Packard Company | Method and apparatus for performing Z buffer depth comparison operations |
US6819328B1 (en) * | 1999-11-05 | 2004-11-16 | Renesas Technology Corp. | Graphic accelerator with interpolate function |
US20020071035A1 (en) * | 2000-12-07 | 2002-06-13 | Sobol Robert E. | Digital camera docking station |
US7079151B1 (en) * | 2002-02-08 | 2006-07-18 | Adobe Systems Incorporated | Compositing graphical objects |
US20040061699A1 (en) * | 2002-09-27 | 2004-04-01 | Broadizon, Inc. | Method and apparatus for accelerating occlusion culling in a graphics computer |
US20050122338A1 (en) * | 2003-12-05 | 2005-06-09 | Michael Hong | Apparatus and method for rendering graphics primitives using a multi-pass rendering approach |
US20050185205A1 (en) * | 2004-02-20 | 2005-08-25 | Neal Eckhaus | Digital printer for transferring and printing images from a digital camera and a computer |
US20060114253A1 (en) * | 2004-06-28 | 2006-06-01 | Microsoft Corporation | System and process for generating a two-layer, 3D representation of a scene |
US20080036763A1 (en) * | 2006-08-09 | 2008-02-14 | Mediatek Inc. | Method and system for computer graphics with out-of-band (oob) background |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090073642A1 (en) * | 2007-09-07 | 2009-03-19 | Microsoft Corporation | Adaptive dock for use with personal media players |
WO2018157018A1 (en) * | 2017-02-27 | 2018-08-30 | Ryan Fuller | Wireless camera system |
Also Published As
Publication number | Publication date |
---|---|
JP2007300387A (en) | 2007-11-15 |
US8665335B2 (en) | 2014-03-04 |
US8711227B2 (en) | 2014-04-29 |
US20090219398A1 (en) | 2009-09-03 |
US20090219399A1 (en) | 2009-09-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110249445B (en) | Battery and connecting device | |
US7359185B2 (en) | Docking device for portable computer and docking structure | |
JP5041955B2 (en) | Socket for electrical parts | |
JP7218785B2 (en) | battery | |
TW200418648A (en) | Ink container and recording apparatus | |
US8711227B2 (en) | Digital camera dock having movable guide pins | |
JP2009105557A (en) | Operation device and image recording device | |
US9864325B2 (en) | Image forming apparatus having cover openable and closable at side surface of apparatus | |
CN110291657B (en) | Battery and connecting device | |
CN108241272B (en) | Image forming apparatus with a toner supply device | |
US6290529B1 (en) | Adapter for terminal unit | |
JP2019061652A (en) | Docking device and electronic apparatus | |
JP5373440B2 (en) | Battery mounting mechanism | |
JPH03273323A (en) | Extension device for small-sized electronic apparatus | |
JP2023120634A (en) | Electronic apparatus | |
US20240326491A1 (en) | Printing device including housing having engaged part and removable cover having engaging part | |
JP3245434B2 (en) | Electric water heater | |
JPH0743069Y2 (en) | Paper feeder | |
JP5509903B2 (en) | Display device | |
JPH11208902A (en) | Paper feeder of image forming device | |
JPH0459517A (en) | Sheet feed cassette discriminating device for picture recording device | |
JP2001033871A (en) | Accessory attaching and detaching device for camera | |
JPH1111697A (en) | Paper storage cassette | |
KR20230101562A (en) | Electronic device and electronic device assembly including same | |
JP2015115215A (en) | Slide switch mechanism and imaging device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: EASTMAN KODAK COMPANY, NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KOMIYAMA, HIROSHI;KIUCHI, TOYOO;KONDO, EIKI;AND OTHERS;REEL/FRAME:018619/0150 Effective date: 20061128 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: KODAK (NEAR EAST), INC., NEW YORK Free format text: PATENT RELEASE;ASSIGNORS:CITICORP NORTH AMERICA, INC.;WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:029913/0001 Effective date: 20130201 Owner name: KODAK AVIATION LEASING LLC, NEW YORK Free format text: PATENT RELEASE;ASSIGNORS:CITICORP NORTH AMERICA, INC.;WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:029913/0001 Effective date: 20130201 Owner name: KODAK IMAGING NETWORK, INC., CALIFORNIA Free format text: PATENT RELEASE;ASSIGNORS:CITICORP NORTH AMERICA, INC.;WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:029913/0001 Effective date: 20130201 Owner name: KODAK REALTY, INC., NEW YORK Free format text: PATENT RELEASE;ASSIGNORS:CITICORP NORTH AMERICA, INC.;WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:029913/0001 Effective date: 20130201 Owner name: CREO MANUFACTURING AMERICA LLC, WYOMING Free format text: PATENT RELEASE;ASSIGNORS:CITICORP NORTH AMERICA, INC.;WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:029913/0001 Effective date: 20130201 Owner name: PAKON, INC., INDIANA Free format text: PATENT RELEASE;ASSIGNORS:CITICORP NORTH AMERICA, INC.;WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:029913/0001 Effective date: 20130201 Owner name: QUALEX INC., NORTH CAROLINA Free format text: PATENT RELEASE;ASSIGNORS:CITICORP NORTH AMERICA, INC.;WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:029913/0001 Effective date: 20130201 Owner name: KODAK PHILIPPINES, LTD., NEW YORK Free format text: PATENT RELEASE;ASSIGNORS:CITICORP NORTH AMERICA, INC.;WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:029913/0001 Effective date: 20130201 Owner name: NPEC INC., NEW YORK Free format text: PATENT RELEASE;ASSIGNORS:CITICORP NORTH AMERICA, INC.;WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:029913/0001 Effective date: 20130201 Owner name: KODAK PORTUGUESA LIMITED, NEW YORK Free format text: PATENT RELEASE;ASSIGNORS:CITICORP NORTH AMERICA, INC.;WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:029913/0001 Effective date: 20130201 Owner name: FAR EAST DEVELOPMENT LTD., NEW YORK Free format text: PATENT RELEASE;ASSIGNORS:CITICORP NORTH AMERICA, INC.;WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:029913/0001 Effective date: 20130201 Owner name: EASTMAN KODAK INTERNATIONAL CAPITAL COMPANY, INC., Free format text: PATENT RELEASE;ASSIGNORS:CITICORP NORTH AMERICA, INC.;WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:029913/0001 Effective date: 20130201 Owner name: LASER-PACIFIC MEDIA CORPORATION, NEW YORK Free format text: PATENT RELEASE;ASSIGNORS:CITICORP NORTH AMERICA, INC.;WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:029913/0001 Effective date: 20130201 Owner name: KODAK AMERICAS, LTD., NEW YORK Free format text: PATENT RELEASE;ASSIGNORS:CITICORP NORTH AMERICA, INC.;WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:029913/0001 Effective date: 20130201 Owner name: EASTMAN KODAK COMPANY, NEW YORK Free format text: PATENT RELEASE;ASSIGNORS:CITICORP NORTH AMERICA, INC.;WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:029913/0001 Effective date: 20130201 Owner name: FPC INC., CALIFORNIA Free format text: PATENT RELEASE;ASSIGNORS:CITICORP NORTH AMERICA, INC.;WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:029913/0001 Effective date: 20130201 |
|
AS | Assignment |
Owner name: INTELLECTUAL VENTURES FUND 83 LLC, NEVADA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:EASTMAN KODAK COMPANY;REEL/FRAME:031108/0430 Effective date: 20130201 |
|
AS | Assignment |
Owner name: MONUMENT PEAK VENTURES, LLC, TEXAS Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:INTELLECTUAL VENTURES FUND 83 LLC;REEL/FRAME:064599/0304 Effective date: 20230728 |