US20070238756A1 - Combinations of dipeptidyl peptidase iv inhibitors and other antidiabetic agents for the treatment of diabetes mellitus - Google Patents

Combinations of dipeptidyl peptidase iv inhibitors and other antidiabetic agents for the treatment of diabetes mellitus Download PDF

Info

Publication number
US20070238756A1
US20070238756A1 US11/758,259 US75825907A US2007238756A1 US 20070238756 A1 US20070238756 A1 US 20070238756A1 US 75825907 A US75825907 A US 75825907A US 2007238756 A1 US2007238756 A1 US 2007238756A1
Authority
US
United States
Prior art keywords
diabetes mellitus
inhibitor
compound
treatment
dipeptidyl peptidase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/758,259
Inventor
Jonathan Arch
James Lenhard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/311,446 external-priority patent/US7078397B2/en
Application filed by Individual filed Critical Individual
Priority to US11/758,259 priority Critical patent/US20070238756A1/en
Publication of US20070238756A1 publication Critical patent/US20070238756A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/425Thiazoles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/425Thiazoles
    • A61K31/427Thiazoles not condensed and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics

Definitions

  • This invention relates to a method of treatment, in particular to a method for the treatment of diabetes mellitus, especially non-insulin dependent diabetes (NIDDM) or Type 2 diabetes and conditions associated with diabetes mellitus and to compositions for use in such method.
  • NIDDM non-insulin dependent diabetes
  • Dipeptidyl peptidase IV is a post-proline/alanine cleaving serine protease found in various tissues of the body including kidney, liver, and intestine.
  • DPP-IV inhibitors may be useful for the treatment of impaired glucose tolerance and diabetes mellitus (International Patent Application Publication No. WO 99/61431; Pederson R A et al., Diabetes 1998 August, 47(8):1253-8; and Pauly R P et al., Metabolism 1999 March, 48(3):385-9).
  • WO 99/61431 discloses DPP-IV inhibitors comprising an amino acid and a thiazolidine or pyrrolidine group, and salts thereof, such as isoleucyl (or isoleucine) thiazolidide and salts thereof.
  • DPP-IV inhibitors include those disclosed in U.S. Pat. Nos. 6,124,305 and 6,107,317; International Patent Application Publication Nos. WO 98/19998, WO 95/15309 and WO 98/18763.
  • Alpha glucosidase inhibitor antihyperglycaemic agents or alpha glucosidase inhibitors
  • biguamide antihyperglycaemic agents or biguamides
  • Acarbose, voglibose, emiglitate and miglitol are examples of alpha glucosidase inhibitors.
  • 1,1-Dimethylbiguanidine (or metformin) is a particular example of a biguamide.
  • Insulin secretagogues are compounds that promote increased secretion of insulin by the pancreatic beta cells.
  • the sulphonylureas are well known examples of insulin secretagogues.
  • the sulphonylureas act as hypoglycaemic agents and are used in the treatment of Type 2 diabetes.
  • Examples of sulphonylureas include glibenclamide (or glyburide), glipizide, gliclazide, glimepiride, tolazamide and tolbutamide.
  • European Patent Application Publication No. 0,306,228 relates to certain thiazolidinedione derivatives disclosed as having antihyperglycaemic and hypolipidaemic activity.
  • One particular thiazolidinedione disclosed in EP 0306228 is 5-[4-[2-(N-methyl-N-(2-pyridyl)amino)ethoxy]benzyl]thiazolidine-2,4-dione (hereinafter ‘Compound (I)’).
  • WO 94/05659 discloses certain salts of Compound (I) including the maleate salt at example 1 thereof.
  • Compound (I) is an example of a class of anti-hyperglycaemic agents known as ‘insulin sensitisers’.
  • Compound (I) is a thiazolidinedione insulin sensitiser.
  • Compound (I) is also a peroxisome proliferator-activated receptor (PPAR ⁇ ) agonist insulin sensitiser.
  • PPAR ⁇ peroxisome proliferator-activated receptor
  • acyclic insulin sensitisers Another series of compounds generally recognised as having insulin sensitiser activity are those typified by the compounds disclosed in International Patent Applications, Publication Numbers WO 93/21166 and WO 94/01420. These compounds are herein referred to as ‘acyclic insulin sensitisers’. Other examples of acyclic insulin sensitisers are those disclosed in U.S. Pat. No. 5,232,945 and International Patent Application Publication Nos. WO 92/03425 and WO 91/19702.
  • insulin sensitisers examples include those disclosed in European Patent Application Publication No. 0533933; Japanese Patent Application Publication No. 05271204; and U.S. Pat. No. 5,264,451.
  • dipeptidyl peptidase IV inhibitors such as the compounds of WO 99/61431
  • other antidiabetic agents provide a particularly beneficial effect on glycaemic control and that such combination is therefore suggested to be particularly useful for the treatment of diabetes mellitus, especially Type 2 diabetes and conditions associated with diabetes mellitus.
  • Such combinations will provide improved blood glucose regulation without introducing unacceptable side-effects.
  • the invention provides a method for the treatment of diabetes mellitus, especially Type 2 diabetes and conditions associated with diabetes mellitus in a mammal such as a human, which method comprises administering an effective, non-toxic and pharmaceutically acceptable amount of a dipeptidyl peptidase IV inhibitor and another antidiabetic agent, to a mammal in need thereof.
  • the invention provides a dipeptidyl peptidase IV inhibitor and another antidiabetic agent, for use in a method for the treatment of diabetes mellitus, especially Type 2 diabetes and conditions associated with diabetes mellitus.
  • the method comprises either co-administration of a dipeptidyl peptidase IV inhibitor and another antidiabetic agent or the sequential administration thereof.
  • Co-administration includes administration of a formulation which includes both a DPP-IV inhibitor and the other antidiabetic agent or the essentially simultaneous administration of separate formulations of each agent.
  • the invention provides the use of a dipeptidyl peptidase IV inhibitor and another antidiabetic agent for use in the manufacture of a composition for the treatment of obesity, diabetes mellitus, especially Type 2 diabetes and conditions associated with diabetes mellitus.
  • the other antidiabetic agent comprises one or more, generally one or two, of an alpha glucosidase inhibitor, a biguamide, an insulin secretagogue or an insulin sensitiser.
  • the other antidiabetic agent is selected from an alpha glucosidase inhibitor, a biguamide, an insulin secretagogue or an insulin sensitiser.
  • a further suitable antidiabetic agent is insulin.
  • a suitable alpha glucosidase inhibitor is acarbose.
  • alpha glucosidase inhibitors are emiglitate and miglitol.
  • a further suitable alpha glucosidase inhibitor is voglibose.
  • Suitable biguamides include metformin, buformin or phenformin, especially metformin.
  • Suitable insulin secretagogues include sulphonylureas.
  • Suitable sulphonylureas include glibenclamide, glipizide, gliclazide, glimepiride, tolazamide and tolbutamide. Further sulphonylureas include acetohexamide, carbutamide, chlorpropamide, glibornuride, gliquidone, glisentide, glisolamide, glisoxepide, glyclopyamide and glycylamide. Also included is the sulphonylurea glipentide.
  • a further suitable insulin secretagogue is repaglinide.
  • An additional insulin secretagogue is nateglinide.
  • Insulin sensitisers include PPAR ⁇ agonist insulin sensitisers including the compounds disclosed in WO 97/31907 and especially 2-(1-carboxy-2- ⁇ 4- ⁇ 2-(5-methyl-2-phenyl-oxazol-4-yl)-ethoxy]-phenyl ⁇ -ethylamino)-benzoic acid methyl ester and 2(S)-(2-benzoyl-phenylamino)-3- ⁇ 4-[2-(5-methyl-2-phenyl-oxazol-4-yl)-ethoxy]-phenyl ⁇ -propionic acid.
  • PPAR ⁇ agonist insulin sensitisers including the compounds disclosed in WO 97/31907 and especially 2-(1-carboxy-2- ⁇ 4- ⁇ 2-(5-methyl-2-phenyl-oxazol-4-yl)-ethoxy]-phenyl ⁇ -ethylamino)-benzoic acid methyl ester and 2(S)-(2-benzoyl-phen
  • Insulin sensitisers also include thiazolidinedione insulin sensitisers.
  • a preferred insulin sensitiser is Compound (I) or a derivative thereof.
  • thiazolidinedione insulin sensitisers include (+)-5-[[4-[(3,4-dihydro-6-hydroxy-2,5,7,8-tetramethyl-2H-1-benzopyran-2-yl)methoxy]phenyl]methyl]-2,4-thiazolidinedione (or troglitazone), 5-[4-[(1-methylcyclohexyl)methoxy]benzyl]thiazolidine-2,4-dione (or ciglitazone), 5-[4-[2-(5-ethylpyridin-2-yl)ethoxy]benzyl]thiazolidine-2,4-dione (or pioglitazone) or 5-[(2-benzyl-2,3-dihydrobenzopyran)-5-ylmethyl)thiazolidine-2,4-dione (or englitazone).
  • a particular thiazolidinedione insulin sensitiser is 5-[4-[2-(5-ethylpyridin-2-yl)ethoxy]benzyl]thiazolidine-2,4-dione (or pioglitazone).
  • a particular thiazolidinedione insulin sensitiser is (+)-5-[[4-[(3,4-dihydro-6-hydroxy-2,5,7,8-tetramethyl-2H-1-benzopyran-2-yl)methoxy]phenyl]methyl]-2,4-thiazolidinedione (or troglitazone).
  • DPP-IV inhibitors include the specific examples disclosed in WO99/61431, such as L-threo-isoleucyl pyrrolidide, L-allo-isoleucyl thiazolidide, L-allo-isoleucyl pyrrolidide and salts thereof.
  • a particular DPP-IV inhibitor is isoleucine thiazolidide and salts thereof.
  • DPP-IV inhibitors include the specific examples disclosed in U.S. Pat. Nos. 6,124,305 and 6,107,317; International Patent Application Publication Nos. WO 98/19998, WO 95/15309 and WO 98/18763; such as 1[2-[(5-cyanopyridin-2-yl)aminoethylamino]acetyl-2-cyano-(S)-pyrrolidine and (2S)-1-[(2S)-2-amino-3,3-dimethylbutanoyl]-2-pyrrolidinecarbonitrile.
  • the DPP-IV inhibitor and the other antidiabetic agent are each administered in a pharmaceutically acceptable form, including pharmaceutically acceptable derivatives such as pharmaceutically acceptable salts, esters and solvates thereof, as appropriate of the relevant pharmaceutically active agent.
  • pharmaceutically acceptable derivatives such as pharmaceutically acceptable salts, esters and solvates thereof, as appropriate of the relevant pharmaceutically active agent.
  • the names used for the other antidiabetic agent may relate to a particular pharmaceutical form of the relevant active agent: It will be understood that all pharmaceutically acceptable forms of the active agents per se are encompassed by this invention.
  • Suitable pharmaceutically acceptable forms of the other antidiabetic agent depend upon the particular agent being used but include known pharmaceutically acceptable forms of the particular agent chosen. Such derivatives are found or are referred to in standard reference texts such as the British and US Pharmacopoeias, Remington's Pharmaceutical Sciences (Mack Publishing Co.), Martindale The Extra Pharmacopoeia (London, The Pharmaceutical Press) (for example see the 31 st Edition page 341 and pages cited therein) or the above mentioned publications.
  • Suitable pharmaceutically acceptable forms of the DPP-IV inhibitor include salted forms and solvated forms, include those described in WO 99/61431, for example the fumarate salt.
  • the DPP-IV inhibitor is prepared according to published methods, for example when the DPP-IV inhibitor is a compound of WO 99/61431 or a derivative thereof such as a pharmaceutically acceptable salt thereof or a pharmaceutically acceptable solvate thereof, then it is prepared according to methods disclosed therein. Similarly for the compounds of U.S. Pat. Nos. 6,124,305 and 6,107,317 and those of International Patent Application Publication Nos. WO 98/19998, WO 95/15309 and WO 98/18763.
  • Certain of the compounds mentioned herein may contain one or more chiral carbon atoms and hence can exist in two or more isomeric forms, all of which are encompassed by the invention, either as individual isomers or as mixtures of isomers, including racemates.
  • Certain of the compounds mentioned herein, in particular the thiazolidinediones such as Compound (I) may exist in one of several tautomeric forms, all of which are encompassed by the invention as individual tautomeric forms or as mixtures thereof.
  • the DPP-IV inhibitor and the other antidiabetic agent of choice is prepared according to known methods, such methods are found or are referred to in standard reference texts, such as the British and US Pharmacopoeias, Remington's Pharmaceutical Sciences (Mack Publishing Co.), Martindale The Extra Pharmacopoeia (London, The Pharmaceutical Press) (for example, see the 31st Edition page 341 and pages cited therein) or the above-mentioned publications.
  • condition associated with diabetes includes those conditions associated with the pre-diabetic state, conditions associated with diabetes mellitus itself and complications associated with diabetes mellitus.
  • condition associated with the pre-diabetic state includes conditions such as insulin resistance, including hereditary insulin resistance, impaired glucose tolerance and hyperinsulinaemia.
  • Constants associated with diabetes mellitus itself include hyperglycaemia, insulin resistance, including acquired insulin resistance and obesity. Further conditions associated with diabetes mellitus itself include hypertension and cardiovascular disease, especially atherosclerosis and conditions associated with insulin resistance. Conditions associated with insulin resistance include polycystic ovarian syndrome and steroid induced insulin resistance and gestational diabetes.
  • Complications associated with diabetes mellitus includes renal disease, especially renal disease associated with Type 2 diabetes, neuropathy and retinopathy.
  • Renal diseases associated with Type 2 diabetes include nephropathy, glomerulonephritis, glomerular sclerosis, nephrotic syndrome, hypertensive nephrosclerosis and end stage renal disease.
  • the term ‘pharmaceutically acceptable’ embraces both human and veterinary use: for example the term ‘pharmaceutically acceptable’ embraces a veterinarily acceptable compound.
  • Diabetes mellitus is preferably Type 2 diabetes.
  • the particularly beneficial effect on glycaemic control provided by the treatment of the invention is an improved therapeutic ratio for the combination of the invention relative to the therapeutic ratio for one compound of the combination when used alone and at a dose providing an equivalent efficacy to the combination of the invention.
  • the particularly beneficial effect on glycaemic control provided by the treatment of the invention is indicated to be a synergistic effect relative to the control expected from the effects of the individual active agents.
  • combining doses of the DPP-IV inhibitor and the other agent will produce a greater beneficial effect than can be achieved for either agent alone at a dose twice that used for that agent in the combination.
  • Glycaemic control may be characterised using conventional methods, for example by measurement of a typically used index of glycaemic control such as fasting plasma glucose or glycosylated haemoglobin (Hb A1c). Such indices are determined using standard methodology, for example those described in: Tuescher A, Richterich, P., Sau. med. Wschr. 101 (1971), 345 and 390 and Frank P., “Monitoring the Diabetic Patent with Glycosolated Hemoglobin Measurements,” Clinical Products 1988.
  • a typically used index of glycaemic control such as fasting plasma glucose or glycosylated haemoglobin (Hb A1c).
  • Hb A1c glycosylated haemoglobin
  • the dosage level of each of the active agents when used in accordance with the treatment of the invention will be less than would have been required from a purely additive effect upon glycaemic control.
  • the treatment of the invention will effect an improvement, relative to the individual agents, in the levels of advanced glycosylation end products (AGEs), and serum lipids including total cholesterol, HDL-cholesterol, LDL-cholesterol including improvements in the ratios thereof, in particular an improvement in serum lipids including total cholesterol, HDL-cholesterol, LDL-cholesterol including improvements in the ratios thereof.
  • AGEs advanced glycosylation end products
  • serum lipids including total cholesterol, HDL-cholesterol, LDL-cholesterol including improvements in the ratios thereof in particular an improvement in serum lipids including total cholesterol, HDL-cholesterol, LDL-cholesterol including improvements in the ratios thereof.
  • the active medicaments are preferably administered in pharmaceutical composition form.
  • such compositions can include both medicaments or one only of the medicaments.
  • the present invention also provides a pharmaceutical composition
  • a pharmaceutical composition comprising a dipeptidyl peptidase IV inhibitor and another antidiabetic agent and a pharmaceutically acceptable carrier therefor.
  • the invention also provides a process for preparing a pharmaceutical composition comprising a dipeptidyl peptidase IV inhibitor, another antidiabetic agent and a pharmaceutically acceptable carrier therefor, which process comprises admixing the dipeptidyl peptidase IV inhibitor, another antidiabetic agent and a pharmaceutically acceptable carrier.
  • compositions are preferably in a unit dosage form in an amount appropriate for the relevant daily dosage.
  • Suitable dosages, including especially unit dosages, of the DPP-IV inhibitor or the other antidiabetic agent include the known dosages including unit doses for these compounds as described or referred to in reference text such as the British and US Pharmacopoeias, Remington's Pharmaceutical Sciences (Mack Publishing Co.), Martindale The Extra Pharmacopoeia (London, The Pharmaceutical Press) (for example, see the 31 st Edition page 341 and pages cited therein) or the above mentioned publications.
  • suitable dosages for the DPP-IV inhibitors of WO 99/61431 include those disclosed therein, for example 0.01 to 30 mg per day or 0.01 to 10 mg per kilogram of body weight.
  • suitable doses of the other DPP-IV inhibitors mentioned herein include those mentioned in the relevant publications mentioned above.
  • a suitable amount of acarbose is in the range of from 25 to 600 mg, including 50 to 600 mg, for example 100 mg or 200 mg.
  • a suitable dosage of metformin is between 100 to 3000 mg, for example 250, 500 mg, 850 mg or 1000 mg.
  • a suitable amount of glibenclamide is in the range of from 2.5 to 20 mg, for example 10 mg or 20 mg; a suitable amount of glipizide is in the range of from 2.5 to 40 mg; a suitable amount of gliclazide is in the range of from 40 to 320 mg; a suitable amount of tolazamide is in the range of from 100 to 1000 mg; a suitable amount of tolbutamide is in the range of from 1000 to 3000 mg; a suitable amount of chlorpropamide is in the range of from 100 to 500 mg; and a suitable amount of gliquidone is in the range of from 15 to 180 mg. Also a suitable amount of glimepiride is 1 to 6 mg and a suitable amount of glipentide is 2.5 to 20 mg.
  • a suitable amount of repaglinide is in the range of from 0.5 mg to 20 mg, for example 16 mg. Also a suitable amount of nateglinide is 90 to 360 mg, for example 270 mg.
  • the composition comprises 2 to 12 mg of Compound (I).
  • composition comprises 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12 mg of Compound (I).
  • composition comprises 2 to 4, 4 to 8, or 8 to 12 mg of Compound (I).
  • composition comprises 2 to 4 mg of Compound (I).
  • composition comprises 4 to 8 mg of Compound (I).
  • composition comprises 8 to 12 mg of Compound (I).
  • the composition comprises 2 mg of Compound (I).
  • the composition comprises 4 mg of Compound (I).
  • the composition comprises 8 mg of Compound (I).
  • Suitable unit dosages of other insulin sensitisers include from 100 to 800 mg of troglitazone such as 200, 400, 600 or 800 mg or from 5 to 50 mg, including 10 to 40 mg, of pioglitazone, such as 20, 30 or 40 mg and also including 15, 30 and 45 mg of pioglitazone.
  • Suitable dosages of other PPAR ⁇ agonist insulin sensitisers include those disclosed for the respective agonist in the abovementioned applications, for example 2-(1-carboxy-2- ⁇ 4- ⁇ 2-(5-methyl-2-phenyl-oxazol-4-yl)-ethoxy]-phenyl ⁇ -ethylamino)-benzoic acid methyl ester and 2(S)-(2-benzoyl-phenylamino)-3- ⁇ 4-[2-(5-methyl-2-phenyl-oxazol-4-yl)-ethoxy]-phenyl ⁇ -propionic acid are suitably dosed in accordance with the dosages disclosed in WO 97/31907.
  • the medicaments may be administered from 1 to 6 times a day, but most preferably 1 or 2 times per day.
  • each particular active agent in any given composition can as required vary within a range of doses known to be required in respect of accepted dosage regimens for that compound. Dosages of each active agent can also be adapted as required to take into account advantageous effects of combining the agents as mentioned herein.
  • the DPP-IV inhibitor and the other antidiabetic agent are in a pharmaceutically acceptable form, including pharmaceutically acceptable derivatives such as pharmaceutically acceptable salts, esters and solvates thereof, as appropriate to the relevant pharmaceutically active agent chosen.
  • pharmaceutically acceptable derivatives such as pharmaceutically acceptable salts, esters and solvates thereof, as appropriate to the relevant pharmaceutically active agent chosen.
  • the names used for the antidiabetic agent may relate to a particular pharmaceutical form of the relevant active agent: It will be understood that all pharmaceutically acceptable forms of the active agents per se are encompassed by this invention.
  • the present invention also provides a pharmaceutical composition
  • a pharmaceutical composition comprising a dipeptidyl peptidase IV inhibitor, another antidiabetic agent and a pharmaceutically acceptable carrier therefor, for use as an active therapeutic substance.
  • the present invention provides a pharmaceutical composition
  • a pharmaceutical composition comprising a dipeptidyl peptidase IV inhibitor, another antidiabetic agent and a pharmaceutically acceptable carrier therefor, for use in the treatment of diabetes mellitus, especially Type 2 diabetes and conditions associated with diabetes mellitus.
  • compositions are adapted for oral administration. However, they may be adapted for other modes of administration, for example parenteral administration, sublingual or transdermal administration.
  • compositions may be in the form of tablets, capsules, powders, granules, lozenges, suppositories, reconstitutable powders, or liquid preparations, such as oral or sterile parenteral solutions or suspensions.
  • composition of the invention is in the form of a unit dose.
  • Unit dosage presentation forms for oral administration may be in tablet or capsule form and may as necessary contain conventional excipients such as binding agents, fillers, lubricants, glidants, disintegrants and wetting agents.
  • the solid oral compositions may be prepared by conventional methods of blending, filling or tabletting. Repeated blending operations may be used to distribute the active agent throughout those compositions employing large quantities of fillers. Such operations are of course conventional in the art.
  • the tablets may be coated according to methods well known in normal pharmaceutical practice, in particular with an enteric coating.
  • Oral liquid preparations may be in the form of, for example, emulsions, syrups, or elixirs, or may be presented as a dry product for reconstitution with water or other suitable vehicle before use.
  • Such liquid preparations may contain conventional additives such as suspending agents, for example sorbitol, syrup, methyl cellulose, gelatin, hydroxyethylcellulose, carboxymethylcellulose, aluminium stearate gel, hydrogenated edible fats; emulsifying agents, for example lecithin, sorbitan monooleate, or acacia; non-aqueous vehicles (which may include edible oils), for example almond oil, fractionated coconut oil, oily esters such as esters of glycerine, propylene glycol, or ethyl alcohol; preservatives, for example methyl or propyl p-hydroxybenzoate or sorbic acid; and if desired conventional flavouring or colouring agents.
  • suspending agents for example sorbitol, syrup, methyl cellulose,
  • fluid unit dosage forms are prepared utilizing the compound and a sterile vehicle, and, depending on the concentration used, can be either suspended or dissolved in the vehicle.
  • the compound can be dissolved in water for injection and filter sterilized before filling into a suitable vial or ampoule and sealing.
  • adjuvants such as a local anaesthetic, a preservative and buffering agent can be dissolved in the vehicle.
  • the composition can be frozen after filling into the vial and the water removed under vacuum.
  • Parenteral suspensions are prepared in substantially the same manner, except that the active compound is suspended in the vehicle instead of being dissolved, and sterilization cannot be accomplished by filtration.
  • the compound can be sterilized by exposure to ethylene oxide before suspending in the sterile vehicle.
  • a surfactant or wetting agent is included in the composition to facilitate uniform distribution of the compound.
  • Compositions may contain from 0.1% to 99% by weight, preferably from 10-60% by weight, of the active material, depending upon the method of administration.
  • binding agents include acacia, alginic acid, carboxymethylcellulose calcium, carboxymethylcellulose sodium, dextrates, dextrin, dextrose, ethylcellulose, gelatin, liquid glucose, guar gum, hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxypropyl methylcellulose, magnesium aluminium silicate, maltodextrin, methyl cellulose, polymethacrylates, polyvinylpyrrolidone, pregelatinised starch, sodium alginate, sorbitol, starch, syrup, tragacanth.
  • fillers include calcium carbonate, calcium phosphate, calcium sulphate, carboxymethylcellulose calcium, carboxymethylcellulose sodium, compressible sugar, confectioner's sugar, dextrates, dextrin, dextrose, dibasic calcium phosphate dihydrate, dibasic calcium phosphate, fructose, glyceryl palmitostearate, glycine, hydrogenated vegetable oil-type 1, kaolin, lactose, maize starch, magnesium carbonate, magnesium oxide, maltodextrin, mannitol, microcrystalline cellulose, polymethacrylates, potassium chloride, powdered cellulose, pregelatinised starch, sodium chloride, sorbitol, starch, sucrose, sugar spheres, talc, tribasic calcium phosphate, xylitol.
  • lubricants include calcium stearate, glyceryl monostearate, glyceryl palmitostearate, magnesium stearate, microcrystalline cellulose, sodium benzoate, sodium chloride, sodium lauryl sulphate, stearic acid, sodium stearyl fumarate, talc, zinc stearate.
  • glidants examples include colloidal silicon dioxide, powdered cellulose, magnesium trisilicate, silicon dioxide, talc.
  • disintegrants examples include alginic acid, carboxymethylcellulose calcium, carboxymethylcellulose sodium, colloidal silicon dioxide, croscarmellose sodium, crospovidone, guar gum, magnesium aluminium silicate, microcrystalline cellulose, methyl cellulose, polyvinylpyrrolidone, polacrilin potassium, pregelatinised starch, sodium alginate, sodium lauryl sulphate, sodium starch glycollate.
  • An example of a pharmaceutically acceptable wetting agent is sodium lauryl sulphate.
  • compositions are prepared and formulated according to conventional methods, such as those disclosed in standard reference texts, for example the British and US Pharmacopoeias, Remington's Pharmaceutical Sciences (Mack Publishing Co.), Martindale The Extra Pharmacopoeia (London, The Pharmaceutical Press) (for example, see the 31st Edition page 341 and pages cited therein) and Harry's Cosmeticology (Leonard Hill Books) or the above-mentioned publications.
  • the solid oral compositions may be prepared by conventional methods of blending, filling or tabletting. Repeated blending operations may be used to distribute the active agent throughout those compositions employing large quantities of fillers. Such operations are of course conventional in the art.
  • the tablets may be coated according to methods well known in normal pharmaceutical practice.
  • compositions may, if desired, be in the form of a pack accompanied by written or printed instructions for use.
  • Animals were dosed by oral gavage twice daily during the dark cycle for one week with vehicle (0.5% hydroxy-propylmethylcellulose (HPMC) plus 0.1% Tween 80), 100 mg/kg isoleucine thiazolidide (Compound (II)), 5 mg/kg Compound (I) in vehicle, or 5 mg/kg Compound (I) plus 100 mg/kg Compound (II) in vehicle.
  • vehicle 0.5% hydroxy-propylmethylcellulose (HPMC) plus 0.1% Tween 80
  • isoleucine thiazolidide Compound (II)
  • 5 mg/kg Compound (I) in vehicle or 5 mg/kg Compound (I) plus 100 mg/kg Compound (II) in vehicle.
  • rats were treated with test compound for 7 days and given an intraperitoneal injection of a glucose solution in saline 30 minutes after the last dose of test compound.
  • Rats were anesthetized with isofluorane for cardiac blood collection 30 minutes after administration of the glucose solution. Serum chemistry measurements were obtained using an automated chemistry analyzer (ILab600, Instrument Laboratory, Lexington, Mass.).
  • DPP-IV activity was measured using the fluorogenic substrate Gly-Pro-AMC (50 mM) according to the manufacturer's specification (Enzyme System Products, Livermore Calif.). The substrate was mixed with 50 mM Tris, pH 7.8, in plasma (20% final v/v) and the samples were incubated for 5-20 min at 30 oC. DPP-IV activity was determined by measuring fluorescence using a cytofluor spectrofluoremeter with the filters set at 360 nm excitation and 460 nm emission.

Landscapes

  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Diabetes (AREA)
  • Hematology (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Obesity (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Endocrinology (AREA)
  • Emergency Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Thiazole And Isothizaole Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

A method for the treatment of diabetes mellitus, especially Type 2 diabetes and conditions associated with diabetes mellitus in a mammal such as a human, which method comprises administering an effective, non-toxic and pharmaceutically acceptable amount of a dipeptidyl peptidase IV inhibitor and another antidiabetic agent, to a mammal in need thereof.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a Continuation of U.S. application Ser. No. 11/421,548 filed on Jun. 1, 2006; which is a Continuation of U.S. application Ser. No. 10/311,446 filed on Feb. 20, 2003; which is a U.S. National Phase Application of International Patent Application No. PCT/GB01/02696 filed on Jun. 19, 2001; which claims priority from Application No. GB 0014969.0 filed on Jun. 19, 2000; all of which are incorporated herein by reference in their entirety.
  • FIELD OF THE INVENTION
  • This invention relates to a method of treatment, in particular to a method for the treatment of diabetes mellitus, especially non-insulin dependent diabetes (NIDDM) or Type 2 diabetes and conditions associated with diabetes mellitus and to compositions for use in such method.
  • BACKGROUND OF THE INVENTION
  • Dipeptidyl peptidase IV (DPP-IV) is a post-proline/alanine cleaving serine protease found in various tissues of the body including kidney, liver, and intestine.
  • It is known that DPP-IV inhibitors may be useful for the treatment of impaired glucose tolerance and diabetes mellitus (International Patent Application Publication No. WO 99/61431; Pederson R A et al., Diabetes 1998 August, 47(8):1253-8; and Pauly R P et al., Metabolism 1999 March, 48(3):385-9). In particular WO 99/61431 discloses DPP-IV inhibitors comprising an amino acid and a thiazolidine or pyrrolidine group, and salts thereof, such as isoleucyl (or isoleucine) thiazolidide and salts thereof.
  • Other DPP-IV inhibitors include those disclosed in U.S. Pat. Nos. 6,124,305 and 6,107,317; International Patent Application Publication Nos. WO 98/19998, WO 95/15309 and WO 98/18763.
  • Alpha glucosidase inhibitor antihyperglycaemic agents (or alpha glucosidase inhibitors) and biguamide antihyperglycaemic agents (or biguamides) are commonly used in the treatment of Type 2 diabetes. Acarbose, voglibose, emiglitate and miglitol are examples of alpha glucosidase inhibitors. 1,1-Dimethylbiguanidine (or metformin) is a particular example of a biguamide.
  • Insulin secretagogues are compounds that promote increased secretion of insulin by the pancreatic beta cells. The sulphonylureas are well known examples of insulin secretagogues. The sulphonylureas act as hypoglycaemic agents and are used in the treatment of Type 2 diabetes. Examples of sulphonylureas include glibenclamide (or glyburide), glipizide, gliclazide, glimepiride, tolazamide and tolbutamide.
  • European Patent Application Publication No. 0,306,228 relates to certain thiazolidinedione derivatives disclosed as having antihyperglycaemic and hypolipidaemic activity. One particular thiazolidinedione disclosed in EP 0306228 is 5-[4-[2-(N-methyl-N-(2-pyridyl)amino)ethoxy]benzyl]thiazolidine-2,4-dione (hereinafter ‘Compound (I)’). WO 94/05659 discloses certain salts of Compound (I) including the maleate salt at example 1 thereof.
  • Compound (I) is an example of a class of anti-hyperglycaemic agents known as ‘insulin sensitisers’. In particular Compound (I) is a thiazolidinedione insulin sensitiser. Compound (I) is also a peroxisome proliferator-activated receptor (PPARγ) agonist insulin sensitiser.
  • European Patent Application Publication Nos.: 0008203, 0139421, 0032128, 0428312, 0489663, 0155845, 0257781, 0208420, 0177353, 0319189, 0332331, 0332332, 0528734, 0508740; International Patent Application Publication Nos. WO 92/18501, WO 93/02079, WO 93/22445; and U.S. Pat. Nos. 5,104,888 and 5,478,852, also disclose certain thiazolidinedione insulin sensitisers.
  • Another series of compounds generally recognised as having insulin sensitiser activity are those typified by the compounds disclosed in International Patent Applications, Publication Numbers WO 93/21166 and WO 94/01420. These compounds are herein referred to as ‘acyclic insulin sensitisers’. Other examples of acyclic insulin sensitisers are those disclosed in U.S. Pat. No. 5,232,945 and International Patent Application Publication Nos. WO 92/03425 and WO 91/19702.
  • Examples of other insulin sensitisers are those disclosed in European Patent Application Publication No. 0533933; Japanese Patent Application Publication No. 05271204; and U.S. Pat. No. 5,264,451.
  • The above-mentioned publications are incorporated herein by reference.
  • DETAILED DESCRIPTION OF THE INVENTION
  • It is now indicated that dipeptidyl peptidase IV inhibitors, such as the compounds of WO 99/61431, in combination with other antidiabetic agents provide a particularly beneficial effect on glycaemic control and that such combination is therefore suggested to be particularly useful for the treatment of diabetes mellitus, especially Type 2 diabetes and conditions associated with diabetes mellitus. Such combinations will provide improved blood glucose regulation without introducing unacceptable side-effects.
  • Accordingly, the invention provides a method for the treatment of diabetes mellitus, especially Type 2 diabetes and conditions associated with diabetes mellitus in a mammal such as a human, which method comprises administering an effective, non-toxic and pharmaceutically acceptable amount of a dipeptidyl peptidase IV inhibitor and another antidiabetic agent, to a mammal in need thereof.
  • In another aspect the invention provides a dipeptidyl peptidase IV inhibitor and another antidiabetic agent, for use in a method for the treatment of diabetes mellitus, especially Type 2 diabetes and conditions associated with diabetes mellitus.
  • The method comprises either co-administration of a dipeptidyl peptidase IV inhibitor and another antidiabetic agent or the sequential administration thereof.
  • Co-administration includes administration of a formulation which includes both a DPP-IV inhibitor and the other antidiabetic agent or the essentially simultaneous administration of separate formulations of each agent.
  • In another aspect the invention provides the use of a dipeptidyl peptidase IV inhibitor and another antidiabetic agent for use in the manufacture of a composition for the treatment of obesity, diabetes mellitus, especially Type 2 diabetes and conditions associated with diabetes mellitus.
  • Suitably, the other antidiabetic agent comprises one or more, generally one or two, of an alpha glucosidase inhibitor, a biguamide, an insulin secretagogue or an insulin sensitiser.
  • Suitably, the other antidiabetic agent is selected from an alpha glucosidase inhibitor, a biguamide, an insulin secretagogue or an insulin sensitiser.
  • A further suitable antidiabetic agent is insulin.
  • A suitable alpha glucosidase inhibitor is acarbose.
  • Other suitable alpha glucosidase inhibitors are emiglitate and miglitol. A further suitable alpha glucosidase inhibitor is voglibose.
  • Suitable biguamides include metformin, buformin or phenformin, especially metformin.
  • Suitable insulin secretagogues include sulphonylureas.
  • Suitable sulphonylureas include glibenclamide, glipizide, gliclazide, glimepiride, tolazamide and tolbutamide. Further sulphonylureas include acetohexamide, carbutamide, chlorpropamide, glibornuride, gliquidone, glisentide, glisolamide, glisoxepide, glyclopyamide and glycylamide. Also included is the sulphonylurea glipentide.
  • A further suitable insulin secretagogue is repaglinide. An additional insulin secretagogue is nateglinide.
  • Insulin sensitisers include PPARγ agonist insulin sensitisers including the compounds disclosed in WO 97/31907 and especially 2-(1-carboxy-2-{4-{2-(5-methyl-2-phenyl-oxazol-4-yl)-ethoxy]-phenyl}-ethylamino)-benzoic acid methyl ester and 2(S)-(2-benzoyl-phenylamino)-3-{4-[2-(5-methyl-2-phenyl-oxazol-4-yl)-ethoxy]-phenyl}-propionic acid.
  • Insulin sensitisers also include thiazolidinedione insulin sensitisers.
  • A preferred insulin sensitiser is Compound (I) or a derivative thereof.
  • Other suitable thiazolidinedione insulin sensitisers include (+)-5-[[4-[(3,4-dihydro-6-hydroxy-2,5,7,8-tetramethyl-2H-1-benzopyran-2-yl)methoxy]phenyl]methyl]-2,4-thiazolidinedione (or troglitazone), 5-[4-[(1-methylcyclohexyl)methoxy]benzyl]thiazolidine-2,4-dione (or ciglitazone), 5-[4-[2-(5-ethylpyridin-2-yl)ethoxy]benzyl]thiazolidine-2,4-dione (or pioglitazone) or 5-[(2-benzyl-2,3-dihydrobenzopyran)-5-ylmethyl)thiazolidine-2,4-dione (or englitazone).
  • A particular thiazolidinedione insulin sensitiser is 5-[4-[2-(5-ethylpyridin-2-yl)ethoxy]benzyl]thiazolidine-2,4-dione (or pioglitazone).
  • A particular thiazolidinedione insulin sensitiser is (+)-5-[[4-[(3,4-dihydro-6-hydroxy-2,5,7,8-tetramethyl-2H-1-benzopyran-2-yl)methoxy]phenyl]methyl]-2,4-thiazolidinedione (or troglitazone).
  • Particular DPP-IV inhibitors include the specific examples disclosed in WO99/61431, such as L-threo-isoleucyl pyrrolidide, L-allo-isoleucyl thiazolidide, L-allo-isoleucyl pyrrolidide and salts thereof. A particular DPP-IV inhibitor is isoleucine thiazolidide and salts thereof.
  • Further DPP-IV inhibitors include the specific examples disclosed in U.S. Pat. Nos. 6,124,305 and 6,107,317; International Patent Application Publication Nos. WO 98/19998, WO 95/15309 and WO 98/18763; such as 1[2-[(5-cyanopyridin-2-yl)aminoethylamino]acetyl-2-cyano-(S)-pyrrolidine and (2S)-1-[(2S)-2-amino-3,3-dimethylbutanoyl]-2-pyrrolidinecarbonitrile.
  • For the avoidance of doubt, the examples disclosed in each of the above-mentioned publications are specifically incorporated herein by reference, as individually disclosed compounds.
  • It will be understood that the DPP-IV inhibitor and the other antidiabetic agent are each administered in a pharmaceutically acceptable form, including pharmaceutically acceptable derivatives such as pharmaceutically acceptable salts, esters and solvates thereof, as appropriate of the relevant pharmaceutically active agent. In certain instances herein the names used for the other antidiabetic agent may relate to a particular pharmaceutical form of the relevant active agent: It will be understood that all pharmaceutically acceptable forms of the active agents per se are encompassed by this invention.
  • Suitable pharmaceutically acceptable forms of the other antidiabetic agent depend upon the particular agent being used but include known pharmaceutically acceptable forms of the particular agent chosen. Such derivatives are found or are referred to in standard reference texts such as the British and US Pharmacopoeias, Remington's Pharmaceutical Sciences (Mack Publishing Co.), Martindale The Extra Pharmacopoeia (London, The Pharmaceutical Press) (for example see the 31 st Edition page 341 and pages cited therein) or the above mentioned publications.
  • Suitable pharmaceutically acceptable forms of the DPP-IV inhibitor include salted forms and solvated forms, include those described in WO 99/61431, for example the fumarate salt.
  • The DPP-IV inhibitor is prepared according to published methods, for example when the DPP-IV inhibitor is a compound of WO 99/61431 or a derivative thereof such as a pharmaceutically acceptable salt thereof or a pharmaceutically acceptable solvate thereof, then it is prepared according to methods disclosed therein. Similarly for the compounds of U.S. Pat. Nos. 6,124,305 and 6,107,317 and those of International Patent Application Publication Nos. WO 98/19998, WO 95/15309 and WO 98/18763.
  • Certain of the compounds mentioned herein may contain one or more chiral carbon atoms and hence can exist in two or more isomeric forms, all of which are encompassed by the invention, either as individual isomers or as mixtures of isomers, including racemates. Certain of the compounds mentioned herein, in particular the thiazolidinediones such as Compound (I), may exist in one of several tautomeric forms, all of which are encompassed by the invention as individual tautomeric forms or as mixtures thereof.
  • The DPP-IV inhibitor and the other antidiabetic agent of choice is prepared according to known methods, such methods are found or are referred to in standard reference texts, such as the British and US Pharmacopoeias, Remington's Pharmaceutical Sciences (Mack Publishing Co.), Martindale The Extra Pharmacopoeia (London, The Pharmaceutical Press) (for example, see the 31st Edition page 341 and pages cited therein) or the above-mentioned publications.
  • When used herein the term ‘conditions associated with diabetes’ includes those conditions associated with the pre-diabetic state, conditions associated with diabetes mellitus itself and complications associated with diabetes mellitus.
  • When used herein the term ‘conditions associated with the pre-diabetic state’ includes conditions such as insulin resistance, including hereditary insulin resistance, impaired glucose tolerance and hyperinsulinaemia.
  • ‘Conditions associated with diabetes mellitus itself’ include hyperglycaemia, insulin resistance, including acquired insulin resistance and obesity. Further conditions associated with diabetes mellitus itself include hypertension and cardiovascular disease, especially atherosclerosis and conditions associated with insulin resistance. Conditions associated with insulin resistance include polycystic ovarian syndrome and steroid induced insulin resistance and gestational diabetes.
  • ‘Complications associated with diabetes mellitus’ includes renal disease, especially renal disease associated with Type 2 diabetes, neuropathy and retinopathy.
  • Renal diseases associated with Type 2 diabetes include nephropathy, glomerulonephritis, glomerular sclerosis, nephrotic syndrome, hypertensive nephrosclerosis and end stage renal disease.
  • As used herein the term ‘pharmaceutically acceptable’ embraces both human and veterinary use: for example the term ‘pharmaceutically acceptable’ embraces a veterinarily acceptable compound.
  • Diabetes mellitus is preferably Type 2 diabetes.
  • Suitably, the particularly beneficial effect on glycaemic control provided by the treatment of the invention is an improved therapeutic ratio for the combination of the invention relative to the therapeutic ratio for one compound of the combination when used alone and at a dose providing an equivalent efficacy to the combination of the invention.
  • In a preferred aspect, the particularly beneficial effect on glycaemic control provided by the treatment of the invention is indicated to be a synergistic effect relative to the control expected from the effects of the individual active agents.
  • In a further aspect of the invention, combining doses of the DPP-IV inhibitor and the other agent will produce a greater beneficial effect than can be achieved for either agent alone at a dose twice that used for that agent in the combination.
  • Glycaemic control may be characterised using conventional methods, for example by measurement of a typically used index of glycaemic control such as fasting plasma glucose or glycosylated haemoglobin (Hb A1c). Such indices are determined using standard methodology, for example those described in: Tuescher A, Richterich, P., Schweiz. med. Wschr. 101 (1971), 345 and 390 and Frank P., “Monitoring the Diabetic Patent with Glycosolated Hemoglobin Measurements,” Clinical Products 1988.
  • In a preferred aspect, the dosage level of each of the active agents when used in accordance with the treatment of the invention will be less than would have been required from a purely additive effect upon glycaemic control.
  • It is also considered that the treatment of the invention will effect an improvement, relative to the individual agents, in the levels of advanced glycosylation end products (AGEs), and serum lipids including total cholesterol, HDL-cholesterol, LDL-cholesterol including improvements in the ratios thereof, in particular an improvement in serum lipids including total cholesterol, HDL-cholesterol, LDL-cholesterol including improvements in the ratios thereof.
  • In the treatment of the invention, the active medicaments are preferably administered in pharmaceutical composition form. As indicated above, such compositions can include both medicaments or one only of the medicaments.
  • Accordingly, in one aspect the present invention also provides a pharmaceutical composition comprising a dipeptidyl peptidase IV inhibitor and another antidiabetic agent and a pharmaceutically acceptable carrier therefor.
  • Thus, in a further aspect, the invention also provides a process for preparing a pharmaceutical composition comprising a dipeptidyl peptidase IV inhibitor, another antidiabetic agent and a pharmaceutically acceptable carrier therefor, which process comprises admixing the dipeptidyl peptidase IV inhibitor, another antidiabetic agent and a pharmaceutically acceptable carrier.
  • The compositions are preferably in a unit dosage form in an amount appropriate for the relevant daily dosage.
  • Suitable dosages, including especially unit dosages, of the DPP-IV inhibitor or the other antidiabetic agent include the known dosages including unit doses for these compounds as described or referred to in reference text such as the British and US Pharmacopoeias, Remington's Pharmaceutical Sciences (Mack Publishing Co.), Martindale The Extra Pharmacopoeia (London, The Pharmaceutical Press) (for example, see the 31 st Edition page 341 and pages cited therein) or the above mentioned publications.
  • Thus, suitable dosages for the DPP-IV inhibitors of WO 99/61431 and include those disclosed therein, for example 0.01 to 30 mg per day or 0.01 to 10 mg per kilogram of body weight. Also, the suitable doses of the other DPP-IV inhibitors mentioned herein include those mentioned in the relevant publications mentioned above.
  • For the alpha glucosidase inhibitor, a suitable amount of acarbose is in the range of from 25 to 600 mg, including 50 to 600 mg, for example 100 mg or 200 mg.
  • For the biguamide, a suitable dosage of metformin is between 100 to 3000 mg, for example 250, 500 mg, 850 mg or 1000 mg.
  • For the insulin secretagogue, a suitable amount of glibenclamide is in the range of from 2.5 to 20 mg, for example 10 mg or 20 mg; a suitable amount of glipizide is in the range of from 2.5 to 40 mg; a suitable amount of gliclazide is in the range of from 40 to 320 mg; a suitable amount of tolazamide is in the range of from 100 to 1000 mg; a suitable amount of tolbutamide is in the range of from 1000 to 3000 mg; a suitable amount of chlorpropamide is in the range of from 100 to 500 mg; and a suitable amount of gliquidone is in the range of from 15 to 180 mg. Also a suitable amount of glimepiride is 1 to 6 mg and a suitable amount of glipentide is 2.5 to 20 mg.
  • A suitable amount of repaglinide is in the range of from 0.5 mg to 20 mg, for example 16 mg. Also a suitable amount of nateglinide is 90 to 360 mg, for example 270 mg.
  • In one particular aspect, the composition comprises 2 to 12 mg of Compound (I).
  • Suitably the composition comprises 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12 mg of Compound (I).
  • Particularly, the composition comprises 2 to 4, 4 to 8, or 8 to 12 mg of Compound (I).
  • Particularly, the composition comprises 2 to 4 mg of Compound (I).
  • Particularly, the composition comprises 4 to 8 mg of Compound (I).
  • Particularly, the composition comprises 8 to 12 mg of Compound (I).
  • Preferably, the composition comprises 2 mg of Compound (I).
  • Preferably, the composition comprises 4 mg of Compound (I).
  • Preferably, the composition comprises 8 mg of Compound (I).
  • Suitable unit dosages of other insulin sensitisers include from 100 to 800 mg of troglitazone such as 200, 400, 600 or 800 mg or from 5 to 50 mg, including 10 to 40 mg, of pioglitazone, such as 20, 30 or 40 mg and also including 15, 30 and 45 mg of pioglitazone.
  • Suitable dosages of other PPARγ agonist insulin sensitisers include those disclosed for the respective agonist in the abovementioned applications, for example 2-(1-carboxy-2-{4-{2-(5-methyl-2-phenyl-oxazol-4-yl)-ethoxy]-phenyl}-ethylamino)-benzoic acid methyl ester and 2(S)-(2-benzoyl-phenylamino)-3-{4-[2-(5-methyl-2-phenyl-oxazol-4-yl)-ethoxy]-phenyl}-propionic acid are suitably dosed in accordance with the dosages disclosed in WO 97/31907.
  • In the treatment the medicaments may be administered from 1 to 6 times a day, but most preferably 1 or 2 times per day.
  • Also, the dosages of each particular active agent in any given composition can as required vary within a range of doses known to be required in respect of accepted dosage regimens for that compound. Dosages of each active agent can also be adapted as required to take into account advantageous effects of combining the agents as mentioned herein.
  • It will be understood that the DPP-IV inhibitor and the other antidiabetic agent are in a pharmaceutically acceptable form, including pharmaceutically acceptable derivatives such as pharmaceutically acceptable salts, esters and solvates thereof, as appropriate to the relevant pharmaceutically active agent chosen. In certain instances herein the names used for the antidiabetic agent may relate to a particular pharmaceutical form of the relevant active agent: It will be understood that all pharmaceutically acceptable forms of the active agents per se are encompassed by this invention.
  • The present invention also provides a pharmaceutical composition comprising a dipeptidyl peptidase IV inhibitor, another antidiabetic agent and a pharmaceutically acceptable carrier therefor, for use as an active therapeutic substance.
  • In particular, the present invention provides a pharmaceutical composition comprising a dipeptidyl peptidase IV inhibitor, another antidiabetic agent and a pharmaceutically acceptable carrier therefor, for use in the treatment of diabetes mellitus, especially Type 2 diabetes and conditions associated with diabetes mellitus.
  • Usually the compositions are adapted for oral administration. However, they may be adapted for other modes of administration, for example parenteral administration, sublingual or transdermal administration.
  • The compositions may be in the form of tablets, capsules, powders, granules, lozenges, suppositories, reconstitutable powders, or liquid preparations, such as oral or sterile parenteral solutions or suspensions.
  • In order to obtain consistency of administration it is preferred that a composition of the invention is in the form of a unit dose.
  • Unit dosage presentation forms for oral administration may be in tablet or capsule form and may as necessary contain conventional excipients such as binding agents, fillers, lubricants, glidants, disintegrants and wetting agents.
  • The solid oral compositions may be prepared by conventional methods of blending, filling or tabletting. Repeated blending operations may be used to distribute the active agent throughout those compositions employing large quantities of fillers. Such operations are of course conventional in the art. The tablets may be coated according to methods well known in normal pharmaceutical practice, in particular with an enteric coating.
  • Oral liquid preparations may be in the form of, for example, emulsions, syrups, or elixirs, or may be presented as a dry product for reconstitution with water or other suitable vehicle before use. Such liquid preparations may contain conventional additives such as suspending agents, for example sorbitol, syrup, methyl cellulose, gelatin, hydroxyethylcellulose, carboxymethylcellulose, aluminium stearate gel, hydrogenated edible fats; emulsifying agents, for example lecithin, sorbitan monooleate, or acacia; non-aqueous vehicles (which may include edible oils), for example almond oil, fractionated coconut oil, oily esters such as esters of glycerine, propylene glycol, or ethyl alcohol; preservatives, for example methyl or propyl p-hydroxybenzoate or sorbic acid; and if desired conventional flavouring or colouring agents.
  • For parenteral administration, fluid unit dosage forms are prepared utilizing the compound and a sterile vehicle, and, depending on the concentration used, can be either suspended or dissolved in the vehicle. In preparing solutions the compound can be dissolved in water for injection and filter sterilized before filling into a suitable vial or ampoule and sealing. Advantageously, adjuvants such as a local anaesthetic, a preservative and buffering agent can be dissolved in the vehicle. To enhance the stability, the composition can be frozen after filling into the vial and the water removed under vacuum. Parenteral suspensions are prepared in substantially the same manner, except that the active compound is suspended in the vehicle instead of being dissolved, and sterilization cannot be accomplished by filtration. The compound can be sterilized by exposure to ethylene oxide before suspending in the sterile vehicle. Advantageously, a surfactant or wetting agent is included in the composition to facilitate uniform distribution of the compound.
  • Compositions may contain from 0.1% to 99% by weight, preferably from 10-60% by weight, of the active material, depending upon the method of administration.
  • Examples of binding agents include acacia, alginic acid, carboxymethylcellulose calcium, carboxymethylcellulose sodium, dextrates, dextrin, dextrose, ethylcellulose, gelatin, liquid glucose, guar gum, hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxypropyl methylcellulose, magnesium aluminium silicate, maltodextrin, methyl cellulose, polymethacrylates, polyvinylpyrrolidone, pregelatinised starch, sodium alginate, sorbitol, starch, syrup, tragacanth.
  • Examples of fillers include calcium carbonate, calcium phosphate, calcium sulphate, carboxymethylcellulose calcium, carboxymethylcellulose sodium, compressible sugar, confectioner's sugar, dextrates, dextrin, dextrose, dibasic calcium phosphate dihydrate, dibasic calcium phosphate, fructose, glyceryl palmitostearate, glycine, hydrogenated vegetable oil-type 1, kaolin, lactose, maize starch, magnesium carbonate, magnesium oxide, maltodextrin, mannitol, microcrystalline cellulose, polymethacrylates, potassium chloride, powdered cellulose, pregelatinised starch, sodium chloride, sorbitol, starch, sucrose, sugar spheres, talc, tribasic calcium phosphate, xylitol.
  • Examples of lubricants include calcium stearate, glyceryl monostearate, glyceryl palmitostearate, magnesium stearate, microcrystalline cellulose, sodium benzoate, sodium chloride, sodium lauryl sulphate, stearic acid, sodium stearyl fumarate, talc, zinc stearate.
  • Examples of glidants include colloidal silicon dioxide, powdered cellulose, magnesium trisilicate, silicon dioxide, talc.
  • Examples of disintegrants include alginic acid, carboxymethylcellulose calcium, carboxymethylcellulose sodium, colloidal silicon dioxide, croscarmellose sodium, crospovidone, guar gum, magnesium aluminium silicate, microcrystalline cellulose, methyl cellulose, polyvinylpyrrolidone, polacrilin potassium, pregelatinised starch, sodium alginate, sodium lauryl sulphate, sodium starch glycollate.
  • An example of a pharmaceutically acceptable wetting agent is sodium lauryl sulphate.
  • The compositions are prepared and formulated according to conventional methods, such as those disclosed in standard reference texts, for example the British and US Pharmacopoeias, Remington's Pharmaceutical Sciences (Mack Publishing Co.), Martindale The Extra Pharmacopoeia (London, The Pharmaceutical Press) (for example, see the 31st Edition page 341 and pages cited therein) and Harry's Cosmeticology (Leonard Hill Books) or the above-mentioned publications.
  • For example, the solid oral compositions may be prepared by conventional methods of blending, filling or tabletting. Repeated blending operations may be used to distribute the active agent throughout those compositions employing large quantities of fillers. Such operations are of course conventional in the art. The tablets may be coated according to methods well known in normal pharmaceutical practice.
  • Compositions may, if desired, be in the form of a pack accompanied by written or printed instructions for use.
  • No adverse toxicological effects are expected for the compositions or methods of the invention in the above mentioned dosage ranges.
  • Pharmacological Data
  • Age and weight matched male ZDF fa/fa rats (Genetic Models, Inc., Indianapolis, Ind.) were housed individually at 72° F. and 50% relative humidity with a 12 h light/dark cycle and fed PMI 5008 Formulab Diet (PMI Nutrition International, Saint Louis, Mo.).
  • Animals were dosed by oral gavage twice daily during the dark cycle for one week with vehicle (0.5% hydroxy-propylmethylcellulose (HPMC) plus 0.1% Tween 80), 100 mg/kg isoleucine thiazolidide (Compound (II)), 5 mg/kg Compound (I) in vehicle, or 5 mg/kg Compound (I) plus 100 mg/kg Compound (II) in vehicle.
  • For glucose tolerance measurements, rats were treated with test compound for 7 days and given an intraperitoneal injection of a glucose solution in saline 30 minutes after the last dose of test compound.
  • Rats were anesthetized with isofluorane for cardiac blood collection 30 minutes after administration of the glucose solution. Serum chemistry measurements were obtained using an automated chemistry analyzer (ILab600, Instrument Laboratory, Lexington, Mass.).
  • DPP-IV activity was measured using the fluorogenic substrate Gly-Pro-AMC (50 mM) according to the manufacturer's specification (Enzyme System Products, Livermore Calif.). The substrate was mixed with 50 mM Tris, pH 7.8, in plasma (20% final v/v) and the samples were incubated for 5-20 min at 30 oC. DPP-IV activity was determined by measuring fluorescence using a cytofluor spectrofluoremeter with the filters set at 360 nm excitation and 460 nm emission.
  • Results from each group (n=6) were averaged and compared to vehicle treated rats to determine significance and are shown in Table I.
  • The following data illustrates the invention but does not limit it in any way.
    TABLE I
    ZDF rats, treated BID for 7 days
    Plasma % HbA1C Plasma Glucose
    DPP-IV activity (7 day change) (30 min GTT)
    Control 5544 ± 485 1.63 ± 1.12 695 ± 24
    Compound (I) 4104 ± 399* 0.79 ± 0.54* 665 ± 40
    (5 mg/kg)
    Compound (II)  962 ± 53* 1.81 ± 1.24 684 ± 60
    (100 mg/kg)
    Combination  703 ± 16* 0.41 ± 0.28* 454 ± 52*

    *P.0.05

Claims (3)

1. A method for the treatment of Type 2 diabetes mellitus and conditions associated therewith in a mammal comprising administering:
a dipeptidyl peptidase IV inhibitor; and
5-[4-[2-(N-methyl-N-(2-pyridyl)amino)ethoxy]benzyl]thiazolidine-2,4-dione or a salt thereof.
2. A pharmaceutical composition comprising:
a dipeptidyl peptidase IV inhibitor;
5-[4-[2-(N-methyl-N-(2-pyridyl)amino)ethoxy]benzyl]thiazolidine-2,4-dione or a salt thereof; and
one or more pharmaceutically acceptable carrier.
3. A combination comprising:
a dipeptidyl peptidase IV inhibitor; and
5-[4-[2-(N-methyl-N-(2-pyridyl)amino)ethoxy]benzyl]thiazolidine-2,4-dione or a salt thereof.
US11/758,259 2000-06-19 2007-06-05 Combinations of dipeptidyl peptidase iv inhibitors and other antidiabetic agents for the treatment of diabetes mellitus Abandoned US20070238756A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/758,259 US20070238756A1 (en) 2000-06-19 2007-06-05 Combinations of dipeptidyl peptidase iv inhibitors and other antidiabetic agents for the treatment of diabetes mellitus

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
GB0014969.0 2000-06-19
GBGB0014969.0A GB0014969D0 (en) 2000-06-19 2000-06-19 Novel method of treatment
US10/311,446 US7078397B2 (en) 2000-06-19 2001-06-19 Combinations of dipeptidyl peptidase IV inhibitors and other antidiabetic agents for the treatment of diabetes mellitus
PCT/GB2001/002696 WO2001097808A1 (en) 2000-06-19 2001-06-19 Combinations of depeptidyl peptidase iv inhibitors and other antidiabetic agents for the treatment of diabete mellitus
US11/421,548 US7241756B2 (en) 2000-06-19 2006-06-01 Combinations of dipeptidyl peptidase IV inhibitors and other antidiabetic agents for the treatment of diabetes mellitus
US11/758,259 US20070238756A1 (en) 2000-06-19 2007-06-05 Combinations of dipeptidyl peptidase iv inhibitors and other antidiabetic agents for the treatment of diabetes mellitus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/421,548 Continuation US7241756B2 (en) 2000-06-19 2006-06-01 Combinations of dipeptidyl peptidase IV inhibitors and other antidiabetic agents for the treatment of diabetes mellitus

Publications (1)

Publication Number Publication Date
US20070238756A1 true US20070238756A1 (en) 2007-10-11

Family

ID=9893956

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/421,548 Expired - Fee Related US7241756B2 (en) 2000-06-19 2006-06-01 Combinations of dipeptidyl peptidase IV inhibitors and other antidiabetic agents for the treatment of diabetes mellitus
US11/758,259 Abandoned US20070238756A1 (en) 2000-06-19 2007-06-05 Combinations of dipeptidyl peptidase iv inhibitors and other antidiabetic agents for the treatment of diabetes mellitus

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/421,548 Expired - Fee Related US7241756B2 (en) 2000-06-19 2006-06-01 Combinations of dipeptidyl peptidase IV inhibitors and other antidiabetic agents for the treatment of diabetes mellitus

Country Status (29)

Country Link
US (2) US7241756B2 (en)
EP (2) EP1292300B1 (en)
JP (1) JP2003535898A (en)
KR (1) KR20030019440A (en)
CN (1) CN1443068A (en)
AP (1) AP2002002703A0 (en)
AT (1) ATE419850T1 (en)
AU (3) AU2001264148A1 (en)
BG (1) BG107385A (en)
BR (1) BR0111800A (en)
CA (1) CA2413299A1 (en)
CZ (1) CZ20024069A3 (en)
DE (1) DE60137329D1 (en)
DZ (1) DZ3390A1 (en)
EA (1) EA200300036A1 (en)
EC (1) ECSP024397A (en)
GB (1) GB0014969D0 (en)
HR (1) HRP20020994A2 (en)
HU (1) HUP0301194A3 (en)
IL (2) IL153529A0 (en)
MA (1) MA25820A1 (en)
MX (1) MXPA02012763A (en)
NO (1) NO20026038L (en)
OA (1) OA12295A (en)
PL (1) PL360493A1 (en)
SK (1) SK17832002A3 (en)
WO (1) WO2001097808A1 (en)
YU (1) YU1703A (en)
ZA (1) ZA200300203B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8633199B2 (en) 2008-05-14 2014-01-21 Sanwa Kagaku Kenkyusho Co., Ltd. Medicine consisting of concomitant use or combination of DPP-IV inhibitor and other diabetic medicine

Families Citing this family (105)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19828113A1 (en) 1998-06-24 2000-01-05 Probiodrug Ges Fuer Arzneim Prodrugs of Dipeptidyl Peptidase IV Inhibitors
DE19940130A1 (en) 1999-08-24 2001-03-01 Probiodrug Ges Fuer Arzneim New effectors of Dipeptidyl Peptidase IV for topical use
GB0014969D0 (en) * 2000-06-19 2000-08-09 Smithkline Beecham Plc Novel method of treatment
US6890905B2 (en) 2001-04-02 2005-05-10 Prosidion Limited Methods for improving islet signaling in diabetes mellitus and for its prevention
GB0109146D0 (en) * 2001-04-11 2001-05-30 Ferring Bv Treatment of type 2 diabetes
AU2002321135B2 (en) * 2001-06-27 2007-11-08 Probiodrug Ag Dipepitdyl peptidase IV inhibitors and their uses as anti-cancer agents
US7368421B2 (en) 2001-06-27 2008-05-06 Probiodrug Ag Use of dipeptidyl peptidase IV inhibitors in the treatment of multiple sclerosis
DE10150203A1 (en) 2001-10-12 2003-04-17 Probiodrug Ag Use of dipeptidyl peptidase IV inhibitor in treatment of cancer
US20030130199A1 (en) 2001-06-27 2003-07-10 Von Hoersten Stephan Dipeptidyl peptidase IV inhibitors and their uses as anti-cancer agents
KR20040015298A (en) 2001-06-27 2004-02-18 스미스클라인 비참 코포레이션 Fluoropyrrolidines as dipeptidyl peptidase inhibitors
US6844316B2 (en) 2001-09-06 2005-01-18 Probiodrug Ag Inhibitors of dipeptidyl peptidase I
DE20220238U1 (en) 2002-02-28 2003-05-08 Probiodrug AG, 06120 Halle Glutaminyl based DPIV inhibitors
GB0212412D0 (en) * 2002-05-29 2002-07-10 Novartis Ag Combination of organic compounds
AU2007203210B2 (en) * 2002-05-29 2009-10-01 Novartis Ag Combination of a DPP IV inhibitor and a cardiovascular compound
US6710040B1 (en) 2002-06-04 2004-03-23 Pfizer Inc. Fluorinated cyclic amides as dipeptidyl peptidase IV inhibitors
SI1532149T1 (en) * 2002-08-21 2010-05-31 Boehringer Ingelheim Pharma 8-?á3-AMINO-PIPERIDIN-1-YL?å-XANTHINES, THE PRODUCTION THEREOF AND THE USE OF THE SAME AS MEDICAMENTS
US7407955B2 (en) 2002-08-21 2008-08-05 Boehringer Ingelheim Pharma Gmbh & Co., Kg 8-[3-amino-piperidin-1-yl]-xanthines, the preparation thereof and their use as pharmaceutical compositions
EP1543023B1 (en) * 2002-09-18 2010-03-17 Prosidion Limited Secondary binding site of dipeptidyl peptidase iv (dp iv)
KR100867485B1 (en) * 2002-09-26 2008-11-10 에자이 알앤드디 매니지먼트 가부시키가이샤 Combination drug
US7550590B2 (en) 2003-03-25 2009-06-23 Takeda Pharmaceutical Company Limited Dipeptidyl peptidase inhibitors
EP1638554A1 (en) * 2003-06-27 2006-03-29 Dr. Reddy's Research Foundation Compositions comprising balaglitazone and further antidiabetic compounds
US7678909B1 (en) 2003-08-13 2010-03-16 Takeda Pharmaceutical Company Limited Dipeptidyl peptidase inhibitors
US7169926B1 (en) 2003-08-13 2007-01-30 Takeda Pharmaceutical Company Limited Dipeptidyl peptidase inhibitors
ZA200602051B (en) 2003-08-13 2007-10-31 Takeda Pharmaceutical 4-pyrimidone derivatives and their use as peptidyl peptidase inhibitors
WO2005026148A1 (en) 2003-09-08 2005-03-24 Takeda San Diego, Inc. Dipeptidyl peptidase inhibitors
CN1292747C (en) * 2003-09-16 2007-01-03 广东省心血管病研究所 Compound formulation for treating hypertension
BRPI0415409A (en) 2003-10-15 2006-12-05 Probiodrug Ag use of glutaminyl and glutamate cyclase effectors
JP2007509971A (en) * 2003-10-31 2007-04-19 アルザ・コーポレーシヨン Compositions and dosage forms for increased absorption of metformin
KR20170005163A (en) 2003-11-17 2017-01-11 노파르티스 아게 Use of dipeptidyl peptidase iv inhibitors
EP2165703A3 (en) 2004-01-20 2012-03-28 Novartis Pharma AG Direct compression formulation and process
US7501426B2 (en) 2004-02-18 2009-03-10 Boehringer Ingelheim International Gmbh 8-[3-amino-piperidin-1-yl]-xanthines, their preparation and their use as pharmaceutical compositions
US7732446B1 (en) 2004-03-11 2010-06-08 Takeda Pharmaceutical Company Limited Dipeptidyl peptidase inhibitors
CN102127053A (en) 2004-03-15 2011-07-20 武田药品工业株式会社 Dipeptidyl peptidase inhibitors
US7687638B2 (en) 2004-06-04 2010-03-30 Takeda San Diego, Inc. Dipeptidyl peptidase inhibitors
WO2006019965A2 (en) 2004-07-16 2006-02-23 Takeda San Diego, Inc. Dipeptidyl peptidase inhibitors
US20070259927A1 (en) * 2004-08-26 2007-11-08 Takeda Pharmaceutical Company Limited Remedy for Diabetes
AU2005299808B2 (en) * 2004-10-25 2009-08-20 Novartis Ag Combination of DPP-IV inhibitor, PPAR antidiabetic and metformin
DE102004054054A1 (en) 2004-11-05 2006-05-11 Boehringer Ingelheim Pharma Gmbh & Co. Kg Process for preparing chiral 8- (3-amino-piperidin-1-yl) -xanthines
US7872124B2 (en) 2004-12-21 2011-01-18 Takeda Pharmaceutical Company Limited Dipeptidyl peptidase inhibitors
DOP2006000008A (en) 2005-01-10 2006-08-31 Arena Pharm Inc COMBINED THERAPY FOR THE TREATMENT OF DIABETES AND RELATED AFFECTIONS AND FOR THE TREATMENT OF AFFECTIONS THAT IMPROVE THROUGH AN INCREASE IN THE BLOOD CONCENTRATION OF GLP-1
JP2008115080A (en) * 2005-04-22 2008-05-22 Taisho Pharmaceutical Co Ltd Combined pharmaceutical
PL1894567T3 (en) * 2005-06-03 2013-01-31 Mitsubishi Tanabe Pharma Corp Concomitant pharmaceutical agents and use thereof
GT200600218A (en) * 2005-06-10 2007-03-28 FORMULATION AND PROCESS OF DIRECT COMPRESSION
DE102005035891A1 (en) 2005-07-30 2007-02-08 Boehringer Ingelheim Pharma Gmbh & Co. Kg 8- (3-amino-piperidin-1-yl) -xanthines, their preparation and their use as pharmaceuticals
DK1942898T4 (en) 2005-09-14 2014-06-02 Takeda Pharmaceutical Dipeptidyl peptidase inhibitors for the treatment of diabetes
KR101368988B1 (en) 2005-09-16 2014-02-28 다케다 야쿠힌 고교 가부시키가이샤 Dipeptidyl peptidase inhibitors
AU2006292377B2 (en) * 2005-09-20 2011-03-03 Emisphere Technologies, Inc. Use of a DPP-IV inhibitor to reduce hypoglycemic events
TW200738266A (en) * 2005-09-29 2007-10-16 Sankyo Co Pharmaceutical agent containing insulin resistance improving agent
BRPI0620718A2 (en) * 2005-10-28 2011-11-22 Takeda Pharmaceutical agent for the protection of the pancreas, and, use of a glucose-lowering drug
CN101365432B (en) * 2005-12-16 2011-06-22 默沙东公司 Pharmaceutical compositions of combinations of dipeptidyl peptidase-4 inhibitors with metformin
GB0526291D0 (en) 2005-12-23 2006-02-01 Prosidion Ltd Therapeutic method
UA95789C2 (en) * 2005-12-28 2011-09-12 Такеда Фармасьютикал Компани Лимитед Agent for the pancreas protection and use thereof
WO2007112347A1 (en) 2006-03-28 2007-10-04 Takeda Pharmaceutical Company Limited Dipeptidyl peptidase inhibitors
PE20071221A1 (en) 2006-04-11 2007-12-14 Arena Pharm Inc GPR119 RECEPTOR AGONISTS IN METHODS TO INCREASE BONE MASS AND TO TREAT OSTEOPOROSIS AND OTHER CONDITIONS CHARACTERIZED BY LOW BONE MASS, AND COMBINED THERAPY RELATED TO THESE AGONISTS
EP1852108A1 (en) 2006-05-04 2007-11-07 Boehringer Ingelheim Pharma GmbH & Co.KG DPP IV inhibitor formulations
PE20080251A1 (en) 2006-05-04 2008-04-25 Boehringer Ingelheim Int USES OF DPP IV INHIBITORS
NO347644B1 (en) 2006-05-04 2024-02-12 Boehringer Ingelheim Int Polymorphs
US8324383B2 (en) 2006-09-13 2012-12-04 Takeda Pharmaceutical Company Limited Methods of making polymorphs of benzoate salt of 2-[[6-[(3R)-3-amino-1-piperidinyl]-3,4-dihydro-3-methyl-2,4-dioxo-1(2H)-pyrimidinyl]methyl]-benzonitrile
TW200838536A (en) 2006-11-29 2008-10-01 Takeda Pharmaceutical Polymorphs of succinate salt of 2-[6-(3-amino-piperidin-1-yl)-3-methyl-2,4-dioxo-3,4-dihydro-2H-pyrimidin-1-ylmethy]-4-fluor-benzonitrile and methods of use therefor
PL2107905T3 (en) * 2007-02-01 2011-04-29 Takeda Pharmaceuticals Co Solid preparation comprising alogliptin and pioglitazone
US8093236B2 (en) 2007-03-13 2012-01-10 Takeda Pharmaceuticals Company Limited Weekly administration of dipeptidyl peptidase inhibitors
US20080064701A1 (en) * 2007-04-24 2008-03-13 Ramesh Sesha Anti-diabetic combinations
US20070172525A1 (en) * 2007-03-15 2007-07-26 Ramesh Sesha Anti-diabetic combinations
MY159203A (en) 2007-07-19 2016-12-30 Takeda Pharmaceuticals Co Solid preparation comprising alogliptin and metformin hydrochloride
CL2008002427A1 (en) 2007-08-16 2009-09-11 Boehringer Ingelheim Int Pharmaceutical composition comprising 1-chloro-4- (bd-glucopyranos-1-yl) -2- [4 - ((s) -tetrahydrofuran-3-yloxy) benzyl] -benzene combined with 1 - [(4-methylquinazolin- 2-yl) methyl] -3-methyl-7- (2-butyn-1-yl) -8- (3- (r) -aminopiperidin-1-yl) xanthine; and its use to treat type 2 diabetes mellitus.
CL2008003653A1 (en) 2008-01-17 2010-03-05 Mitsubishi Tanabe Pharma Corp Use of a glucopyranosyl-derived sglt inhibitor and a selected dppiv inhibitor to treat diabetes; and pharmaceutical composition.
US8551524B2 (en) * 2008-03-14 2013-10-08 Iycus, Llc Anti-diabetic combinations
AR071175A1 (en) 2008-04-03 2010-06-02 Boehringer Ingelheim Int PHARMACEUTICAL COMPOSITION THAT INCLUDES AN INHIBITOR OF DIPEPTIDIL-PEPTIDASA-4 (DPP4) AND A COMPARING PHARMACO
EP2146210A1 (en) 2008-04-07 2010-01-20 Arena Pharmaceuticals, Inc. Methods of using A G protein-coupled receptor to identify peptide YY (PYY) secretagogues and compounds useful in the treatment of conditions modulated by PYY
WO2009128360A1 (en) * 2008-04-18 2009-10-22 大日本住友製薬株式会社 Therapeutic agent for diabetes
KR20200118243A (en) 2008-08-06 2020-10-14 베링거 인겔하임 인터내셔날 게엠베하 Treatment for diabetes in patients inappropriate for metformin therapy
UY32030A (en) 2008-08-06 2010-03-26 Boehringer Ingelheim Int "TREATMENT FOR DIABETES IN INAPPROPRIATE PATIENTS FOR THERAPY WITH METFORMIN"
MX2011002558A (en) 2008-09-10 2011-04-26 Boehringer Ingelheim Int Combination therapy for the treatment of diabetes and related conditions.
US20200155558A1 (en) 2018-11-20 2020-05-21 Boehringer Ingelheim International Gmbh Treatment for diabetes in patients with insufficient glycemic control despite therapy with an oral antidiabetic drug
KR101054911B1 (en) 2008-10-17 2011-08-05 동아제약주식회사 Pharmaceutical composition for the prevention and treatment of diabetes or obesity containing a compound that inhibits the activity of dipeptidyl peptidase-IV and other anti-diabetic or anti-obesity drugs as an active ingredient
US8865729B2 (en) 2008-12-23 2014-10-21 Boehringer Ingelheim International Gmbh Salt forms of a xanthine compound
TW201036975A (en) 2009-01-07 2010-10-16 Boehringer Ingelheim Int Treatment for diabetes in patients with inadequate glycemic control despite metformin therapy
CN104906582A (en) 2009-02-13 2015-09-16 勃林格殷格翰国际有限公司 Pharmaceutical composition comprising a SGLT2 inhibitor, a DPP-IV inhibitor and optionally a further antidiabetic agent and uses thereof
AR077642A1 (en) 2009-07-09 2011-09-14 Arena Pharm Inc METABOLISM MODULATORS AND THE TREATMENT OF DISORDERS RELATED TO THE SAME
CA2777231A1 (en) * 2009-10-23 2011-04-28 Merck Sharp & Dohme Corp. Pharmaceutical compositions of combinations of dipeptidyl peptidase-4 inhibitors with pioglitazone
AU2010323068B2 (en) 2009-11-27 2015-09-03 Boehringer Ingelheim International Gmbh Treatment of genotyped diabetic patients with DPP-IV inhibitors such as linagliptin
CN102918027A (en) 2010-04-06 2013-02-06 艾尼纳制药公司 Modulators of the gpr119 receptor and the treatment of disorders related thereto
WO2011138421A1 (en) 2010-05-05 2011-11-10 Boehringer Ingelheim International Gmbh Combination therapy
KR20190050871A (en) 2010-06-24 2019-05-13 베링거 인겔하임 인터내셔날 게엠베하 Diabetes therapy
BR112013008100A2 (en) 2010-09-22 2016-08-09 Arena Pharm Inc "gpr19 receptor modulators and the treatment of disorders related thereto."
AR083878A1 (en) 2010-11-15 2013-03-27 Boehringer Ingelheim Int VASOPROTECTORA AND CARDIOPROTECTORA ANTIDIABETIC THERAPY, LINAGLIPTINA, TREATMENT METHOD
AR085689A1 (en) 2011-03-07 2013-10-23 Boehringer Ingelheim Int PHARMACEUTICAL COMPOSITIONS OF METFORMIN, LINAGLIPTINE AND AN SGLT-2 INHIBITOR
WO2012135570A1 (en) 2011-04-01 2012-10-04 Arena Pharmaceuticals, Inc. Modulators of the gpr119 receptor and the treatment of disorders related thereto
US20140066369A1 (en) 2011-04-19 2014-03-06 Arena Pharmaceuticals, Inc. Modulators Of The GPR119 Receptor And The Treatment Of Disorders Related Thereto
US20140051714A1 (en) 2011-04-22 2014-02-20 Arena Pharmaceuticals, Inc. Modulators Of The GPR119 Receptor And The Treatment Of Disorders Related Thereto
US20140038889A1 (en) 2011-04-22 2014-02-06 Arena Pharmaceuticals, Inc. Modulators Of The GPR119 Receptor And The Treatment Of Disorders Related Thereto
WO2012170702A1 (en) 2011-06-08 2012-12-13 Arena Pharmaceuticals, Inc. Modulators of the gpr119 receptor and the treatment of disorders related thereto
KR101985384B1 (en) 2011-07-15 2019-06-03 베링거 인겔하임 인터내셔날 게엠베하 Substituted quinazolines, the preparation thereof and the use thereof in pharmaceutical compositions
WO2013055910A1 (en) 2011-10-12 2013-04-18 Arena Pharmaceuticals, Inc. Modulators of the gpr119 receptor and the treatment of disorders related thereto
US9555001B2 (en) 2012-03-07 2017-01-31 Boehringer Ingelheim International Gmbh Pharmaceutical composition and uses thereof
EP2849755A1 (en) 2012-05-14 2015-03-25 Boehringer Ingelheim International GmbH A xanthine derivative as dpp -4 inhibitor for use in the treatment of podocytes related disorders and/or nephrotic syndrome
WO2013174767A1 (en) 2012-05-24 2013-11-28 Boehringer Ingelheim International Gmbh A xanthine derivative as dpp -4 inhibitor for use in modifying food intake and regulating food preference
WO2014074668A1 (en) 2012-11-08 2014-05-15 Arena Pharmaceuticals, Inc. Modulators of gpr119 and the treatment of disorders related thereto
TW201513857A (en) * 2013-07-05 2015-04-16 Cadila Healthcare Ltd Synergistic compositions
WO2015128453A1 (en) 2014-02-28 2015-09-03 Boehringer Ingelheim International Gmbh Medical use of a dpp-4 inhibitor
AU2016229982B2 (en) 2015-03-09 2020-06-18 Intekrin Therapeutics, Inc. Methods for the treatment of nonalcoholic fatty liver disease and/or lipodystrophy
US10155000B2 (en) 2016-06-10 2018-12-18 Boehringer Ingelheim International Gmbh Medical use of pharmaceutical combination or composition
WO2018162722A1 (en) 2017-03-09 2018-09-13 Deutsches Institut Für Ernährungsforschung Potsdam-Rehbrücke Dpp-4 inhibitors for use in treating bone fractures
EP3606527A1 (en) 2017-04-03 2020-02-12 Coherus Biosciences, Inc. Ppar-gamma agonist for treatment of progressive supranuclear palsy
CN115109161B (en) * 2022-06-28 2023-08-11 广东赛尔生物科技有限公司 Weight-losing pharmaceutical composition containing mesenchymal stem cells

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6274608B1 (en) * 1999-04-20 2001-08-14 Novo Nordisk A/S Compounds, their preparation and use
US20010016586A1 (en) * 1999-12-23 2001-08-23 Christiane Guitard Use of organic compounds
US20030139434A1 (en) * 2000-01-21 2003-07-24 Bork Balkan Combinations comprising dipeptidylpeptidase-iv inhibitor
US7078397B2 (en) * 2000-06-19 2006-07-18 Smithkline Beecham Corporation Combinations of dipeptidyl peptidase IV inhibitors and other antidiabetic agents for the treatment of diabetes mellitus
US7241756B2 (en) * 2000-06-19 2007-07-10 Smithkline Beecham Corporation Combinations of dipeptidyl peptidase IV inhibitors and other antidiabetic agents for the treatment of diabetes mellitus

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5522636A (en) 1978-08-04 1980-02-18 Takeda Chem Ind Ltd Thiazoliding derivative
JPS5697277A (en) 1980-01-07 1981-08-05 Takeda Chem Ind Ltd Thiazolidine derivative
JPS6051189A (en) 1983-08-30 1985-03-22 Sankyo Co Ltd Thiazolidine derivative and its preparation
US4582839A (en) 1984-03-21 1986-04-15 Takeda Chemical Industries, Ltd. 2,4-thiazolidinediones
CN1003445B (en) 1984-10-03 1989-03-01 武田药品工业株式会社 The preparation method of thiazolidine diketone derivative
DK173350B1 (en) 1985-02-26 2000-08-07 Sankyo Co Thiazolidine derivatives, their preparation and pharmaceutical composition containing them
JPH06779B2 (en) 1985-06-10 1994-01-05 武田薬品工業株式会社 Thiazolidione derivative and pharmaceutical composition comprising the same
US4812570A (en) 1986-07-24 1989-03-14 Takeda Chemical Industries, Ltd. Method for producing thiazolidinedione derivatives
EP0842925A1 (en) * 1987-09-04 1998-05-20 Beecham Group Plc Substituted thiazolidinedione derivatives
US4791125A (en) 1987-12-02 1988-12-13 Pfizer Inc. Thiazolidinediones as hypoglycemic and anti-atherosclerosis agents
WO1989008651A1 (en) 1988-03-08 1989-09-21 Pfizer Inc. Hypoglycemic thiazolidinedione derivatives
WO1989008650A1 (en) 1988-03-08 1989-09-21 Pfizer Inc. Thiazolidinedione hypoglycemic agents
WO1991007107A1 (en) 1989-11-13 1991-05-30 Pfizer Inc. Oxazolidinedione hypoglycemic agents
US5089514A (en) 1990-06-14 1992-02-18 Pfizer Inc. 3-coxazolyl [phenyl, chromanyl or benzofuranyl]-2-hydroxypropionic acid derivatives and analogs as hypoglycemic agents
HUT65619A (en) 1990-07-03 1994-07-28 Yamanouchi Pharma Co Ltd Process for producing bisheterocyclic compounds and pharmaceutical preparations containing them
KR930701420A (en) 1990-08-23 1993-06-11 알렌 제이. 스피겔 Hydroxyurea Derivatives as Hypoglycemic Agents
JPH04210683A (en) 1990-12-06 1992-07-31 Terumo Corp Thiazolidine-2,4-dione derivative and treating agent for diabetic complication containing the same derivative
US5183823A (en) 1991-04-11 1993-02-02 Takeda Chemical Industries, Ltd. Pyridine n-oxide compounds which are useful as hypoglycemic and hypolipidemic agents
ES2161692T3 (en) 1991-04-11 2001-12-16 Upjohn Co DERIVATIVES OF TIAZOLIDINDIONA, PRODUCTION AND USE OF THE SAME.
TW222626B (en) 1991-07-22 1994-04-21 Pfizer
FR2680512B1 (en) 1991-08-20 1995-01-20 Adir NOVEL 2,4-THIAZOLIDINEDIONE DERIVATIVES, THEIR PREPARATION PROCESS AND THE PHARMACEUTICAL COMPOSITIONS CONTAINING THEM.
US5264451A (en) 1992-04-07 1993-11-23 American Home Products Corporation Process for treating hyperglycemia using trifluoromethyl substituted 3H-pyrazol-3-ones
JPH07505647A (en) 1992-04-10 1995-06-22 スミスクライン・ビーチャム・パブリック・リミテッド・カンパニー Heterocyclic compounds and their use in the treatment of type 2 diabetes
AU4104593A (en) 1992-05-05 1993-11-29 Upjohn Company, The A process for producing pioglitazone metabolite
RU2134686C1 (en) 1992-07-03 1999-08-20 Смитклайн Бичам П.Л.С. Heterocyclic compound or its tautomeric form and/or pharmaceutically acceptable salt and/or pharmaceutically acceptable solvate, pharmaceutical composition decreasing blood glucose level, method of treatment and/or prophylaxis of hypoglycemic patients
US5232945A (en) 1992-07-20 1993-08-03 Pfizer Inc. 3-aryl-2-hydroxypropionic acid derivatives and analogs as antihypertensives
GB9218830D0 (en) 1992-09-05 1992-10-21 Smithkline Beecham Plc Novel compounds
US5478852C1 (en) 1993-09-15 2001-03-13 Sankyo Co Use of thiazolidinedione derivatives and related antihyperglycemic agents in the treatment of impaired glucose tolerance in order to prevent or delay the onset of noninsulin-dependent diabetes mellitus
IL111785A0 (en) 1993-12-03 1995-01-24 Ferring Bv Dp-iv inhibitors and pharmaceutical compositions containing them
GB9604242D0 (en) 1996-02-28 1996-05-01 Glaxo Wellcome Inc Chemical compounds
WO1998018763A1 (en) 1996-10-25 1998-05-07 Tanabe Seiyaku Co., Ltd. Tetrahydroisoquinoline derivatives
US6011155A (en) 1996-11-07 2000-01-04 Novartis Ag N-(substituted glycyl)-2-cyanopyrrolidines, pharmaceutical compositions containing them and their use in inhibiting dipeptidyl peptidase-IV
TW492957B (en) * 1996-11-07 2002-07-01 Novartis Ag N-substituted 2-cyanopyrrolidnes
US5859037A (en) * 1997-02-19 1999-01-12 Warner-Lambert Company Sulfonylurea-glitazone combinations for diabetes
DE19823831A1 (en) 1998-05-28 1999-12-02 Probiodrug Ges Fuer Arzneim New pharmaceutical use of isoleucyl thiazolidide and its salts
US6107317A (en) 1999-06-24 2000-08-22 Novartis Ag N-(substituted glycyl)-thiazolidines, pharmaceutical compositions containing them and their use in inhibiting dipeptidyl peptidase-IV

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6274608B1 (en) * 1999-04-20 2001-08-14 Novo Nordisk A/S Compounds, their preparation and use
US20010016586A1 (en) * 1999-12-23 2001-08-23 Christiane Guitard Use of organic compounds
US20030139434A1 (en) * 2000-01-21 2003-07-24 Bork Balkan Combinations comprising dipeptidylpeptidase-iv inhibitor
US7078397B2 (en) * 2000-06-19 2006-07-18 Smithkline Beecham Corporation Combinations of dipeptidyl peptidase IV inhibitors and other antidiabetic agents for the treatment of diabetes mellitus
US7241756B2 (en) * 2000-06-19 2007-07-10 Smithkline Beecham Corporation Combinations of dipeptidyl peptidase IV inhibitors and other antidiabetic agents for the treatment of diabetes mellitus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8633199B2 (en) 2008-05-14 2014-01-21 Sanwa Kagaku Kenkyusho Co., Ltd. Medicine consisting of concomitant use or combination of DPP-IV inhibitor and other diabetic medicine

Also Published As

Publication number Publication date
YU1703A (en) 2006-03-03
ZA200300203B (en) 2004-03-26
EP1292300A1 (en) 2003-03-19
ATE419850T1 (en) 2009-01-15
OA12295A (en) 2003-11-10
IL188471A0 (en) 2008-03-20
EA200300036A1 (en) 2003-04-24
SK17832002A3 (en) 2004-10-05
NO20026038D0 (en) 2002-12-16
EP2036554A1 (en) 2009-03-18
AU2001264148A1 (en) 2002-01-02
JP2003535898A (en) 2003-12-02
HRP20020994A2 (en) 2005-02-28
CA2413299A1 (en) 2001-12-27
EP1292300B1 (en) 2009-01-07
GB0014969D0 (en) 2000-08-09
MXPA02012763A (en) 2003-04-25
US7241756B2 (en) 2007-07-10
ECSP024397A (en) 2003-02-06
KR20030019440A (en) 2003-03-06
CN1443068A (en) 2003-09-17
BR0111800A (en) 2003-05-27
HUP0301194A3 (en) 2007-09-28
WO2001097808A1 (en) 2001-12-27
DE60137329D1 (en) 2009-02-26
MA25820A1 (en) 2003-07-01
BG107385A (en) 2003-09-30
US20060205675A1 (en) 2006-09-14
IL153529A0 (en) 2003-07-06
HUP0301194A2 (en) 2003-08-28
AU2005232303A1 (en) 2005-12-01
NO20026038L (en) 2003-02-03
DZ3390A1 (en) 2001-12-27
AU2008212061A1 (en) 2008-10-02
PL360493A1 (en) 2004-09-06
AP2002002703A0 (en) 2002-12-31
CZ20024069A3 (en) 2004-02-18

Similar Documents

Publication Publication Date Title
US7078397B2 (en) Combinations of dipeptidyl peptidase IV inhibitors and other antidiabetic agents for the treatment of diabetes mellitus
US7241756B2 (en) Combinations of dipeptidyl peptidase IV inhibitors and other antidiabetic agents for the treatment of diabetes mellitus
KR20060105005A (en) Treatment of diabetes with thiazolidinedione and metformin
US20080058388A1 (en) Treatment of diabetes with thiazolidinedione and sulphonylurea
KR100671918B1 (en) Treatment of Diabetes with Thiazolidinedione, Insulin Secretagogue and Diguanide
JP2005247865A (en) Treatment of diabetes with thiazolidinedione and sulfonyl urea
NZ501345A (en) Treatment of diabetes mellitus with 5-[4-[2-(N-methyl-N-(2- pyridyl)amino)ethoxy]benzyl]thiazolidine-2,4-dione (2-12 mg) and an alpha-glucosidase inhibitor antihyperglycemic agent
NZ501163A (en) Treatment of diabetes with thiazolidinedione and sulphonylurea (glibenclamide, glipizide, gliclazide, glimepiride, tolazamide and tolbutamide
US20040122060A1 (en) Treatment of diabetes with thiazolidinedione, insulin secretagogue and diguanide
US20020045649A1 (en) Treatment of diabetes with thiazolidinedione and sulphonylurea
US20010034356A1 (en) Treatment of diabetes with thiazolidinedione and alpha-glucosidase inhibitor
US20030092750A1 (en) Treatment of diabetes with thiazolidinedione, insulin secretagogue and alpha glucocidase inhibitor
MXPA00000655A (en) Treatment of diabetes with thiazolidinedione, insulin secretagogue and alpha glucocidase inhibitor

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION