US20070252275A1 - Chip packaging structure - Google Patents

Chip packaging structure Download PDF

Info

Publication number
US20070252275A1
US20070252275A1 US11772247 US77224707A US2007252275A1 US 20070252275 A1 US20070252275 A1 US 20070252275A1 US 11772247 US11772247 US 11772247 US 77224707 A US77224707 A US 77224707A US 2007252275 A1 US2007252275 A1 US 2007252275A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
layer
metallic layer
metallic
formed over
bump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11772247
Inventor
Min-Lung Huang
Chi-Long Tsai
Chao-Fu Weng
Ching-Huei Su
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advanced Semiconductor Engineering Inc
Original Assignee
Advanced Semiconductor Engineering Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3114Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed the device being a chip scale package, e.g. CSP
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/11Manufacturing methods
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/023Redistribution layers [RDL] for bonding areas
    • H01L2224/0235Shape of the redistribution layers
    • H01L2224/02351Shape of the redistribution layers comprising interlocking features
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05005Structure
    • H01L2224/05008Bonding area integrally formed with a redistribution layer on the semiconductor or solid-state body, e.g.
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/0502Disposition
    • H01L2224/05022Disposition the internal layer being at least partially embedded in the surface
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/0502Disposition
    • H01L2224/05024Disposition the internal layer being disposed on a redistribution layer on the semiconductor or solid-state body
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/0502Disposition
    • H01L2224/05026Disposition the internal layer being disposed in a recess of the surface
    • H01L2224/05027Disposition the internal layer being disposed in a recess of the surface the internal layer extending out of an opening
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05075Plural internal layers
    • H01L2224/0508Plural internal layers being stacked
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/051Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05163Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/05172Vanadium [V] as principal constituent
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0556Disposition
    • H01L2224/05571Disposition the external layer being disposed in a recess of the surface
    • H01L2224/05572Disposition the external layer being disposed in a recess of the surface the external layer extending out of an opening
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01022Titanium [Ti]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01023Vanadium [V]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01024Chromium [Cr]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01032Germanium [Ge]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01073Tantalum [Ta]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01075Rhenium [Re]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/049Nitrides composed of metals from groups of the periodic table
    • H01L2924/04944th Group
    • H01L2924/04941TiN
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/049Nitrides composed of metals from groups of the periodic table
    • H01L2924/04955th Group
    • H01L2924/04953TaN

Abstract

A chip structure comprising a chip, a redistribution layer, a second passivation layer and at least a bump is provided. The chip has a first passivation layer and at least a bonding pad. The first passivation layer exposes the bonding pad and has at least a recess. The redistribution layer is formed over the first passivation layer and electrically connected to the bonding pad. Furthermore, the redistribution layer also extends from the bonding pad to the recess. The second passivation layer is formed over the first passivation layer and the redistribution layer. The second passivation layer also has an opening that exposes the redistribution layer above the recess. The bump passes through the opening and connects electrically with the redistribution layer above the recess.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This is a continuing application U.S. application Ser. No. 10/709,953, filed Jun. 9, 2004, which claims the priority benefit of Taiwan application serial no. 92115490, filed on Jun. 9, 2003. All disclosure of this application is incorporated herein by reference.
  • BACKGROUND OF THE INVENTION
  • 1. Field of Invention
  • The present invention relates to a chip structure. More particularly, the present invention relates to a chip with structural reinforcement between a bump on an under-bump metallurgy layer and a redistribution layer.
  • 2. Description of Related Art
  • In the flip chip package technology, the chip is flipped over and then attached to a substrate or a printed circuit board (PCB). On the active surface of the chip, the bonding pads are arranged in area arrays, and an under-bump-metallurgy layer and a bump such as a solder bump are sequentially formed over each of the bonding pads. Then, the chip is flipped over and attached to the contacts on the surface of the substrate or a printed circuit board (PCB) via the bumps. The flip chip bonding technology is suitable to be used to fabricate chip packages with high pin counts. Due to the advantages of reducing package dimension and shortening signal transmission path in the package structure, the flip chip package technology has been widely adopted in the package fabrication.
  • As flip chip packages become popular, more and more products are packaged using the flip chip technique. However, changing the original chip design to fit the packaging mode is highly uneconomical. Hence, bonding pad redistribution technique has been developed to serve as a compromise to bridge the gap in this transition stage. Through a redistribution layer on the surface of a chip, the bonding pads close to the periphery region originally for bonding with bonding wires are redistributed into an array that facilitates the attachment of bumps in preparation for forming a flip chip package.
  • FIG. 1 is schematic cross-sectional view of a conventional chip structure. As shown in FIG. 1, the chip structure 100 mainly comprises a chip 110, a redistribution layer 120, a passivation layer 130 and at least a bump 150. The chip 110 has an active surface 112, a passivation layer 114 and at least a bonding pad 116. The passivation layer 114 and the bonding pad 116 are disposed on the active surface 112 of the chip 110. The passivation layer 114 exposes the bonding pad 116. The passivation layer 114 is fabricated using an inorganic compound including silicon oxide or silicon nitride, for example. The redistribution layer 120 is electrically connected to the bonding pad 116. The passivation layer 130 is formed over the redistribution layer 120. The passivation layer 130 has at least an opening 132 with sidewalls perpendicular to the active surface 112 of the chip 110 for exposing a portion of the redistribution layer 120. It should be noted that a conventional redistribution layer 120 is a composite stack film including four metallic layers such as titanium/copper/titanium/copper. Thus, the redistribution layer 120 is able to serve also as an under-bump-metallurgy layer. The bump 150 is directly connected to the redistribution layer 120 exposed by the opening 132. Since SnPb alloy has better bonding properties, the bump is normally fabricated using SnPb alloy having a Sn/Pb weight ratio between 63:37 to 5:95.
  • Because the bump 150 is connected to the redistribution layer 120 via the opening 132 in the passivation layer 130, the probability of the flip chip cracking or peeling is high during a shearing test. In other words, the lifetime of the chip will be reduced.
  • SUMMARY OF THE INVENTION
  • Accordingly, the present invention provides a chip structure capable of maintaining a strong bonding strength between a bump and the node of a redistribution layer for a prolonged period so that overall lifetime of the chip is increased.
  • According to an embodiment of the present invention, the chip structure comprising a chip, a redistribution layer, a second passivation layer and at least a bump is provided. The chip has a first passivation layer and at least a bonding pad. The bonding pad is exposed by the first passivation layer, and the first passivation layer has at least a recess. The redistribution layer is formed over the first passivation layer and is electrically connected to the bonding pad. Furthermore, the redistribution layer extends from the bonding pad to the recess. The second passivation layer having an opening that exposes the redistribution layer above the recess is formed over the first passivation layer and the redistribution layer. The bump is electrically connected with the redistribution layer above the recess via the opening.
  • According to the embodiment of this invention, an obtuse angle is formed between a sidewall of the recess and a bottom surface of the recess. Similarly, an obtuse angle is formed between a sidewall of the opening and a bottom surface of the opening. In addition, the chip structure of the invention further comprises at least an under-bump-metallurgy layer disposed between the exposed redistribution layer and the bump.
  • According to one preferred embodiment of this invention, the under-bump-metallurgy layer is a composite stack film including a first metallic layer, a second metallic layer and a third metallic layer, for example. The first metallic layer is formed over the exposed redistribution layer. The second metallic layer is formed over the first metallic layer. The third metallic layer is formed over the second metallic layer. The first metallic layer is fabricated using a material including, for example, aluminum, titanium, titanium-tungsten alloy, tantalum, tantalum nitride or chromium. The second metallic layer is fabricated using a material including, for example, nickel-vanadium alloy or copper-chromium alloy. The third metallic layer is fabricated using a metal such as copper or an alloy. The under-bump-metallurgy layer further comprises at least an electroplated layer over the third metallic layer. The electroplated layer is an electroplated copper layer, an electroplated or electroless plated nickel layer, an electroless plated gold layer or combination thereof.
  • According to one preferred embodiment of this invention, the under-bump-metallurgy layer is a composite stack film including a first metallic layer and a second metallic layer. The first metallic layer is formed over the exposed redistribution layer. The second metallic layer is formed over the first metallic layer. The first metallic layer is fabricated using a material including, for example, aluminum, titanium, titanium-tungsten alloy, tantalum, tantalum nitride or chromium. The second metallic layer is fabricated using a metallic material such as copper or an alloy. The under-bump-metallurgy layer further comprises at least an eletroplated layer over the second metallic layer. The electroplated layer is, for example, an electroplated copper layer, an electroplated, an electroless plated nickel layer, an electroless plated gold layer or combination thereof.
  • According to one preferred embodiment of this invention, the redistribution layer is a composite stack film including a first metallic layer, a second metallic layer and a third metallic layer. The first metallic layer is formed over the first passivation layer. The second metallic layer is formed over the first metallic layer. The third metallic layer is formed over the second metallic layer. The first metallic layer is fabricated using a material including, for example, aluminum, titanium, titanium-tungsten alloy, tantalum, tantalum nitride or chromium. The second metallic layer is fabricated using a material including, for example, nickel-vanadium alloy or copper-chromium alloy. The third metallic layer is fabricated using a metal such as copper or an alloy.
  • According to one preferred embodiment of this invention, the redistribution layer is a composite stack film including a first metallic layer and a second metallic layer. The first metallic layer is formed over the first passivation layer. The second metallic layer is formed over the first metallic layer. The first metallic layer is fabricated using a material including, for example, aluminum, titanium, titanium-tungsten alloy, tantalum, tantalum nitride or chromium. The second metallic layer is fabricated using a metal such as copper or an alloy.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The accompanying drawings are included to provide a further understanding of the invention, and are incorporated in and constitute a part of this specification. The drawings illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
  • FIG. 1 is schematic cross-sectional view of a conventional chip structure.
  • FIG. 2 is a schematic cross-sectional view of a chip structure according to one preferred embodiment of this invention.
  • FIG. 3 is a cross-sectional diagram showing the redistribution layer in FIG. 2 matching with another under-bump-metallurgy layer.
  • FIG. 4 is a cross-sectional diagram showing the redistribution layer in FIG. 2 matching with yet another under-bump-metallurgy layer.
  • FIG. 5 is a cross-sectional diagram showing the redistribution layer in FIG. 2 matching with yet another under-bump-metallurgy layer.
  • FIG. 6 is a schematic cross-sectional view of a chip structure according to another preferred embodiment of this invention.
  • FIG. 7 is a cross-sectional diagram showing the redistribution layer in FIG. 6 matching with another under-bump-metallurgy layer.
  • FIG. 8 is a cross-sectional diagram showing the redistribution layer in FIG. 6 matching with yet another under-bump-metallurgy layer.
  • FIG. 9 is a cross-sectional diagram showing the redistribution layer in FIG. 6 matching with yet another under-bump-metallurgy layer.
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Reference will now be made in detail to the present preferred embodiments of the invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers are used in the drawings and the description to refer to the same or like parts.
  • FIG. 2 is a schematic cross-sectional view of a chip structure according to an embodiment of the present invention. As shown in FIG. 2, the chip structure 200 mainly comprises a chip 210, a redistribution layer 220, a passivation layer 230 and at least a bump 250. The chip 210 has an active surface 212, a passivation layer 214 and at least a bonding pad 216. The passivation layer 214 and the bonding pad 216 are formed on the active surface 212 of the chip 210. Furthermore, the bonding pad 216 is exposed by the passivation layer 214. It should be note that the passivation layer 214 has at least a recess 218 constructed therein. The recess 218 has a wide-top narrow-bottom cross-sectional profile similar to a trapezium. In other words, an obtuse angle 219 is formed between a sidewall of the recess 218 and a bottom surface of the recess 218.
  • In this embodiment, the chip 210 is fabricated using a semiconductor material including silicon or germanium, for example. The passivation layer 214 is fabricated using a material including, for example, silicon oxide, silicon nitride or phosphosilicate glass (PSG). The passivation layer 214 is a composite stack film including alternately stacked layers of the aforementioned inorganic compound. The bonding pad 216 is fabricated using a metallic material such as aluminum or copper.
  • The redistribution layer 220 is formed over the passivation layer 214 and is electrically connected to the bonding pad 216. Furthermore, the redistribution layer 220 extends from the bonding pad 216 to the recess 218. A portion of the redistribution layer 220 is located over the passivation layer 214 above the recess 218. As shown in FIG. 3, the redistribution layer 220 is a composite stack film including three metallic layers 221, 223 and 225. The metallic layer 221 is formed over the passivation layer 214. The metallic layer 223 is formed over the metallic layer 221 and the metallic layer 225 is formed over the metallic layer 223. It should be noted that the metallic layer 221 is fabricated using aluminum, titanium, titanium-tungsten alloy, tantalum, tantalum nitride or chromium, for example. The metallic layer 223 is fabricated using nickel-vanadium alloy or chromium-copper alloy, for example. The metallic layer 225 is fabricated using a metallic material such as copper or an alloy.
  • The passivation layer 230 having an opening 232 is formed over the passivation layer 214 and the redistribution layer 220. A portion of the redistribution layer 220 above the recess 218 is exposed by the opening 232. Furthermore, the opening 232 has a top-wide, bottom-narrow cross-section similar to a trapezium. In other words, an obtuse angle 319 is formed between a sidewall of the opening 232 and a bottom surface of the opening 232.
  • The bump 250 is disposed over the redistribution layer 220 exposed by the opening 232 of the passivation layer 230. The bump 250 is electrically connected to the redistribution layer 220 above the recess 218. The bump 250 is fabricated using material such as Sn—Pb alloy with a Sn/Pb weight ratio of 63% to 37% or a Sn/Pb ratio of 5% to 95% or a composite bump with different Sn/Pb weight ratio. Through the profile and angle 219 of the recess 218, the bonding strength between the redistribution layer 220 and the bump 250 is strengthened.
  • Aside from connecting the bump 250 directly to the redistribution layer 220 exposed by the opening 232, an additional under-bump-metallurgy layer 240 may be formed between the redistribution layer 220 and the bump 250 to increase their bonding strength even further. The following describes in more detail the structural relationship and connection of the under-bump-metallurgy layer 240 with its neighboring layers.
  • As shown in FIG. 2, an under-bump-metallurgy layer 240 may optionally be disposed on a portion of the passivation layer 230 and the redistribution layer 220 exposed by the opening 232 of the passivation layer 230. In the chip structure, the under-bump-metallurgy layer 240 is preferably disposed between the redistribution layer 220 and the bump 250. The under-bump-metallurgy layer 240 is a composite stack film including three metallic layers 242, 244 and 246, for example. The metallic layer 242 is formed over the redistribution layer 220 exposed by the opening 232. The metallic layer 244 is formed over the metallic layer 242 and the metallic layer 246 is formed over the metallic layer 244. The metallic layer 242 serves to increase the bonding strength between the redistribution layer 220 and the metallic layer 244. The metallic layer 244 serves to prevent possible migration of tin from the bump 250 and cause unwanted structure damage or signal transmission degradation. The metallic layer 246 serves to increase the adhesive strength between the under-bump-metallurgy layer 240 and the bump 250 so that the bump 250 can easily adhere to the under-bump-metallurgy layer 240, for example.
  • In addition, an electroplated layer 248 is also formed over the metallic layer 246. The electroplated layer 248 is formed between the third metallic layer 246 and the bump 250, for example. It should be noted that the metallic layer 222 is fabricated using aluminum, titanium, titanium-tungsten alloy, titanium nitride, tantalum, tantalum nitride or chromium, for example. The metallic layer 224 is fabricated using nickel-vanadium alloy or chromium-copper alloy, for example. The metallic layer 226 is fabricated using a metallic material such as copper or an alloy. The electroplated layer 248 is an electroplated copper layer, an electroplated, an electroless nickel layer, an electroless plated gold layer or combination thereof.
  • The aforementioned structure is constructed using a redistribution layer with three metallic layers and an under-bump-metallurgy layer with four metallic layers. However, this invention also permits other combinations such as a three-layered redistribution layer with a two-layered under-bump-metallurgy layer (as shown in FIG. 3), a three-layered redistribution layer with a three-layered under-bump-metallurgy layer (as shown in FIG. 4), a three-layered redistribution layer with a five-layered under-bump-metallurgy layer (as shown in FIG. 5).
  • When the under-bump-metallurgy layer 240 is formed over the redistribution layer 220 exposed by the opening 232 of the passivation layer 230, the bump 250 is connected to the redistribution layer 220 above the recess 218 via the under-bump-metallurgy layer 240. Hence, the bump 250 on the under-bump-metallurgy layer 240 has a better structural strength. The higher structural strength prevents the bump 250 from cracking or peeling during the under-bump-metallurgy layer and leads to a longer lifetime for the chip structure.
  • FIG. 6 is a schematic cross-sectional view of a chip structure according to another embodiment of this invention. As shown in FIG. 6, the redistribution layer 320 comprises two metallic layers 321 and 323. The metallic layer 321 is formed over the passivation layer 314 and the metallic layer 323 is formed over the metallic layer 321. It should be noted that the metallic layer is fabricated using aluminum, titanium, titanium-tungsten alloy, titanium nitride, tantalum, tantalum nitride or chromium. The metallic layer 323 is fabricated using copper, for example.
  • The under-bump-metallurgy layer 340 also comprises two metallic layers 342 and 344. The metallic layer 342 is formed over the redistribution layer 320 and the metallic layer 344 is formed over the metallic layer 342. It should be noted that the metallic layer 342 is fabricated using aluminum, titanium, titanium-tungsten alloy, titanium nitride, tantalum, tantalum nitride or chromium. The metallic layer 344 is fabricated using copper, for example.
  • The aforementioned structure is constructed using a redistribution layer with two metallic layers and an under-bump-metallurgy layer with two metallic layers. However, this invention also permits other combinations such as a two-layered redistribution layer with a three-layered under-bump-metallurgy layer (as shown in FIG. 7), a two-layered redistribution layer with a four-layered under-bump-metallurgy layer (as shown in FIG. 8), a two-layered redistribution layer with a five-layered under-bump-metallurgy layer (as shown in FIG. 9).
  • In summary, the chip structure according to this invention has at least the following advantages:
      • 1. The recess in the passivation layer is able to strengthen the bond between the bump and the redistribution layer so that the bump has an enhanced structural strength.
      • 2. This invention is also able to maintain a strong bond between the bump and the redistribution layer for a prolonged period, thereby increasing the overall lifetime of the chip.
  • It will be apparent to those skilled in the art that various modifications and variations can be made to the structure of the present invention without departing from the scope or spirit of the invention. In view of the foregoing, it is intended that the present invention cover modifications and variations of this invention provided they fall within the scope of the following claims and their equivalents.

Claims (19)

  1. 1. A chip packaging structure, comprising:
    a chip having a first passivation layer and at least a bonding pad, wherein the bonding pad is exposed by the first passivation layer and the first passivation layer has at least a recess, the whole recess has a sidewall and a bottom surface being exposed;
    a redistribution layer formed over the first passivation layer, wherein the redistribution layer electrically connects with the bonding pad and extends from the bonding pad to the recess, and the redistribution layer in the recess comprises a sidewall portion and a bottom portion that are respectively in contact with the sidewall and the bottom surface of the recess;
    a second passivation layer formed over the first passivation layer and the redistribution layer, wherein the second passivation layer has an opening that exposes the redistribution layer above the recess;
    an under-bump-metallurgy layer formed on the redistribution layer in the opening of the second passivation layer, wherein the under-bump-metallurgy layer is in contact with the sidewall portion and the bottom portion of the of the redistribution layer in the recess, and extends over an upper surface of the second passivation layer; and
    at least a bump disposed inside the opening and electrically connected to the redistribution layer above the recess.
  2. 2. The chip packaging structure of claim 1, wherein the recess has an obtuse angle and is formed between the sidewall of the recess and the bottom surface of the recess.
  3. 3. The chip structure of claim 1, wherein the under-bump-metallurgy layer further comprises:
    a first metallic layer formed over the opening-exposed redistribution layer; and
    a second metallic layer formed over the first metallic layer.
  4. 4. The chip structure of claim 3, wherein a material constituting the first metallic layer is selected from the group consisting of aluminum, titanium, titanium-tungsten alloy, tantalum, tantalum nitride and chromium.
  5. 5. The chip structure of claim 3, wherein a material constituting the second metallic layer comprises copper.
  6. 6. The chip structure of claim 3, wherein the under-bump-metallurgy layer further comprises at least an electroplated layer formed over the second metallic layer and the electroplated layer is selected from the group consisting of an electroplated copper layer, an electroplated nickel layer, an electroless nickel layer, an electroless plated gold layer and combination thereof.
  7. 7. The chip packaging structure of claim 1, wherein the under-bump-metallurgy layer further comprises:
    a first metallic layer formed over the opening-exposed redistribution layer;
    a second metallic layer formed over the first metallic layer; and
    a third metallic layer formed over the second metallic layer.
  8. 8. The chip packaging structure of claim 7, wherein a material constituting the first metallic layer is selected from the group consisting of aluminum, titanium, titanium-tungsten alloy, tantalum, tantalum nitride and chromium.
  9. 9. The chip packaging structure of claim 7, wherein a material constituting the second metallic layer is selected from the group consisting of nickel-vanadium alloy and copper-chromium alloy.
  10. 10. The chip packaging structure of claim 7, wherein a material constituting the third metallic layer comprises copper.
  11. 11. The chip packaging structure of claim 7, wherein the under-bump-metallurgy layer further comprises at least an electroplated layer formed over the third metallic layer and the electroplated layer is selected from the group consisting of an electroplated copper layer, an electroplated nickel layer, an electroplated gold layer and combination thereof.
  12. 12. The chip packaging structure of claim 1, wherein the redistribution layer further comprises:
    a first metallic layer formed over the first passivation layer; and
    a second metallic layer formed over the first metallic layer.
  13. 13. The chip packaging structure of claim 12, wherein a material constituting the first metallic layer is selected from the group consisting of aluminum, titanium, titanium-tungsten alloy, tantalum, tantalum nitride and chromium.
  14. 14. The chip packaging structure of claim 12, wherein a material constituting the second metallic layer comprises copper.
  15. 15. The chip packaging structure of claim 1, wherein the redistribution layer further comprises:
    a first metallic layer formed over the first passivation layer;
    a second metallic layer formed over the first metallic layer; and
    a third metallic layer formed over the second metallic layer.
  16. 16. The chip packaging structure of claim 15, wherein a material constituting the first metallic layer is selected from the group consisting of aluminum, titanium, titanium-tungsten alloy, tantalum, tantalum nitride and chromium.
  17. 17. The chip packaging structure of claim 15, wherein a material constituting the second metallic layer is selected from the group consisting of nickel-vanadium alloy and copper-chromium alloy.
  18. 18. The chip packaging structure of claim 15, wherein a material constituting the third metallic layer comprises copper.
  19. 19. The chip packaging structure of claim 1, wherein an obtuse angle is formed between a sidewall of the opening and a bottom surface of the opening.
US11772247 2003-06-09 2007-07-02 Chip packaging structure Abandoned US20070252275A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
TW92115490 2003-06-09
TW92115490 2003-06-09
US10709953 US7253519B2 (en) 2003-06-09 2004-06-09 Chip packaging structure having redistribution layer with recess
US11772247 US20070252275A1 (en) 2003-06-09 2007-07-02 Chip packaging structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11772247 US20070252275A1 (en) 2003-06-09 2007-07-02 Chip packaging structure

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10709953 Continuation US7253519B2 (en) 2003-06-09 2004-06-09 Chip packaging structure having redistribution layer with recess

Publications (1)

Publication Number Publication Date
US20070252275A1 true true US20070252275A1 (en) 2007-11-01

Family

ID=33488679

Family Applications (2)

Application Number Title Priority Date Filing Date
US10709953 Active US7253519B2 (en) 2003-06-09 2004-06-09 Chip packaging structure having redistribution layer with recess
US11772247 Abandoned US20070252275A1 (en) 2003-06-09 2007-07-02 Chip packaging structure

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10709953 Active US7253519B2 (en) 2003-06-09 2004-06-09 Chip packaging structure having redistribution layer with recess

Country Status (1)

Country Link
US (2) US7253519B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080099913A1 (en) * 2006-10-31 2008-05-01 Matthias Lehr Metallization layer stack without a terminal aluminum metal layer
US20100007011A1 (en) * 2008-07-11 2010-01-14 Advanced Semiconductor Engineering, Inc. Semiconductor package and method for packaging a semiconductor package
US20110086505A1 (en) * 2008-10-06 2011-04-14 Wan-Ling Yu Metallic bump structure without under bump metallurgy and a manufacturing method thereof
US8058726B1 (en) * 2008-05-07 2011-11-15 Amkor Technology, Inc. Semiconductor device having redistribution layer
US20120007233A1 (en) * 2010-07-12 2012-01-12 Siliconware Precision Industries Co., Ltd. Semiconductor element and fabrication method thereof
CN102339767A (en) * 2010-07-26 2012-02-01 矽品精密工业股份有限公司 Semiconductor element and manufacturing method thereof
US8362612B1 (en) * 2010-03-19 2013-01-29 Amkor Technology, Inc. Semiconductor device and manufacturing method thereof
US8552557B1 (en) * 2011-12-15 2013-10-08 Amkor Technology, Inc. Electronic component package fabrication method and structure
US8618658B1 (en) 2010-03-19 2013-12-31 Amkor Technology, Inc. Semiconductor device and fabricating method thereof
US8664090B1 (en) 2012-04-16 2014-03-04 Amkor Technology, Inc. Electronic component package fabrication method
US20150137352A1 (en) * 2013-11-18 2015-05-21 Taiwan Semiconductor Manufacturing Co., Ltd. Mechanisms for forming post-passivation interconnect structure
US9245862B1 (en) 2013-02-12 2016-01-26 Amkor Technology, Inc. Electronic component package fabrication method and structure
US9916763B2 (en) 2010-06-30 2018-03-13 Primal Space Systems, Inc. Visibility event navigation method and system

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060017160A1 (en) * 2004-07-23 2006-01-26 Advanced Semiconductor Engineering Inc. Structure and formation method of conductive bumps
US7714414B2 (en) * 2004-11-29 2010-05-11 Taiwan Semiconductor Manufacturing Co., Ltd. Method and apparatus for polymer dielectric surface recovery by ion implantation
US7410824B2 (en) * 2004-12-09 2008-08-12 Stats Chippac Ltd. Method for solder bumping, and solder-bumping structures produced thereby
US20060197191A1 (en) * 2005-02-03 2006-09-07 Mon-Chin Tsai Chip structure and wafer structure
JP4055015B2 (en) * 2005-04-04 2008-03-05 セイコーエプソン株式会社 A method of manufacturing a semiconductor device
US7446422B1 (en) * 2005-04-26 2008-11-04 Amkor Technology, Inc. Wafer level chip scale package and manufacturing method for the same
US8456015B2 (en) 2005-06-14 2013-06-04 Cufer Asset Ltd. L.L.C. Triaxial through-chip connection
US7781886B2 (en) * 2005-06-14 2010-08-24 John Trezza Electronic chip contact structure
US7786592B2 (en) 2005-06-14 2010-08-31 John Trezza Chip capacitive coupling
US7560813B2 (en) 2005-06-14 2009-07-14 John Trezza Chip-based thermo-stack
US7534722B2 (en) * 2005-06-14 2009-05-19 John Trezza Back-to-front via process
US7687400B2 (en) 2005-06-14 2010-03-30 John Trezza Side stacking apparatus and method
US7215032B2 (en) 2005-06-14 2007-05-08 Cubic Wafer, Inc. Triaxial through-chip connection
US7838997B2 (en) 2005-06-14 2010-11-23 John Trezza Remote chip attachment
US7851348B2 (en) 2005-06-14 2010-12-14 Abhay Misra Routingless chip architecture
US7687397B2 (en) 2006-06-06 2010-03-30 John Trezza Front-end processed wafer having through-chip connections
US8154131B2 (en) 2005-06-14 2012-04-10 Cufer Asset Ltd. L.L.C. Profiled contact
US7314819B2 (en) * 2005-06-30 2008-01-01 Intel Corporation Ball-limiting metallurgies, solder bump compositions used therewith, packages assembled thereby, and methods of assembling same
US7518241B2 (en) * 2005-08-31 2009-04-14 Advanced Semiconductor Engineering Inc. Wafer structure with a multi-layer barrier in an UBM layer network device with power supply
US7170160B1 (en) * 2005-09-15 2007-01-30 Chipmos Technologies Chip structure and stacked-chip package
KR100804392B1 (en) * 2005-12-02 2008-02-15 주식회사 네패스 Semiconductor package and fabrication method thereof
JP2007242773A (en) * 2006-03-07 2007-09-20 Seiko Epson Corp Semiconductor device and its manufacturing method
JP4611943B2 (en) * 2006-07-13 2011-01-12 Okiセミコンダクタ株式会社 Semiconductor device
JP4726744B2 (en) * 2006-08-29 2011-07-20 Okiセミコンダクタ株式会社 Semiconductor device and manufacturing method thereof
US7572723B2 (en) * 2006-10-25 2009-08-11 Freescale Semiconductor, Inc. Micropad for bonding and a method therefor
US20080169539A1 (en) * 2007-01-12 2008-07-17 Silicon Storage Tech., Inc. Under bump metallurgy structure of a package and method of making same
US7838991B1 (en) * 2007-02-05 2010-11-23 National Semiconductor Corporation Metallurgy for copper plated wafers
US7670874B2 (en) 2007-02-16 2010-03-02 John Trezza Plated pillar package formation
KR100887475B1 (en) * 2007-02-26 2009-03-10 네패스 피티이 리미티드 Semiconductor package and fabrication method thereof
US7682959B2 (en) * 2007-03-21 2010-03-23 Stats Chippac, Ltd. Method of forming solder bump on high topography plated Cu
JP5034740B2 (en) * 2007-07-23 2012-09-26 ルネサスエレクトロニクス株式会社 Semiconductor device and manufacturing method thereof
KR100896883B1 (en) * 2007-08-16 2009-05-14 주식회사 동부하이텍 Semiconductor chip, method of fabricating the same and stacked package having the same
US8241954B2 (en) * 2007-12-03 2012-08-14 Stats Chippac, Ltd. Wafer level die integration and method
US7807572B2 (en) * 2008-01-04 2010-10-05 Freescale Semiconductor, Inc. Micropad formation for a semiconductor
KR101028051B1 (en) * 2009-01-28 2011-04-08 삼성전기주식회사 Wafer level package and method of manufacturing the same
JP5350022B2 (en) * 2009-03-04 2013-11-27 パナソニック株式会社 Semiconductor device, and a mounting member having the semiconductor device
KR101018172B1 (en) * 2009-08-18 2011-02-28 삼성전기주식회사 Method for manufacturing of wafer level device package
FR2978296A1 (en) 2011-07-20 2013-01-25 St Microelectronics Crolles 2 Electronic chip comprising connection pillars, and method for making
CN104517864A (en) 2013-10-08 2015-04-15 精材科技股份有限公司 Method of fabricating wafer-level chip package

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5712506A (en) * 1994-10-27 1998-01-27 Nec Corporation Semiconductor device with passivation layer of benzocyclobutene polymer and silicon powder
US6287893B1 (en) * 1997-10-20 2001-09-11 Flip Chip Technologies, L.L.C. Method for forming chip scale package
US6400021B1 (en) * 1999-06-29 2002-06-04 Hyundai Electronics Industries Co., Ltd. Wafer level package and method for fabricating the same
US6452270B1 (en) * 2000-10-13 2002-09-17 Advanced Semiconductor Engineering, Inc. Semiconductor device having bump electrode
US6583516B2 (en) * 1998-03-23 2003-06-24 Seiko Epson Corporation Semiconductor device and method of manufacturing the same, circuit board, and electronic instrument
US6756671B2 (en) * 2002-07-05 2004-06-29 Taiwan Semiconductor Manufacturing Co., Ltd Microelectronic device with a redistribution layer having a step shaped portion and method of making the same
US20040191955A1 (en) * 2002-11-15 2004-09-30 Rajeev Joshi Wafer-level chip scale package and method for fabricating and using the same
US6800534B2 (en) * 2002-12-09 2004-10-05 Taiwan Semiconductor Manufacturing Company Method of forming embedded MIM capacitor and zigzag inductor scheme
US20040266163A1 (en) * 2003-06-30 2004-12-30 Advanced Semiconductor Engineering, Inc. Bumping process
US6841875B2 (en) * 2002-11-18 2005-01-11 Oki Electric Industry Co., Ltd. Semiconductor device
US6977403B2 (en) * 2002-01-08 2005-12-20 Ricoh Company, Ltd. Semiconductor apparatus having a built-in-electric coil and a method of making the semiconductor apparatus

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5508229A (en) * 1994-05-24 1996-04-16 National Semiconductor Corporation Method for forming solder bumps in semiconductor devices
DE69635397D1 (en) * 1995-03-24 2005-12-15 Shinko Electric Ind Co A semiconductor device with chip size and manufacturing processes
US5898223A (en) * 1997-10-08 1999-04-27 Lucent Technologies Inc. Chip-on-chip IC packages
WO2000052755A1 (en) * 1999-02-26 2000-09-08 Hitachi, Ltd. Wiring board and its production method, semiconductor device and its production method, and electronic apparatus
US6332988B1 (en) * 1999-06-02 2001-12-25 International Business Machines Corporation Rework process
US6239482B1 (en) * 1999-06-21 2001-05-29 General Electric Company Integrated circuit package including window frame
KR100313706B1 (en) * 1999-09-29 2001-11-26 윤종용 Redistributed Wafer Level Chip Size Package And Method For Manufacturing The Same
DE19961683A1 (en) * 1999-12-21 2001-06-28 Philips Corp Intellectual Pty Component with a thin-film circuit
CA2401845A1 (en) * 2000-03-01 2001-09-07 Ifte Plc Improvements in or relating to fire-fighter training
JP2003037133A (en) * 2001-07-25 2003-02-07 Hitachi Ltd Semiconductor device, method of manufacturing the same, and electronic device
US6605480B2 (en) * 2001-11-28 2003-08-12 Chipmos Technologies Inc. Wafer level packaging for making flip-chips
US6867122B2 (en) * 2002-01-07 2005-03-15 Advanced Semiconductor Engineering, Inc. Redistribution process
US6939789B2 (en) * 2002-05-13 2005-09-06 Taiwan Semiconductor Manufacturing Co., Ltd. Method of wafer level chip scale packaging
US6891248B2 (en) * 2002-08-23 2005-05-10 Micron Technology, Inc. Semiconductor component with on board capacitor
US6885101B2 (en) * 2002-08-29 2005-04-26 Micron Technology, Inc. Methods for wafer-level packaging of microelectronic devices and microelectronic devices formed by such methods
US8674507B2 (en) * 2003-05-27 2014-03-18 Megit Acquisition Corp. Wafer level processing method and structure to manufacture two kinds of interconnects, gold and solder, on one wafer
US6930389B2 (en) * 2003-06-30 2005-08-16 Advanced Semiconductor Engineering, Inc. Under bump metallization structure of a semiconductor wafer
US7470997B2 (en) * 2003-07-23 2008-12-30 Megica Corporation Wirebond pad for semiconductor chip or wafer
US7244671B2 (en) * 2003-07-25 2007-07-17 Unitive International Limited Methods of forming conductive structures including titanium-tungsten base layers and related structures
US7012334B2 (en) * 2003-08-14 2006-03-14 Advanced Semiconductor Engineering, Inc. Semiconductor chip with bumps and method for manufacturing the same

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5712506A (en) * 1994-10-27 1998-01-27 Nec Corporation Semiconductor device with passivation layer of benzocyclobutene polymer and silicon powder
US6287893B1 (en) * 1997-10-20 2001-09-11 Flip Chip Technologies, L.L.C. Method for forming chip scale package
US6583516B2 (en) * 1998-03-23 2003-06-24 Seiko Epson Corporation Semiconductor device and method of manufacturing the same, circuit board, and electronic instrument
US6400021B1 (en) * 1999-06-29 2002-06-04 Hyundai Electronics Industries Co., Ltd. Wafer level package and method for fabricating the same
US6452270B1 (en) * 2000-10-13 2002-09-17 Advanced Semiconductor Engineering, Inc. Semiconductor device having bump electrode
US6977403B2 (en) * 2002-01-08 2005-12-20 Ricoh Company, Ltd. Semiconductor apparatus having a built-in-electric coil and a method of making the semiconductor apparatus
US6756671B2 (en) * 2002-07-05 2004-06-29 Taiwan Semiconductor Manufacturing Co., Ltd Microelectronic device with a redistribution layer having a step shaped portion and method of making the same
US20040191955A1 (en) * 2002-11-15 2004-09-30 Rajeev Joshi Wafer-level chip scale package and method for fabricating and using the same
US6841875B2 (en) * 2002-11-18 2005-01-11 Oki Electric Industry Co., Ltd. Semiconductor device
US6800534B2 (en) * 2002-12-09 2004-10-05 Taiwan Semiconductor Manufacturing Company Method of forming embedded MIM capacitor and zigzag inductor scheme
US20040266163A1 (en) * 2003-06-30 2004-12-30 Advanced Semiconductor Engineering, Inc. Bumping process

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080099913A1 (en) * 2006-10-31 2008-05-01 Matthias Lehr Metallization layer stack without a terminal aluminum metal layer
US9123543B1 (en) 2008-05-07 2015-09-01 Amkor Technology, Inc. Semiconductor device and manufacturing method thereof
US8058726B1 (en) * 2008-05-07 2011-11-15 Amkor Technology, Inc. Semiconductor device having redistribution layer
US20100007011A1 (en) * 2008-07-11 2010-01-14 Advanced Semiconductor Engineering, Inc. Semiconductor package and method for packaging a semiconductor package
US8076786B2 (en) * 2008-07-11 2011-12-13 Advanced Semiconductor Engineering, Inc. Semiconductor package and method for packaging a semiconductor package
US20110086505A1 (en) * 2008-10-06 2011-04-14 Wan-Ling Yu Metallic bump structure without under bump metallurgy and a manufacturing method thereof
US9524906B1 (en) 2010-03-19 2016-12-20 Amkor Technology, Inc. Semiconductor device and manufacturing method thereof
US8618658B1 (en) 2010-03-19 2013-12-31 Amkor Technology, Inc. Semiconductor device and fabricating method thereof
US8362612B1 (en) * 2010-03-19 2013-01-29 Amkor Technology, Inc. Semiconductor device and manufacturing method thereof
US9916763B2 (en) 2010-06-30 2018-03-13 Primal Space Systems, Inc. Visibility event navigation method and system
US20120007233A1 (en) * 2010-07-12 2012-01-12 Siliconware Precision Industries Co., Ltd. Semiconductor element and fabrication method thereof
CN102339767A (en) * 2010-07-26 2012-02-01 矽品精密工业股份有限公司 Semiconductor element and manufacturing method thereof
US8552557B1 (en) * 2011-12-15 2013-10-08 Amkor Technology, Inc. Electronic component package fabrication method and structure
US8664090B1 (en) 2012-04-16 2014-03-04 Amkor Technology, Inc. Electronic component package fabrication method
US9245862B1 (en) 2013-02-12 2016-01-26 Amkor Technology, Inc. Electronic component package fabrication method and structure
US20150137352A1 (en) * 2013-11-18 2015-05-21 Taiwan Semiconductor Manufacturing Co., Ltd. Mechanisms for forming post-passivation interconnect structure
US9620469B2 (en) * 2013-11-18 2017-04-11 Taiwan Semiconductor Manufacturing Company, Ltd. Mechanisms for forming post-passivation interconnect structure

Also Published As

Publication number Publication date Type
US7253519B2 (en) 2007-08-07 grant
US20040245630A1 (en) 2004-12-09 application

Similar Documents

Publication Publication Date Title
US6433427B1 (en) Wafer level package incorporating dual stress buffer layers for I/O redistribution and method for fabrication
US7015590B2 (en) Reinforced solder bump structure and method for forming a reinforced solder bump
US6111317A (en) Flip-chip connection type semiconductor integrated circuit device
US6841872B1 (en) Semiconductor package and fabrication method thereof
US6077726A (en) Method and apparatus for stress relief in solder bump formation on a semiconductor device
US6187615B1 (en) Chip scale packages and methods for manufacturing the chip scale packages at wafer level
US6534863B2 (en) Common ball-limiting metallurgy for I/O sites
US7242099B2 (en) Chip package with multiple chips connected by bumps
US6914333B2 (en) Wafer level package incorporating dual compliant layers and method for fabrication
US5977632A (en) Flip chip bump structure and method of making
US20090283903A1 (en) Bump with multiple vias for semiconductor package and fabrication method thereof, and semiconductor package utilizing the same
US20050176233A1 (en) Wafer-level chip scale package and method for fabricating and using the same
US7397121B2 (en) Semiconductor chip with post-passivation scheme formed over passivation layer
US20060166402A1 (en) Elevated bond-pad structure for high-density flip-clip packaging and a method of fabricating the structures
US7364998B2 (en) Method for forming high reliability bump structure
US6462426B1 (en) Barrier pad for wafer level chip scale packages
US20030127734A1 (en) Cylindrical bonding structure and method of manufacture
US20050260794A1 (en) Method for fabrication of wafer level package incorporating dual compliant layers
US7382049B2 (en) Chip package and bump connecting structure thereof
US20060220259A1 (en) Multi-chip structure and method of assembling chips
US20050121804A1 (en) Chip structure with bumps and testing pads
US6511901B1 (en) Metal redistribution layer having solderable pads and wire bondable pads
US20070102815A1 (en) Bumping process with self-aligned A1-cap and the elimination of 2nd passivation layer
US7271483B2 (en) Bump structure of semiconductor package and method for fabricating the same
US20050194695A1 (en) Method of assembling chips