US20070219628A1 - Implantable Medical Device with Drug Filled Holes - Google Patents

Implantable Medical Device with Drug Filled Holes Download PDF

Info

Publication number
US20070219628A1
US20070219628A1 US11/692,770 US69277007A US2007219628A1 US 20070219628 A1 US20070219628 A1 US 20070219628A1 US 69277007 A US69277007 A US 69277007A US 2007219628 A1 US2007219628 A1 US 2007219628A1
Authority
US
United States
Prior art keywords
drug
layer
therapeutic agent
barrier
holes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/692,770
Inventor
John Shanley
Theodore Parker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Innovational Holdings LLC
Original Assignee
Innovational Holdings LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Innovational Holdings LLC filed Critical Innovational Holdings LLC
Priority to US11/692,770 priority Critical patent/US20070219628A1/en
Publication of US20070219628A1 publication Critical patent/US20070219628A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/08Materials for coatings
    • A61L31/10Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/148Materials at least partially resorbable by the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/16Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2493Transmyocardial revascularisation [TMR] devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/91533Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other characterised by the phase between adjacent bands
    • A61F2002/91541Adjacent bands are arranged out of phase
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/9155Adjacent bands being connected to each other
    • A61F2002/91558Adjacent bands being connected to each other connected peak to peak
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2210/00Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2210/0004Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof bioabsorbable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/003Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in adsorbability or resorbability, i.e. in adsorption or resorption time
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/003Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in adsorbability or resorbability, i.e. in adsorption or resorption time
    • A61F2250/0031Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in adsorbability or resorbability, i.e. in adsorption or resorption time made from both resorbable and non-resorbable prosthetic parts, e.g. adjacent parts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0058Additional features; Implant or prostheses properties not otherwise provided for
    • A61F2250/0067Means for introducing or releasing pharmaceutical products into the body
    • A61F2250/0068Means for introducing or releasing pharmaceutical products into the body the pharmaceutical product being in a reservoir
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/416Anti-neoplastic or anti-proliferative or anti-restenosis or anti-angiogenic agents, e.g. paclitaxel, sirolimus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/60Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
    • A61L2300/602Type of release, e.g. controlled, sustained, slow
    • A61L2300/604Biodegradation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/60Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
    • A61L2300/606Coatings
    • A61L2300/608Coatings having two or more layers

Definitions

  • the invention relates to a therapeutic agent delivery device for delivery of agents, such as drugs, to a patient, and more particularly, the invention relates to a device having therapeutic agents separated by a protective layer.
  • Implantable medical devices are often used for delivery of a beneficial agent, such as a drug, to an organ or tissue in the body at a controlled delivery rate over an extended period of time. These devices may deliver agents to a wide variety of bodily systems to provide a wide variety of treatments.
  • Coronary stents are typically introduced percutaneously, and transported transluminally until positioned at a desired location, These devices are then expanded either mechanically, such as by the expansion of a mandrel or balloon positioned inside the device, or expand themselves by releasing stored energy upon actuation within the body. Once expanded within the lumen, these devices, called stents, become encapsulated within the body tissue and remain a permanent implant.
  • Known stent designs include monofilament wire coil stents (U.S. Pat. No. 4,969,458); welded metal cages (U.S. Pat. Nos. 4,733,665 and 4,776,337); and, most prominently, thin-walled metal cylinders with axial slots formed around the circumference (U.S. Pat. Nos. 4,733,665; 4,739,762; and 4,776,337).
  • Known construction materials for use in stents include polymers, organic fabrics and biocompatible metals, such as stainless steel, gold, silver, tantalum, titanium, and shape memory alloys, such as Nitinol.
  • restenosis is a major complication that can arise following vascular interventions such as angioplasty and the implantation of stents.
  • vascular interventions such as angioplasty and the implantation of stents.
  • restenosis is a wound healing process that reduces the vessel lumen diaineter by extracellular matrix deposition, neointimal hyperplasia, and vascular smooth muscle cell proliferation, and which may ultimately result in renarrowing or even reocclusion of the lumen.
  • the overall restenosis rate is still reported in the range of 25% to 50% within six to twelve months after an angioplasty procedure. To treat this condition, additional revascularization procedures are frequently required, thereby increasing trauma and risk to the patient.
  • U.S. Pat. No. 5,716,981 discloses a stent that is surface-coated with a composition comprising a polymer carrier and paclitaxel (a well-known compound that is commonly used in the treatment of cancerous tumors).
  • paclitaxel a well-known compound that is commonly used in the treatment of cancerous tumors.
  • the patent offers detailed descriptions of methods for coating stent surfaces, such as spraying and dipping, as well as the desired character of the coating itself: it should “coat the stent smoothly and evenly” and “provide a uniform, predictable, prolonged release of the anti-angiogenic factor.”
  • Surface coatings can provide little actual control over the release kinetics of beneficial agents. These coatings are necessarily very thin, typically 5 to 8 microns deep.
  • the surface area of the stent by comparison is very large, so that the entire volume of the beneficial agent has a very short diffusion path to discharge into the surrounding tissue.
  • Increasing the thickness of the surface coating has the beneficial effects of improving drug release kinetics including the ability to control drug release and to allow increased drug loading.
  • the increased coating thickness results in increased overall thickness of the stent wall. This is undesirable for a number of reasons, including increased trauma to the vessel wall during implantation, reduced flow cross-section of the lumen after implantation, and increased vulnerability of the coating to mechanical failure or damage during expansion and implantation.
  • Coating thickness is one of several factors that affect the release kinetics of the beneficial agent, and limitations on thickness thereby limit the range of release rates, duration of drug delivery, and the like that can be achieved.
  • Another significant problem is that expansion of the stent may stress the overlying polymeric coating causing the coating to plastically deform or even to rupture, which may therefore effect drug release kinetics or have other untoward effects. Further, expansion of such a coated stent in an atherosclerotic blood vessel will place circumferential shear forces on the polymeric coating, which may cause the coating to separate from the underlying stent surface. Such separation may again have untoward effects including embolization of coating fragments causing vascular obstruction.
  • a beneficial agent delivery device for delivery of agents, such as drugs, to a patient while protecting the agent from compounds or conditions in the body which would degrade the agent.
  • the present invention relates to medical device for delivery of therapeutic agents where the therapeutic agents are protected from degradation by a protective layer.
  • the present invention is directed to an implantable medical device comprising an implantable device body having a plurality of holes therein; a therapeutic agent contained within the plurality of holes in the device body; and a protective layer of material provided in the plurality of holes and arranged to protect the therapeutic agent from compounds or conditions in the body which would degrade the agent.
  • the implantable medical device is a stent.
  • the protective layer is a pharmaceutically acceptable bioerodible matrix that allows said therapeutic agent to be released as the matrix erodes.
  • the therapeutic agent is a first therapeutic agent provided in a first therapeutic agent layer adjacent said protective layer and said protective layer is a bioerodible matrix that prevents the therapeutic agent from being released until the protective layer has substantially eroded.
  • the implantable medical device further comprises a second therapeutic agent provided in a second therapeutic agent layer, wherein said protective layer separates the first therapeutic agent layer from a second therapeutic agent layer, and said first and second therapeutic agent layers each comprising a therapeutic agent disposed in a pharmaceutically acceptable bioerodible matrix.
  • the bioerodible matrix comprises pharmaceutically acceptable polymers, that may be selected from the group consisting of polylactic acid, polyglycolic acid, polylactic-co-glycolic acid, polylactic acid-co-caprolactone, polyethylene glycol, polyethylene oxide, polyvinyl pyrrolidone, polyorthoesters, polysaccharides, polysaccharide derivatives, polyhyaluronic acid, polyalginic acid, chitin, chitosan, cellulose, hydroxyehtylcellulose, hydroxypropylcellulose, carboxymethyleellulose, polypeptides, polylysine, polyglutamic acid, albumin, polyanhydrides, polyhydroxy alkonoates, polyhydroxy valerate, polyhydroxy butyrate, proteins, and polyphosphate esters.
  • pharmaceutically acceptable polymers that may be selected from the group consisting of polylactic acid, polyglycolic acid, polylactic-co-glycolic acid, polylactic acid-co-caprolactone, polyethylene
  • the bioerodible matrix is selected from the group consisting of phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, sphingomyelin, dimyristoyl phosphatidylcholine, dipalmitoyl phosphatidyleholine, distearoyl phosphatidylcholine, distearoyl phosphatidylglycerol, dipalmitoyl phosphatidyl-glycerol, dimyristoyl phosphatidylserine, distearoyl phosphatidylserine, dipalmitoyl phosphatidylserine, fatty acids, and fatty acid esters.
  • the bioerodible matrix further comprises additives for controlling the rate of erosion.
  • the bioerodible matrix substantially prevents the ingress of water or enzymes.
  • the bioerodible matrix erodes by hydrolysis, dissolution, or enzymatic degradation.
  • the protective layer erodes by physically breaking apart when the first therapeutic agent layer is substantially eroded.
  • At least one therapeutic agent is homogeneously dispersed in said bioerodible matrix.
  • the therapeutic agent is heterogeneously disposed in said bioerodible matrix, preferably as a solid particle dispersion, encapsulated agent dispersion, an emulsion, a suspension, a liposome, niosome, or a microparticle, wherein said niosome, liposome or microparticle comprise a homogeneous or heterogeneous mixture of the therapeutic agent.
  • first and second therapeutic agents are homogeneously dispersed in each of said first and second therapeutic agent layers.
  • first and second therapeutic agents are heterogeneously disposed in each of said first and second therapeutic agent layers, preferably as a solid particle dispersion, encapsulated agent dispersion, and emulsion, a suspension, a liposome or a microparticle, wherein said liposome or microparticle comprise a homogeneous or heterogeneous mixture of the therapeutic agent.
  • the therapeutic agent is selected from the group consisting of antineoplastic agents, neoplastic agents, antiproliferative agents, antisense compounds, immunosuppresants, angiogenic agents, angiogenic factors, antiangiogenic agents, and anti-inflammatory agents, or combinations thereof.
  • the protective layer further comprises an activating or a deactivating agent, wherein the activating or deactivating agent prevents the loss of biological function of the first or second therapeutic agents, preferably the activating or deactivating agents are selected from the group consisting of antacids, buffers, enzyme inhibitors, hydrophobic additives, and adjuvants, more preferably the activating or deactivating agent is an antacid that protects one of said first and second therapeutic agents from a deactivating decrease in pH.
  • the protective layer comprises an activating or deactivating agent that prevents deactivating interactions between said first and second therapeutic agents.
  • the present invention is directed to a method for delivering a drug to a patient which method comprises placement within the patient's artery or vein of an implantable medical device as described above.
  • the present invention is directed to a method for delivering a drug to a patient using an implantable medical device as described above, wherein said drug delivery method is used to treat restenosis in the patient after the patient has received percutaneous transluminal coronary angioplasty and intraluminal stent placement.
  • FIG. 1 is a perspective view of a therapeutic agent delivery device in the form of an expandable stent
  • FIG. 2 is a cross sectional view of a portion of a therapeutic agent delivery device having a beneficial agent contained in an opening in layers;
  • FIG. 3 is a cross sectional view of a portion of a therapeutic agent delivery device having therapeutic agent layers, protective layers, and a barrier layer contained in an opening in the device;
  • FIG. 4 is a cross sectional view of a portion of a therapeutic agent delivery device having beneficial agent layers having varying concentrations of therapeutic agent;
  • FIG. 5 is a cross sectional view of a portion of a therapeutic agent delivery device having therapeutic agent layers, protective layers, a barrier layer, and a cap layer contained in an opening in the device;
  • FIG. 6 is a cross sectional view of a portion of a therapeutic agent delivery device having a therapeutic agent and a protective material in a single layer and a separate cap layer
  • the present invention relates to a beneficial agent delivery device for delivery of agents, such as drugs, to a patient. More particularly, the invention relates to a medical device having one or more therapeutic agents separated or protected from compounds or conditions within the body which would degrade the agent(s) by one or more protective layers.
  • beneficial agent as used herein are intended to have their broadest possible interpretation and is used to include any therapeutic agent or drug, as well as inactive agents such as barrier layers, carrier layers, therapeutic layers or protective layers.
  • drug and “therapeutic agent” are used interchangeably to refer to any therapeutically active substance that is delivered to a bodily conduit of a living being to produce a desired, usually beneficial, effect.
  • the present invention is particularly well suited for the delivery of antineoplastic, angiogenic factors, immuno-suppressants, and antiproliferatives (anti-restenosis agents) such as paclitaxel and Rapamycin for example, and antithrombins such as heparin, for example.
  • the therapeutic agents used in the present invention include classical low molecular weight therapeutic agents commonly referred to as drugs including all classes of action as exemplified by, but not limited to: antineoplastic, immuno-suppressants, antiproliferatives, antithrombins, antiplatelet, antilipid, anti-inflammatory, angiogenic, anti-angiogenic, vitamins, ACE inhibitors, vasoactive substances, antimitotics, metello-proteinase inhibitors, NO donors, estradiols, anti-sclerosing agents, alone or in combination.
  • drugs including all classes of action as exemplified by, but not limited to: antineoplastic, immuno-suppressants, antiproliferatives, antithrombins, antiplatelet, antilipid, anti-inflammatory, angiogenic, anti-angiogenic, vitamins, ACE inhibitors, vasoactive substances, antimitotics, metello-proteinase inhibitors, NO donors, estradiols, anti-sclerosing agents, alone or in
  • Therapeutic agent also includes higher molecular weight substances with drug like effects on target tissue sometimes called biologic agents including but not limited to: peptides, lipids, protein drugs, enzymes, oligonucleotides, ribozymes, genetic material, prions, virus, bacteria, and eucaryotic cells such as endothelial cells, monocyte/macrophages or vascular smooth muscle cells to name but a few examples.
  • biologic agents including but not limited to: peptides, lipids, protein drugs, enzymes, oligonucleotides, ribozymes, genetic material, prions, virus, bacteria, and eucaryotic cells such as endothelial cells, monocyte/macrophages or vascular smooth muscle cells to name but a few examples.
  • the therapeutic agent may also be a pro-drug, which metabolizes into the desired drug when administered to a host.
  • the therapeutic agents may be pre-formulated as a microcapsules, microspheres, microbubbles, liposomes, niosomes, emulsions, dispersions or the like before it is incorporated into the therapeutic layer.
  • the therapeutic agent may also be radioactive isotopes or agents activated by some other form of energy such as light or ultrasonic energy, or by other circulating molecules that can be systemically administered.
  • matrix or “biocompatible matrix” are used interchangeably to refer to a medium or material that, upon implantation in a subject, does not elicit a detrimental response sufficient to result in the rejection of the matrix.
  • the matrix typically does not provide any therapeutic responses itself, though the matrix may contain or surround a therapeutic agent, a therapeutic agent, an activating agent or a deactivating agent, as defined herein.
  • a matrix is also a medium that may simply provide support, structural integrity or structural barriers.
  • the matrix may be polymeric, non-polymeric, hydrophobic, hydrophilic, lipophilic, amphiphilic, and the like.
  • bioerodible refers to a matrix, as defined herein, that is bioresorbable and/or can be broken down by either chemical or physical process, upon interaction with a physiological environment.
  • the bioerodible matrix is broken into components that are metabolizable or exeretable, over a period of time from minutes to years, preferably less than one year, while maintaining any requisite structural integrity in that same time period.
  • pharmaceutically acceptable refers to a matrix or an additive, as defined herein, that is not toxic to the host or patient. When in reference to a matrix, it provides the appropriate storage and/or delivery of therapeutic, activating or deactivating agents, as defined herein, and does not interfere with the effectiveness or the biological activity of the agent.
  • substantially eroded refers to an erodable layer that has been broken down or absorbed into the system nearly completely. In a substantially eroded layer, at least about 75% of the original layer is eroded away, preferably, 90% of the material is eroded and more preferably 95% of the material is eroded away.
  • substantially prevents or retards refers to a process, such as water absorption, that is nearly stopped, but is probably not completely stopped from occurring.
  • water absorption is substantially prevented if the rate at which water is absorbed is decreased by at least about 10%, more preferably by at least about 20% and even more preferably by at least about 50%, when compared to a standard.
  • the term “protective layer” refers to a matrix which serves to prevent or retard the occurrence of any process that would act to degrade or deactivate a drug, which is either contained in the same layer, or is contained in another adjacent layer.
  • the protective layer is preferably bioerodible,
  • erosion refers to the process by which the components of a medium or matrix are bioresorbed and/or degraded and/or broken down by either chemical or physical process.
  • erosion can occur by cleavage or hydrolysis of the polymer chains, such that the molecular weight of the polymer is lowered.
  • the polymer of lower molecular weight will have greater solubility in water and is therefore dissolved away,
  • erosion occurs by physically breaking apart upon interaction with a physiological environment.
  • erosion rate is a measure of the amount of time it takes for the erosion process to occur and is usually report in unit area per unit time.
  • degradation refers to any process that causes an active component, such as a therapeutic agent, to become unable, or less able, to perform the action which it was intended to perform when incorporated in the device.
  • polymer refers to molecules formed from the chemical union of two or more repeating units, called monomers. Accordingly, included within the term “polymer” may be, for example, dimers, trimers and oligomers. The polymer may be synthetic, naturally-occurring or semisynthetic. In preferred form, the term “polymer” refers to molecules which typically have a M w greater than about 3000 and preferably greater than about 10,000 and a M w that is less than about 10 million, preferably less than about a million and more preferably less than about 200,000.
  • polymers include but are not limited to, poly-a-hydroxy acid esters such as, polylactic acid, polyglycolic acid, polylactic-co-glycolic acid, polylactic acid-co-caprolactone; polyethylene glycol and polyethylene oxide, polyvinyl pyrrolidone, polyorthoesters; polysaccharides and polysaccharide derivatives such as polyhyaluronic acid, polyalginic acid, chitin, chitosan, cellulose, hydroxyehtyleellulose, hydroxypropylcellulose, carboxymethylcellulose; polypeptides, and proteins such as polylysine, polyglutamic acid, albumin; polyanhydrides; polyhydroxy alkonoates such as polyhydroxy valerate, polyhydroxy butyrate, and the like.
  • poly-a-hydroxy acid esters such as, polylactic acid, polyglycolic acid, polylactic-co-glycolic acid, polylactic acid-co-caprolactone
  • lipid refers to a matrix that comprises preferably non-polymeric small organic, synthetic or naturally-occurring, compounds which are generally amphipathic and biocompatible.
  • the lipids typically comprise a hydrophilic component and a hydrophobic component.
  • Exemplary lipids include, for example, fatty acids, fatty acid esters, neutral fats, phospholipids, glycolipids, aliphatic alcohols, waxes, terpenes, steroids and surfactants.
  • Term lipid is also meant to include derivatives of lipids.
  • lipids includes but is not limited to phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, sphingomyelin as well as synthetic phospholipids such as dimyristoyl phosphatidylcholine, dipalmitoyl phosphatidylcholine, distearoyl phosphatidylcholine, distearoyl phosphatidylglycerol, dipaimitoyl phosphatidyl-glycerol, dimyristoyl phosphatidylserine, distearoyl phosphatidylserine and dipalmitoyl phosphatidylserine.
  • synthetic phospholipids such as dimyristoyl phosphatidylcholine, dipalmitoyl phosphatidylcholine, distearoyl phosphatidylcholine, distearoyl phosphatidylglycerol, dipaimitoyl phosphat
  • hydrogel refers to cross-linked polymeric material in which the liquid component is water. Hydrogels may be prepared by cross-linking certain polymers and lipids disclosed herein.
  • additives refers to pharmaceutically acceptable compounds, materials, and compositions that may be included in a matrix along with a therapeutic agent.
  • An additive may be encapsulated in or on or around a matrix. It may be homogeneously or heterogeneously disposed, as defined herein, in the matrix.
  • Some examples of additives are pharmaceutically acceptable excipients, adjuvants, carriers, antioxidants, preservatives, buffers, antacids, and the like, such as those disclosed in Remington: The Science and Practice of Pharmacy, Gennaro, ed., Mack Publishing Co., Easton, Pa., 19th ed., 1995.
  • holes refers to holes of any shape and includes both through-openings and recesses.
  • reaction environment or “environment” refers to the area between a tissue surface abutting the device and the first intact layer of beneficial agent within a hole in the medical device.
  • activating and deactivating agents refers to a compound or material or medium that serves to prepare a reaction medium or environment for an active component. This may include the process of activating a compound (for example an enzyme) within the reaction environment. It may also include altering the pH or other physiological condition of the environment. This may further include the process of degrading a compound from the reaction environment or preventing deactivation or degradation.
  • activating and deactivating agents include, but are not limited to inorganic and organic acids and bases, (preferably inorganic) buffers, RNAase, catalysts, kinases, and the like.
  • homogeneously disposed refers to a component which is mixed uniformly in a matrix in such a manner that the component is macroscopically indistinguishable from the matrix itself.
  • a homogeneously disposed component is a drug formulation such as a microemulsion in which small beads of oil are dispersed uniformly in water.
  • heterogeneously disposed refers to a component which is mixed non-uniformly into a matrix in such a manner that the component is macroscopically distinguishable from the matrix itself.
  • An example of a heterogeneously disposed component is a simple emulsion in which the beads of oil in the water are large enough to cause a turbidity to the solution and can be seen settling out of solution over time.
  • Heterogeneously disposed compositions also include encapsulated formulations where a component, such as a protective layer, is layered onto or around a therapeutic agent or a therapeutic layer, forming a protective shell.
  • FIG. 1 illustrates a medical device 10 according to the present invention in the form of a stent design with large, non-deforming struts 12 and links 14 , which can contain holes 20 without compromising the mechanical properties of the struts or links, or the device as a whole.
  • the non-deforming struts 12 and links 14 may be achieved by the use of ductile hinges 16 which are described in detail in U.S. Pat. No. 6,241,762 which is incorporated hereby by reference in its entirety.
  • the holes 20 serve as large, protected reservoirs for delivering various beneficial agents to the device implantation site.
  • the relatively large, protected openings 20 make the expandable medical device of the present invention particularly suitable for delivering larger molecules or genetic or cellular agents, such as, for example, protein drugs, enzymes, antibodies, antisense oligonucleotides, ribozymes, gene/vector constructs, and cells (including but not limited to cultures of a patient's own endothelial cells).
  • agents such as, for example, protein drugs, enzymes, antibodies, antisense oligonucleotides, ribozymes, gene/vector constructs, and cells (including but not limited to cultures of a patient's own endothelial cells).
  • Many of these types of agents are biodegradable or fragile, have a very short or no shelf life, must be prepared at the time of use, or cannot be pre-loaded into delivery devices such as stents during the manufacture thereof for some other reason.
  • the large holes 20 in the expandable device of the present invention form protected areas or receptors to facilitate the loading of such an agent either at the time of use or
  • the volume of beneficial agent that can be delivered using holes 20 is about 3 to 10 times greater than the volume of a 5 micron coating covering a stent with the same stent/vessel wall coverage ratio.
  • This much larger beneficial agent capacity provides several advantages.
  • the larger capacity can be used to deliver multi-drug combinations, each with independent release profiles, for improved efficacy.
  • larger capacity can be used to provide larger quantities of less aggressive drugs and to achieve clinical efficacy without the undesirable side-effects of more potent drugs, such as retarded healing of the endothelial layer.
  • Holes also decrease the surface area of the beneficial agent bearing compounds to which the vessel wall surface is exposed. For typical devices with beneficial agent openings, this exposure decreases by a factors ranging from about 6:1 to 8:1, by comparison with surface coated stents. This dramatically reduces the exposure of vessel wall tissue to polymer carriers and other agents that can cause inflammation, while simultaneously increasing the quantity of beneficial agent delivered, and improving control of release kinetics.
  • FIG. 2 shows a cross section of a medical device 10 in which one or more beneficial agents have been loaded into the opening 20 in discrete layers 30 . Examples of some methods of creating such layers and arrangements of layers are described in U.S. Pat. application Ser. No. 09/948,989, filed on Sep. 7, 2001, which is incorporated herein by reference in its entirety.
  • the total depth of the opening 20 is about 125 to about 140 microns, and the typical layer thickness would be about 2 to about 50 microns, preferably about 12 microns.
  • Each typical layer is thus individually about twice as thick as the typical coating applied to surface-coated stents.
  • the openings have an area of at least 5 ⁇ 10 ⁇ 6 square inches, and preferably at least 7 ⁇ 10 ⁇ 6 square inches.
  • each layer is created independently, individual chemical compositions and pharmacokinetic properties can be imparted to each layer. Numerous useful arrangements of such layers can be formed, some of which will be described below.
  • Each of the layers may include one or more agents in the same or different proportions from layer to layer.
  • the layers may be solid, porous, or filled with other drugs or excipients.
  • FIG. 3 shows an arrangement of layers provided in a through opening 20 in which layers 40 of a therapeutic agent in a biodegradable carrier material, are alternated with layers 42 of the biodegradable carrier material alone, with no active agent loaded, and a barrier layer 44 is provided at the inwardly facing surface.
  • Such an arrangement releases therapeutic agent in three programmable bursts or waves achieving a stepped or pulsatile delivery profile.
  • the use of carrier material layers without active agent creates the potential for synchronization of drug release with cellular biochemical processes for enhanced efficacy.
  • the biodegradable carrier layers 42 and/or the barrier layer 44 may also be protective layers, as will be described below.
  • different layers could be comprised of different therapeutic agents altogether, creating the ability to release different therapeutic agents at different points in time.
  • the layers of beneficial agent provide the ability to tailor a delivery profile to different applications. This allows the medical device according to the present invention to be used for delivery of different beneficial agents to a wide variety of locations in the body.
  • FIG. 4 A further alternative is illustrated in FIG. 4 .
  • the concentration of the same therapeutic agent is varied from layer to layer, creating the ability to generate release profiles of arbitrary shape.
  • Progressively increasing the concentration of agent in the layers 50 with increasing distance from the outwardly facing surface 56 can produce a release profile with a constant release rate, also called a zero order release profile, which would be impossible to produce using known thin surface coating materials and techniques.
  • Certain types of drugs cannot be delivered by surface coatings or other known methods because of sensitivity of the drugs to compounds or conditions within the body which tend to degrade the drugs. For example, some drugs lose substantially all of their activity when exposed to water for a short period of time. Therefore, it is not possible to deliver these drugs over an extended period of time because the activity of the drug is substantially reduced by the time of delivery. Other drugs degrade in the presence of other compounds or conditions within the body including exposure to enzymes, pH changes, or other environmental conditions.
  • FIG. 5 illustrates an arrangement of layers of a therapeutic agent 60 layered between layers 62 of a protective material which protects the therapeutic agents from compounds or conditions within the body which would degrade the therapeutic agent. Examples of protective interlayers 62 will be discussed in detail below.
  • FIG. 5 also illustrates a protective layer in the form of a cap layer 64 provided at a tissue contacting surface of medical device.
  • the cap layer 64 blocks or retards biodegradation of subsequent layers and/or blocks or retards diffusion of the beneficial agent in that direction for a period of time which allows the delivery of the medical device to a desired location in the body.
  • the barrier layer 64 may also function to prevent hydration of inner layers of beneficial agent and thus prevent swelling of the inner layers when such layers are formed of hygroscopic materials.
  • the barrier layer 66 When the medical device 10 is a stent which is implanted in a lumen, the barrier layer 66 is positioned on a side of the opening 20 facing the inside of the lumen. The barrier layer 66 prevents the therapeutic agent 60 from passing into the lumen and being carried away without being delivered to the lumen tissue.
  • the protective layers 62 prevent or retard the flow of water (or other compounds) to the therapeutic layers 60 in a manner which will be described in further detail below.
  • the protective layers 62 prevent or reduce the loss of biological function of the therapeutic agent by reducing contact of water with the therapeutic agent until a desired delivery time.
  • FIG. 6 illustrates a further embodiment of the invention in which the opening 20 in the medical device 10 is filled with a therapeutic agent and a protective agent in the same layer or layers 70 .
  • the therapeutic agent layer and the protective agent layer are incorporated in the same layer.
  • a barrier layer 72 may be provided as in the embodiment of FIG. 5 .
  • Beneficial agents include any therapeutic agent or drug, as well as inactive agents such as barrier layers, carrier layers, therapeutic layers or protective layers.
  • the therapeutic agent layers of the present invention are beneficial agents comprised of a matrix and at least one therapeutic agent.
  • the matrix of the therapeutic agent layers can be made from pharmaceutically acceptable polymers, such as those typically used in medical devices.
  • Such polymers are well known and include but are not limited to poly-a-hydroxy acid esters such as, polylactic acid, polyglycolic acid, polylactic-co-glycolic acid, polylactic acid-co-caprolactone; polyethylene glycol and polyethylene oxide; polyvinyl pyrrolidone; polyorthoesters; polysaccharides and polysaccharide derivatives such as polyhyaluronic acid, polyalginic acid, chitin, chitosan, cellulose, hydroxyehtylcellulose, hydroxypropylcellulose, carboxymethylcellulose; polypeptides, and proteins such as polylysine, polyglutamic acid, albumin; polyanhydrides; polyhydroxy alkonoates such as polyhydroxy valerate, polyhydroxy butyrate, and the like
  • the polymers and copolymers can be prepared by methods well known in the art (see, for example, Rempp and Merril: Polymer Synthesis, 1998, John Wiley and Sons) in or can be used as purchased from Alkermes, in Cambridge, Mass. or Birmingham, Ala. Polymer Inc., in Birmingham, Alabama.
  • the preferred co-polymer for use in the present invention are poly(lactide-co-glycolide) (PLGA) polymers.
  • the rate at which the polymer erodes is determined by the selection of the ratio of lactide to glycolide within the copolymer, the molecular weight of each polymer used, and the crystallinity of the polymers used.
  • Bioerodible polymers may also be used to form barrier layers that erode at a rate that can be predetermined based on the composition and that contain no therapeutic agent.
  • Additives in Protective layer and Therapeutic layer Formulations may also be used to form barrier layers that erode at a rate that can be predetermined based on the composition and that contain no therapeutic agent.
  • Typical additives that may be included in a bioerodible matrix are well known to those skilled in the art (see Remington: The Science and Practice of Pharmacy, Gennaro, ed., Mack Publishing Co., Easton, Pa., 19th ed., 1995) and include but are not limited to pharmaceutically acceptable excipients, adjuvants, carriers, antioxidants, preservatives, buffers, antacids, emulsifiers, inert fillers, fragrances, thickeners, tackifiers, opacifiers, gelling agents, stabilizers, surfactants, emollients, coloring agents, and the like.
  • Typical formulations for therapeutic agents incorporated in these medical devices are well known to those skilled in the art and include but are not limited to solid particle dispersions, encapsulated agent dispersions, and emulsions, suspensions, liposomes or microparticles, wherein said liposome or microparticle comprise a homogeneous or heterogeneous mixture of the therapeutic agent.
  • the amount of the drug that is present in the device, and that is required to achieve a therapeutic effect depends on many factors, such as the minimum necessary dosage of the particular drug, the condition to be treated, the chosen location of the inserted device, the actual compound administered, the age, weight, and response of the individual patient, the severity of the patient's symptoms, and the like.
  • the appropriate dosage level of the therapeutic agent for more traditional routes of administration, are known to one skilled in the art. These conventional dosage levels correspond to the upper range of dosage levels for compositions, including a physiologically active substance and traditional penetration enhancer. However, because the delivery of the active substance occurs at the site where the drug is required, dosage levels significantly lower than a conventional dosage level may be used with success.
  • the percentage of therapeutic agent in the composition is determined by the required effective dosage, the therapeutic activity of the particular formulation, and the desired release profile.
  • the active substance will be present in the composition in an amount from about 0.0001% to about 99%, more preferably about 0.01% to about 80% by weight of the total composition depending upon the particular substance employed. However, generally the amount will range from about 0.01% to about 75% by weight of the total composition, with levels of from about 25% to about 75% being preferred.
  • the protective layers of the present invention are beneficial agents comprised of a biocrodible matrix and optionally contain additional additives, therapeutic agents, activating agents, deactivating agents, and the like. Either a property of the chosen material of the protective layer, or a chemical embedded in the protective layer provides protection from deactivating processes or conditions for at least one therapeutic agent.
  • the protective layer may also be comprised of pharmaceutically acceptable lipids or lipid derivatives, which are well known in the art and include but are not limited to fatty acids, fatty acid esters, lysolipids, phosphocholines, (Avanti Polar Lipids, Alabaster, Ala.), including 1-alkyl-2-acetoyl-sn-glycero 3-phosphocholines, and 1-alkyl-2-hydroxy-sn-glycero 3-phosphocholines; phosphatidylcholine with both saturated and unsaturated lipids, including dioleoylphosphatidylcholine; dimyristoyl-phosphatidyleholine; dipentadecanoylphosphatidylcholine; dilauroylphosphatidyl-choline; dipalmitoylphosphatidylcholine (DPPC); distearoylphosphatidylcholine (DSPC); and diarachidonylphosphatidylcholine
  • a cationic lipid may be used, such as, for example, N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium chloride (DOTMA), 1,2-dioleoyloxy-3-(trimethylammonio)propane (DOTAP); and 1,2-dioleoyl-3-(4′-trimethylammonio) butanoyl-sn-glycerol (DOTB).
  • DOTMA 1,2-dioleoyloxy-3-(trimethylammonio)propane
  • DOB 1,2-dioleoyl-3-(4′-trimethylammonio) butanoyl-sn-glycerol
  • the molar ratio of cationic lipid to non-cationic lipid may be, for example, from about 1:1000 to about 1:1000.
  • the molar ratio of cationic lipid to non-cationic lipid may be from about 1:2 to about 1:10, with a ratio of from about 1:1 to about 1:2.5 being preferred. Even more preferably, the molar ratio of cationic lipid to non-cationic lipid may be about 1:1.
  • lipid materials are well known in the art and can be used as purchased from Avanti, Burnaby, B.C. Canada.
  • the preferred lipids for use in the present invention are phosphatidyl-choline, phosphatidylethanolamine, phosphatidylserine, sphingomyelin as well as synthetic phospholipids such as dimyristoyl phosphatidyleholine, dipalmitoyl phosphatidylcholine, distearoyl phosphatidylcholine, distearoyl phosphatidyl-glycerol, dipalmitoyl phosphatidylglycerol, dimyristoyl phosphatidylserine, distearoyl phosphatidylserine and dipalmitoyl phosphatidylserine.
  • synthetic phospholipids such as dimyristoyl phosphatidyleholine, dipalmitoyl phosphatidylcholine, distearoyl phosphatidylcholine, distearoyl phosphatidyl-glycerol, dipalmit
  • the rate at which the bioerodible matrix erodes is determined by the choice of lipid, the molecular weight, and the ratio of the chosen materials.
  • the protective layer can erode by either chemical or physical erosion mechanisms. If the layer erodes by a physical mechanism, the layer is typically a thin film from about 0.1 ⁇ m to about 3 ⁇ m of a non-polymeric material embedded between two polymeric layers. In this instance, the structural integrity of the protective layer is maintained by the presence of both of these polymeric layers. When the polymeric material closest to the luminal surface erodes away, the protective layer breaks apart by the physical forces exerted on it from the remaining polymeric layer. In another embodiment, the protective layer is eroded by chemical interactions, dissolution in water, hydrolysis, or reaction with enzymes.
  • the protective layer is to protect one or more therapeutic agents from deactivating or degrading conditions.
  • the protection may come from the properties of the material when, for example, a hydrophobic protective layer would protect a water sensitive agent from water by resisting the influx of moisture.
  • the protective layer may also act as a physical barrier.
  • a protective layer comprised of a hydrogel may allow water to be absorbed by the gel, and allow any agents contained within the gel to diffuse out of the gel into the reaction environment. The hydrogel, however, would prevent enzymes from penetrating the layer, thereby protecting any agents contained within from the enzyme.
  • the protective layer does not have to act as a barrier.
  • the protective layer may protect a therapeutic agent by releasing an agent, such as an activating agent or a deactivating agent, into the reaction environment prior to the release of the therapeutic agent.
  • a therapeutic agent may be incorporated directly in the protective layer.
  • the therapeutic agent can be heterogeneously or homogeneously dispersed in the protective layer.
  • the therapeutic agent can be a drug, or a drug formulated into a microcapsule, niosome, liposome, microbubble, microsphere, or the like.
  • the protective layer may contain more than one therapeutic agent.
  • a water sensitive drugs such as a limus, or any other drug that must be administered through intravenous, intramuscular, or subcutaneously, could be incorporated in a hydrophobic matrix such as SAIB, or fatty acid ester.
  • a therapeutic agent may also be disposed in a therapeutic agent layer, separate from the protective layer.
  • the protective layer may be adjacent to the therapeutic agent layer and may serve to prevent or retard processes that would degrade or deactivate the therapeutic agent until the protective layer has substantially eroded.
  • the protective layer is a barrier between a therapeutic layer and the reaction environment. This barrier may be a hydrophobic barrier that resists water absorption. The hydrophobic barrier would be used in conjunction with water-sensitive drugs as described above.
  • the protective layer maybe a hydrogel that resists the absorbance of enzymes.
  • An enzyme resistant barrier would used to protect an drug such as a DNA, RNA, peptide or protein based therapeutic agent.
  • the protective layer may optionally include activating and deactivating agents for the purpose of preparing the reaction environment for the subsequent release of a therapeutic agent.
  • activating and deactivating agents are well known to those skilled in the art and include but are not limited to antacids, buffers, enzyme inhibitors, hydrophobic additives, and adjuvants.
  • Mg(OH) 2 in particles of about 0.5 ⁇ m to about 5 ⁇ m more preferably, about 1 ⁇ m incorporated in a PLGA polymer layer could be used in conjunction with any acid senstive drug.
  • An example of an activating agent is chymotrypsin, which may be incorporated in polyvinyl pyrrolidone layer. The chymotrypsin, could be used to convert a pro-drug to an active drug.
  • the protective layer of the present invention is essentially hydrophobic and can prevent or retard the absorption of water. This is especially advantageous for the delivery of water sensitive drugs such as a limus.
  • hydrophobic, biocrodible matrix materials are lipids, fatty acid esters, such as glycerides.
  • the erosion rate is controlled by varying the hydrophilic-lipophilic balance (HLB).
  • the hydrophobic protective layer may encapsulate the therapeutic agent, and the encapsulated particles may be dispersed in either a polymer or lipid matrix.
  • the protective layer may contain an antacid, or pH retaining agent, that protects a therapeutic agent from a deactivating reduction in pH.
  • Polymers comprised of monomer units of lactide, glycolide, caprolactone, ⁇ -hydroxy valerate, trimethylene carbonate, dioxanone, ⁇ -hydroxy butyrate and other co-hydroxyalkyl carboxylic acids are degraded by water in hydrolysis in vivo and in vitro to produce free acid groups in such a quantity that the microclimate within the polymer matrix, and sometimes the external environment becomes acidic with a pH of less than or equal to six during the process of polymer degradation.
  • Some therapeutic agents that can be advantageously delivered in local, sustained fashion from such polymers are sensitive to an acidic environment in that their biological activity is attenuated or eliminated as the pH decreases during the polymer matrix degradation required to release the agent from the delivery matrix.
  • acid sensitive agents are RNA oligomers with phosphodiester-ribose linkages or morpholino-imidate linkages (so-called “anti-sense oligo's), limus's (like sirolimus and everolimus) and generally therapeutic agents that have chemical functionality that undergo acid catalyzed hydrolysis (such as ester, amide, urea, Spiro ester, anhydride and carbonate) or that contain functional groups that can be protonated at pH less than or equal to six to render the agent biologically inactive, such as amino and imino groups (such as the deactivation of bio-active proteins).
  • an acid scavenger, antacid or neutralization agent capable of maintaining the pH at equal to or greater than six or above a threshold pH where the particular agent become therapeutically ineffective.
  • Inorganic antacids contemplated include metal hydroxides, particularly divalent metal hydroxides like Mg(OH) 2 and Ca(OH) 2 and Ba(OH) 2 , monovalent bicarbonates and carbonates like NaHCO 3 and Na 2 CO 3 , divalent carbonates like ZnCO 3 , monovalent and divalent hydrogen phosphates and dihydrogen phosphates like Na 2 HPO 4 and Na 2 HPO 4 , monovalent salts of carboxylic acids, like sodium acetate.
  • metal hydroxides particularly divalent metal hydroxides like Mg(OH) 2 and Ca(OH) 2 and Ba(OH) 2
  • monovalent bicarbonates and carbonates like NaHCO 3 and Na 2 CO 3
  • divalent carbonates like ZnCO 3
  • monovalent and divalent hydrogen phosphates and dihydrogen phosphates like Na 2 HPO 4 and Na 2 HPO 4
  • monovalent salts of carboxylic acids like sodium acetate.
  • organic bases such as organic amines are envisioned as acid scavengers, such as triethanol amine, ethanolamine, morpholine, pyrimidine and purine bases, poly ethyleneimine, nucleosides, amino acids and poly amino acids, particularly poly lysine and poly hydroxylysine, poly arginine and peptides containing lysine, hydroxy lysine, arginine and/or histidine units.
  • acid scavengers such as triethanol amine, ethanolamine, morpholine, pyrimidine and purine bases, poly ethyleneimine, nucleosides, amino acids and poly amino acids, particularly poly lysine and poly hydroxylysine, poly arginine and peptides containing lysine, hydroxy lysine, arginine and/or histidine units.
  • Inorganic antacids are contemplated to be incorporated into the polymer matrix by standard polymer processing techniques such as solvent casting, molding, blending, milling and extrusion.
  • the amount of antacid will be enough to provide for acid neutralization during some or all of the time the acid sensitive agent or combination of agents are released in therapeutically relevant dosages and pharmacokinetic profiles.
  • the antacid may be incorporated into the polymeric drug delivery matrix in amounts up to where the desired physical characteristics are compromised for the desired application, or may be used at lower levels. Antacids may be used alone or in combination with other antacids.
  • the amount of antacid will generally not exceed 10% by weight and may preferably be used at 1-6% by weight.
  • the antacid need not be used at the stoichiometric level calculated for complete polymer degradation or hydrolysis, but may provide beneficial protection for the acid sensitive agents at less than stoichiometric values, particularly if all the agent is delivered prior to complete degradation of the polymer to its constituent monomer or co-monomer units.
  • the protective layer protects a therapeutic agent from a deactivating or degrading enzyme.
  • An enzyme inhibitor can be incorporated into the protective layer, so that it is introduced to the reaction environment as the protective layer erodes. The therapeutic agent would then enter an environment with less enzyme than would be present if the inhibitor were not incorporated in the protective layer.
  • the protective layer may be made of a hydrogel material, such as calcium alginate, (made by adding Ca(OH) 2 to polyalginic acid) that allows small molecules to diffuse into and out of the gel, but substantially prevents larger molecules from entering the protective layer. DNA, RNA, peptide and protein based therapeutics would be protected using hydrogel barriers.
  • the medical devices of the present invention can also be medical devices of other shapes useful for site-specific and time-release delivery of drugs to the body and other organs and tissues.
  • the drugs may be delivered to the vasculature including the coronary and peripheral vessels for a variety of therapies, and to other lumens in the body.
  • the drugs may increase lumen diameter, create occlusions, or deliver the drug for other reasons.
  • Medical devices and stents are useful for the prevention or amelioration of restenosis, particularly after percutaneous transluminal coronary angioplasty and intraluminal stent placement.
  • other agents such as anti-inflammatory agents may be incorporated in to the multi-layers incorporated in the plurality of holes within the device. This allows for site-specific treatment or prevention any complications routinely associated with stent placement that are known to occur at very specific times after the placement occurs.
  • the methods for loading beneficial agents into openings in an expandable medical device may include known techniques such as dipping and coating and also known piezoelectric micro-jetting techniques.
  • Micro-injection devices may be used to deliver precise amounts of one or more liquid beneficial agents including protective layers, therapeutic agent layers, and any other layers to precise locations on the expandable medical device in a known manner.
  • the beneficial agents may also be loaded by manual injection devices.
  • a first mixture of poly(lactide-co-glycolide) (PLGA) (Birmingham Polymers, Inc), lactide:glycolide::85:15, (M v >100,000 Daltons) 7% wt. and a suitable organic solvent, such as DMSO, NMP, or DMAC 93% wt. is prepared.
  • the mixture is loaded dropwise into holes in the stent, then the solvent is evaporated to begin formation of the barrier layer.
  • a second barrier layer is laid over the first by the same method of filling polymer solution into the hole followed by solvent evaporation. The process is continued until five individual layers have been laid down to form the barrier layer.
  • a suitable organic solvent such as DMSO
  • the solvent is evaporated to form a drug filled protective layer and the filling and evaporation procedure repeated until the hole is filled to about 75% of its total volume with drug in protective layer layered on top of the barrier layer.
  • the cap layer degrades allowing the limus to be delivered.
  • the barrier layer prevents the therapeutic agent from being delivered out the barrier layer side of holes in the stent.
  • a first mixture of poly(lactide-co-glycolide) (PLGA), lactide:glycolide::85:15, (M v >100,000 Daltons) 7% wt. and a suitable organic solvent, such as DMSO, 93% wt. is prepared.
  • the mixture is loaded drop-wise into holes in the stent, and the solvent is then evaporated to form the barrier layer.
  • a second barrier layer is laid over the first by the same method of filling polymer solution into the hole followed by solvent evaporation. The process is continued until five individual layers have been laid down to form the barrier layer.
  • the solvent is evaporated to form a therapeutic agent layer and the filling and evaporation procedure repeated until the hole is filled sufficiently.
  • a fourth mixture of PLGA, lactide:glycolide::50:50, (M v ⁇ 80,000 Daltons) 5% wt., Dexamethasone, 5% wt., and a suitable organic solvent, such as DMSO, 90% wt. is prepared.
  • the mixture is then loaded into the holes and the solvent is evaporated to form a second therapeutic agent layer. This process is continued until five layers have been laid down.
  • a fifth mixture of PLGA, lactide:glycolide::50:50, (M v ⁇ 80,000 Daltons) 7% and a suitable organic solvent, such as DMSO, are then laid down over the second therapeutic agent layer to provide a cap layer.
  • the cap layer degrades allowing the Dexmethasone to be delivered.
  • the protective layer protects the PCN-1 ribozyne from degrading while the Dexamethasone is delivered. After the protective layer degrades, the PCN-1 ribozyme is then delivered.
  • Formulation Comprising a Therapeutic Agent in a Therapeutic Agent Layer and a Protective Layer Containing an Activating Agent
  • a first mixture of high molecular weight poly(lactide-co-glycolide) (PLGA), lactide:glycolide::50:50 (M v >100,000 Daltons), 7% wt. and a suitable organic solvent, such as DMSO, 93% wt. is prepared.
  • the mixture is loaded drop-wise into holes in the stent, then the solvent is evaporated to form the barrier layer.
  • a second barrier layer is laid over the first by the same method of filling polymer solution into the hole followed by solvent evaporation. The process is continued until five individual layers have been laid down to form the complete barrier layer.
  • a second mixture of chymotrypsin, 3% solids basis, and polyvinyl pyrrolidone, 7% solids basis, in a solvent mixture of water:DMSO::50:50 is introduced into holes in the stent over the barrier layer.
  • the solvent is evaporated to form an activating ester hydrolytic enzyme filled protective layer and the filling and evaporation procedure repeated until the hole is filled to about 20% of its total volume with enzyme in activating layer.
  • a fourth solution of a pro-drug paclitaxel-polyglutamic acid (PTX-PGA) conjugate (where a free hydroxyl group on paclitaxel is covalently bonded via an ester linkage to the PGA), 1% wt. and poly(lactide-co-glycolide) (PLGA), lactide:glycolide::50:50, (M v ⁇ 80,000 Daltons) 7% wt. and a suitable organic solvent, such as DMSO, 92% wt. is prepared.
  • PTX-PGA pro-drug paclitaxel-polyglutamic acid
  • the mixture is filled into holes in the stent over the protective layer, then the solvent is evaporated to form the pro-drug layer, A pro-drug layer is laid over the first by the same method of filling polymer solution into the hole followed by solvent evaporation. The process is continued until six individual layers have been laid down to form the pro-drug layer.
  • the pro-drug is released first and partitions into the arterial tissue. After a delay time while the protection layer degrades, the protected chymotrypsin is released and enzymatically hydrolyzes the ester bond of the pro-drug to activate release of the drug paclitaxel in the tissue.
  • Formulation Comprising a Therapeutic Agent in a Therapeutic Agent Layer and a Protective Layer Containing a Deactivating Agent
  • a first mixture of poly-lactide, 5% wt. and a suitable organic solvent, such as DMSO, 95% wt. is prepared.
  • the mixture is loaded drop-wise into holes in the stent, then the solvent is evaporated to form the barrier layer.
  • a second barrier layer is laid over the first by the same method of filling polymer solution into the hole followed by solvent evaporation. The process is continued until five individual layers have been laid down to form the complete barrier layer.
  • a second mixture of citric acid, 8% solids basis, and polyvinyl pyrrolidone, 2% solids basis, in a solvent mixture of water:DMSO::50:50 is introduced into holes in the stent over the barrier layer.
  • the solvent is evaporated to form a deactivating compound containing layer capable of catalyzing the hydrolysis of phosphodiester bonds and depolymerizing and deactivating RNA oligomers.
  • the filling and evaporation procedure is repeated until the hole is filled to about 20% of its total volume with enzyme in activating layer.
  • a fourth mixture of PCN-1 ribozyme, 8% solids basis, and polyvinyl pyrrolidone, 2% solids basis, in a solvent mixture of water:DMSO::50:50 is introduced into holes in the stent over the separation layer.
  • the solvent is evaporated to form an anti-sense oligonucleotide filled polymer therapeutic agent layer and the filling and evaporation procedure repeated until the hole is filled to about 20% of its total volume.
  • a suitable organic solvent such as DMSO
  • the PCN-1 ribozyme is released first and partions into the arterial tissue and provides a therapeutic effect. After a delay time while the protection layer degrades, the protected citric acid is released and catalytically hydrolyzes the phosphodiester ester bond of ribozyme oligonucleotide backbone and terminates its therapeutic activity.
  • Formulation Comprising a Therapeutic Agent in a Therapeutic Agent Layer and a Protective Layer Containing an Antacid
  • a first mixture of poly(lactide-co-glycolide) (PLGA), lactide:glycolide::85:15, (M v >100,000 Daltons) 7% wt. and a suitable organic solvent, such as DMSO, 93% wt. is prepared.
  • the mixture is loaded drop-wise into holes in the stent, then the solvent is evaporated to form the barrier layer.
  • a second barrier layer is laid over the first by the same method of filling polymer solution into the hole followed by solvent evaporation. The process is continued until five individual layers have been laid down to form the complete barrier layer.
  • a second mixture of sirolimus, 3% solids basis, poly(lactide-co-glycolide) (PLGA), lactide:glycolide::50:50, (M v ⁇ 80,000 Daltons) 7% wt, and magnesium hydroxide, 0.35% wt (5% wt based on PLGA) is introduced into holes in the stent over the barrier layer.
  • the solvent is evaporated to form a drug protecting layer containing drug and an antacid and the filling and evaporation procedure repeated until the hole is filled to about 60 % of its total volume with protecting layer.
  • a suitable organic solvent such as DMSO
  • PLGA polymer degrades via hydrolysis and sirolimus is released, as well as acidic byproducts (lactic and glycolic acids as well as acid function terminated PLGA oligomers).
  • acidic byproducts lactic and glycolic acids as well as acid function terminated PLGA oligomers.
  • the acidic byproducts are immediately and continuously neutralized by the action of magnesium hydroxide over the time the sirolimus is released, thus protecting the sirolimus from acid catalyzed degradation.
  • PBS phosphate buffered saline
  • PBS solution is prepared by dissolving five “Phosphate Buffered Saline Tablets” (Sigma-Aldrich Co., catalog #P-4417) in 1000 mL deionized water to provide a solution with a pH of 7.4, 0.01 M in phosphate buffer, 0.0027 M in potassium chloride and 0.137 M in sodium chloride.
  • This PBS solution is used as a Release Solution.
  • the elution rate of drug from the multilayered stent of Example 1 is determined in a standard sink condition experiment.
  • a first 10 mL screw capped vial is charged with release solution, 3 mL, then placed in a shaking water bath held at 37° C. until temperature has equilibrated.
  • the above stent containing a drug in matrix layer in between two protection layers is placed into the release solution, shaking at 60 cycles per minute commenced, and the stent is held immersed in the release solution for a period of time.
  • the stent is then placed in a second screw capped vial is charged with release solution, 3 mL, at 37° C., and held for a period of time.
  • the first release solution is called sample # 1. From time to time, the stent is removed from release solution in one vial and placed into fresh solution in the next vial to generate a series of samples containing varying amounts of drug eluted from the stent.
  • the amount of paclitaxel in a given release solution sample is determined by High Pressure Liquid Chromatography (HPLC). The following conditions are used:
  • the amount of paclitaxel eluted into the release solution during any time period of the experiment can be calculated.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Surgery (AREA)
  • Epidemiology (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Cardiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Materials For Medical Uses (AREA)
  • Media Introduction/Drainage Providing Device (AREA)
  • Medicinal Preparation (AREA)

Abstract

The present invention relates to implantable medical devices for delivery of therapeutic agents, such as drugs, to a patient. More particularly, the invention relates to a device having therapeutic agents protected by a protective layer that prevents or retards processes that deactivate or degrade the active agents.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of pending U.S. patent application Ser. No. 10/253,020, filed Sep. 23, 2002 which is incorporated herein in its entirety.
  • FIELD OF THE INVENTION
  • The invention relates to a therapeutic agent delivery device for delivery of agents, such as drugs, to a patient, and more particularly, the invention relates to a device having therapeutic agents separated by a protective layer.
  • DESCRIPTION OF THE RELATED ART
  • Implantable medical devices are often used for delivery of a beneficial agent, such as a drug, to an organ or tissue in the body at a controlled delivery rate over an extended period of time. These devices may deliver agents to a wide variety of bodily systems to provide a wide variety of treatments.
  • One of the many implantable medical devices which have been used for local delivery of beneficial agents is the coronary stent. Coronary stents are typically introduced percutaneously, and transported transluminally until positioned at a desired location, These devices are then expanded either mechanically, such as by the expansion of a mandrel or balloon positioned inside the device, or expand themselves by releasing stored energy upon actuation within the body. Once expanded within the lumen, these devices, called stents, become encapsulated within the body tissue and remain a permanent implant.
  • Known stent designs include monofilament wire coil stents (U.S. Pat. No. 4,969,458); welded metal cages (U.S. Pat. Nos. 4,733,665 and 4,776,337); and, most prominently, thin-walled metal cylinders with axial slots formed around the circumference (U.S. Pat. Nos. 4,733,665; 4,739,762; and 4,776,337). Known construction materials for use in stents include polymers, organic fabrics and biocompatible metals, such as stainless steel, gold, silver, tantalum, titanium, and shape memory alloys, such as Nitinol.
  • Of the many problems that may be addressed through stent-based local delivery of beneficial agents, one of the most important is restenosis. Restenosis is a major complication that can arise following vascular interventions such as angioplasty and the implantation of stents. Simply defined, restenosis is a wound healing process that reduces the vessel lumen diaineter by extracellular matrix deposition, neointimal hyperplasia, and vascular smooth muscle cell proliferation, and which may ultimately result in renarrowing or even reocclusion of the lumen. Despite the introduction of improved surgical techniques, devices, and pharmaceutical agents, the overall restenosis rate is still reported in the range of 25% to 50% within six to twelve months after an angioplasty procedure. To treat this condition, additional revascularization procedures are frequently required, thereby increasing trauma and risk to the patient.
  • One of the techniques under development to address the problem of restenosis is the use of surface coatings of various beneficial agents on stents. U.S. Pat. No. 5,716,981, for example, discloses a stent that is surface-coated with a composition comprising a polymer carrier and paclitaxel (a well-known compound that is commonly used in the treatment of cancerous tumors). The patent offers detailed descriptions of methods for coating stent surfaces, such as spraying and dipping, as well as the desired character of the coating itself: it should “coat the stent smoothly and evenly” and “provide a uniform, predictable, prolonged release of the anti-angiogenic factor.” Surface coatings, however, can provide little actual control over the release kinetics of beneficial agents. These coatings are necessarily very thin, typically 5 to 8 microns deep. The surface area of the stent, by comparison is very large, so that the entire volume of the beneficial agent has a very short diffusion path to discharge into the surrounding tissue.
  • Increasing the thickness of the surface coating has the beneficial effects of improving drug release kinetics including the ability to control drug release and to allow increased drug loading. However, the increased coating thickness results in increased overall thickness of the stent wall. This is undesirable for a number of reasons, including increased trauma to the vessel wall during implantation, reduced flow cross-section of the lumen after implantation, and increased vulnerability of the coating to mechanical failure or damage during expansion and implantation. Coating thickness is one of several factors that affect the release kinetics of the beneficial agent, and limitations on thickness thereby limit the range of release rates, duration of drug delivery, and the like that can be achieved.
  • In addition to sub-optimal release profiles, there are further problems with surface coated stents. The fixed matrix polymer carriers frequently used in the device coatings typically retain approximately 30% of the beneficial agent in the coating indefinitely. Since these beneficial agents are frequently highly cytotoxic, sub-acute and chronic problems such as chronic inflammation, late thrombosis, and late or incomplete healing of the vessel wall may occur. Additionally, the carrier polymers themselves are often highly inflammatory to the tissue of the vessel wall. On the other hand, use of biodegradable polymer carriers on stent surfaces can result in the creation of “virtual spaces” or voids between the stent and tissue of the vessel wall after the polymer carrier has degraded, which permits differential motion between the stent and adjacent tissue. Resulting problems include micro-abrasion and inflammation, stent drift, and failure to re-endothelialize the vessel wall.
  • Another significant problem is that expansion of the stent may stress the overlying polymeric coating causing the coating to plastically deform or even to rupture, which may therefore effect drug release kinetics or have other untoward effects. Further, expansion of such a coated stent in an atherosclerotic blood vessel will place circumferential shear forces on the polymeric coating, which may cause the coating to separate from the underlying stent surface. Such separation may again have untoward effects including embolization of coating fragments causing vascular obstruction.
  • In addition, it is not currently possible to deliver some drugs with a surface coating due to sensitivity of the drugs to water, other compounds, or conditions in the body which degrade the drugs. For example, some drugs lose substantially all their activity when exposed to water for a period of time. When the desired treatment time is substantially longer than the half life of the drug in water the drug cannot be delivered by know coatings. Other drugs, such as protein or peptide based therapeutic agents, lose activity when exposed to enzymes, pH changes, or other environmental conditions. These drugs which are sensitive to compounds or conditions in the body often cannot be delivered using surface coatings.
  • Accordingly, it would be desirable to provide a beneficial agent delivery device for delivery of agents, such as drugs, to a patient while protecting the agent from compounds or conditions in the body which would degrade the agent.
  • SUMMARY OF THE INVENTION
  • The present invention relates to medical device for delivery of therapeutic agents where the therapeutic agents are protected from degradation by a protective layer.
  • In one aspect the present invention is directed to an implantable medical device comprising an implantable device body having a plurality of holes therein; a therapeutic agent contained within the plurality of holes in the device body; and a protective layer of material provided in the plurality of holes and arranged to protect the therapeutic agent from compounds or conditions in the body which would degrade the agent. In a preferred embodiment the implantable medical device is a stent.
  • In preferred embodiments, the protective layer is a pharmaceutically acceptable bioerodible matrix that allows said therapeutic agent to be released as the matrix erodes.
  • In another preferred embodiment, the therapeutic agent is a first therapeutic agent provided in a first therapeutic agent layer adjacent said protective layer and said protective layer is a bioerodible matrix that prevents the therapeutic agent from being released until the protective layer has substantially eroded.
  • In yet another preferred embodiment, the implantable medical device further comprises a second therapeutic agent provided in a second therapeutic agent layer, wherein said protective layer separates the first therapeutic agent layer from a second therapeutic agent layer, and said first and second therapeutic agent layers each comprising a therapeutic agent disposed in a pharmaceutically acceptable bioerodible matrix.
  • Preferably the bioerodible matrix comprises pharmaceutically acceptable polymers, that may be selected from the group consisting of polylactic acid, polyglycolic acid, polylactic-co-glycolic acid, polylactic acid-co-caprolactone, polyethylene glycol, polyethylene oxide, polyvinyl pyrrolidone, polyorthoesters, polysaccharides, polysaccharide derivatives, polyhyaluronic acid, polyalginic acid, chitin, chitosan, cellulose, hydroxyehtylcellulose, hydroxypropylcellulose, carboxymethyleellulose, polypeptides, polylysine, polyglutamic acid, albumin, polyanhydrides, polyhydroxy alkonoates, polyhydroxy valerate, polyhydroxy butyrate, proteins, and polyphosphate esters.
  • Alternatively, the bioerodible matrix is selected from the group consisting of phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, sphingomyelin, dimyristoyl phosphatidylcholine, dipalmitoyl phosphatidyleholine, distearoyl phosphatidylcholine, distearoyl phosphatidylglycerol, dipalmitoyl phosphatidyl-glycerol, dimyristoyl phosphatidylserine, distearoyl phosphatidylserine, dipalmitoyl phosphatidylserine, fatty acids, and fatty acid esters.
  • In a preferred embodiment, the bioerodible matrix further comprises additives for controlling the rate of erosion.
  • In another preferred embodiment, the bioerodible matrix substantially prevents the ingress of water or enzymes.
  • Preferably the bioerodible matrix erodes by hydrolysis, dissolution, or enzymatic degradation. Alternatively, the protective layer erodes by physically breaking apart when the first therapeutic agent layer is substantially eroded.
  • In one embodiment, at least one therapeutic agent is homogeneously dispersed in said bioerodible matrix. In an alternative embodiment, the therapeutic agent is heterogeneously disposed in said bioerodible matrix, preferably as a solid particle dispersion, encapsulated agent dispersion, an emulsion, a suspension, a liposome, niosome, or a microparticle, wherein said niosome, liposome or microparticle comprise a homogeneous or heterogeneous mixture of the therapeutic agent.
  • In another preferred embodiment the first and second therapeutic agents are homogeneously dispersed in each of said first and second therapeutic agent layers. Alternatively, the first and second therapeutic agents are heterogeneously disposed in each of said first and second therapeutic agent layers, preferably as a solid particle dispersion, encapsulated agent dispersion, and emulsion, a suspension, a liposome or a microparticle, wherein said liposome or microparticle comprise a homogeneous or heterogeneous mixture of the therapeutic agent.
  • Preferably, the therapeutic agent is selected from the group consisting of antineoplastic agents, neoplastic agents, antiproliferative agents, antisense compounds, immunosuppresants, angiogenic agents, angiogenic factors, antiangiogenic agents, and anti-inflammatory agents, or combinations thereof.
  • In still another preferred embodiment the protective layer further comprises an activating or a deactivating agent, wherein the activating or deactivating agent prevents the loss of biological function of the first or second therapeutic agents, preferably the activating or deactivating agents are selected from the group consisting of antacids, buffers, enzyme inhibitors, hydrophobic additives, and adjuvants, more preferably the activating or deactivating agent is an antacid that protects one of said first and second therapeutic agents from a deactivating decrease in pH. Alternatively, the protective layer comprises an activating or deactivating agent that prevents deactivating interactions between said first and second therapeutic agents.
  • In one of its method aspects, the present invention is directed to a method for delivering a drug to a patient which method comprises placement within the patient's artery or vein of an implantable medical device as described above.
  • In another of its method aspects, the present invention is directed to a method for delivering a drug to a patient using an implantable medical device as described above, wherein said drug delivery method is used to treat restenosis in the patient after the patient has received percutaneous transluminal coronary angioplasty and intraluminal stent placement.
  • BRIEF DESCRIPTION OF THE DRAWING FIGURES
  • The invention will now be described in greater detail with reference to the preferred embodiments illustrated in the accompanying drawings, in which like elements bear like reference numerals, and wherein:
  • FIG. 1 is a perspective view of a therapeutic agent delivery device in the form of an expandable stent;
  • FIG. 2 is a cross sectional view of a portion of a therapeutic agent delivery device having a beneficial agent contained in an opening in layers;
  • FIG. 3 is a cross sectional view of a portion of a therapeutic agent delivery device having therapeutic agent layers, protective layers, and a barrier layer contained in an opening in the device;
  • FIG. 4 is a cross sectional view of a portion of a therapeutic agent delivery device having beneficial agent layers having varying concentrations of therapeutic agent;
  • FIG. 5 is a cross sectional view of a portion of a therapeutic agent delivery device having therapeutic agent layers, protective layers, a barrier layer, and a cap layer contained in an opening in the device; and
  • FIG. 6 is a cross sectional view of a portion of a therapeutic agent delivery device having a therapeutic agent and a protective material in a single layer and a separate cap layer
  • DETAILED DESCRIPTION OF THE INVENTION
  • The present invention relates to a beneficial agent delivery device for delivery of agents, such as drugs, to a patient. More particularly, the invention relates to a medical device having one or more therapeutic agents separated or protected from compounds or conditions within the body which would degrade the agent(s) by one or more protective layers.
  • First, the following terms, as used herein, shall have the following meanings:
  • The term “beneficial agent” as used herein are intended to have their broadest possible interpretation and is used to include any therapeutic agent or drug, as well as inactive agents such as barrier layers, carrier layers, therapeutic layers or protective layers.
  • The terms “drug” and “therapeutic agent” are used interchangeably to refer to any therapeutically active substance that is delivered to a bodily conduit of a living being to produce a desired, usually beneficial, effect. The present invention is particularly well suited for the delivery of antineoplastic, angiogenic factors, immuno-suppressants, and antiproliferatives (anti-restenosis agents) such as paclitaxel and Rapamycin for example, and antithrombins such as heparin, for example.
  • The therapeutic agents used in the present invention include classical low molecular weight therapeutic agents commonly referred to as drugs including all classes of action as exemplified by, but not limited to: antineoplastic, immuno-suppressants, antiproliferatives, antithrombins, antiplatelet, antilipid, anti-inflammatory, angiogenic, anti-angiogenic, vitamins, ACE inhibitors, vasoactive substances, antimitotics, metello-proteinase inhibitors, NO donors, estradiols, anti-sclerosing agents, alone or in combination. Therapeutic agent also includes higher molecular weight substances with drug like effects on target tissue sometimes called biologic agents including but not limited to: peptides, lipids, protein drugs, enzymes, oligonucleotides, ribozymes, genetic material, prions, virus, bacteria, and eucaryotic cells such as endothelial cells, monocyte/macrophages or vascular smooth muscle cells to name but a few examples. The therapeutic agent may also be a pro-drug, which metabolizes into the desired drug when administered to a host. In addition, the therapeutic agents may be pre-formulated as a microcapsules, microspheres, microbubbles, liposomes, niosomes, emulsions, dispersions or the like before it is incorporated into the therapeutic layer. The therapeutic agent may also be radioactive isotopes or agents activated by some other form of energy such as light or ultrasonic energy, or by other circulating molecules that can be systemically administered.
  • The term “matrix” or “biocompatible matrix” are used interchangeably to refer to a medium or material that, upon implantation in a subject, does not elicit a detrimental response sufficient to result in the rejection of the matrix. The matrix typically does not provide any therapeutic responses itself, though the matrix may contain or surround a therapeutic agent, a therapeutic agent, an activating agent or a deactivating agent, as defined herein. A matrix is also a medium that may simply provide support, structural integrity or structural barriers. The matrix may be polymeric, non-polymeric, hydrophobic, hydrophilic, lipophilic, amphiphilic, and the like.
  • The term “bioerodible” refers to a matrix, as defined herein, that is bioresorbable and/or can be broken down by either chemical or physical process, upon interaction with a physiological environment. The bioerodible matrix is broken into components that are metabolizable or exeretable, over a period of time from minutes to years, preferably less than one year, while maintaining any requisite structural integrity in that same time period.
  • The term “pharmaceutically acceptable” refers to a matrix or an additive, as defined herein, that is not toxic to the host or patient. When in reference to a matrix, it provides the appropriate storage and/or delivery of therapeutic, activating or deactivating agents, as defined herein, and does not interfere with the effectiveness or the biological activity of the agent.
  • The term “substantially eroded” refers to an erodable layer that has been broken down or absorbed into the system nearly completely. In a substantially eroded layer, at least about 75% of the original layer is eroded away, preferably, 90% of the material is eroded and more preferably 95% of the material is eroded away.
  • The term “substantially prevents or retards”, as used in herein, refers to a process, such as water absorption, that is nearly stopped, but is probably not completely stopped from occurring. For this example, water absorption is substantially prevented if the rate at which water is absorbed is decreased by at least about 10%, more preferably by at least about 20% and even more preferably by at least about 50%, when compared to a standard.
  • The term “protective layer” refers to a matrix which serves to prevent or retard the occurrence of any process that would act to degrade or deactivate a drug, which is either contained in the same layer, or is contained in another adjacent layer. The protective layer is preferably bioerodible,
  • The term “erosion” refers to the process by which the components of a medium or matrix are bioresorbed and/or degraded and/or broken down by either chemical or physical process. For example in reference to polymers, erosion can occur by cleavage or hydrolysis of the polymer chains, such that the molecular weight of the polymer is lowered. The polymer of lower molecular weight will have greater solubility in water and is therefore dissolved away, In another example, erosion occurs by physically breaking apart upon interaction with a physiological environment.
  • The term “erosion rate” is a measure of the amount of time it takes for the erosion process to occur and is usually report in unit area per unit time.
  • The term “degrade” or “deactivate” refers to any process that causes an active component, such as a therapeutic agent, to become unable, or less able, to perform the action which it was intended to perform when incorporated in the device.
  • The term “polymer” refers to molecules formed from the chemical union of two or more repeating units, called monomers. Accordingly, included within the term “polymer” may be, for example, dimers, trimers and oligomers. The polymer may be synthetic, naturally-occurring or semisynthetic. In preferred form, the term “polymer” refers to molecules which typically have a Mw greater than about 3000 and preferably greater than about 10,000 and a Mw that is less than about 10 million, preferably less than about a million and more preferably less than about 200,000. Examples of polymers include but are not limited to, poly-a-hydroxy acid esters such as, polylactic acid, polyglycolic acid, polylactic-co-glycolic acid, polylactic acid-co-caprolactone; polyethylene glycol and polyethylene oxide, polyvinyl pyrrolidone, polyorthoesters; polysaccharides and polysaccharide derivatives such as polyhyaluronic acid, polyalginic acid, chitin, chitosan, cellulose, hydroxyehtyleellulose, hydroxypropylcellulose, carboxymethylcellulose; polypeptides, and proteins such as polylysine, polyglutamic acid, albumin; polyanhydrides; polyhydroxy alkonoates such as polyhydroxy valerate, polyhydroxy butyrate, and the like.
  • The term “lipid”, as used herein, refers to a matrix that comprises preferably non-polymeric small organic, synthetic or naturally-occurring, compounds which are generally amphipathic and biocompatible. The lipids typically comprise a hydrophilic component and a hydrophobic component. Exemplary lipids include, for example, fatty acids, fatty acid esters, neutral fats, phospholipids, glycolipids, aliphatic alcohols, waxes, terpenes, steroids and surfactants. Term lipid is also meant to include derivatives of lipids. More specifically the term lipids includes but is not limited to phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, sphingomyelin as well as synthetic phospholipids such as dimyristoyl phosphatidylcholine, dipalmitoyl phosphatidylcholine, distearoyl phosphatidylcholine, distearoyl phosphatidylglycerol, dipaimitoyl phosphatidyl-glycerol, dimyristoyl phosphatidylserine, distearoyl phosphatidylserine and dipalmitoyl phosphatidylserine.
  • The term “hydrogel” refers to cross-linked polymeric material in which the liquid component is water. Hydrogels may be prepared by cross-linking certain polymers and lipids disclosed herein.
  • The term “additives” refers to pharmaceutically acceptable compounds, materials, and compositions that may be included in a matrix along with a therapeutic agent. An additive may be encapsulated in or on or around a matrix. It may be homogeneously or heterogeneously disposed, as defined herein, in the matrix. Some examples of additives are pharmaceutically acceptable excipients, adjuvants, carriers, antioxidants, preservatives, buffers, antacids, and the like, such as those disclosed in Remington: The Science and Practice of Pharmacy, Gennaro, ed., Mack Publishing Co., Easton, Pa., 19th ed., 1995.
  • The term “holes” refers to holes of any shape and includes both through-openings and recesses.
  • The term “reaction environment” or “environment” refers to the area between a tissue surface abutting the device and the first intact layer of beneficial agent within a hole in the medical device.
  • The term “activating and deactivating agents” refers to a compound or material or medium that serves to prepare a reaction medium or environment for an active component. This may include the process of activating a compound (for example an enzyme) within the reaction environment. It may also include altering the pH or other physiological condition of the environment. This may further include the process of degrading a compound from the reaction environment or preventing deactivation or degradation. Some examples of activating and deactivating agents include, but are not limited to inorganic and organic acids and bases, (preferably inorganic) buffers, RNAase, catalysts, kinases, and the like.
  • The term “homogeneously disposed” refers to a component which is mixed uniformly in a matrix in such a manner that the component is macroscopically indistinguishable from the matrix itself. An example of a homogeneously disposed component is a drug formulation such as a microemulsion in which small beads of oil are dispersed uniformly in water.
  • The term “heterogeneously disposed” refers to a component which is mixed non-uniformly into a matrix in such a manner that the component is macroscopically distinguishable from the matrix itself. An example of a heterogeneously disposed component is a simple emulsion in which the beads of oil in the water are large enough to cause a turbidity to the solution and can be seen settling out of solution over time. Heterogeneously disposed compositions also include encapsulated formulations where a component, such as a protective layer, is layered onto or around a therapeutic agent or a therapeutic layer, forming a protective shell. Implantable Medical Devices with Holes
  • FIG. 1 illustrates a medical device 10 according to the present invention in the form of a stent design with large, non-deforming struts 12 and links 14, which can contain holes 20 without compromising the mechanical properties of the struts or links, or the device as a whole. The non-deforming struts 12 and links 14 may be achieved by the use of ductile hinges 16 which are described in detail in U.S. Pat. No. 6,241,762 which is incorporated hereby by reference in its entirety. The holes 20 serve as large, protected reservoirs for delivering various beneficial agents to the device implantation site.
  • The relatively large, protected openings 20, as described above, make the expandable medical device of the present invention particularly suitable for delivering larger molecules or genetic or cellular agents, such as, for example, protein drugs, enzymes, antibodies, antisense oligonucleotides, ribozymes, gene/vector constructs, and cells (including but not limited to cultures of a patient's own endothelial cells). Many of these types of agents are biodegradable or fragile, have a very short or no shelf life, must be prepared at the time of use, or cannot be pre-loaded into delivery devices such as stents during the manufacture thereof for some other reason. The large holes 20 in the expandable device of the present invention form protected areas or receptors to facilitate the loading of such an agent either at the time of use or prior to use, and to protect the agent from abrasion and extrusion during delivery and implantation.
  • The volume of beneficial agent that can be delivered using holes 20 is about 3 to 10 times greater than the volume of a 5 micron coating covering a stent with the same stent/vessel wall coverage ratio. This much larger beneficial agent capacity provides several advantages. The larger capacity can be used to deliver multi-drug combinations, each with independent release profiles, for improved efficacy. Also, larger capacity can be used to provide larger quantities of less aggressive drugs and to achieve clinical efficacy without the undesirable side-effects of more potent drugs, such as retarded healing of the endothelial layer.
  • Holes also decrease the surface area of the beneficial agent bearing compounds to which the vessel wall surface is exposed. For typical devices with beneficial agent openings, this exposure decreases by a factors ranging from about 6:1 to 8:1, by comparison with surface coated stents. This dramatically reduces the exposure of vessel wall tissue to polymer carriers and other agents that can cause inflammation, while simultaneously increasing the quantity of beneficial agent delivered, and improving control of release kinetics.
  • FIG. 2 shows a cross section of a medical device 10 in which one or more beneficial agents have been loaded into the opening 20 in discrete layers 30. Examples of some methods of creating such layers and arrangements of layers are described in U.S. Pat. application Ser. No. 09/948,989, filed on Sep. 7, 2001, which is incorporated herein by reference in its entirety.
  • According to one example, the total depth of the opening 20 is about 125 to about 140 microns, and the typical layer thickness would be about 2 to about 50 microns, preferably about 12 microns. Each typical layer is thus individually about twice as thick as the typical coating applied to surface-coated stents. There would be at least two and preferably about ten to twelve such layers in a typical opening, with a total beneficial agent thickness about 25 to 28 times greater than a typical surface coating. According to one preferred embodiment of the present invention, the openings have an area of at least 5×10−6 square inches, and preferably at least 7×10−6 square inches.
  • Since each layer is created independently, individual chemical compositions and pharmacokinetic properties can be imparted to each layer. Numerous useful arrangements of such layers can be formed, some of which will be described below. Each of the layers may include one or more agents in the same or different proportions from layer to layer. The layers may be solid, porous, or filled with other drugs or excipients.
  • FIG. 3 shows an arrangement of layers provided in a through opening 20 in which layers 40 of a therapeutic agent in a biodegradable carrier material, are alternated with layers 42 of the biodegradable carrier material alone, with no active agent loaded, and a barrier layer 44 is provided at the inwardly facing surface. Such an arrangement releases therapeutic agent in three programmable bursts or waves achieving a stepped or pulsatile delivery profile. The use of carrier material layers without active agent creates the potential for synchronization of drug release with cellular biochemical processes for enhanced efficacy. The biodegradable carrier layers 42 and/or the barrier layer 44 may also be protective layers, as will be described below.
  • Alternatively, different layers could be comprised of different therapeutic agents altogether, creating the ability to release different therapeutic agents at different points in time. The layers of beneficial agent provide the ability to tailor a delivery profile to different applications. This allows the medical device according to the present invention to be used for delivery of different beneficial agents to a wide variety of locations in the body.
  • A further alternative is illustrated in FIG. 4. Here the concentration of the same therapeutic agent is varied from layer to layer, creating the ability to generate release profiles of arbitrary shape. Progressively increasing the concentration of agent in the layers 50 with increasing distance from the outwardly facing surface 56, for example, can produce a release profile with a constant release rate, also called a zero order release profile, which would be impossible to produce using known thin surface coating materials and techniques.
  • Certain types of drugs cannot be delivered by surface coatings or other known methods because of sensitivity of the drugs to compounds or conditions within the body which tend to degrade the drugs. For example, some drugs lose substantially all of their activity when exposed to water for a short period of time. Therefore, it is not possible to deliver these drugs over an extended period of time because the activity of the drug is substantially reduced by the time of delivery. Other drugs degrade in the presence of other compounds or conditions within the body including exposure to enzymes, pH changes, or other environmental conditions.
  • FIG. 5 illustrates an arrangement of layers of a therapeutic agent 60 layered between layers 62 of a protective material which protects the therapeutic agents from compounds or conditions within the body which would degrade the therapeutic agent. Examples of protective interlayers 62 will be discussed in detail below. FIG. 5 also illustrates a protective layer in the form of a cap layer 64 provided at a tissue contacting surface of medical device. The cap layer 64 blocks or retards biodegradation of subsequent layers and/or blocks or retards diffusion of the beneficial agent in that direction for a period of time which allows the delivery of the medical device to a desired location in the body. The barrier layer 64 may also function to prevent hydration of inner layers of beneficial agent and thus prevent swelling of the inner layers when such layers are formed of hygroscopic materials. FIG. 5 also illustrates a barrier layer 66. When the medical device 10 is a stent which is implanted in a lumen, the barrier layer 66 is positioned on a side of the opening 20 facing the inside of the lumen. The barrier layer 66 prevents the therapeutic agent 60 from passing into the lumen and being carried away without being delivered to the lumen tissue.
  • In the embodiment of FIG. 5, the protective layers 62 prevent or retard the flow of water (or other compounds) to the therapeutic layers 60 in a manner which will be described in further detail below. The protective layers 62 prevent or reduce the loss of biological function of the therapeutic agent by reducing contact of water with the therapeutic agent until a desired delivery time.
  • FIG. 6 illustrates a further embodiment of the invention in which the opening 20 in the medical device 10 is filled with a therapeutic agent and a protective agent in the same layer or layers 70. In this embodiment, the therapeutic agent layer and the protective agent layer are incorporated in the same layer. Optionally, a barrier layer 72 may be provided as in the embodiment of FIG. 5.
  • Beneficial Agent Formulations
  • Beneficial agents include any therapeutic agent or drug, as well as inactive agents such as barrier layers, carrier layers, therapeutic layers or protective layers.
  • Therapeutic Layer Formulations
  • The therapeutic agent layers of the present invention are beneficial agents comprised of a matrix and at least one therapeutic agent. The matrix of the therapeutic agent layers can be made from pharmaceutically acceptable polymers, such as those typically used in medical devices. Such polymers are well known and include but are not limited to poly-a-hydroxy acid esters such as, polylactic acid, polyglycolic acid, polylactic-co-glycolic acid, polylactic acid-co-caprolactone; polyethylene glycol and polyethylene oxide; polyvinyl pyrrolidone; polyorthoesters; polysaccharides and polysaccharide derivatives such as polyhyaluronic acid, polyalginic acid, chitin, chitosan, cellulose, hydroxyehtylcellulose, hydroxypropylcellulose, carboxymethylcellulose; polypeptides, and proteins such as polylysine, polyglutamic acid, albumin; polyanhydrides; polyhydroxy alkonoates such as polyhydroxy valerate, polyhydroxy butyrate, and the like, and copolymers thereof. The polymers and copolymers can be prepared by methods well known in the art (see, for example, Rempp and Merril: Polymer Synthesis, 1998, John Wiley and Sons) in or can be used as purchased from Alkermes, in Cambridge, Mass. or Birmingham, Ala. Polymer Inc., in Birmingham, Alabama.
  • The preferred co-polymer for use in the present invention are poly(lactide-co-glycolide) (PLGA) polymers. The rate at which the polymer erodes is determined by the selection of the ratio of lactide to glycolide within the copolymer, the molecular weight of each polymer used, and the crystallinity of the polymers used.
  • Bioerodible polymers may also be used to form barrier layers that erode at a rate that can be predetermined based on the composition and that contain no therapeutic agent. Additives in Protective layer and Therapeutic layer Formulations
  • Typical additives that may be included in a bioerodible matrix are well known to those skilled in the art (see Remington: The Science and Practice of Pharmacy, Gennaro, ed., Mack Publishing Co., Easton, Pa., 19th ed., 1995) and include but are not limited to pharmaceutically acceptable excipients, adjuvants, carriers, antioxidants, preservatives, buffers, antacids, emulsifiers, inert fillers, fragrances, thickeners, tackifiers, opacifiers, gelling agents, stabilizers, surfactants, emollients, coloring agents, and the like.
  • Typical formulations for therapeutic agents incorporated in these medical devices are well known to those skilled in the art and include but are not limited to solid particle dispersions, encapsulated agent dispersions, and emulsions, suspensions, liposomes or microparticles, wherein said liposome or microparticle comprise a homogeneous or heterogeneous mixture of the therapeutic agent.
  • The amount of the drug that is present in the device, and that is required to achieve a therapeutic effect, depends on many factors, such as the minimum necessary dosage of the particular drug, the condition to be treated, the chosen location of the inserted device, the actual compound administered, the age, weight, and response of the individual patient, the severity of the patient's symptoms, and the like.
  • The appropriate dosage level of the therapeutic agent, for more traditional routes of administration, are known to one skilled in the art. These conventional dosage levels correspond to the upper range of dosage levels for compositions, including a physiologically active substance and traditional penetration enhancer. However, because the delivery of the active substance occurs at the site where the drug is required, dosage levels significantly lower than a conventional dosage level may be used with success. Ultimately, the percentage of therapeutic agent in the composition is determined by the required effective dosage, the therapeutic activity of the particular formulation, and the desired release profile. In general, the active substance will be present in the composition in an amount from about 0.0001% to about 99%, more preferably about 0.01% to about 80% by weight of the total composition depending upon the particular substance employed. However, generally the amount will range from about 0.01% to about 75% by weight of the total composition, with levels of from about 25% to about 75% being preferred.
  • Protective Layer Formulations
  • The protective layers of the present invention are beneficial agents comprised of a biocrodible matrix and optionally contain additional additives, therapeutic agents, activating agents, deactivating agents, and the like. Either a property of the chosen material of the protective layer, or a chemical embedded in the protective layer provides protection from deactivating processes or conditions for at least one therapeutic agent. In addition to the polymer materials described above, the protective layer may also be comprised of pharmaceutically acceptable lipids or lipid derivatives, which are well known in the art and include but are not limited to fatty acids, fatty acid esters, lysolipids, phosphocholines, (Avanti Polar Lipids, Alabaster, Ala.), including 1-alkyl-2-acetoyl-sn-glycero 3-phosphocholines, and 1-alkyl-2-hydroxy-sn-glycero 3-phosphocholines; phosphatidylcholine with both saturated and unsaturated lipids, including dioleoylphosphatidylcholine; dimyristoyl-phosphatidyleholine; dipentadecanoylphosphatidylcholine; dilauroylphosphatidyl-choline; dipalmitoylphosphatidylcholine (DPPC); distearoylphosphatidylcholine (DSPC); and diarachidonylphosphatidylcholine (DAPC); phosphatidyl-ethanolamines, such as dioleoylphosphatidylethanolamine, dipahnitoyl-phosphatidylethanolamine (DPPE) and distearoylphosphatidylefhanolamine (DSPE); phosphatidylserine; phosphatidylglycerols, including distearoylphosphatidylglycerol (DSPG); phosphatidylinositol; sphingolipids such as sphingomyelin; glucolipids; sulfatides; glycosphingolipids; phosphatidic acids, such as dipahmitoylphosphatidic acid (DPPA) and distearoylphosphatidic acid (DSPA); palmitie acid; stearic acid; arachidonic acid; oleic acid; lipids bearing polymers, such as chitin, hyaluronic acid, polyvinylpyrrolidone or polyethylene glycol (PEG), also referred to herein as “pegylated lipids”, with preferred lipids bearing polymers including DPPE-PEG (DPPE-PEG), which refers to the lipid DPPE having a PEG polymer attached thereto, including, for example, DPPE-PEG5000, which refers to DPPE having attached thereto a PEG polymer having a mean average molecular weight of about 5000; lipids bearing sulfonated mono-, di-, oligo- or polysaccharides; cholesterol, cholesterol sulfate and cholesterol hemisuccinate; tocopherol hemisuccinate; lipids with ether and ester-linked fatty acids; polymerized lipids (a wide variety of which are well known in the art); diacetyl phosphate; dicetyl phosphate; stearylamine; cardiolipin; phospholipids with short chain fatty acids of about 6 to about 8 carbons in length; synthetic phospholipids with asymmetric acyl chains, such as, for example, one acyl chain of about 6 carbons and another acyl chain of about 12 carbons; ceramides; non-ionic liposomes including niosomes such as polyoxyethylene fatty acid esters, polyoxyethylene fatty alcohols, polyoxyethylene fatty alcohol ethers, polyoxyethylated sorbitan fatty acid esters, glycerol polyethylene glycol oxystearate, glycerol polyethylene glycol ricinoleate, ethoxylated soybean sterols, ethoxylated castor oil, polyoxyethylene-polyoxypropylene polymers, and polyoxyethylene fatty acid stearates; sterol aliphatic acid esters including cholesterol sulfate, cholesterol butyrate, cholesterol iso-butyrate, cholesterol palmitate, cholesterol stearate, lanosterol acetate, ergosterol palmitate, and phytosterol n-butyrate; sterol esters of sugar acids including cholesterol glucuronide, lanosterol glucuronide, 7-dehydrocholesterol glucuronide, ergosterol glucuronide, cholesterol gluconate, lanosterol gluconate, and ergosterol gluconate; esters of sugar acids and alcohols including lauryl glucuronide, stearoyl glucuronide, myristoyl glucuronide, lauryl gluconate, myristoyl gluconate, and stearoyl gluconate; esters of sugars and aliphatic acids including sucrose acetate isobutyrate (SAIB), sucrose laurate, fructose laurate, sucrose pairitate, sucrose stearate, glucuronic acid, gluconic acid and polyuronic acid; saponins including sarsasapogenin, smilagenin, hederagenin, oleanolic acid, and digitoxigenin; glycerol dilaurate, glycerol trilaurate, glycerol monolaurate, glycerol dipalmitate, glycerol and glycerol esters including glycerol tripalmitate, glycerol monopalmitate, glycerol distearate, glycerol tristearate, glycerol monostearate, glycerol monomyristate, glycerol dimyristate, glycerol trimyristate; long chain alcohols including n-decyl alcohol, lauryl alcohol, myristyl alcohol, cetyl alcohol, and n-octadecyl alcohol; 1,2-dioleoyl-sn-glycerol; 1,2-dipalmitoyl-sn-3-succinylglycerol; 1,3-dipalmitoyl-2-succinylglycerol; 1-hexadecyl-2-palmitoylglycerophosphoethanolamine and palmitoylhomocysteine, and/or combinations thereof.
  • If desired, a cationic lipid may be used, such as, for example, N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium chloride (DOTMA), 1,2-dioleoyloxy-3-(trimethylammonio)propane (DOTAP); and 1,2-dioleoyl-3-(4′-trimethylammonio) butanoyl-sn-glycerol (DOTB). If a cationic lipid is employed in the lipid compositions, the molar ratio of cationic lipid to non-cationic lipid may be, for example, from about 1:1000 to about 1:1000. Preferably, the molar ratio of cationic lipid to non-cationic lipid may be from about 1:2 to about 1:10, with a ratio of from about 1:1 to about 1:2.5 being preferred. Even more preferably, the molar ratio of cationic lipid to non-cationic lipid may be about 1:1.
  • These lipid materials are well known in the art and can be used as purchased from Avanti, Burnaby, B.C. Canada.
  • The preferred lipids for use in the present invention are phosphatidyl-choline, phosphatidylethanolamine, phosphatidylserine, sphingomyelin as well as synthetic phospholipids such as dimyristoyl phosphatidyleholine, dipalmitoyl phosphatidylcholine, distearoyl phosphatidylcholine, distearoyl phosphatidyl-glycerol, dipalmitoyl phosphatidylglycerol, dimyristoyl phosphatidylserine, distearoyl phosphatidylserine and dipalmitoyl phosphatidylserine.
  • The rate at which the bioerodible matrix erodes is determined by the choice of lipid, the molecular weight, and the ratio of the chosen materials.
  • The protective layer can erode by either chemical or physical erosion mechanisms. If the layer erodes by a physical mechanism, the layer is typically a thin film from about 0.1 μm to about 3 μm of a non-polymeric material embedded between two polymeric layers. In this instance, the structural integrity of the protective layer is maintained by the presence of both of these polymeric layers. When the polymeric material closest to the luminal surface erodes away, the protective layer breaks apart by the physical forces exerted on it from the remaining polymeric layer. In another embodiment, the protective layer is eroded by chemical interactions, dissolution in water, hydrolysis, or reaction with enzymes.
  • One function of the protective layer is to protect one or more therapeutic agents from deactivating or degrading conditions. The protection may come from the properties of the material when, for example, a hydrophobic protective layer would protect a water sensitive agent from water by resisting the influx of moisture. The protective layer may also act as a physical barrier. For example, a protective layer comprised of a hydrogel may allow water to be absorbed by the gel, and allow any agents contained within the gel to diffuse out of the gel into the reaction environment. The hydrogel, however, would prevent enzymes from penetrating the layer, thereby protecting any agents contained within from the enzyme. Finally the protective layer does not have to act as a barrier. The protective layer may protect a therapeutic agent by releasing an agent, such as an activating agent or a deactivating agent, into the reaction environment prior to the release of the therapeutic agent.
  • A therapeutic agent may be incorporated directly in the protective layer. The therapeutic agent can be heterogeneously or homogeneously dispersed in the protective layer. The therapeutic agent can be a drug, or a drug formulated into a microcapsule, niosome, liposome, microbubble, microsphere, or the like. In addition, the protective layer may contain more than one therapeutic agent. For example, a water sensitive drugs, such as a limus, or any other drug that must be administered through intravenous, intramuscular, or subcutaneously, could be incorporated in a hydrophobic matrix such as SAIB, or fatty acid ester.
  • A therapeutic agent may also be disposed in a therapeutic agent layer, separate from the protective layer. In this case the protective layer may be adjacent to the therapeutic agent layer and may serve to prevent or retard processes that would degrade or deactivate the therapeutic agent until the protective layer has substantially eroded. In this instance the protective layer is a barrier between a therapeutic layer and the reaction environment. This barrier may be a hydrophobic barrier that resists water absorption. The hydrophobic barrier would be used in conjunction with water-sensitive drugs as described above. Alternatively, the protective layer maybe a hydrogel that resists the absorbance of enzymes. An enzyme resistant barrier would used to protect an drug such as a DNA, RNA, peptide or protein based therapeutic agent.
  • The protective layer may optionally include activating and deactivating agents for the purpose of preparing the reaction environment for the subsequent release of a therapeutic agent. These activating and deactivating agents are well known to those skilled in the art and include but are not limited to antacids, buffers, enzyme inhibitors, hydrophobic additives, and adjuvants. For example, Mg(OH)2 in particles of about 0.5 μm to about 5 μm more preferably, about 1 μm incorporated in a PLGA polymer layer could be used in conjunction with any acid senstive drug. An example of an activating agent is chymotrypsin, which may be incorporated in polyvinyl pyrrolidone layer. The chymotrypsin, could be used to convert a pro-drug to an active drug.
  • PREFERRED EMBODIMENTS
  • In one embodiment, the protective layer of the present invention is essentially hydrophobic and can prevent or retard the absorption of water. This is especially advantageous for the delivery of water sensitive drugs such as a limus. Some examples of hydrophobic, biocrodible matrix materials are lipids, fatty acid esters, such as glycerides. The erosion rate is controlled by varying the hydrophilic-lipophilic balance (HLB). Alternatively, the hydrophobic protective layer may encapsulate the therapeutic agent, and the encapsulated particles may be dispersed in either a polymer or lipid matrix.
  • In another embodiment, the protective layer may contain an antacid, or pH retaining agent, that protects a therapeutic agent from a deactivating reduction in pH. Polymers comprised of monomer units of lactide, glycolide, caprolactone, β-hydroxy valerate, trimethylene carbonate, dioxanone, β-hydroxy butyrate and other co-hydroxyalkyl carboxylic acids are degraded by water in hydrolysis in vivo and in vitro to produce free acid groups in such a quantity that the microclimate within the polymer matrix, and sometimes the external environment becomes acidic with a pH of less than or equal to six during the process of polymer degradation. Some therapeutic agents that can be advantageously delivered in local, sustained fashion from such polymers are sensitive to an acidic environment in that their biological activity is attenuated or eliminated as the pH decreases during the polymer matrix degradation required to release the agent from the delivery matrix. Examples of such acid sensitive agents are RNA oligomers with phosphodiester-ribose linkages or morpholino-imidate linkages (so-called “anti-sense oligo's), limus's (like sirolimus and everolimus) and generally therapeutic agents that have chemical functionality that undergo acid catalyzed hydrolysis (such as ester, amide, urea, Spiro ester, anhydride and carbonate) or that contain functional groups that can be protonated at pH less than or equal to six to render the agent biologically inactive, such as amino and imino groups (such as the deactivation of bio-active proteins).
  • To mitigate the effects of acidity generated during polymer degradation and in vivo resorption, both within the matrix (the micro-climate) and outside the matrix (the environment), it is envisioned to include an acid scavenger, antacid or neutralization agent capable of maintaining the pH at equal to or greater than six or above a threshold pH where the particular agent become therapeutically ineffective. Inorganic antacids contemplated include metal hydroxides, particularly divalent metal hydroxides like Mg(OH)2 and Ca(OH)2 and Ba(OH)2, monovalent bicarbonates and carbonates like NaHCO3 and Na2CO3, divalent carbonates like ZnCO3, monovalent and divalent hydrogen phosphates and dihydrogen phosphates like Na2HPO4 and Na2HPO4, monovalent salts of carboxylic acids, like sodium acetate. Additionally, organic bases such as organic amines are envisioned as acid scavengers, such as triethanol amine, ethanolamine, morpholine, pyrimidine and purine bases, poly ethyleneimine, nucleosides, amino acids and poly amino acids, particularly poly lysine and poly hydroxylysine, poly arginine and peptides containing lysine, hydroxy lysine, arginine and/or histidine units.
  • Inorganic antacids are contemplated to be incorporated into the polymer matrix by standard polymer processing techniques such as solvent casting, molding, blending, milling and extrusion. The amount of antacid will be enough to provide for acid neutralization during some or all of the time the acid sensitive agent or combination of agents are released in therapeutically relevant dosages and pharmacokinetic profiles. The antacid may be incorporated into the polymeric drug delivery matrix in amounts up to where the desired physical characteristics are compromised for the desired application, or may be used at lower levels. Antacids may be used alone or in combination with other antacids. For polymers containing lactide and/or glycolide (the so-called PLGA family of polymers), the amount of antacid will generally not exceed 10% by weight and may preferably be used at 1-6% by weight. The antacid need not be used at the stoichiometric level calculated for complete polymer degradation or hydrolysis, but may provide beneficial protection for the acid sensitive agents at less than stoichiometric values, particularly if all the agent is delivered prior to complete degradation of the polymer to its constituent monomer or co-monomer units.
  • In still another embodiment, the protective layer protects a therapeutic agent from a deactivating or degrading enzyme. An enzyme inhibitor can be incorporated into the protective layer, so that it is introduced to the reaction environment as the protective layer erodes. The therapeutic agent would then enter an environment with less enzyme than would be present if the inhibitor were not incorporated in the protective layer. Alternatively the protective layer may be made of a hydrogel material, such as calcium alginate, (made by adding Ca(OH)2 to polyalginic acid) that allows small molecules to diffuse into and out of the gel, but substantially prevents larger molecules from entering the protective layer. DNA, RNA, peptide and protein based therapeutics would be protected using hydrogel barriers.
  • Uses for Implantable Medical Devices
  • Although the present invention has been describe with reference to a medical device in the form of a stent, the medical devices of the present invention can also be medical devices of other shapes useful for site-specific and time-release delivery of drugs to the body and other organs and tissues. The drugs may be delivered to the vasculature including the coronary and peripheral vessels for a variety of therapies, and to other lumens in the body. The drugs may increase lumen diameter, create occlusions, or deliver the drug for other reasons.
  • Medical devices and stents, as described herein, are useful for the prevention or amelioration of restenosis, particularly after percutaneous transluminal coronary angioplasty and intraluminal stent placement. In addition to the timed or sustained release of anti-restenosis agents, other agents such as anti-inflammatory agents may be incorporated in to the multi-layers incorporated in the plurality of holes within the device. This allows for site-specific treatment or prevention any complications routinely associated with stent placement that are known to occur at very specific times after the placement occurs.
  • The methods for loading beneficial agents into openings in an expandable medical device may include known techniques such as dipping and coating and also known piezoelectric micro-jetting techniques. Micro-injection devices may be used to deliver precise amounts of one or more liquid beneficial agents including protective layers, therapeutic agent layers, and any other layers to precise locations on the expandable medical device in a known manner. The beneficial agents may also be loaded by manual injection devices.
  • EXAMPLES
  • In the examples below, the following abbreviations have the following meanings. If an abbreviation is not defined, it has its generally accepted meaning.
      • mL=milliliters
      • M=Molar
      • wt.=weight
      • vol.=volume
      • μL=microliters
      • μm=micrometers
      • nm=nanometers
      • DMSO=Dimethy silfoxide′
      • NMP=N-methylpyrrolidone
      • DMAC=Dimethyl acetamide
    Example 1 Formulation Comprising a Therapeutic Agent within the Protective Layer
  • A first mixture of poly(lactide-co-glycolide) (PLGA) (Birmingham Polymers, Inc), lactide:glycolide::85:15, (Mv>100,000 Daltons) 7% wt. and a suitable organic solvent, such as DMSO, NMP, or DMAC 93% wt. is prepared. The mixture is loaded dropwise into holes in the stent, then the solvent is evaporated to begin formation of the barrier layer. A second barrier layer is laid over the first by the same method of filling polymer solution into the hole followed by solvent evaporation. The process is continued until five individual layers have been laid down to form the barrier layer.
  • A second mixture of a limus, such as sirolimus, 3% solids basis, and dipalmitoyl phosphatidylcholine (DPPC), 7% solids basis, in a suitable organic solvent, such as DMSO, is introduced into holes in the stent over the barrier layer. The solvent is evaporated to form a drug filled protective layer and the filling and evaporation procedure repeated until the hole is filled to about 75% of its total volume with drug in protective layer layered on top of the barrier layer.
  • Three layers of a third solution, of poly(lactide-co-glycolide) (PLGA), lactide:glycolide::50:50, (Mv≅80,000 Daltons) 7% wt. and a suitable organic solvent, such as DMSO, are then laid down over the drug in matrix layer to provide a cap layer.
  • Following implantation of the filled stent in vivo, the cap layer degrades allowing the limus to be delivered. The barrier layer prevents the therapeutic agent from being delivered out the barrier layer side of holes in the stent.
  • Example 2 Formulation Comprising Therapeutic Agents in Therapeutic Agent Layers and a Protective Layer Separating the Therapeutic Agent Layers
  • A first mixture of poly(lactide-co-glycolide) (PLGA), lactide:glycolide::85:15, (Mv>100,000 Daltons) 7% wt. and a suitable organic solvent, such as DMSO, 93% wt. is prepared. The mixture is loaded drop-wise into holes in the stent, and the solvent is then evaporated to form the barrier layer. A second barrier layer is laid over the first by the same method of filling polymer solution into the hole followed by solvent evaporation. The process is continued until five individual layers have been laid down to form the barrier layer.
  • A second mixture of an PCN-1 ribozyme, 8% solids basis, and poly(vinylpyrrolidone) (PVP), molecular weight 8,000 daltons, 2% solids basis, in an mixed solvent of RNA-ase/DNA-ase free water, 50% vol., and dimethyl sulfoxide (DMSO), 50% vol., is introduced into holes in the stent over the barrier layer. The solvent is evaporated to form a therapeutic agent layer and the filling and evaporation procedure repeated until the hole is filled sufficiently.
  • Three layers of a third solution, SAIB, (Eastman Chemicals) 7% wt. and a suitable organic solvent, such as DMSO, are then laid down over the drug in matrix layer to provide a protective layer.
  • A fourth mixture of PLGA, lactide:glycolide::50:50, (Mv≅80,000 Daltons) 5% wt., Dexamethasone, 5% wt., and a suitable organic solvent, such as DMSO, 90% wt. is prepared. The mixture is then loaded into the holes and the solvent is evaporated to form a second therapeutic agent layer. This process is continued until five layers have been laid down.
  • A fifth mixture of PLGA, lactide:glycolide::50:50, (Mv≅80,000 Daltons) 7% and a suitable organic solvent, such as DMSO, are then laid down over the second therapeutic agent layer to provide a cap layer.
  • Following implantation of the filled stent in vivo, the cap layer degrades allowing the Dexmethasone to be delivered. The protective layer protects the PCN-1 ribozyne from degrading while the Dexamethasone is delivered. After the protective layer degrades, the PCN-1 ribozyme is then delivered.
  • Example 3 Formulation Comprising a Therapeutic Agent in a Therapeutic Agent Layer and a Protective Layer Containing an Activating Agent
  • A first mixture of high molecular weight poly(lactide-co-glycolide) (PLGA), lactide:glycolide::50:50 (Mv>100,000 Daltons), 7% wt. and a suitable organic solvent, such as DMSO, 93% wt. is prepared. The mixture is loaded drop-wise into holes in the stent, then the solvent is evaporated to form the barrier layer. A second barrier layer is laid over the first by the same method of filling polymer solution into the hole followed by solvent evaporation. The process is continued until five individual layers have been laid down to form the complete barrier layer.
  • A second mixture of chymotrypsin, 3% solids basis, and polyvinyl pyrrolidone, 7% solids basis, in a solvent mixture of water:DMSO::50:50 is introduced into holes in the stent over the barrier layer. The solvent is evaporated to form an activating ester hydrolytic enzyme filled protective layer and the filling and evaporation procedure repeated until the hole is filled to about 20% of its total volume with enzyme in activating layer.
  • Three layers of a third solution, of poly(lactide-co-glycolide) (PLGA), lactide:glycolide::50:50, (Mv≅80,000 Daltons) 7% wt. and a suitable organic solvent such as DMSO, are then laid down over the enzyme in matrix layer to provide a time delay.
  • A fourth solution of a pro-drug paclitaxel-polyglutamic acid (PTX-PGA) conjugate (where a free hydroxyl group on paclitaxel is covalently bonded via an ester linkage to the PGA), 1% wt. and poly(lactide-co-glycolide) (PLGA), lactide:glycolide::50:50, (Mv≅80,000 Daltons) 7% wt. and a suitable organic solvent, such as DMSO, 92% wt. is prepared. The mixture is filled into holes in the stent over the protective layer, then the solvent is evaporated to form the pro-drug layer, A pro-drug layer is laid over the first by the same method of filling polymer solution into the hole followed by solvent evaporation. The process is continued until six individual layers have been laid down to form the pro-drug layer.
  • Following implantation of the filled stent in vivo, the pro-drug is released first and partitions into the arterial tissue. After a delay time while the protection layer degrades, the protected chymotrypsin is released and enzymatically hydrolyzes the ester bond of the pro-drug to activate release of the drug paclitaxel in the tissue.
  • Example 4 Formulation Comprising a Therapeutic Agent in a Therapeutic Agent Layer and a Protective Layer Containing a Deactivating Agent
  • A first mixture of poly-lactide, 5% wt. and a suitable organic solvent, such as DMSO, 95% wt. is prepared. The mixture is loaded drop-wise into holes in the stent, then the solvent is evaporated to form the barrier layer. A second barrier layer is laid over the first by the same method of filling polymer solution into the hole followed by solvent evaporation. The process is continued until five individual layers have been laid down to form the complete barrier layer.
  • A second mixture of citric acid, 8% solids basis, and polyvinyl pyrrolidone, 2% solids basis, in a solvent mixture of water:DMSO::50:50 is introduced into holes in the stent over the barrier layer. The solvent is evaporated to form a deactivating compound containing layer capable of catalyzing the hydrolysis of phosphodiester bonds and depolymerizing and deactivating RNA oligomers. The filling and evaporation procedure is repeated until the hole is filled to about 20% of its total volume with enzyme in activating layer.
  • Three layers of a third solution, of poly(lactide-co-glycolide) (PLGA), lactide:glycolide::50:50, 7% wt. and a suitable organic solvent, such as DMSO, are then laid down over the deactivating compound containing layer to provide a separating layer by the same fill and evaporate sequence.
  • A fourth mixture of PCN-1 ribozyme, 8% solids basis, and polyvinyl pyrrolidone, 2% solids basis, in a solvent mixture of water:DMSO::50:50 is introduced into holes in the stent over the separation layer. The solvent is evaporated to form an anti-sense oligonucleotide filled polymer therapeutic agent layer and the filling and evaporation procedure repeated until the hole is filled to about 20% of its total volume.
  • A fifth mixture of PLGA lactide:glycolide::50:50, (Mv≅80,000 Daltons) 7% and a suitable organic solvent, such as DMSO, are then laid down over the therapeutic agent layer to provide a cap layer.
  • Following implantation of the filled stent in vivo, the PCN-1 ribozyme is released first and partions into the arterial tissue and provides a therapeutic effect, After a delay time while the protection layer degrades, the protected citric acid is released and catalytically hydrolyzes the phosphodiester ester bond of ribozyme oligonucleotide backbone and terminates its therapeutic activity.
  • Example 5 Formulation Comprising a Therapeutic Agent in a Therapeutic Agent Layer and a Protective Layer Containing an Antacid
  • A first mixture of poly(lactide-co-glycolide) (PLGA), lactide:glycolide::85:15, (Mv>100,000 Daltons) 7% wt. and a suitable organic solvent, such as DMSO, 93% wt. is prepared. The mixture is loaded drop-wise into holes in the stent, then the solvent is evaporated to form the barrier layer. A second barrier layer is laid over the first by the same method of filling polymer solution into the hole followed by solvent evaporation. The process is continued until five individual layers have been laid down to form the complete barrier layer.
  • A second mixture of sirolimus, 3% solids basis, poly(lactide-co-glycolide) (PLGA), lactide:glycolide::50:50, (Mv≅80,000 Daltons) 7% wt, and magnesium hydroxide, 0.35% wt (5% wt based on PLGA) is introduced into holes in the stent over the barrier layer. The solvent is evaporated to form a drug protecting layer containing drug and an antacid and the filling and evaporation procedure repeated until the hole is filled to about 60% of its total volume with protecting layer.
  • Three layers of a third solution, of poly(lactide-co-glycolide) (PLGA), lactide:glycolide::50:50, (Mv80,000 Daltons) 7% wt. and a suitable organic solvent, such as DMSO, are then laid down.
  • A fourth mixture of PLGA lactide:glycolide::50:50, (Mv≅80,000 Daltons) 7% and a suitable organic solvent, such as DMSO, are then laid down over the therapeutic agent layer to provide a cap layer.
  • Following implantation of the filled stent in vivo, PLGA polymer degrades via hydrolysis and sirolimus is released, as well as acidic byproducts (lactic and glycolic acids as well as acid function terminated PLGA oligomers). The acidic byproducts are immediately and continuously neutralized by the action of magnesium hydroxide over the time the sirolimus is released, thus protecting the sirolimus from acid catalyzed degradation.
  • Example 6 Measurement of Paclitaxel Release Rates from a Medical Device with Multiple Therapeutic Agent Layers
  • A solution of phosphate buffered saline (PBS) is prepared by dissolving five “Phosphate Buffered Saline Tablets” (Sigma-Aldrich Co., catalog #P-4417) in 1000 mL deionized water to provide a solution with a pH of 7.4, 0.01 M in phosphate buffer, 0.0027 M in potassium chloride and 0.137 M in sodium chloride. This PBS solution is used as a Release Solution.
  • The elution rate of drug from the multilayered stent of Example 1 is determined in a standard sink condition experiment.
  • A first 10 mL screw capped vial is charged with release solution, 3 mL, then placed in a shaking water bath held at 37° C. until temperature has equilibrated. The above stent containing a drug in matrix layer in between two protection layers is placed into the release solution, shaking at 60 cycles per minute commenced, and the stent is held immersed in the release solution for a period of time. The stent is then placed in a second screw capped vial is charged with release solution, 3 mL, at 37° C., and held for a period of time. The first release solution is called sample # 1. From time to time, the stent is removed from release solution in one vial and placed into fresh solution in the next vial to generate a series of samples containing varying amounts of drug eluted from the stent.
  • The amount of paclitaxel in a given release solution sample is determined by High Pressure Liquid Chromatography (HPLC). The following conditions are used:
      • Analysis Column: Sym. C18 (5 μm, 3.9×150 mm, Waters Corp., MA)
      • Mobile phase: Water/Acetonitrile::55% vol./45% vol.
      • Flow Rate:1 mL/minute
      • Temperature:25° C.
      • Detection wavelength:227 nm
      • Injection volume:50 μL
      • Retention time:10.5 minutes
  • By comparison with a calibration curve generated from known stock solutions, the amount of paclitaxel eluted into the release solution during any time period of the experiment can be calculated.
  • Methods and results for measuring release profiles are published in A. Finkelstein et al., “The Conor Medsystems Stent: A programmable Drug Delivery Device,” TCT 2001 Conference, Washington, D.C., September 2001.
  • While the invention has been described in detail with reference to the preferred embodiments thereof, it will be apparent to one skilled in the art that various changes and modifications can be made and equivalents employed, without departing from the present invention.

Claims (23)

1. An implantable medical device comprising:
an implantable device body having a plurality of through holes therein;
a barrier formed in the plurality of through holes, the barrier formed of a biodegradable copolymer having a first copolymer ratio;
a drug filled portion formed in the plurality of through holes adjacent the barrier; and
a cap formed in the plurality of through holes adjacent the drug filled portion, the cap formed of the biodegradable copolymer having a second copolymer ratio wherein the second copolymer ratio is different from the first copolymer ratio.
2. The device of claim 1, wherein the implantable medical device is a stent.
3. The device of claim 2, wherein the drug filled portion comprises a drug for prevention of restenosis.
4. The device of claim 1, wherein the barrier, the drug filled portion, and the cap are formed by loading compositions dropwise into the through holes.
5. The device of claim 1, wherein the biodegradable copolymer is poly(lactide-co-glycolide).
6. The device of claim 5, wherein the first copolymer ratio is 85:15.
7. The device of claim 5, wherein the second copolymer ratio is 50:50.
8. The device of claim 1, wherein the first and second copolymer ratios are selected such that following implantation the cap degrades faster than the barrier.
9. The device of claim 2, wherein the barrier is formed adjacent a luminal surface of the stent and the cap degrades faster than the barrier.
10. The device of claim 1, wherein the drug filled portion includes a limus drug.
11. The device of claim 1, wherein the drug filled portion includes a water sensitive drug.
12. A method of forming an implantable medical device comprising:
forming an implantable device body having a plurality of through holes therein;
loading a mixture of a biodegradable copolymer having a first copolymer ratio and a first solvent into the holes and evaporating the first solvent to form a barrier;
loading a mixture of a drug, a polymer, and a second solvent into the holes and evaporating the second solvent to form a drug portion; and
loading a mixture of the biodegradable copolymer having a second copolymer ratio and a third solvent into the holes and evaporating the third solvent to form a cap wherein the second copolymer ratio is different from the first copolymer ratio.
13. The method of claim 12, wherein the first, second, and third solvents are the same.
14. The method of claim 12, wherein the implantable medical device is a stent.
15. The method of claim 12, wherein the drug comprises a drug for prevention of restenosis.
16. The method of claim 12, wherein the loading steps include loading the mixtures dropwise into the through holes.
17. The method of claim 12, wherein the biodegradable copolymer is poly(lactide-co-glycolide).
18. The method of claim 17, wherein the first copolymer ratio is 85:15.
19. The method of claim 17, wherein the second copolymer ratio is 50:50.
20. The method of claim 12, wherein the first and second copolymer ratios are selected such that following implantation the cap degrades faster than the barrier.
21. The method of claim 14, wherein the barrier is formed adjacent a luminal surface of the stent and the cap degrades faster than the barrier.
22. The method of claim 12, wherein the drug comprises a limus drug.
23. The method of claim 12, wherein the drug comprises a water sensitive drug.
US11/692,770 2002-09-23 2007-03-28 Implantable Medical Device with Drug Filled Holes Abandoned US20070219628A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/692,770 US20070219628A1 (en) 2002-09-23 2007-03-28 Implantable Medical Device with Drug Filled Holes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/253,020 US7208011B2 (en) 2001-08-20 2002-09-23 Implantable medical device with drug filled holes
US11/692,770 US20070219628A1 (en) 2002-09-23 2007-03-28 Implantable Medical Device with Drug Filled Holes

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/253,020 Continuation US7208011B2 (en) 1998-03-30 2002-09-23 Implantable medical device with drug filled holes

Publications (1)

Publication Number Publication Date
US20070219628A1 true US20070219628A1 (en) 2007-09-20

Family

ID=32029024

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/253,020 Expired - Fee Related US7208011B2 (en) 1998-03-30 2002-09-23 Implantable medical device with drug filled holes
US11/692,770 Abandoned US20070219628A1 (en) 2002-09-23 2007-03-28 Implantable Medical Device with Drug Filled Holes

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/253,020 Expired - Fee Related US7208011B2 (en) 1998-03-30 2002-09-23 Implantable medical device with drug filled holes

Country Status (7)

Country Link
US (2) US7208011B2 (en)
EP (2) EP1749544B1 (en)
JP (1) JP2006505306A (en)
AT (1) ATE554806T1 (en)
AU (2) AU2003275229A1 (en)
CA (1) CA2499475A1 (en)
WO (1) WO2004026357A1 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7833266B2 (en) 2007-11-28 2010-11-16 Boston Scientific Scimed, Inc. Bifurcated stent with drug wells for specific ostial, carina, and side branch treatment
US7842083B2 (en) 2001-08-20 2010-11-30 Innovational Holdings, Llc. Expandable medical device with improved spatial distribution
US7951193B2 (en) 2008-07-23 2011-05-31 Boston Scientific Scimed, Inc. Drug-eluting stent
US20110178465A1 (en) * 2008-10-15 2011-07-21 Bioshape Solutions Inc Device and method for delivery of therapeutic agents via internal implants
US8333801B2 (en) 2010-09-17 2012-12-18 Medtronic Vascular, Inc. Method of Forming a Drug-Eluting Medical Device
US8381774B2 (en) 2009-09-20 2013-02-26 Medtronic Vascular, Inc. Methods for loading a drug eluting medical device
US8616040B2 (en) 2010-09-17 2013-12-31 Medtronic Vascular, Inc. Method of forming a drug-eluting medical device
US8632846B2 (en) 2010-09-17 2014-01-21 Medtronic Vascular, Inc. Apparatus and methods for loading a drug eluting medical device
US8678046B2 (en) 2009-09-20 2014-03-25 Medtronic Vascular, Inc. Apparatus and methods for loading a drug eluting medical device
US8828474B2 (en) 2009-09-20 2014-09-09 Medtronic Vascular, Inc. Apparatus and methods for loading a drug eluting medical device
US8916226B2 (en) 2009-09-20 2014-12-23 Medtronic Vascular, Inc. Method of forming hollow tubular drug eluting medical devices
US9283305B2 (en) 2009-07-09 2016-03-15 Medtronic Vascular, Inc. Hollow tubular drug eluting medical devices
US9486340B2 (en) 2013-03-14 2016-11-08 Medtronic Vascular, Inc. Method for manufacturing a stent and stent manufactured thereby
WO2019040635A1 (en) * 2017-08-23 2019-02-28 Cardiac Pacemakers, Inc. Implantable chemical sensor with staged activation
US10952621B2 (en) 2017-12-05 2021-03-23 Cardiac Pacemakers, Inc. Multimodal analyte sensor optoelectronic interface
US11089983B2 (en) 2017-12-01 2021-08-17 Cardiac Pacemakers, Inc. Multimodal analyte sensors for medical devices
US11129557B2 (en) 2017-05-31 2021-09-28 Cardiac Pacemakers, Inc. Implantable medical device with chemical sensor
US11439304B2 (en) 2017-08-10 2022-09-13 Cardiac Pacemakers, Inc. Systems and methods including electrolyte sensor fusion
US12004853B2 (en) 2017-07-26 2024-06-11 Cardiac Pacemakers, Inc. Systems and methods for disambiguation of posture

Families Citing this family (221)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060052757A1 (en) * 1996-06-04 2006-03-09 Vance Products Incorporated, D/B/A Cook Urological Incorporated Implantable medical device with analgesic or anesthetic
US20060025726A1 (en) * 1996-06-04 2006-02-02 Vance Products Incorporated, D/B/A Cook Urological Incorporated Implantable medical device with pharmacologically active layer
US20060030826A1 (en) * 1996-06-04 2006-02-09 Vance Products Incorporated,d/b/a Cook Urological Incorporated Implantable medical device with anti-neoplastic drug
US7070590B1 (en) * 1996-07-02 2006-07-04 Massachusetts Institute Of Technology Microchip drug delivery devices
US7341598B2 (en) 1999-01-13 2008-03-11 Boston Scientific Scimed, Inc. Stent with protruding branch portion for bifurcated vessels
US7208011B2 (en) * 2001-08-20 2007-04-24 Conor Medsystems, Inc. Implantable medical device with drug filled holes
US20040254635A1 (en) * 1998-03-30 2004-12-16 Shanley John F. Expandable medical device for delivery of beneficial agent
US7208010B2 (en) * 2000-10-16 2007-04-24 Conor Medsystems, Inc. Expandable medical device for delivery of beneficial agent
US6241762B1 (en) 1998-03-30 2001-06-05 Conor Medsystems, Inc. Expandable medical device with ductile hinges
US7179289B2 (en) * 1998-03-30 2007-02-20 Conor Medsystems, Inc. Expandable medical device for delivery of beneficial agent
US7713297B2 (en) 1998-04-11 2010-05-11 Boston Scientific Scimed, Inc. Drug-releasing stent with ceramic-containing layer
US6290673B1 (en) * 1999-05-20 2001-09-18 Conor Medsystems, Inc. Expandable medical device delivery system and method
ATE425738T1 (en) * 1999-11-17 2009-04-15 Boston Scient Ltd MINIATURIZED DEVICES FOR DELIVERING MOLECULES IN A CARRIER LIQUID
EP1498084B1 (en) 2000-10-16 2014-06-18 Innovational Holdings, LLC Expandable medical device for delivery of beneficial agent
US6764507B2 (en) 2000-10-16 2004-07-20 Conor Medsystems, Inc. Expandable medical device with improved spatial distribution
US20040220660A1 (en) * 2001-02-05 2004-11-04 Shanley John F. Bioresorbable stent with beneficial agent reservoirs
US20040073294A1 (en) * 2002-09-20 2004-04-15 Conor Medsystems, Inc. Method and apparatus for loading a beneficial agent into an expandable medical device
US20040204756A1 (en) * 2004-02-11 2004-10-14 Diaz Stephen Hunter Absorbent article with improved liquid acquisition capacity
US6764505B1 (en) 2001-04-12 2004-07-20 Advanced Cardiovascular Systems, Inc. Variable surface area stent
WO2003002243A2 (en) 2001-06-27 2003-01-09 Remon Medical Technologies Ltd. Method and device for electrochemical formation of therapeutic species in vivo
US7056338B2 (en) * 2003-03-28 2006-06-06 Conor Medsystems, Inc. Therapeutic agent delivery device with controlled therapeutic agent release rates
US20040249443A1 (en) * 2001-08-20 2004-12-09 Shanley John F. Expandable medical device for treating cardiac arrhythmias
US8740973B2 (en) * 2001-10-26 2014-06-03 Icon Medical Corp. Polymer biodegradable medical device
US7682387B2 (en) * 2002-04-24 2010-03-23 Biosensors International Group, Ltd. Drug-delivery endovascular stent and method for treating restenosis
US6939376B2 (en) * 2001-11-05 2005-09-06 Sun Biomedical, Ltd. Drug-delivery endovascular stent and method for treating restenosis
WO2003048665A1 (en) 2001-12-03 2003-06-12 Massachusetts Institute Of Technology Microscale lyophilization and drying methods for the stabilization of molecules
GB0204381D0 (en) * 2002-02-26 2002-04-10 Mcminn Derek J W Knee prosthesis
US20040024450A1 (en) * 2002-04-24 2004-02-05 Sun Biomedical, Ltd. Drug-delivery endovascular stent and method for treating restenosis
US7951392B2 (en) * 2002-08-16 2011-05-31 Boston Scientific Scimed, Inc. Microarray drug delivery coatings
JP2006500121A (en) * 2002-09-20 2006-01-05 コナー メドシステムズ, インコーポレイテッド Expandable medical device having openings for delivery of a plurality of beneficial agents
US7758636B2 (en) * 2002-09-20 2010-07-20 Innovational Holdings Llc Expandable medical device with openings for delivery of multiple beneficial agents
US8303511B2 (en) * 2002-09-26 2012-11-06 Pacesetter, Inc. Implantable pressure transducer system optimized for reduced thrombosis effect
PL377190A1 (en) * 2002-11-07 2006-01-23 Abbott Laboratories Prosthesis with multiple drugs in discrete unmixed droplets
US8221495B2 (en) 2002-11-07 2012-07-17 Abbott Laboratories Integration of therapeutic agent into a bioerodible medical device
US8524148B2 (en) * 2002-11-07 2013-09-03 Abbott Laboratories Method of integrating therapeutic agent into a bioerodible medical device
US20040143321A1 (en) * 2002-11-08 2004-07-22 Conor Medsystems, Inc. Expandable medical device and method for treating chronic total occlusions with local delivery of an angiogenic factor
WO2004043511A1 (en) * 2002-11-08 2004-05-27 Conor Medsystems, Inc. Method and apparatus for treating vulnerable artherosclerotic plaque
US7169178B1 (en) * 2002-11-12 2007-01-30 Advanced Cardiovascular Systems, Inc. Stent with drug coating
WO2004087214A1 (en) * 2003-03-28 2004-10-14 Conor Medsystems, Inc. Implantable medical device with beneficial agent concentration gradient
US20050010170A1 (en) * 2004-02-11 2005-01-13 Shanley John F Implantable medical device with beneficial agent concentration gradient
US20040202692A1 (en) * 2003-03-28 2004-10-14 Conor Medsystems, Inc. Implantable medical device and method for in situ selective modulation of agent delivery
US20040215313A1 (en) * 2003-04-22 2004-10-28 Peiwen Cheng Stent with sandwich type coating
US20080215137A1 (en) * 2003-04-30 2008-09-04 Boston Scientific Scimed, Inc. Therapeutic driving layer for a medical device
US20040236410A1 (en) * 2003-05-22 2004-11-25 Atrium Medical Corp. Polymeric body formation
US20040236278A1 (en) * 2003-05-22 2004-11-25 Atrium Medical Corp. Therapeutic agent delivery
US7169179B2 (en) * 2003-06-05 2007-01-30 Conor Medsystems, Inc. Drug delivery device and method for bi-directional drug delivery
US20050055080A1 (en) * 2003-09-05 2005-03-10 Naim Istephanous Modulated stents and methods of making the stents
US7488343B2 (en) * 2003-09-16 2009-02-10 Boston Scientific Scimed, Inc. Medical devices
US7785653B2 (en) * 2003-09-22 2010-08-31 Innovational Holdings Llc Method and apparatus for loading a beneficial agent into an expandable medical device
US8801692B2 (en) * 2003-09-24 2014-08-12 Medtronic Vascular, Inc. Gradient coated stent and method of fabrication
US7435256B2 (en) * 2003-11-06 2008-10-14 Boston Scientific Scimed, Inc. Method and apparatus for controlled delivery of active substance
FR2861993B1 (en) * 2003-11-06 2006-01-21 Jean Claude Rigaud ANTI RESTENOSE MOLECULAR COMPLEX FOR INTRACORONARY ENDOPROTHESIS
US20050100577A1 (en) * 2003-11-10 2005-05-12 Parker Theodore L. Expandable medical device with beneficial agent matrix formed by a multi solvent system
US20050119723A1 (en) * 2003-11-28 2005-06-02 Medlogics Device Corporation Medical device with porous surface containing bioerodable bioactive composites and related methods
US20060085062A1 (en) * 2003-11-28 2006-04-20 Medlogics Device Corporation Implantable stent with endothelialization factor
EP1997456B1 (en) * 2004-02-13 2011-12-07 Innovational Holdings, LLC Drug coating device and method for wire filaments
US8137397B2 (en) * 2004-02-26 2012-03-20 Boston Scientific Scimed, Inc. Medical devices
US20050266039A1 (en) * 2004-05-27 2005-12-01 Jan Weber Coated medical device and method for making the same
EP1753369B1 (en) 2004-06-08 2013-05-29 Advanced Stent Technologies, Inc. Stent with protruding branch portion for bifurcated vessels
WO2006007368A2 (en) * 2004-06-16 2006-01-19 Affinergy, Inc. Biofunctional coatings
US20050281858A1 (en) * 2004-06-18 2005-12-22 Kloke Tim M Devices, articles, coatings, and methods for controlled active agent release
US20050287287A1 (en) * 2004-06-24 2005-12-29 Parker Theodore L Methods and systems for loading an implantable medical device with beneficial agent
WO2006002399A2 (en) * 2004-06-24 2006-01-05 Surmodics, Inc. Biodegradable implantable medical devices, methods and systems
US20050287184A1 (en) * 2004-06-29 2005-12-29 Hossainy Syed F A Drug-delivery stent formulations for restenosis and vulnerable plaque
EP1799151A4 (en) * 2004-09-15 2014-09-17 Conor Medsystems Inc Bifurcation stent with crushable end and method for delivery of a stent to a bifurcation
US7780974B2 (en) 2004-09-20 2010-08-24 Research Development Foundation Avicin coated stents
US7901451B2 (en) 2004-09-24 2011-03-08 Biosensors International Group, Ltd. Drug-delivery endovascular stent and method for treating restenosis
US8057543B2 (en) * 2005-01-28 2011-11-15 Greatbatch Ltd. Stent coating for eluting medication
WO2006110197A2 (en) * 2005-03-03 2006-10-19 Icon Medical Corp. Polymer biodegradable medical device
DE602006019402D1 (en) * 2005-03-25 2011-02-17 Boston Scient Scimed Inc COATED MEDICINE PRODUCTS WITH CONTROLLED MEDICINAL RELEASE
CA2603851A1 (en) * 2005-04-11 2006-10-19 The Board Of Trustees Of The Leland Stanford Junior Unversity Multi-layer structure having a predetermined layer pattern including an agent
US8778375B2 (en) * 2005-04-29 2014-07-15 Advanced Cardiovascular Systems, Inc. Amorphous poly(D,L-lactide) coating
US7622070B2 (en) * 2005-06-20 2009-11-24 Advanced Cardiovascular Systems, Inc. Method of manufacturing an implantable polymeric medical device
US8852638B2 (en) 2005-09-30 2014-10-07 Durect Corporation Sustained release small molecule drug formulation
AU2006308534B2 (en) * 2005-11-01 2013-02-07 Warsaw Orthopedic, Inc. Bone matrix compositions and methods
US20070196423A1 (en) * 2005-11-21 2007-08-23 Med Institute, Inc. Implantable medical device coatings with biodegradable elastomer and releasable therapeutic agent
US7540881B2 (en) 2005-12-22 2009-06-02 Boston Scientific Scimed, Inc. Bifurcation stent pattern
US8840660B2 (en) 2006-01-05 2014-09-23 Boston Scientific Scimed, Inc. Bioerodible endoprostheses and methods of making the same
US7807624B2 (en) * 2006-01-11 2010-10-05 Affinergy, Inc. Methods and compositions for promoting attachment of cells of endothelial cell lineage to medical devices
WO2007083797A1 (en) * 2006-01-23 2007-07-26 Terumo Kabushiki Kaisha Stent
US8089029B2 (en) 2006-02-01 2012-01-03 Boston Scientific Scimed, Inc. Bioabsorbable metal medical device and method of manufacture
WO2007088549A2 (en) * 2006-02-03 2007-08-09 Design & Performance - Cyprus Limited Implantable graft assembly and aneurysm treatment
US20070184085A1 (en) * 2006-02-03 2007-08-09 Boston Scientific Scimed, Inc. Ultrasound activated medical device
US20080183282A1 (en) * 2006-03-09 2008-07-31 Saul Yedgar Use of lipid conjugates for the coating of stents and catheters
US8197536B2 (en) * 2006-03-10 2012-06-12 Cordis Corporation Method for placing a medical device at a bifurcated conduit
US20070224235A1 (en) 2006-03-24 2007-09-27 Barron Tenney Medical devices having nanoporous coatings for controlled therapeutic agent delivery
US8187620B2 (en) 2006-03-27 2012-05-29 Boston Scientific Scimed, Inc. Medical devices comprising a porous metal oxide or metal material and a polymer coating for delivering therapeutic agents
EP1839688A1 (en) * 2006-03-28 2007-10-03 Universität Zürich Drug-eluting clinical device
US8048150B2 (en) 2006-04-12 2011-11-01 Boston Scientific Scimed, Inc. Endoprosthesis having a fiber meshwork disposed thereon
EP2020956A2 (en) 2006-05-26 2009-02-11 Nanyang Technological University Implantable article, method of forming same and method for reducing thrombogenicity
US8815275B2 (en) 2006-06-28 2014-08-26 Boston Scientific Scimed, Inc. Coatings for medical devices comprising a therapeutic agent and a metallic material
CA2655793A1 (en) 2006-06-29 2008-01-03 Boston Scientific Limited Medical devices with selective coating
US8052743B2 (en) 2006-08-02 2011-11-08 Boston Scientific Scimed, Inc. Endoprosthesis with three-dimensional disintegration control
WO2008033711A2 (en) 2006-09-14 2008-03-20 Boston Scientific Limited Medical devices with drug-eluting coating
US7955382B2 (en) * 2006-09-15 2011-06-07 Boston Scientific Scimed, Inc. Endoprosthesis with adjustable surface features
WO2008034013A2 (en) 2006-09-15 2008-03-20 Boston Scientific Limited Medical devices and methods of making the same
JP2010503491A (en) 2006-09-15 2010-02-04 ボストン サイエンティフィック リミテッド Bioerodible endoprosthesis with biologically stable inorganic layers
CA2663271A1 (en) 2006-09-15 2008-03-20 Boston Scientific Limited Bioerodible endoprostheses and methods of making the same
EP2081616B1 (en) 2006-09-15 2017-11-01 Boston Scientific Scimed, Inc. Bioerodible endoprostheses and methods of making the same
CA2663762A1 (en) 2006-09-18 2008-03-27 Boston Scientific Limited Endoprostheses
EP2068781A2 (en) * 2006-09-18 2009-06-17 Boston Scientific Limited Medical devices
WO2008039749A2 (en) * 2006-09-25 2008-04-03 Surmodics, Inc. Multi-layered coatings and methods for controlling elution of active agents
US7951191B2 (en) 2006-10-10 2011-05-31 Boston Scientific Scimed, Inc. Bifurcated stent with entire circumferential petal
US8067055B2 (en) * 2006-10-20 2011-11-29 Biosensors International Group, Ltd. Drug-delivery endovascular stent and method of use
US20080097591A1 (en) 2006-10-20 2008-04-24 Biosensors International Group Drug-delivery endovascular stent and method of use
US20080097580A1 (en) * 2006-10-23 2008-04-24 Vipul Bhupendra Dave Morphological structures for polymeric drug delivery devices
US20080103584A1 (en) * 2006-10-25 2008-05-01 Biosensors International Group Temporal Intraluminal Stent, Methods of Making and Using
US7981150B2 (en) 2006-11-09 2011-07-19 Boston Scientific Scimed, Inc. Endoprosthesis with coatings
US7842082B2 (en) 2006-11-16 2010-11-30 Boston Scientific Scimed, Inc. Bifurcated stent
US20080175887A1 (en) * 2006-11-20 2008-07-24 Lixiao Wang Treatment of Asthma and Chronic Obstructive Pulmonary Disease With Anti-proliferate and Anti-inflammatory Drugs
US8425459B2 (en) 2006-11-20 2013-04-23 Lutonix, Inc. Medical device rapid drug releasing coatings comprising a therapeutic agent and a contrast agent
US8414526B2 (en) 2006-11-20 2013-04-09 Lutonix, Inc. Medical device rapid drug releasing coatings comprising oils, fatty acids, and/or lipids
US9700704B2 (en) 2006-11-20 2017-07-11 Lutonix, Inc. Drug releasing coatings for balloon catheters
US8414525B2 (en) 2006-11-20 2013-04-09 Lutonix, Inc. Drug releasing coatings for medical devices
US8414910B2 (en) 2006-11-20 2013-04-09 Lutonix, Inc. Drug releasing coatings for medical devices
EP2241342A3 (en) * 2006-11-20 2011-01-12 Lutonix, Inc. Drug releasing coatings for medical devices
US20080276935A1 (en) 2006-11-20 2008-11-13 Lixiao Wang Treatment of asthma and chronic obstructive pulmonary disease with anti-proliferate and anti-inflammatory drugs
US9737640B2 (en) 2006-11-20 2017-08-22 Lutonix, Inc. Drug releasing coatings for medical devices
US8998846B2 (en) 2006-11-20 2015-04-07 Lutonix, Inc. Drug releasing coatings for balloon catheters
ATE488259T1 (en) 2006-12-28 2010-12-15 Boston Scient Ltd BIOERODIBLE ENDOPROTHES AND PRODUCTION METHODS THEREOF
US7682388B2 (en) 2007-01-30 2010-03-23 Medtronic Vascular, Inc. Stent with longitudinal groove
US8591931B2 (en) * 2007-02-14 2013-11-26 Shangdong Intech Medical Technology Co., Ltd Coronary stent with asymmetric drug releasing controlled coating
US8070797B2 (en) 2007-03-01 2011-12-06 Boston Scientific Scimed, Inc. Medical device with a porous surface for delivery of a therapeutic agent
US8431149B2 (en) 2007-03-01 2013-04-30 Boston Scientific Scimed, Inc. Coated medical devices for abluminal drug delivery
US8067054B2 (en) * 2007-04-05 2011-11-29 Boston Scientific Scimed, Inc. Stents with ceramic drug reservoir layer and methods of making and using the same
US7977313B2 (en) * 2007-04-27 2011-07-12 Affinergy, Inc. Methods and compositions for promoting localization of pharmaceutically active agents to bone
EP2167039B1 (en) * 2007-05-18 2016-09-28 Durect Corporation Improved depot formulations
AU2013202476B2 (en) * 2007-05-18 2016-04-21 Durect Corporation Improved depot formulations
US7976915B2 (en) 2007-05-23 2011-07-12 Boston Scientific Scimed, Inc. Endoprosthesis with select ceramic morphology
CN101801415B (en) 2007-05-25 2015-09-23 Rb医药品有限公司 The sustained delivery formulations of risperidone compounds
WO2009009357A2 (en) * 2007-07-06 2009-01-15 Boston Scientific Scimed, Inc. Implantable medical devices having adjustable pore volume and methods for making the same
US7942926B2 (en) 2007-07-11 2011-05-17 Boston Scientific Scimed, Inc. Endoprosthesis coating
US8002823B2 (en) 2007-07-11 2011-08-23 Boston Scientific Scimed, Inc. Endoprosthesis coating
EP2187988B1 (en) 2007-07-19 2013-08-21 Boston Scientific Limited Endoprosthesis having a non-fouling surface
US8070798B2 (en) 2007-07-20 2011-12-06 Josiah Wilcox Drug eluting medical device and method
US7931683B2 (en) 2007-07-27 2011-04-26 Boston Scientific Scimed, Inc. Articles having ceramic coated surfaces
US8815273B2 (en) 2007-07-27 2014-08-26 Boston Scientific Scimed, Inc. Drug eluting medical devices having porous layers
US20090036965A1 (en) * 2007-07-30 2009-02-05 Robert Glenmore Walsh Conjunctive stent therapy
US20090036875A1 (en) * 2007-07-30 2009-02-05 Robert Glenmore Walsh Cardiac tissue therapy
WO2009018340A2 (en) 2007-07-31 2009-02-05 Boston Scientific Scimed, Inc. Medical device coating by laser cladding
EP2185103B1 (en) 2007-08-03 2014-02-12 Boston Scientific Scimed, Inc. Coating for medical device having increased surface area
US20090043380A1 (en) * 2007-08-09 2009-02-12 Specialized Vascular Technologies, Inc. Coatings for promoting endothelization of medical devices
US20090043330A1 (en) * 2007-08-09 2009-02-12 Specialized Vascular Technologies, Inc. Embolic protection devices and methods
EP2347730A1 (en) * 2007-09-04 2011-07-27 Affinergy, Inc. Methods and compositions for delivery of growth factor to fibrous connective tissue
US7959669B2 (en) 2007-09-12 2011-06-14 Boston Scientific Scimed, Inc. Bifurcated stent with open ended side branch support
US8052745B2 (en) 2007-09-13 2011-11-08 Boston Scientific Scimed, Inc. Endoprosthesis
KR100930167B1 (en) * 2007-09-19 2009-12-07 삼성전기주식회사 Ultra wide angle optical system
CN101998860B (en) * 2007-10-22 2015-01-07 阿非纳金公司 Compositions and methods for delivery of glycopeptide antibiotics to medical device surfaces
US8637455B2 (en) * 2007-10-22 2014-01-28 Affinergy, Llc Compositions and methods for delivery of glycopeptide antibiotics to medical device surfaces
US20090111787A1 (en) * 2007-10-31 2009-04-30 Florencia Lim Polymer blends for drug delivery stent matrix with improved thermal stability
US20090112239A1 (en) * 2007-10-31 2009-04-30 Specialized Vascular Technologies, Inc. Sticky dilatation balloon and methods of using
US8029554B2 (en) 2007-11-02 2011-10-04 Boston Scientific Scimed, Inc. Stent with embedded material
US7938855B2 (en) 2007-11-02 2011-05-10 Boston Scientific Scimed, Inc. Deformable underlayer for stent
US8216632B2 (en) 2007-11-02 2012-07-10 Boston Scientific Scimed, Inc. Endoprosthesis coating
US7972373B2 (en) * 2007-12-19 2011-07-05 Advanced Technologies And Regenerative Medicine, Llc Balloon expandable bioabsorbable stent with a single stress concentration region interconnecting adjacent struts
US8277501B2 (en) 2007-12-21 2012-10-02 Boston Scientific Scimed, Inc. Bi-stable bifurcated stent petal geometry
ES2658101T3 (en) * 2008-02-21 2018-03-08 Hexacath Implantable medical device with a protective / retention layer of an active agent or medication, specifically water soluble
US9603980B2 (en) * 2008-02-26 2017-03-28 CARDINAL HEALTH SWITZERLAND 515 GmbH Layer-by-layer stereocomplexed polymers as drug depot carriers or coatings in medical devices
US20090228089A1 (en) * 2008-03-04 2009-09-10 Medtronic Vascular, Inc. Full Thickness Porous Stent
US20090246250A1 (en) * 2008-03-27 2009-10-01 Affinergy Coating compositions having improved performance
EP2271380B1 (en) 2008-04-22 2013-03-20 Boston Scientific Scimed, Inc. Medical devices having a coating of inorganic material
US8932346B2 (en) 2008-04-24 2015-01-13 Boston Scientific Scimed, Inc. Medical devices having inorganic particle layers
US7998192B2 (en) * 2008-05-09 2011-08-16 Boston Scientific Scimed, Inc. Endoprostheses
US8932340B2 (en) 2008-05-29 2015-01-13 Boston Scientific Scimed, Inc. Bifurcated stent and delivery system
US8236046B2 (en) 2008-06-10 2012-08-07 Boston Scientific Scimed, Inc. Bioerodible endoprosthesis
EP2303350A2 (en) 2008-06-18 2011-04-06 Boston Scientific Scimed, Inc. Endoprosthesis coating
US8206635B2 (en) 2008-06-20 2012-06-26 Amaranth Medical Pte. Stent fabrication via tubular casting processes
US20090319026A1 (en) * 2008-06-20 2009-12-24 Boston Scientific Scimed, Inc. Composite Stent with Reservoirs for Drug Delivery and Methods of Manufacturing
US10898620B2 (en) 2008-06-20 2021-01-26 Razmodics Llc Composite stent having multi-axial flexibility and method of manufacture thereof
US8206636B2 (en) 2008-06-20 2012-06-26 Amaranth Medical Pte. Stent fabrication via tubular casting processes
US7985252B2 (en) 2008-07-30 2011-07-26 Boston Scientific Scimed, Inc. Bioerodible endoprosthesis
EP2323708A4 (en) * 2008-08-07 2015-11-18 Exogenesis Corp Drug delivery system and method of munufacturing thereof
WO2010024898A2 (en) 2008-08-29 2010-03-04 Lutonix, Inc. Methods and apparatuses for coating balloon catheters
US20100082096A1 (en) * 2008-09-30 2010-04-01 Boston Scientific Scimed, Inc. Tailored Luminal & Abluminal Drug Elution
US8382824B2 (en) 2008-10-03 2013-02-26 Boston Scientific Scimed, Inc. Medical implant having NANO-crystal grains with barrier layers of metal nitrides or fluorides
US20100098737A1 (en) * 2008-10-17 2010-04-22 Affinergy, Inc. methods and compositions for delivery of glycopeptide antibiotics to medical device surfaces
US20100119578A1 (en) * 2008-11-07 2010-05-13 Specialized Vascular Technologies, Inc. Extracellular matrix modulating coatings for medical devices
US9283304B2 (en) * 2008-11-25 2016-03-15 CARDINAL HEALTH SWITZERLAND 515 GmbH Absorbable stent having a coating for controlling degradation of the stent and maintaining pH neutrality
US8231980B2 (en) 2008-12-03 2012-07-31 Boston Scientific Scimed, Inc. Medical implants including iridium oxide
US8267992B2 (en) 2009-03-02 2012-09-18 Boston Scientific Scimed, Inc. Self-buffering medical implants
US8071156B2 (en) 2009-03-04 2011-12-06 Boston Scientific Scimed, Inc. Endoprostheses
US8287937B2 (en) 2009-04-24 2012-10-16 Boston Scientific Scimed, Inc. Endoprosthese
US20100292777A1 (en) * 2009-05-13 2010-11-18 Boston Scientific Scimed, Inc. Stent
US8221396B2 (en) 2009-08-27 2012-07-17 Silver Bullet Therapeutics, Inc. Bone implants for the treatment of infection
US8927004B1 (en) 2014-06-11 2015-01-06 Silver Bullet Therapeutics, Inc. Bioabsorbable substrates and systems that controllably release antimicrobial metal ions
US10265435B2 (en) 2009-08-27 2019-04-23 Silver Bullet Therapeutics, Inc. Bone implant and systems and coatings for the controllable release of antimicrobial metal ions
US9114197B1 (en) 2014-06-11 2015-08-25 Silver Bullett Therapeutics, Inc. Coatings for the controllable release of antimicrobial metal ions
CN102470196A (en) * 2009-08-27 2012-05-23 泰尔茂株式会社 Medical device for drug delivery
US9821094B2 (en) 2014-06-11 2017-11-21 Silver Bullet Therapeutics, Inc. Coatings for the controllable release of antimicrobial metal ions
US8771323B2 (en) 2010-11-12 2014-07-08 Silver Bullet Therapeutics, Inc. Bone implant and systems that controllably releases silver
WO2011044533A2 (en) * 2009-10-09 2011-04-14 Specialized Vascular Technologies, Inc. Coating system and method for drug elution management
CN102125474B (en) * 2010-01-19 2012-10-31 微创医疗器械(上海)有限公司 Method and device for loading medicines and/or polymers on medical equipment
US8668732B2 (en) 2010-03-23 2014-03-11 Boston Scientific Scimed, Inc. Surface treated bioerodible metal endoprostheses
US8579964B2 (en) 2010-05-05 2013-11-12 Neovasc Inc. Transcatheter mitral valve prosthesis
US8389041B2 (en) 2010-06-17 2013-03-05 Abbott Cardiovascular Systems, Inc. Systems and methods for rotating and coating an implantable device
US10596355B2 (en) 2010-06-30 2020-03-24 Surmodics, Inc. Catheter assembly
EP2415489B1 (en) * 2010-08-03 2016-07-06 Biotronik AG Polylactide-coated implant composed of a biocorrodible magnesium alloy
US20180211813A1 (en) * 2010-08-23 2018-07-26 Exogenesis Corporation Drug delivery system and method of manufacturing thereof
WO2013028529A1 (en) * 2011-08-19 2013-02-28 Exogenesis Corporation Drug delivery system and method of manufacturing thereof
US9308087B2 (en) 2011-04-28 2016-04-12 Neovasc Tiara Inc. Sequentially deployed transcatheter mitral valve prosthesis
US9554897B2 (en) 2011-04-28 2017-01-31 Neovasc Tiara Inc. Methods and apparatus for engaging a valve prosthesis with tissue
WO2013009520A1 (en) * 2011-07-12 2013-01-17 Boston Scientific Scimed, Inc. Drug elution medical device
US9345573B2 (en) 2012-05-30 2016-05-24 Neovasc Tiara Inc. Methods and apparatus for loading a prosthesis onto a delivery system
US20140308352A1 (en) 2013-03-11 2014-10-16 Zogenix Inc. Compositions and methods involving polymer, solvent, and high viscosity liquid carrier material
EP2986278A1 (en) 2013-03-11 2016-02-24 DURECT Corporation Injectable controlled release composition comprising high viscosity liquid carrier
US9572665B2 (en) 2013-04-04 2017-02-21 Neovasc Tiara Inc. Methods and apparatus for delivering a prosthetic valve to a beating heart
WO2015069870A1 (en) * 2013-11-07 2015-05-14 The University Of North Carolina At Chapel Hill Particles containing phospholipids or bioactive fatty acid
US9452242B2 (en) 2014-06-11 2016-09-27 Silver Bullet Therapeutics, Inc. Enhancement of antimicrobial silver, silver coatings, or silver platings
US20160354522A1 (en) * 2015-05-06 2016-12-08 Fluid Biotech Inc. Drug-eluting device for prophylaxis or treatment of a disease or pathology
CN108601645B (en) 2015-12-15 2021-02-26 内奥瓦斯克迪亚拉公司 Transseptal delivery system
EP4183372A1 (en) 2016-01-29 2023-05-24 Neovasc Tiara Inc. Prosthetic valve for avoiding obstruction of outflow
EP3541462A4 (en) 2016-11-21 2020-06-17 Neovasc Tiara Inc. Methods and systems for rapid retraction of a transcatheter heart valve delivery system
US10849769B2 (en) * 2017-08-23 2020-12-01 Vesper Medical, Inc. Non-foreshortening stent
US10856984B2 (en) 2017-08-25 2020-12-08 Neovasc Tiara Inc. Sequentially deployed transcatheter mitral valve prosthesis
AU2019374743B2 (en) 2018-11-08 2022-03-03 Neovasc Tiara Inc. Ventricular deployment of a transcatheter mitral valve prosthesis
CA3132873A1 (en) 2019-03-08 2020-09-17 Neovasc Tiara Inc. Retrievable prosthesis delivery system
CN113811265A (en) 2019-04-01 2021-12-17 内奥瓦斯克迪亚拉公司 Prosthetic valve deployable in a controlled manner
AU2020271896B2 (en) 2019-04-10 2022-10-13 Neovasc Tiara Inc. Prosthetic valve with natural blood flow
WO2020236931A1 (en) 2019-05-20 2020-11-26 Neovasc Tiara Inc. Introducer with hemostasis mechanism
WO2020257643A1 (en) 2019-06-20 2020-12-24 Neovasc Tiara Inc. Low profile prosthetic mitral valve
CN114366722A (en) * 2022-01-11 2022-04-19 河北工业大学 Polyphenol-mediated multifunctional bionic metal-organic framework mixed structure and preparation and application thereof

Citations (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US581147A (en) * 1897-04-20 Riveting and pressing machine
US4321711A (en) * 1978-10-18 1982-03-30 Sumitomo Electric Industries, Ltd. Vascular prosthesis
US5290271A (en) * 1990-05-14 1994-03-01 Jernberg Gary R Surgical implant and method for controlled release of chemotherapeutic agents
US5380299A (en) * 1993-08-30 1995-01-10 Med Institute, Inc. Thrombolytic treated intravascular medical device
US5383928A (en) * 1992-06-10 1995-01-24 Emory University Stent sheath for local drug delivery
US5500013A (en) * 1991-10-04 1996-03-19 Scimed Life Systems, Inc. Biodegradable drug delivery vascular stent
US5512055A (en) * 1991-02-27 1996-04-30 Leonard Bloom Anti-infective and anti-inflammatory releasing systems for medical devices
US5595722A (en) * 1993-01-28 1997-01-21 Neorx Corporation Method for identifying an agent which increases TGF-beta levels
US5599844A (en) * 1993-05-13 1997-02-04 Neorx Corporation Prevention and treatment of pathologies associated with abnormally proliferative smooth muscle cells
US5605693A (en) * 1991-10-18 1997-02-25 Seare, Jr.; William J. Methods of making a porous device
US5609629A (en) * 1995-06-07 1997-03-11 Med Institute, Inc. Coated implantable medical device
US5616608A (en) * 1993-07-29 1997-04-01 The United States Of America As Represented By The Department Of Health And Human Services Method of treating atherosclerosis or restenosis using microtubule stabilizing agent
US5624411A (en) * 1993-04-26 1997-04-29 Medtronic, Inc. Intravascular stent and method
US5707385A (en) * 1994-11-16 1998-01-13 Advanced Cardiovascular Systems, Inc. Drug loaded elastic membrane and method for delivery
US5713949A (en) * 1996-08-06 1998-02-03 Jayaraman; Swaminathan Microporous covered stents and method of coating
US5716981A (en) * 1993-07-19 1998-02-10 Angiogenesis Technologies, Inc. Anti-angiogenic compositions and methods of use
US5733925A (en) * 1993-01-28 1998-03-31 Neorx Corporation Therapeutic inhibitor of vascular smooth muscle cells
US5873904A (en) * 1995-06-07 1999-02-23 Cook Incorporated Silver implantable medical device
US5882335A (en) * 1994-09-12 1999-03-16 Cordis Corporation Retrievable drug delivery stent
US6171609B1 (en) * 1995-02-15 2001-01-09 Neorx Corporation Therapeutic inhibitor of vascular smooth muscle cells
US6174326B1 (en) * 1996-09-25 2001-01-16 Terumo Kabushiki Kaisha Radiopaque, antithrombogenic stent and method for its production
US6193746B1 (en) * 1992-07-08 2001-02-27 Ernst Peter Strecker Endoprosthesis that can be percutaneously implanted in the patient's body
US6206915B1 (en) * 1998-09-29 2001-03-27 Medtronic Ave, Inc. Drug storing and metering stent
US6206916B1 (en) * 1998-04-15 2001-03-27 Joseph G. Furst Coated intraluminal graft
US6206914B1 (en) * 1998-04-30 2001-03-27 Medtronic, Inc. Implantable system with drug-eluting cells for on-demand local drug delivery
US20020007209A1 (en) * 2000-03-06 2002-01-17 Scheerder Ivan De Intraluminar perforated radially expandable drug delivery prosthesis and a method for the production thereof
US20020007213A1 (en) * 2000-05-19 2002-01-17 Robert Falotico Drug/drug delivery systems for the prevention and treatment of vascular disease
US20020007214A1 (en) * 2000-05-19 2002-01-17 Robert Falotico Drug/drug delivery systems for the prevention and treatment of vascular disease
US20020005206A1 (en) * 2000-05-19 2002-01-17 Robert Falotico Antiproliferative drug and delivery device
US20020007215A1 (en) * 2000-05-19 2002-01-17 Robert Falotico Drug/drug delivery systems for the prevention and treatment of vascular disease
US20020010507A1 (en) * 1997-04-25 2002-01-24 Ehr Timothy G. J. Stent cell configurations including spirals
US20020013619A1 (en) * 1998-10-29 2002-01-31 Shanley John F. Expandable medical device with ductile hinges
US20020016625A1 (en) * 2000-05-12 2002-02-07 Robert Falotico Drug/drug delivery systems for the prevention and treatment of vascular disease
US20020028243A1 (en) * 1998-09-25 2002-03-07 Masters David B. Protein matrix materials, devices and methods of making and using thereof
US6358556B1 (en) * 1995-04-19 2002-03-19 Boston Scientific Corporation Drug release stent coating
US6358989B1 (en) * 1993-05-13 2002-03-19 Neorx Corporation Therapeutic inhibitor of vascular smooth muscle cells
US20020038145A1 (en) * 2000-06-05 2002-03-28 Jang G. David Intravascular stent with increasing coating retaining capacity
US20020038146A1 (en) * 1998-07-29 2002-03-28 Ulf Harry Expandable stent with relief cuts for carrying medicines and other materials
US6379381B1 (en) * 1999-09-03 2002-04-30 Advanced Cardiovascular Systems, Inc. Porous prosthesis and a method of depositing substances into the pores
US20030004141A1 (en) * 2001-03-08 2003-01-02 Brown David L. Medical devices, compositions and methods for treating vulnerable plaque
US6503954B1 (en) * 2000-03-31 2003-01-07 Advanced Cardiovascular Systems, Inc. Biocompatible carrier containing actinomycin D and a method of forming the same
US6506437B1 (en) * 2000-10-17 2003-01-14 Advanced Cardiovascular Systems, Inc. Methods of coating an implantable device having depots formed in a surface thereof
US6506411B2 (en) * 1993-07-19 2003-01-14 Angiotech Pharmaceuticals, Inc. Anti-angiogenic compositions and methods of use
US20030028244A1 (en) * 1995-06-07 2003-02-06 Cook Incorporated Coated implantable medical device
US20030033007A1 (en) * 2000-12-22 2003-02-13 Avantec Vascular Corporation Methods and devices for delivery of therapeutic capable agents with variable release profile
US20030036794A1 (en) * 1995-06-07 2003-02-20 Cook Incorporated Coated implantable medical device
US6528121B2 (en) * 1998-11-19 2003-03-04 Dow Corning Toray Silicone Co., Ltd. Aqueous treatment agent for wiping paper
US6530950B1 (en) * 1999-01-12 2003-03-11 Quanam Medical Corporation Intraluminal stent having coaxial polymer member
US20030050687A1 (en) * 2001-07-03 2003-03-13 Schwade Nathan D. Biocompatible stents and method of deployment
US20030060877A1 (en) * 2001-09-25 2003-03-27 Robert Falotico Coated medical devices for the treatment of vascular disease
US20030068355A1 (en) * 2001-08-20 2003-04-10 Shanley John F. Therapeutic agent delivery device with protective separating layer
US20030069606A1 (en) * 2001-06-15 2003-04-10 Girouard Steven D. Pulmonary vein stent for treating atrial fibrillation
US20030077312A1 (en) * 2001-10-22 2003-04-24 Ascher Schmulewicz Coated intraluminal stents and reduction of restenosis using same
US6673385B1 (en) * 2000-05-31 2004-01-06 Advanced Cardiovascular Systems, Inc. Methods for polymeric coatings stents
US6676987B2 (en) * 2001-07-02 2004-01-13 Scimed Life Systems, Inc. Coating a medical appliance with a bubble jet printing head
US6682545B1 (en) * 1999-10-06 2004-01-27 The Penn State Research Foundation System and device for preventing restenosis in body vessels
US6682771B2 (en) * 2001-07-02 2004-01-27 Scimed Life Systems, Inc. Coating dispensing system and method using a solenoid head for coating medical devices
US20040024449A1 (en) * 2000-11-17 2004-02-05 Boyle Christhoper T. Device for in vivo delivery of bioactive agents and method of manufacture thereof
US6689390B2 (en) * 1998-04-30 2004-02-10 Acusphere, Inc. Matrices formed of polymer and hydrophobic compounds for use in drug delivery
US6699281B2 (en) * 2001-07-20 2004-03-02 Sorin Biomedica Cardio S.P.A. Angioplasty stents
US6702850B1 (en) * 2002-09-30 2004-03-09 Mediplex Corporation Korea Multi-coated drug-eluting stent for antithrombosis and antirestenosis
US6712845B2 (en) * 2001-04-24 2004-03-30 Advanced Cardiovascular Systems, Inc. Coating for a stent and a method of forming the same
US6713119B2 (en) * 1999-09-03 2004-03-30 Advanced Cardiovascular Systems, Inc. Biocompatible coating for a prosthesis and a method of forming the same
US6716444B1 (en) * 2000-09-28 2004-04-06 Advanced Cardiovascular Systems, Inc. Barriers for polymer-coated implantable medical devices and methods for making the same
US6716981B2 (en) * 1998-12-21 2004-04-06 Lonza Ag Process for the preparation of N-(amino-4, 6-dihalo-pyrimidine) formamides
US20040073296A1 (en) * 2000-12-07 2004-04-15 Epstein Stephen E. Inhibition of restenosis using a DNA-coated stent
US6723373B1 (en) * 2000-06-16 2004-04-20 Cordis Corporation Device and process for coating stents
US6846841B2 (en) * 1993-07-19 2005-01-25 Angiotech Pharmaceuticals, Inc. Anti-angiogenic compositions and methods of use
US6849089B2 (en) * 2001-10-08 2005-02-01 Biotronik Mess-Und Therapiegeraete Gmbh & Co Ingenieurbuero Berlin Implant with proliferation-inhibiting substance
US6855770B2 (en) * 2000-12-12 2005-02-15 Scimed Life Systems, Inc. Drug delivery compositions and medical devices containing block copolymer
US6855125B2 (en) * 1999-05-20 2005-02-15 Conor Medsystems, Inc. Expandable medical device delivery system and method
US20050038505A1 (en) * 2001-11-05 2005-02-17 Sun Biomedical Ltd. Drug-delivery endovascular stent and method of forming the same
US6860946B2 (en) * 2000-07-25 2005-03-01 Advanced Cardiovascular Systems, Inc. System for the process of coating implantable medical devices
US6861088B2 (en) * 2002-03-28 2005-03-01 Boston Scientific Scimed, Inc. Method for spray-coating a medical device having a tubular wall such as a stent
US20050049693A1 (en) * 2003-08-25 2005-03-03 Medtronic Vascular Inc. Medical devices and compositions for delivering biophosphonates to anatomical sites at risk for vascular disease
US20050055078A1 (en) * 2003-09-04 2005-03-10 Medtronic Vascular, Inc. Stent with outer slough coating
US20050058684A1 (en) * 2001-08-20 2005-03-17 Shanley John F. Therapeutic agent delivery device with controlled therapeutic agent release rates
US20050060020A1 (en) * 2003-09-17 2005-03-17 Scimed Life Systems, Inc. Covered stent with biologically active material
US20050064088A1 (en) * 2003-09-24 2005-03-24 Scimed Life Systems, Inc Ultrasonic nozzle for coating a medical appliance and method for using an ultrasonic nozzle to coat a medical appliance
US20050074545A1 (en) * 2003-09-29 2005-04-07 Medtronic Vascular, Inc. Stent with improved drug loading capacity
US20050075714A1 (en) * 2003-09-24 2005-04-07 Medtronic Vascular, Inc. Gradient coated stent and method of fabrication
US20050079199A1 (en) * 2003-02-18 2005-04-14 Medtronic, Inc. Porous coatings for drug release from medical devices
US20060009838A1 (en) * 2000-10-16 2006-01-12 Conor Medsystems, Inc. Expandable medical device for delivery of beneficial agent
US6986899B2 (en) * 2000-08-04 2006-01-17 Advanced Cardiovascular Systems, Inc. Composition for coating an implantable prosthesis
US6989071B2 (en) * 2001-01-30 2006-01-24 Boston Scientific Scimed, Inc. Stent with channel(s) for containing and delivering biologically active material and method for manufacturing the same
US20060020329A1 (en) * 2004-05-26 2006-01-26 Medtronic Vascular, Inc. Semi-directional drug delivering stents
US20060017834A1 (en) * 2004-07-23 2006-01-26 Konica Minolta Opto, Inc. Imaging optical system and imaging lens device
US6991681B2 (en) * 2001-01-05 2006-01-31 Advanced Cardiovascular Systems, Inc. Method and apparatus for coating an implantable device
US20060035879A1 (en) * 2002-11-15 2006-02-16 Prescott Margaret F Organic Compounds
US20060039946A1 (en) * 2004-08-20 2006-02-23 Medtronic Inc. Drug eluting medical device
US7014913B2 (en) * 2001-09-27 2006-03-21 Advanced Cardiovascular Systems, Inc. Rate-reducing membrane for release of an agent
US7014861B2 (en) * 2001-11-30 2006-03-21 Advanced Cardiovascular Systems, Inc. Permeabilizing reagents to increase drug delivery and a method of local delivery

Family Cites Families (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2001A (en) * 1841-03-12 Sawmill
US2002A (en) * 1841-03-12 Tor and planter for plowing
US3657744A (en) 1970-05-08 1972-04-25 Univ Minnesota Method for fixing prosthetic implants in a living body
US5876419A (en) * 1976-10-02 1999-03-02 Navius Corporation Stent and method for making a stent
US5643314A (en) 1995-11-13 1997-07-01 Navius Corporation Self-expanding stent
US4300244A (en) 1979-09-19 1981-11-17 Carbomedics, Inc. Cardiovascular grafts
US4531936A (en) 1981-01-29 1985-07-30 Gordon Robert T Device and method for the selective delivery of drugs to the myocardium
US5441745A (en) 1982-03-30 1995-08-15 Vestar, Inc. Method of delivering micellular particles encapsulating chemotherapeutic agents to tumors in a body
US4542025A (en) 1982-07-29 1985-09-17 The Stolle Research And Development Corporation Injectable, long-acting microparticle formulation for the delivery of anti-inflammatory agents
US4834755A (en) 1983-04-04 1989-05-30 Pfizer Hospital Products Group, Inc. Triaxially-braided fabric prosthesis
US4580568A (en) 1984-10-01 1986-04-08 Cook, Incorporated Percutaneous endovascular stent and method for insertion thereof
US4824436A (en) 1985-04-09 1989-04-25 Harvey Wolinsky Method for the prevention of restenosis
US4650466A (en) 1985-11-01 1987-03-17 Angiobrade Partners Angioplasty device
US4733665C2 (en) 1985-11-07 2002-01-29 Expandable Grafts Partnership Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft
US5102417A (en) 1985-11-07 1992-04-07 Expandable Grafts Partnership Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
US4955878A (en) 1986-04-04 1990-09-11 Biotechnology, Inc. Kit for preventing or treating arterial dysfunction resulting from angioplasty procedures
JPH0763489B2 (en) 1986-10-31 1995-07-12 宇部興産株式会社 Medical tube
US4800882A (en) 1987-03-13 1989-01-31 Cook Incorporated Endovascular stent and delivery system
US5059211A (en) 1987-06-25 1991-10-22 Duke University Absorbable vascular stent
US4969458A (en) 1987-07-06 1990-11-13 Medtronic, Inc. Intracoronary stent and method of simultaneous angioplasty and stent implant
US5460817A (en) 1988-01-19 1995-10-24 Allied Colloids Ltd. Particulate composition comprising a core of matrix polymer with active ingredient distributed therein
US5157049A (en) 1988-03-07 1992-10-20 The United States Of America As Represented By The Department Of Health & Human Services Method of treating cancers sensitive to treatment with water soluble derivatives of taxol
US4989601A (en) 1988-05-02 1991-02-05 Medical Engineering & Development Institute, Inc. Method, apparatus, and substance for treating tissue having neoplastic cells
ATE145337T1 (en) 1988-05-02 1996-12-15 Phanos Tech Inc COMPOUNDS, COMPOSITIONS AND METHODS FOR BONDING BIO-AFFECTION SUBSTANCES TO SURFACE MEMBRANES OF BIO-PARTICLES
US5213580A (en) 1988-08-24 1993-05-25 Endoluminal Therapeutics, Inc. Biodegradable polymeric endoluminal sealing process
US5019090A (en) 1988-09-01 1991-05-28 Corvita Corporation Radially expandable endoprosthesis and the like
US5053048A (en) 1988-09-22 1991-10-01 Cordis Corporation Thromboresistant coating
CA1322628C (en) 1988-10-04 1993-10-05 Richard A. Schatz Expandable intraluminal graft
LU87410A1 (en) 1988-12-20 1990-07-10 Cird COSMETIC OR PHARMACEUTICAL COMPOSITION CONTAINING POLYMERIC OR FATTY BODY MICROSPHERES CHARGED WITH AT LEAST ONE ACTIVE PRODUCT
CH678393A5 (en) 1989-01-26 1991-09-13 Ulrich Prof Dr Med Sigwart
US5078726A (en) 1989-02-01 1992-01-07 Kreamer Jeffry W Graft stent and method of repairing blood vessels
US4960790A (en) 1989-03-09 1990-10-02 University Of Kansas Derivatives of taxol, pharmaceutical compositions thereof and methods for the preparation thereof
US4990155A (en) 1989-05-19 1991-02-05 Wilkoff Howard M Surgical stent method and apparatus
US4994071A (en) 1989-05-22 1991-02-19 Cordis Corporation Bifurcating stent apparatus and method
US5171262A (en) 1989-06-15 1992-12-15 Cordis Corporation Non-woven endoprosthesis
US5674278A (en) 1989-08-24 1997-10-07 Arterial Vascular Engineering, Inc. Endovascular support device
US5059166A (en) 1989-12-11 1991-10-22 Medical Innovative Technologies R & D Limited Partnership Intra-arterial stent with the capability to inhibit intimal hyperplasia
US5176617A (en) 1989-12-11 1993-01-05 Medical Innovative Technologies R & D Limited Partnership Use of a stent with the capability to inhibit malignant growth in a vessel such as a biliary duct
US5439446A (en) 1994-06-30 1995-08-08 Boston Scientific Corporation Stent and therapeutic delivery system
US5304121A (en) 1990-12-28 1994-04-19 Boston Scientific Corporation Drug delivery system making use of a hydrogel polymer coating
US5049132A (en) 1990-01-08 1991-09-17 Cordis Corporation Balloon catheter for delivering therapeutic agents
DE69108423T2 (en) 1990-02-08 1995-07-27 Howmedica Inflatable dilator.
US5545208A (en) 1990-02-28 1996-08-13 Medtronic, Inc. Intralumenal drug eluting prosthesis
US5344426A (en) 1990-04-25 1994-09-06 Advanced Cardiovascular Systems, Inc. Method and system for stent delivery
US5242399A (en) 1990-04-25 1993-09-07 Advanced Cardiovascular Systems, Inc. Method and system for stent delivery
WO1991017724A1 (en) 1990-05-17 1991-11-28 Harbor Medical Devices, Inc. Medical device polymer
US5092841A (en) 1990-05-17 1992-03-03 Wayne State University Method for treating an arterial wall injured during angioplasty
US5407683A (en) 1990-06-01 1995-04-18 Research Corporation Technologies, Inc. Pharmaceutical solutions and emulsions containing taxol
DE69110467T2 (en) 1990-06-15 1996-02-01 Cortrak Medical Inc DEVICE FOR DISPENSING MEDICINES.
US5171217A (en) 1991-02-28 1992-12-15 Indiana University Foundation Method for delivery of smooth muscle cell inhibitors
US5197978B1 (en) 1991-04-26 1996-05-28 Advanced Coronary Tech Removable heat-recoverable tissue supporting device
FR2678833B1 (en) 1991-07-08 1995-04-07 Rhone Poulenc Rorer Sa NEW PHARMACEUTICAL COMPOSITIONS BASED ON DERIVATIVES OF THE TAXANE CLASS.
WO1993006792A1 (en) 1991-10-04 1993-04-15 Scimed Life Systems, Inc. Biodegradable drug delivery vascular stent
US5464450A (en) 1991-10-04 1995-11-07 Scimed Lifesystems Inc. Biodegradable drug delivery vascular stent
FR2683449A1 (en) 1991-11-08 1993-05-14 Cardon Alain ENDOPROTHESIS FOR TRANSLUMINAL IMPLANTATION.
US5270047A (en) 1991-11-21 1993-12-14 Kauffman Raymond F Local delivery of dipyridamole for the treatment of proliferative diseases
US5260002A (en) 1991-12-23 1993-11-09 Vanderbilt University Method and apparatus for producing uniform polymeric spheres
CA2087132A1 (en) 1992-01-31 1993-08-01 Michael S. Williams Stent capable of attachment within a body lumen
US5282823A (en) 1992-03-19 1994-02-01 Medtronic, Inc. Intravascular radially expandable stent
GB9213077D0 (en) 1992-06-19 1992-08-05 Erba Carlo Spa Polymerbound taxol derivatives
KR940003548U (en) 1992-08-14 1994-02-21 김형술 Laundry dryer
US5342621A (en) 1992-09-15 1994-08-30 Advanced Cardiovascular Systems, Inc. Antithrombogenic surface
US5578075B1 (en) 1992-11-04 2000-02-08 Daynke Res Inc Minimally invasive bioactivated endoprosthesis for vessel repair
US5342348A (en) 1992-12-04 1994-08-30 Kaplan Aaron V Method and device for treating and enlarging body lumens
US5419760A (en) 1993-01-08 1995-05-30 Pdt Systems, Inc. Medicament dispensing stent for prevention of restenosis of a blood vessel
CA2152594C (en) 1993-01-19 1998-12-01 David W. Mayer Clad composite stent
US5439686A (en) 1993-02-22 1995-08-08 Vivorx Pharmaceuticals, Inc. Methods for in vivo delivery of substantially water insoluble pharmacologically active agents and compositions useful therefor
US5523092A (en) 1993-04-14 1996-06-04 Emory University Device for local drug delivery and methods for using the same
DE69317548T2 (en) 1993-04-23 1998-08-13 Schneider (Europe) Gmbh, Buelach Stent with a coating of elastic material and method for applying the coating on the stent
US5441515A (en) 1993-04-23 1995-08-15 Advanced Cardiovascular Systems, Inc. Ratcheting stent
US5457113A (en) 1993-10-15 1995-10-10 Eli Lilly And Company Methods for inhibiting vascular smooth muscle cell proliferation and restinosis
US5415869A (en) 1993-11-12 1995-05-16 The Research Foundation Of State University Of New York Taxol formulation
US5443497A (en) 1993-11-22 1995-08-22 The Johns Hopkins University Percutaneous prosthetic by-pass graft and method of use
US5556413A (en) 1994-03-11 1996-09-17 Advanced Cardiovascular Systems, Inc. Coiled stent with locking ends
US5449373A (en) 1994-03-17 1995-09-12 Medinol Ltd. Articulated stent
US5545210A (en) 1994-09-22 1996-08-13 Advanced Coronary Technology, Inc. Method of implanting a permanent shape memory alloy stent
US5665591A (en) 1994-12-06 1997-09-09 Trustees Of Boston University Regulation of smooth muscle cell proliferation
US5605696A (en) 1995-03-30 1997-02-25 Advanced Cardiovascular Systems, Inc. Drug loaded polymeric material and method of manufacture
US5575771A (en) 1995-04-24 1996-11-19 Walinsky; Paul Balloon catheter with external guidewire
US5607442A (en) 1995-11-13 1997-03-04 Isostent, Inc. Stent with improved radiopacity and appearance characteristics
US5741293A (en) * 1995-11-28 1998-04-21 Wijay; Bandula Locking stent
US6017363A (en) * 1997-09-22 2000-01-25 Cordis Corporation Bifurcated axially flexible stent
US5725548A (en) 1996-04-08 1998-03-10 Iowa India Investments Company Limited Self-locking stent and method for its production
US5617878A (en) 1996-05-31 1997-04-08 Taheri; Syde A. Stent and method for treatment of aortic occlusive disease
US5697971A (en) 1996-06-11 1997-12-16 Fischell; Robert E. Multi-cell stent with cells having differing characteristics
US5868781A (en) * 1996-10-22 1999-02-09 Scimed Life Systems, Inc. Locking stent
ZA9710342B (en) * 1996-11-25 1998-06-10 Alza Corp Directional drug delivery stent and method of use.
US5733330A (en) 1997-01-13 1998-03-31 Advanced Cardiovascular Systems, Inc. Balloon-expandable, crush-resistant locking stent
US5855600A (en) * 1997-08-01 1999-01-05 Inflow Dynamics Inc. Flexible implantable stent with composite design
US6056722A (en) * 1997-09-18 2000-05-02 Iowa-India Investments Company Limited Of Douglas Delivery mechanism for balloons, drugs, stents and other physical/mechanical agents and methods of use
US6042606A (en) * 1997-09-29 2000-03-28 Cook Incorporated Radially expandable non-axially contracting surgical stent
US6030414A (en) * 1997-11-13 2000-02-29 Taheri; Syde A. Variable stent and method for treatment of arterial disease
US6241762B1 (en) * 1998-03-30 2001-06-05 Conor Medsystems, Inc. Expandable medical device with ductile hinges
US6019789A (en) * 1998-04-01 2000-02-01 Quanam Medical Corporation Expandable unit cell and intraluminal stent
US20020099438A1 (en) * 1998-04-15 2002-07-25 Furst Joseph G. Irradiated stent coating
CN100377749C (en) * 1998-12-31 2008-04-02 血管技术药物公司 Stent grafts with bioactive coatings
ATE425738T1 (en) * 1999-11-17 2009-04-15 Boston Scient Ltd MINIATURIZED DEVICES FOR DELIVERING MOLECULES IN A CARRIER LIQUID
US6338739B1 (en) * 1999-12-22 2002-01-15 Ethicon, Inc. Biodegradable stent
JP3960802B2 (en) * 2000-03-02 2007-08-15 マイクロチップス・インコーポレーテッド Microfabricated devices for storing and selectively exposing chemicals and devices
US6254632B1 (en) * 2000-09-28 2001-07-03 Advanced Cardiovascular Systems, Inc. Implantable medical device having protruding surface structures for drug delivery and cover attachment

Patent Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US581147A (en) * 1897-04-20 Riveting and pressing machine
US4321711A (en) * 1978-10-18 1982-03-30 Sumitomo Electric Industries, Ltd. Vascular prosthesis
US5290271A (en) * 1990-05-14 1994-03-01 Jernberg Gary R Surgical implant and method for controlled release of chemotherapeutic agents
US5512055A (en) * 1991-02-27 1996-04-30 Leonard Bloom Anti-infective and anti-inflammatory releasing systems for medical devices
US6515009B1 (en) * 1991-09-27 2003-02-04 Neorx Corporation Therapeutic inhibitor of vascular smooth muscle cells
US6869443B2 (en) * 1991-10-04 2005-03-22 Scimed Life Systems, Inc. Biodegradable drug delivery vascular stent
US5500013A (en) * 1991-10-04 1996-03-19 Scimed Life Systems, Inc. Biodegradable drug delivery vascular stent
US5605693A (en) * 1991-10-18 1997-02-25 Seare, Jr.; William J. Methods of making a porous device
US5383928A (en) * 1992-06-10 1995-01-24 Emory University Stent sheath for local drug delivery
US6193746B1 (en) * 1992-07-08 2001-02-27 Ernst Peter Strecker Endoprosthesis that can be percutaneously implanted in the patient's body
US5595722A (en) * 1993-01-28 1997-01-21 Neorx Corporation Method for identifying an agent which increases TGF-beta levels
US5733925A (en) * 1993-01-28 1998-03-31 Neorx Corporation Therapeutic inhibitor of vascular smooth muscle cells
US5624411A (en) * 1993-04-26 1997-04-29 Medtronic, Inc. Intravascular stent and method
US6358989B1 (en) * 1993-05-13 2002-03-19 Neorx Corporation Therapeutic inhibitor of vascular smooth muscle cells
US5599844A (en) * 1993-05-13 1997-02-04 Neorx Corporation Prevention and treatment of pathologies associated with abnormally proliferative smooth muscle cells
US5716981A (en) * 1993-07-19 1998-02-10 Angiogenesis Technologies, Inc. Anti-angiogenic compositions and methods of use
US5886026A (en) * 1993-07-19 1999-03-23 Angiotech Pharmaceuticals Inc. Anti-angiogenic compositions and methods of use
US6506411B2 (en) * 1993-07-19 2003-01-14 Angiotech Pharmaceuticals, Inc. Anti-angiogenic compositions and methods of use
US6544544B2 (en) * 1993-07-19 2003-04-08 Angiotech Pharmaceuticals, Inc. Anti-angiogenic compositions and methods of use
US6846841B2 (en) * 1993-07-19 2005-01-25 Angiotech Pharmaceuticals, Inc. Anti-angiogenic compositions and methods of use
US5616608A (en) * 1993-07-29 1997-04-01 The United States Of America As Represented By The Department Of Health And Human Services Method of treating atherosclerosis or restenosis using microtubule stabilizing agent
US5380299A (en) * 1993-08-30 1995-01-10 Med Institute, Inc. Thrombolytic treated intravascular medical device
US5882335A (en) * 1994-09-12 1999-03-16 Cordis Corporation Retrievable drug delivery stent
US5707385A (en) * 1994-11-16 1998-01-13 Advanced Cardiovascular Systems, Inc. Drug loaded elastic membrane and method for delivery
US6171609B1 (en) * 1995-02-15 2001-01-09 Neorx Corporation Therapeutic inhibitor of vascular smooth muscle cells
US6358556B1 (en) * 1995-04-19 2002-03-19 Boston Scientific Corporation Drug release stent coating
US20030036794A1 (en) * 1995-06-07 2003-02-20 Cook Incorporated Coated implantable medical device
US5609629A (en) * 1995-06-07 1997-03-11 Med Institute, Inc. Coated implantable medical device
US20030028244A1 (en) * 1995-06-07 2003-02-06 Cook Incorporated Coated implantable medical device
US5873904A (en) * 1995-06-07 1999-02-23 Cook Incorporated Silver implantable medical device
US5713949A (en) * 1996-08-06 1998-02-03 Jayaraman; Swaminathan Microporous covered stents and method of coating
US6174326B1 (en) * 1996-09-25 2001-01-16 Terumo Kabushiki Kaisha Radiopaque, antithrombogenic stent and method for its production
US6720350B2 (en) * 1997-03-31 2004-04-13 Scimed Life Systems, Inc. Therapeutic inhibitor of vascular smooth muscle cells
US20020010507A1 (en) * 1997-04-25 2002-01-24 Ehr Timothy G. J. Stent cell configurations including spirals
US6206916B1 (en) * 1998-04-15 2001-03-27 Joseph G. Furst Coated intraluminal graft
US6206914B1 (en) * 1998-04-30 2001-03-27 Medtronic, Inc. Implantable system with drug-eluting cells for on-demand local drug delivery
US6689390B2 (en) * 1998-04-30 2004-02-10 Acusphere, Inc. Matrices formed of polymer and hydrophobic compounds for use in drug delivery
US20020038146A1 (en) * 1998-07-29 2002-03-28 Ulf Harry Expandable stent with relief cuts for carrying medicines and other materials
US20020028243A1 (en) * 1998-09-25 2002-03-07 Masters David B. Protein matrix materials, devices and methods of making and using thereof
US6206915B1 (en) * 1998-09-29 2001-03-27 Medtronic Ave, Inc. Drug storing and metering stent
US20020013619A1 (en) * 1998-10-29 2002-01-31 Shanley John F. Expandable medical device with ductile hinges
US6528121B2 (en) * 1998-11-19 2003-03-04 Dow Corning Toray Silicone Co., Ltd. Aqueous treatment agent for wiping paper
US6716981B2 (en) * 1998-12-21 2004-04-06 Lonza Ag Process for the preparation of N-(amino-4, 6-dihalo-pyrimidine) formamides
US6530950B1 (en) * 1999-01-12 2003-03-11 Quanam Medical Corporation Intraluminal stent having coaxial polymer member
US20050059991A1 (en) * 1999-05-20 2005-03-17 Shanley John F. Expandable medical device delivery system and method
US6855125B2 (en) * 1999-05-20 2005-02-15 Conor Medsystems, Inc. Expandable medical device delivery system and method
US6713119B2 (en) * 1999-09-03 2004-03-30 Advanced Cardiovascular Systems, Inc. Biocompatible coating for a prosthesis and a method of forming the same
US6379381B1 (en) * 1999-09-03 2002-04-30 Advanced Cardiovascular Systems, Inc. Porous prosthesis and a method of depositing substances into the pores
US6682545B1 (en) * 1999-10-06 2004-01-27 The Penn State Research Foundation System and device for preventing restenosis in body vessels
US20020007209A1 (en) * 2000-03-06 2002-01-17 Scheerder Ivan De Intraluminar perforated radially expandable drug delivery prosthesis and a method for the production thereof
US6503954B1 (en) * 2000-03-31 2003-01-07 Advanced Cardiovascular Systems, Inc. Biocompatible carrier containing actinomycin D and a method of forming the same
US20020016625A1 (en) * 2000-05-12 2002-02-07 Robert Falotico Drug/drug delivery systems for the prevention and treatment of vascular disease
US20020007214A1 (en) * 2000-05-19 2002-01-17 Robert Falotico Drug/drug delivery systems for the prevention and treatment of vascular disease
US20020007213A1 (en) * 2000-05-19 2002-01-17 Robert Falotico Drug/drug delivery systems for the prevention and treatment of vascular disease
US20020007215A1 (en) * 2000-05-19 2002-01-17 Robert Falotico Drug/drug delivery systems for the prevention and treatment of vascular disease
US20020005206A1 (en) * 2000-05-19 2002-01-17 Robert Falotico Antiproliferative drug and delivery device
US6673385B1 (en) * 2000-05-31 2004-01-06 Advanced Cardiovascular Systems, Inc. Methods for polymeric coatings stents
US20020038145A1 (en) * 2000-06-05 2002-03-28 Jang G. David Intravascular stent with increasing coating retaining capacity
US6723373B1 (en) * 2000-06-16 2004-04-20 Cordis Corporation Device and process for coating stents
US6860946B2 (en) * 2000-07-25 2005-03-01 Advanced Cardiovascular Systems, Inc. System for the process of coating implantable medical devices
US6986899B2 (en) * 2000-08-04 2006-01-17 Advanced Cardiovascular Systems, Inc. Composition for coating an implantable prosthesis
US6716444B1 (en) * 2000-09-28 2004-04-06 Advanced Cardiovascular Systems, Inc. Barriers for polymer-coated implantable medical devices and methods for making the same
US20060009838A1 (en) * 2000-10-16 2006-01-12 Conor Medsystems, Inc. Expandable medical device for delivery of beneficial agent
US6506437B1 (en) * 2000-10-17 2003-01-14 Advanced Cardiovascular Systems, Inc. Methods of coating an implantable device having depots formed in a surface thereof
US20040024449A1 (en) * 2000-11-17 2004-02-05 Boyle Christhoper T. Device for in vivo delivery of bioactive agents and method of manufacture thereof
US20040073296A1 (en) * 2000-12-07 2004-04-15 Epstein Stephen E. Inhibition of restenosis using a DNA-coated stent
US6855770B2 (en) * 2000-12-12 2005-02-15 Scimed Life Systems, Inc. Drug delivery compositions and medical devices containing block copolymer
US20030033007A1 (en) * 2000-12-22 2003-02-13 Avantec Vascular Corporation Methods and devices for delivery of therapeutic capable agents with variable release profile
US6991681B2 (en) * 2001-01-05 2006-01-31 Advanced Cardiovascular Systems, Inc. Method and apparatus for coating an implantable device
US6989071B2 (en) * 2001-01-30 2006-01-24 Boston Scientific Scimed, Inc. Stent with channel(s) for containing and delivering biologically active material and method for manufacturing the same
US20030004141A1 (en) * 2001-03-08 2003-01-02 Brown David L. Medical devices, compositions and methods for treating vulnerable plaque
US6712845B2 (en) * 2001-04-24 2004-03-30 Advanced Cardiovascular Systems, Inc. Coating for a stent and a method of forming the same
US20030069606A1 (en) * 2001-06-15 2003-04-10 Girouard Steven D. Pulmonary vein stent for treating atrial fibrillation
US6676987B2 (en) * 2001-07-02 2004-01-13 Scimed Life Systems, Inc. Coating a medical appliance with a bubble jet printing head
US6682771B2 (en) * 2001-07-02 2004-01-27 Scimed Life Systems, Inc. Coating dispensing system and method using a solenoid head for coating medical devices
US20030050687A1 (en) * 2001-07-03 2003-03-13 Schwade Nathan D. Biocompatible stents and method of deployment
US6699281B2 (en) * 2001-07-20 2004-03-02 Sorin Biomedica Cardio S.P.A. Angioplasty stents
US20030068355A1 (en) * 2001-08-20 2003-04-10 Shanley John F. Therapeutic agent delivery device with protective separating layer
US20060064157A1 (en) * 2001-08-20 2006-03-23 Conor Medsystems, Inc. Expandable medical device for delivery of beneficial agent
US20050058684A1 (en) * 2001-08-20 2005-03-17 Shanley John F. Therapeutic agent delivery device with controlled therapeutic agent release rates
US20030060877A1 (en) * 2001-09-25 2003-03-27 Robert Falotico Coated medical devices for the treatment of vascular disease
US7014913B2 (en) * 2001-09-27 2006-03-21 Advanced Cardiovascular Systems, Inc. Rate-reducing membrane for release of an agent
US6849089B2 (en) * 2001-10-08 2005-02-01 Biotronik Mess-Und Therapiegeraete Gmbh & Co Ingenieurbuero Berlin Implant with proliferation-inhibiting substance
US20030077312A1 (en) * 2001-10-22 2003-04-24 Ascher Schmulewicz Coated intraluminal stents and reduction of restenosis using same
US20050038505A1 (en) * 2001-11-05 2005-02-17 Sun Biomedical Ltd. Drug-delivery endovascular stent and method of forming the same
US7014861B2 (en) * 2001-11-30 2006-03-21 Advanced Cardiovascular Systems, Inc. Permeabilizing reagents to increase drug delivery and a method of local delivery
US6861088B2 (en) * 2002-03-28 2005-03-01 Boston Scientific Scimed, Inc. Method for spray-coating a medical device having a tubular wall such as a stent
US6702850B1 (en) * 2002-09-30 2004-03-09 Mediplex Corporation Korea Multi-coated drug-eluting stent for antithrombosis and antirestenosis
US20060035879A1 (en) * 2002-11-15 2006-02-16 Prescott Margaret F Organic Compounds
US20050079199A1 (en) * 2003-02-18 2005-04-14 Medtronic, Inc. Porous coatings for drug release from medical devices
US20050049693A1 (en) * 2003-08-25 2005-03-03 Medtronic Vascular Inc. Medical devices and compositions for delivering biophosphonates to anatomical sites at risk for vascular disease
US20050055078A1 (en) * 2003-09-04 2005-03-10 Medtronic Vascular, Inc. Stent with outer slough coating
US20050060020A1 (en) * 2003-09-17 2005-03-17 Scimed Life Systems, Inc. Covered stent with biologically active material
US20050075714A1 (en) * 2003-09-24 2005-04-07 Medtronic Vascular, Inc. Gradient coated stent and method of fabrication
US20050064088A1 (en) * 2003-09-24 2005-03-24 Scimed Life Systems, Inc Ultrasonic nozzle for coating a medical appliance and method for using an ultrasonic nozzle to coat a medical appliance
US20050074545A1 (en) * 2003-09-29 2005-04-07 Medtronic Vascular, Inc. Stent with improved drug loading capacity
US20060020329A1 (en) * 2004-05-26 2006-01-26 Medtronic Vascular, Inc. Semi-directional drug delivering stents
US20060017834A1 (en) * 2004-07-23 2006-01-26 Konica Minolta Opto, Inc. Imaging optical system and imaging lens device
US20060039946A1 (en) * 2004-08-20 2006-02-23 Medtronic Inc. Drug eluting medical device

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7842083B2 (en) 2001-08-20 2010-11-30 Innovational Holdings, Llc. Expandable medical device with improved spatial distribution
US7833266B2 (en) 2007-11-28 2010-11-16 Boston Scientific Scimed, Inc. Bifurcated stent with drug wells for specific ostial, carina, and side branch treatment
US7951193B2 (en) 2008-07-23 2011-05-31 Boston Scientific Scimed, Inc. Drug-eluting stent
US20110178465A1 (en) * 2008-10-15 2011-07-21 Bioshape Solutions Inc Device and method for delivery of therapeutic agents via internal implants
US9642658B2 (en) 2008-10-15 2017-05-09 Orthoclip Llc Device and method for delivery of therapeutic agents via internal implants
US9283305B2 (en) 2009-07-09 2016-03-15 Medtronic Vascular, Inc. Hollow tubular drug eluting medical devices
US8381774B2 (en) 2009-09-20 2013-02-26 Medtronic Vascular, Inc. Methods for loading a drug eluting medical device
US8916226B2 (en) 2009-09-20 2014-12-23 Medtronic Vascular, Inc. Method of forming hollow tubular drug eluting medical devices
US8460745B2 (en) 2009-09-20 2013-06-11 Medtronic Vascular, Inc. Apparatus and methods for loading a drug eluting medical device
US8678046B2 (en) 2009-09-20 2014-03-25 Medtronic Vascular, Inc. Apparatus and methods for loading a drug eluting medical device
US8828474B2 (en) 2009-09-20 2014-09-09 Medtronic Vascular, Inc. Apparatus and methods for loading a drug eluting medical device
US8333801B2 (en) 2010-09-17 2012-12-18 Medtronic Vascular, Inc. Method of Forming a Drug-Eluting Medical Device
US8632846B2 (en) 2010-09-17 2014-01-21 Medtronic Vascular, Inc. Apparatus and methods for loading a drug eluting medical device
US9421650B2 (en) 2010-09-17 2016-08-23 Medtronic Vascular, Inc. Method of forming a drug-eluting medical device
US8616040B2 (en) 2010-09-17 2013-12-31 Medtronic Vascular, Inc. Method of forming a drug-eluting medical device
US9486340B2 (en) 2013-03-14 2016-11-08 Medtronic Vascular, Inc. Method for manufacturing a stent and stent manufactured thereby
US11129557B2 (en) 2017-05-31 2021-09-28 Cardiac Pacemakers, Inc. Implantable medical device with chemical sensor
US12004853B2 (en) 2017-07-26 2024-06-11 Cardiac Pacemakers, Inc. Systems and methods for disambiguation of posture
US11439304B2 (en) 2017-08-10 2022-09-13 Cardiac Pacemakers, Inc. Systems and methods including electrolyte sensor fusion
WO2019040635A1 (en) * 2017-08-23 2019-02-28 Cardiac Pacemakers, Inc. Implantable chemical sensor with staged activation
US11571151B2 (en) 2017-08-23 2023-02-07 Cardiac Pacemakers, Inc. Implantable chemical sensor with staged activation
US11089983B2 (en) 2017-12-01 2021-08-17 Cardiac Pacemakers, Inc. Multimodal analyte sensors for medical devices
US10952621B2 (en) 2017-12-05 2021-03-23 Cardiac Pacemakers, Inc. Multimodal analyte sensor optoelectronic interface

Also Published As

Publication number Publication date
AU2010201845B2 (en) 2013-03-21
EP1551473A1 (en) 2005-07-13
US20030068355A1 (en) 2003-04-10
ATE554806T1 (en) 2012-05-15
EP1551473B1 (en) 2015-12-09
CA2499475A1 (en) 2004-04-01
EP1749544B1 (en) 2012-04-25
WO2004026357A1 (en) 2004-04-01
JP2006505306A (en) 2006-02-16
US7208011B2 (en) 2007-04-24
AU2010201845A1 (en) 2010-05-27
AU2003275229A1 (en) 2004-04-08
EP1749544A1 (en) 2007-02-07

Similar Documents

Publication Publication Date Title
US7208011B2 (en) Implantable medical device with drug filled holes
US7517362B2 (en) Therapeutic agent delivery device with controlled therapeutic agent release rates
US8361537B2 (en) Expandable medical device with beneficial agent concentration gradient
CA2513721C (en) Method and apparatus for reducing tissue damage after ischemic injury
EP1768610B1 (en) Expandable medical device for treating cardiac arrhythmias
US20040142014A1 (en) Method and apparatus for reducing tissue damage after ischemic injury
US20030064965A1 (en) Method of delivering drugs to a tissue using drug-coated medical devices
IL229653A (en) Implantable medical devices having intraluminal scaffold with plurality of openings and therapeutic agents disposed therein and coated with an adhesion promoting primer

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION