US20070177983A1 - Airflow compressor control system and method - Google Patents

Airflow compressor control system and method Download PDF

Info

Publication number
US20070177983A1
US20070177983A1 US11/668,539 US66853907A US2007177983A1 US 20070177983 A1 US20070177983 A1 US 20070177983A1 US 66853907 A US66853907 A US 66853907A US 2007177983 A1 US2007177983 A1 US 2007177983A1
Authority
US
United States
Prior art keywords
pressure
compressor
compression system
gas compression
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/668,539
Other languages
English (en)
Inventor
Jimmy L. Levan
Vipul R. Mistry
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ingersoll Rand Co
Original Assignee
Ingersoll Rand Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ingersoll Rand Co filed Critical Ingersoll Rand Co
Priority to US11/668,539 priority Critical patent/US20070177983A1/en
Assigned to INGERSOLL-RAND COMPANY reassignment INGERSOLL-RAND COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LEVAN, JIMMY L., MISTRY, VIPUL R.
Publication of US20070177983A1 publication Critical patent/US20070177983A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/02Stopping, starting, unloading or idling control
    • F04B49/022Stopping, starting, unloading or idling control by means of pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/08Regulating by delivery pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/20Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by changing the driving speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/08Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by varying the rotational speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/24Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2203/00Motor parameters
    • F04B2203/02Motor parameters of rotating electric motors
    • F04B2203/0209Rotational speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2205/00Fluid parameters
    • F04B2205/08Pressure difference over a throttle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/81Sensor, e.g. electronic sensor for control or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/86Detection

Definitions

  • the present invention relates to gas compressor systems. More particularly, the invention relates to a control system for a gas compressor system.
  • Compressed gas and particularly air
  • Compressor systems can be used in many applications such as for process, shop air, or other applications.
  • Compressor systems generally include several components disposed within one or more housings. Exemplary components of these systems include a motor and drive assembly, a compressor module, and a separator system (moisture and/or oil).
  • the motor may drive the compressor module through a belt and pulley system that transfers power from the motor to the compressor module, other to other transmission systems, or may directly drive the compressor module.
  • the air In many compressed air systems, the air carries an amount of moisture and, in some constructions, lubricants that are trapped in the air as part of the compression process.
  • Many compressor systems include an air dryer that operates to remove a significant portion of the moisture from the air. The air dryer dries the compressed air with a drying process that may include cooling, absorption, adsorption, and the like. During the air drying process, there is generally a pressure drop within the flow of compressed air. Thus, the air dryer reduces the overall efficiency of the compressor system.
  • a controller is used to increase an efficiency of an airflow system by monitoring pressure values at several points of the system. Increased efficiency reduces energy costs and can also reduce maintenance necessity.
  • the controller can dynamically measure and monitor a pressure differential between a plurality of pressure points. For example, the controller can monitor a discharge (after-cooler) pressure value at or near a compressor discharge. Similarly, the controller can also monitor a system discharge pressure at or near a dryer, or at or near a point-of-use.
  • the controller uses the pressure differential between the discharge (after-cooler) pressure value and the system discharge pressure to dynamically change or adjust a speed of the compressor to maintain a desired quantity of air flow at a desired pressure at the point-of-use, while reducing or minimizing an energy or power consumption demanded by a motor and the controller.
  • the invention provides a gas compression system that is operable to deliver a flow of compressed gas to a point of use.
  • the gas compression system includes a compressor that is operable to produce a flow of compressed gas at a first pressure, a motor operable to drive the compressor at a compressor speed, and a gas treatment member positioned to receive the flow of compressed gas from the compressor and deliver the flow of compressed gas to the point of use at a second pressure.
  • a controller is operable to vary the compressor speed in response to a difference between the first pressure and the second pressure.
  • the invention provides a method of controlling airflow generated by a compressor.
  • the method includes the steps of measuring a first pressure value associated with the compressor, measuring a second pressure value indicative of a rate of use of air at a point of use, and determining a pressure differential between the first pressure value and the second pressure value.
  • the method also includes adjusting a motor speed based at least partially on the pressure differential.
  • the invention provides a gas compression system that is operable to deliver a flow of compressed gas to a point of use.
  • the gas compression system includes a compressor that is operable to produce a flow of compressed gas at a first pressure and a variable speed motor that is operable to drive the compressor at a compressor speed between a low speed and a high speed.
  • a dryer is positioned to receive the flow of compressed air from the compressor and deliver a flow of dried compressed air to the point of use at a second pressure.
  • a first pressure sensor is positioned to measure the first pressure and generate a first signal indicative of the first pressure, and a second pressure sensor is positioned to measure the second pressure and generate a second signal indicative of the second pressure.
  • a controller is operable to receive the first signal and the second signal and to calculate a third signal indicative of the pressure difference between the first pressure and the second pressure. The controller is also operable to vary the compressor speed in response to the third signal.
  • FIG. 1 is an airflow system embodying the present invention.
  • FIG. 2 is a flow chart of processing carried out in some embodiments of the invention.
  • FIG. 1 shows an airflow system 100 in a schematic format.
  • the airflow system 100 includes a compressor module 104 that is controlled by a controller 108 .
  • the compressor module 104 includes an engine or a motor 112 and a compressor 116 .
  • the compressor includes a housing that contains one or more moving elements that operate to compress fluid within the compressor 116 .
  • a rotary screw compressor is employed with other constructions employing other types of compressors (e.g., centrifugal, reciprocating, gear, gerotor, and the like).
  • the motor 112 includes an output shaft 118 that couples to the compressor 116 to drive the moving element or elements and generate compressed air.
  • the motor 112 operates at a fixed speed.
  • a variable speed drive such as a variable frequency drive 120 controls the motor 112 and operates the motor 112 and the compressor 116 within a desired speed range. By varying the speed of the compressor 116 , the drive 120 is able to vary the quantity and the pressure of the compressed air discharged at a compressor discharge 122 .
  • a compressor discharge pressure sensor 128 is disposed near the compressor discharge 122 or in piping 124 downstream of the discharge 122 to measure a discharge pressure of the compressed air.
  • the pressure sensor 128 can continuously measure the discharge pressure or can periodically sample the discharge pressure.
  • the pressure sensor 128 generates an electrical signal indicative of the measured discharge pressure and transmits that signal to the controller 108 for use.
  • the airflow system 100 also includes an air dryer 132 that receives the compressed air from the compressor module 104 through the piping 124 .
  • the air dryer 132 dries the compressed air to reduce the dew point of the air and inhibit condensation.
  • the dryer 132 first cools the air flow to produce condensation within the flow of compressed air.
  • the flow is then directed to a moisture separator that removes the condensed water.
  • the stream of compressed air is then heated well above its dew point, thus making the condensation of water during use of the air less likely.
  • a desiccant drying system is employed. In the desiccant drying system, the stream of compressed air is passed through a water-absorbing substance that removes moisture from the flow of compressed air.
  • the air dryer 132 can include a cycling or a non-cycling dryer 132 , depending on applications at hand.
  • any air-drying system produces a pressure drop in the flow of compressed air.
  • the greater the quantity of flow in any given system the greater the pressure drop.
  • the drying module 132 discharges the dry air through piping 136 to a point-of-use 138 .
  • An isolation valve 139 may be fitted at the point-of-use 138 if desired.
  • a dryer discharge pressure sensor 140 is positioned near a dryer discharge 142 or in the piping 136 downstream of the dryer 132 to measure a dryer discharge pressure.
  • the dryer discharge pressure sensor 140 can continuously measure the dryer discharge pressure or can periodically sample the dryer discharge pressure.
  • the dryer discharge pressure sensor 140 generates an electrical signal indicative of the measured dryer discharge pressure and transmits that signal to the controller 108 for use.
  • the controller 108 receives the discharge pressure sensor signal and the dryer discharge pressure sensor signal and uses these two signals along with a reference to generate a control signal. More specifically, the controller 108 uses the two sensor signals to calculate a pressure difference or a pressure differential. This calculated value is then compared to the reference to generate the control signal. The control signal is then transmitted to the variable frequency drive 120 to control the speed of the motor 112 and the compressor 116 .
  • FIG. 2 is a flow chart 200 that further illustrates processes that occur in some embodiments of the invention including processes that may be carried out by software, firmware, or hardware.
  • the compressor discharge pressure sensor 128 dynamically monitors or senses the pressure generated by the compressor module 104 at the compressor module discharge 122 at block 204 .
  • the dryer discharge pressure sensor 140 also dynamically monitors or measures the pressure associated with the drying module 132 at the drying module discharge 142 at block 208 .
  • the controller 108 dynamically determines a difference between the pressure values measured by the compressor discharge pressure sensor 128 and the dryer discharge pressure sensor 140 .
  • the controller 108 compares the calculated pressure differential to the reference 148 such as a desired pressure differential.
  • the controller 108 then dynamically changes or adjusts a control signal based on this comparison, and transmits this control signal to the variable frequency drive 120 .
  • the variable frequency drive 120 adjusts the driving frequency of the motor 112 at block 216 based on the pressure differential.
  • the controller 108 transmits the driving frequency signal to the compressor module 104 to drive the motor 112 , which in turn drives the compressor 116 .
  • the controller 108 also drives the drying module 132 based on the pressure differential calculated at block 224 . In this way, the operating speeds of the motor 112 and the speed of the compressor 116 within the compressor module 104 are maintained at a speed that produces the needed quantity of air at the needed pressure, thereby reducing the power consumption of the motor 112 and/or the variable frequency drive 120 .
  • the motor 112 operates to rotate the compressor 116 .
  • the compressor 116 outputs a quantity of compressed air at a pressure in response to rotation of the motor 112 .
  • the compressor discharge sensor 128 measures the pressure of the compressed air at the compressor discharge 122 and transmits a signal indicative of this value to the controller 108 .
  • the compressed air then flows through the air dryer 132 where some of the moisture contained within the compressed air is removed. As the compressed air flows through the air dryer 132 , a pressure drop occurs.
  • the magnitude of the pressure drop is largely a function of the mass flow or flow velocity through the air dryer 132 , with higher mass flows or flow velocities producing larger pressure drops.
  • the dryer discharge pressure sensor 140 measures the pressure of the compressed air and transmits a signal indicative of this measured value to the controller 108 .
  • the compressed air then flows to the point-of-use 138 , such as a manifold or a distribution center. Meanwhile, the controller 108 calculates the pressure difference between the measured pressure values and compares this difference to the reference to generate the control signal.
  • the flow of air at the point-of-use 138 drops to zero or very near zero.
  • the pressure drop becomes smaller and the difference between the compressor discharge pressure and the air dryer discharge pressure approaches zero.
  • the control signal generated by the controller 108 continues to indicate to the variable frequency drive 120 to slow the motor operation to reduce the flow from the compressor 116 .
  • a threshold pressure difference is reached and the controller 108 sends a signal to the variable frequency drive 120 that stops operation of the compressor 116 .
  • the present control system can be used to control a multi-compressor system as well as the single compressor system described above.
  • the controller may control several variable frequency drives in parallel, may control one variable frequency drive and one or more fixed speed compressors, may control several variable frequency drives in series, or may control several fixed speed drives in series.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)
US11/668,539 2006-02-01 2007-01-30 Airflow compressor control system and method Abandoned US20070177983A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/668,539 US20070177983A1 (en) 2006-02-01 2007-01-30 Airflow compressor control system and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US76424306P 2006-02-01 2006-02-01
US11/668,539 US20070177983A1 (en) 2006-02-01 2007-01-30 Airflow compressor control system and method

Publications (1)

Publication Number Publication Date
US20070177983A1 true US20070177983A1 (en) 2007-08-02

Family

ID=38327728

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/668,539 Abandoned US20070177983A1 (en) 2006-02-01 2007-01-30 Airflow compressor control system and method

Country Status (4)

Country Link
US (1) US20070177983A1 (fr)
EP (1) EP1979615A4 (fr)
CN (1) CN101379294A (fr)
WO (1) WO2007089842A1 (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110194904A1 (en) * 2009-06-26 2011-08-11 Accessible Technologies, Inc. Controlled Inlet of Compressor for Pneumatic Conveying System
CN102788006A (zh) * 2012-08-29 2012-11-21 上海昶嘉工业设备有限公司 嵌入式空压机控制系统
US20140103849A1 (en) * 2012-10-16 2014-04-17 Energie H.T. International Inc. Abnormality detection method and apparatus
US20150260397A1 (en) * 2014-03-17 2015-09-17 Honeywell International Inc. Integrated smoke monitoring and control system for flaring operations
US20160017886A1 (en) * 2014-07-21 2016-01-21 Danfoss Scroll Technologies, Llc Snap-in temperature sensor for scroll compressor
CN106870339A (zh) * 2016-12-08 2017-06-20 台州市德瑞压缩机有限公司 一种新能源汽车的气动动力系统
US10080990B2 (en) 2015-10-04 2018-09-25 Graham-White Manufacturing Company Air dryer
EP3832135A4 (fr) * 2018-07-31 2022-08-03 Kobelco Compressors Corporation Compresseur et son procédé de fonctionnement

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103009960B (zh) * 2012-12-26 2015-02-04 潍柴动力股份有限公司 一种电动汽车用电动空气压缩系统的监测设备及方法

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2942421A (en) * 1957-07-31 1960-06-28 Sundstrand Corp Hydraulic transmission
US3568771A (en) * 1969-04-17 1971-03-09 Borg Warner Method and apparatus for lifting foaming crude by a variable rpm submersible pump
US3574509A (en) * 1969-02-14 1971-04-13 Zurn Ind Inc Backwash filter
US3584977A (en) * 1969-04-17 1971-06-15 Du Pont Process for metering liquid through serially connected pumps
US5375650A (en) * 1991-11-15 1994-12-27 Nec Corporation Liquid coolant circulation control system for immersion cooling systems
US5522452A (en) * 1990-10-11 1996-06-04 Nec Corporation Liquid cooling system for LSI packages
US5580221A (en) * 1994-10-05 1996-12-03 Franklin Electric Co., Inc. Motor drive circuit for pressure control of a pumping system
US5627769A (en) * 1994-11-24 1997-05-06 Sarlin-Hydor Oy Method and control system for controlling a fluid compression system
US5997693A (en) * 1997-06-30 1999-12-07 Mitsubishi Heavy Industries, Ltd. Stock liquor pressure pulsation absorbing apparatus and method
US6036449A (en) * 1998-03-24 2000-03-14 Cummins Engine Company, Inc. Air compressor control
US6146100A (en) * 1998-03-10 2000-11-14 Atlas Copco Airpower, Naamloze Vennootschap Compressor unit and control device used thereby
US6213724B1 (en) * 1996-05-22 2001-04-10 Ingersoll-Rand Company Method for detecting the occurrence of surge in a centrifugal compressor by detecting the change in the mass flow rate
US6471486B1 (en) * 1997-10-28 2002-10-29 Coltec Industries Inc. Compressor system and method and control for same
US6688320B2 (en) * 2000-11-10 2004-02-10 Flowtronex Psi, Inc. Utility conservation control methodology within a fluid pumping system
US6705839B1 (en) * 1998-09-14 2004-03-16 Volvo Lastvagnar Ab Control system and method for air compressor
US20060162552A1 (en) * 2005-01-26 2006-07-27 Mohawk Valley Energy Solutions, Inc. Systems and methods for controlling room air quality
US20070012358A1 (en) * 2004-09-09 2007-01-18 Alstom Technology Ltd. Gas supply arrangement and associated method, particularly for a gas turbine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4527953A (en) * 1984-10-12 1985-07-09 E. I. Du Pont De Nemours And Company Pump unit for sampling air
US5295790A (en) * 1992-12-21 1994-03-22 Mine Safety Appliances Company Flow-controlled sampling pump apparatus

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2942421A (en) * 1957-07-31 1960-06-28 Sundstrand Corp Hydraulic transmission
US3574509A (en) * 1969-02-14 1971-04-13 Zurn Ind Inc Backwash filter
US3568771A (en) * 1969-04-17 1971-03-09 Borg Warner Method and apparatus for lifting foaming crude by a variable rpm submersible pump
US3584977A (en) * 1969-04-17 1971-06-15 Du Pont Process for metering liquid through serially connected pumps
US5522452A (en) * 1990-10-11 1996-06-04 Nec Corporation Liquid cooling system for LSI packages
US5375650A (en) * 1991-11-15 1994-12-27 Nec Corporation Liquid coolant circulation control system for immersion cooling systems
US5458185A (en) * 1991-11-15 1995-10-17 Nec Corporation Liquid coolant circulation control system for immersion cooling
US5580221A (en) * 1994-10-05 1996-12-03 Franklin Electric Co., Inc. Motor drive circuit for pressure control of a pumping system
US5627769A (en) * 1994-11-24 1997-05-06 Sarlin-Hydor Oy Method and control system for controlling a fluid compression system
US6213724B1 (en) * 1996-05-22 2001-04-10 Ingersoll-Rand Company Method for detecting the occurrence of surge in a centrifugal compressor by detecting the change in the mass flow rate
US5997693A (en) * 1997-06-30 1999-12-07 Mitsubishi Heavy Industries, Ltd. Stock liquor pressure pulsation absorbing apparatus and method
US6471486B1 (en) * 1997-10-28 2002-10-29 Coltec Industries Inc. Compressor system and method and control for same
US6146100A (en) * 1998-03-10 2000-11-14 Atlas Copco Airpower, Naamloze Vennootschap Compressor unit and control device used thereby
US6036449A (en) * 1998-03-24 2000-03-14 Cummins Engine Company, Inc. Air compressor control
US6705839B1 (en) * 1998-09-14 2004-03-16 Volvo Lastvagnar Ab Control system and method for air compressor
US6688320B2 (en) * 2000-11-10 2004-02-10 Flowtronex Psi, Inc. Utility conservation control methodology within a fluid pumping system
US20070012358A1 (en) * 2004-09-09 2007-01-18 Alstom Technology Ltd. Gas supply arrangement and associated method, particularly for a gas turbine
US20060162552A1 (en) * 2005-01-26 2006-07-27 Mohawk Valley Energy Solutions, Inc. Systems and methods for controlling room air quality

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110194904A1 (en) * 2009-06-26 2011-08-11 Accessible Technologies, Inc. Controlled Inlet of Compressor for Pneumatic Conveying System
CN102788006A (zh) * 2012-08-29 2012-11-21 上海昶嘉工业设备有限公司 嵌入式空压机控制系统
US20140103849A1 (en) * 2012-10-16 2014-04-17 Energie H.T. International Inc. Abnormality detection method and apparatus
US9071110B2 (en) * 2012-10-16 2015-06-30 Eht International Inc. Abnormality detection method and apparatus
US20150260397A1 (en) * 2014-03-17 2015-09-17 Honeywell International Inc. Integrated smoke monitoring and control system for flaring operations
US20160017886A1 (en) * 2014-07-21 2016-01-21 Danfoss Scroll Technologies, Llc Snap-in temperature sensor for scroll compressor
US10161400B2 (en) * 2014-07-21 2018-12-25 Danfoss Scroll Technologies, Llc Snap-in temperature sensor for scroll compressor
US10080990B2 (en) 2015-10-04 2018-09-25 Graham-White Manufacturing Company Air dryer
CN106870339A (zh) * 2016-12-08 2017-06-20 台州市德瑞压缩机有限公司 一种新能源汽车的气动动力系统
EP3832135A4 (fr) * 2018-07-31 2022-08-03 Kobelco Compressors Corporation Compresseur et son procédé de fonctionnement

Also Published As

Publication number Publication date
WO2007089842A1 (fr) 2007-08-09
CN101379294A (zh) 2009-03-04
EP1979615A4 (fr) 2011-03-30
EP1979615A1 (fr) 2008-10-15

Similar Documents

Publication Publication Date Title
US20070177983A1 (en) Airflow compressor control system and method
JP6000232B2 (ja) 液体注入式圧縮機要素部の冷却方法及びこのような方法が適用される液体注入式圧縮機要素部
US8349054B2 (en) Adsorption drying apparatus and adsorption drying method
US11073148B2 (en) Method for controlling the outlet temperature of an oil injected compressor or vacuum pump and oil injected compressor or vacuum pump implementing such method
US20080038127A1 (en) Screw compressor
CN1250868A (zh) 一种用于生产不同气体产量的方法和设备
CN210623084U (zh) 喷油多级压缩机系统
US20180245594A1 (en) Pump system including a controller
CA2574338A1 (fr) Systeme de commande a compresseurs multiples
KR102233418B1 (ko) 오일 주입식 압축기를 구동하는 모터의 속도를 제어하기 위한 제어기 유닛 및 상기 속도를 제어하는 방법
EP1946819B1 (fr) Contrôle de dessiccation d'air préemptive dans un système d'air comprimé
WO2006007072A2 (fr) Systeme de commande de compresseur de fluide gazeux
EP1320683B1 (fr) Compresseurs a vis a injection d'huile a vitesse variable
CN211573774U (zh) 喷油多级压缩机装置
CN218221797U (zh) 一种压缩气体的干燥器系统
US20240123396A1 (en) Fad dryer regulating system and method
JP7315368B2 (ja) 圧縮機及び圧縮機管理システム
KR100315959B1 (ko) 2단 원심압축기의 성능시험장치
JP2001179033A (ja) 圧縮空気除湿装置
JP2005246336A (ja) 圧縮空気除湿装置
CN116498525A (zh) 用于控制气体压缩设备中第一基准温度的方法
WO2023203515A1 (fr) Surveillance et commande à base de température d'un séchoir à gaz comprimé
CN115989363A (zh) 供油式空气压缩机

Legal Events

Date Code Title Description
AS Assignment

Owner name: INGERSOLL-RAND COMPANY, NEW JERSEY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LEVAN, JIMMY L.;MISTRY, VIPUL R.;REEL/FRAME:018821/0594

Effective date: 20070129

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION