US20070175159A1 - wall panel and wall structure - Google Patents

wall panel and wall structure Download PDF

Info

Publication number
US20070175159A1
US20070175159A1 US11/566,962 US56696206A US2007175159A1 US 20070175159 A1 US20070175159 A1 US 20070175159A1 US 56696206 A US56696206 A US 56696206A US 2007175159 A1 US2007175159 A1 US 2007175159A1
Authority
US
United States
Prior art keywords
panels
arrangement
subwall
panel
cement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/566,962
Inventor
Frederick Miniter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sol U Wall Systems Pty Ltd
Original Assignee
Sol U Wall Systems Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/727,564 external-priority patent/US20040148890A1/en
Application filed by Sol U Wall Systems Pty Ltd filed Critical Sol U Wall Systems Pty Ltd
Priority to US11/566,962 priority Critical patent/US20070175159A1/en
Assigned to SOL-U-WALL SYSTEMS PTY LIMITED reassignment SOL-U-WALL SYSTEMS PTY LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MINITER, FREDERICK M.
Publication of US20070175159A1 publication Critical patent/US20070175159A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/04Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres
    • E04C2/044Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres of concrete
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F13/00Coverings or linings, e.g. for walls or ceilings
    • E04F13/07Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor
    • E04F13/08Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor composed of a plurality of similar covering or lining elements
    • E04F13/0801Separate fastening elements
    • E04F13/0832Separate fastening elements without load-supporting elongated furring elements between wall and covering elements
    • E04F13/0833Separate fastening elements without load-supporting elongated furring elements between wall and covering elements not adjustable
    • E04F13/0841Separate fastening elements without load-supporting elongated furring elements between wall and covering elements not adjustable the fastening elements engaging the outer surface of the covering elements, not extending through the covering
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F13/00Coverings or linings, e.g. for walls or ceilings
    • E04F13/07Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor
    • E04F13/08Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor composed of a plurality of similar covering or lining elements
    • E04F13/0889Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor composed of a plurality of similar covering or lining elements characterised by the joints between neighbouring elements, e.g. with joint fillings or with tongue and groove connections
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F13/00Coverings or linings, e.g. for walls or ceilings
    • E04F13/07Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor
    • E04F13/08Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor composed of a plurality of similar covering or lining elements
    • E04F13/14Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor composed of a plurality of similar covering or lining elements stone or stone-like materials, e.g. ceramics concrete; of glass or with an outer layer of stone or stone-like materials or glass
    • E04F13/141Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor composed of a plurality of similar covering or lining elements stone or stone-like materials, e.g. ceramics concrete; of glass or with an outer layer of stone or stone-like materials or glass with an outer layer of concrete

Definitions

  • the present invention relates to a lightweight panel for use as an outer layer of a dwelling wall and a dwelling wall constructed using such lightweight panels.
  • the brick veneer is a form of cladding which covers the load bearing wall and generally provides an aesthetically pleasing exterior finish. Because of thermal expansion and contraction (and indeed even expansion of bricks with age) about every 50 feet (15 meters) in a brick veneer wall it is necessary to provide a control joint. This is a vertical gap in the bricks up to 15 mm in width which is filled with a compressible sealing material. Between the bricks themselves is a layer of mortar which bonds to the bricks and thus binds all the bricks together. The cost of conventionally laid bricks is relatively high because of the need for skilled (and therefore highly paid) bricklayers and the need for mortar with its inherent delays involved in mixing, laying and subsequent clean up.
  • the genesis of the present invention is a desire to provide a lightweight panel that can be used in the construction of a dwelling wall that has a thermal resistance greater than that of a brick veneer wall, and is relatively simple to construct.
  • a cladding and insulating veneer arrangement fixed to a load bearing subwall said arrangement comprising a vertically and horizontally extending stack of substantially vertically aligned panels which are loose fixed without bonding jointing material between the panels, and retaining clips extending between said panels and the subwall.
  • the present invention there is disclosed a method of erecting a cladding and insulating veneer arrangement for a load bearing subwall, said method comprising the steps of:
  • step (iv) repeating step (i) for a vertically adjacent row.
  • a lightweight panel for use in the abovementioned cladding and insulating arrangement, said panel being formed substantially from concrete which comprises cement, sand, lightweight aggregate, superplasticiser and water; having a density in the range of 500-1500 kg/m 3 ; and having an inter-engagement means to enable said panel to be loose fixed with a plurality of like panels in a vertically and horizontally extending stack of said panels, and said inter-engagement means being shaped to permit engagement with a retaining clip which permits said stack of panels to be retained adjacent a subwall from which said retaining clip extends.
  • FIG. 1 is a perspective cut-away corner view of a first embodiment of a dwelling wall in accordance with the present invention.
  • FIG. 2 is a horizontal cross-sectional view of the dwelling wall shown in FIG. 1 .
  • FIG. 3 is a perspective view of a standard lightweight concrete panel used in the construction of the dwelling wall shown in FIG. 1 ;
  • FIGS. 4 a and 4 b depict perspective views of corner lightweight concrete panels used in the construction of the dwelling wall shown in FIG. 1 ;
  • FIG. 5 is a perspective view of a first embodiment of a panel clip used in the construction of the dwelling wall shown in FIG. 1 ,
  • FIG. 6 is a perspective view of a wall in accordance with a second embodiment
  • FIG. 7 is a horizontal cross-sectional view through adjoining panels of a third embodiment.
  • FIGS. 1 and 2 illustrate, in a simplified schematic fashion, the construction of a dwelling wall 1 having a structural frame comprising of wooden studs 2 and noggings 3 .
  • the studs 2 and noggings 3 are preferably 100 mm ⁇ 50 mm (4 ⁇ 2 inches) pine, but in other embodiments may be of different size, timber or material.
  • the inner layer of dwelling wall 1 comprises of conventional plasterboard liner 4 , which is typically about 13 mm thick, attached to the structural frame of studs 2 and noggings 3 .
  • the outer layer of dwelling wall 1 comprises of a plurality of lightweight concrete panels 5 a , 5 b , 5 c , 5 d and 5 e .
  • Each standard panel 5 a and corner panel 5 b is about 600 mm ⁇ 300 mm ⁇ 50 mm, whilst smaller corner panel 5 c is about 300 mm ⁇ 300 mm ⁇ 50 mm, however this size is not critical. What is of substantial economic importance is that each panel is of a size equivalent in wall surface area to many bricks and can be much more quickly and conventionally lifted, handled and placed in position than the many bricks of equivalent wall surface area.
  • All panels 5 a - c have a tongue 6 a along their upper horizontal extent and a groove 7 a extending along their lower horizontal extent, for horizontal stacked engagement in tongue and groove relationship with other like panels 5 a - c .
  • the standard panels 5 a also have a tongue 6 b and groove 7 b disposed oppositely to each other along their vertical edges, for vertical abutment in tongue and groove relationship with other like panels 5 a - c.
  • corner panels 5 b and 5 c vary on the vertical edges, in that the groove 7 b is replaced by a flat face 7 c . It should be noted that in FIGS. 4 a and 4 b the corner panels shown are for starting at left and travelling right, however, corner panels starting at right and travelling left 5 d and 5 e , vary from panel 5 a by replacing the tongue 6 b by a flat face.
  • Panel clips 8 secured to studs 2 at 450-600 mm spacing by nail or screw fasteners, are used to secure panels 5 a - c to the structural frame.
  • Each panel clip 8 has a back portion 9 adapted to sit flush against the stud 2 to which it is secured.
  • the ledge portion 10 which projects from back portion 9 is adapted to engage with adjacent lightweight panels 5 a - c at the junction of their substantially horizontal respective tongue 6 a and groove 7 a.
  • the panels are able to be stacked horizontally in a row and vertically with one row above another.
  • no skilled labour such as a bricklayer is required.
  • the clips 8 are hidden from view and thus provide a concealed temporary fixing.
  • the inter-engagement of the tongues 6 and grooves 7 provides an overlap between adjacent panels 5 which is sufficient to seal against the ingress of wind and/or moisture. Since the panels 5 are loose fitted in the stack the panels 5 can move relative to each other and the clips 8 to accommodate thermal expansion and contraction. This is to be contrasted with conventional brick veneer construction where a bonding jointing compound such as mortar actually binds each brick to its adjacent bricks. It follows that because of this loose fitting of the panels 5 no control joints are required.
  • Concertina (or zig-zag) foil batts 11 are preferably disposed within the structural frame between the inner layer of plasterboard liner 4 and outer layer lightweight concrete panels 5 a - e .
  • One suitable type of batt 11 is the commercially available RENFOIL aluminium concertina batt.
  • a second layer of foil sheet 12 is preferably attached to the studs 2 of the structural frame, and also preferably dished a minimum of 25 mm.
  • a suitable type of foil sheet 12 is the commercially available RENFOIL aluminium foil sheet.
  • the lower portion of wall 1 has an apron 14 which extends downwardly from a 100 mm ⁇ 75 mm hardwood plate 15 .
  • the apron 14 does not extend to the ground line.
  • a mesh 17 preferably of stainless steel covers the gap between apron 14 and the ground, and is affixed to a pine fixing plate 18 .
  • a flashing 16 is placed between the bottom row of panels 5 and the plate 15 .
  • the lightweight panels 5 a - c are manufactured by moulding and in this embodiment are preferably moulded to a thickness of about 50 mm.
  • the panels are moulded, if desired they each can have a polystyrene sheet 13 of about 8-12 mm adhered to their back.
  • the panels are then cured in racks.
  • the resulting thickness of the panels in this embodiment is about 60 mm.
  • the polystyrene sheet 13 may be affixed to the panel during moulding/casting.
  • the concrete mix used to make the panels 5 a - c is extremely lightweight.
  • “lightweight” is typically regarded as low-density concrete of less than 2100 kg/m 3 using lightweight aggregate (for example scoria) or (polystyrene beads) which are preferably uncoated with any chemicals.
  • the concrete mix used to make the panels has a density substantially less than 2100 kg/m 3 and preferably in the range of 500-1500 kg/m 3 . More preferably the density of the concrete mix is in the range 700-1200 kg/m 3 . A density of 1100 kg/m 3 is particularly preferred.
  • the concrete mix comprises cement, sand, lightweight concrete aggregate, a high range superplasticiser and water.
  • Nominal Density Materials 1200 kg/m 3 800 kg/m 3 700 kg/m 3 Type GP Cement 40 kg 40 kg 40 kg Fine sand 55 kg 24 kg 20 kg Polystyrene beads 70 litres 110 litres 120 litres Superplasticiser 295 ml 295 ml 295 ml Water 13.0 litres 13.0 litres 13.0 litres
  • Type GP General Purpose Cement
  • Type HE High Early Strength Cement
  • blended cements including slag or fly ash blends may be used.
  • the sand weights are measured as “saturated, surface dry”.
  • the preferred proportion of superplasticiser is 0.8% of cement by weight, but may vary from 0.5% to 1.5%.
  • the preferred proportion of 0.8% is based on using the commercially available Sika ViscoCrete®-5 superplasticiser. In other embodiments other brands of superplasticiser may be used.
  • Carbosylic ether polymer is also a suitable superplasticiser.
  • water quantity is designed to achieve a water/cement ratio in the range of 0.30-0.35 or 0.3-0.4 by weight of cement. This low water/cement ratio is used to optimise concrete strengths and to suit compaction of the concrete.
  • a dwelling wall utilising lightweight concrete panels as described above is that the wall will have a thermal resistance at least twice that of a conventional brick veneer wall incorporating foil insulation, thereby making the dwelling more energy efficient.
  • a further advantage of the dwelling wall utilising such lightweight panels is that its weight/mass is considerably less than a brick veneer wall and may be constructed faster and with less skilled labour than a brick veneer wall, thereby reducing the overall cost for constructing the dwelling.
  • a further advantage is that the concrete panels as described above have suitable aesthetic appeal and look somewhat like a sandstone finish. This is achieved by placing sand in the bottom of the mould (not illustrated) in which the panels 5 are cast. This bottom surface becomes the front face of the panel and the sand bonds with the concrete as the concrete sets.
  • the panels thus formed also have a high impact resistance and good moisture resistance.
  • the panels 5 are substantially as before but the load bearing subwall which is to be cladded and insulated is a brick or masonry wall 102 .
  • No air gap or other insulation such as aluminium foil is provided between the subwall 102 and the panels 5 .
  • Each panel is loose stacked in a horizontally extending row 110 with adjacent rows located one above the other.
  • Each panel 5 is positioned in its intended position and temporarily held in place by means of a clip 108 (only one of which is illustrated in FIG. 7 ).
  • the clip 108 has a hook shaped tip which mates with the horizontally extending groove 6 a of the panel 5 .
  • the vertical base of the clip 108 is secured to the subwall 102 in any convenient fashion using power nails, adhesives, or the like.
  • the panels 5 can be provided with a tongue and groove jointing arrangement.
  • the panels 5 can be provided with a groove 107 that extends entirely around the edge of the panel.
  • two adjacent panels 5 in a row of panels will have the vertical grooves 107 form a vertically extending cavity.
  • This cavity receives a sealing strip 109 which loosely occupies the cavity and seals the vertically extending gap 120 between the horizontally adjacent panels 5 .
  • the panels 5 abut studs 2 as in FIGS. 1 and 2 which have an interior surface formed by plasterboard 4 .
  • the panels 5 of FIG. 7 also have horizontally extending grooves 107 on their upper and lower edges which form similar horizontally extending cavities between vertically adjacent panels 5 . These horizontally extending cavities can be sealed with a length of sealing strip 109 which is approximately the length of the panels 5 .
  • the short lengths of horizontally extending sealing strip extend between the long lengths of vertically extending sealing strip.
  • this arrangement can be reversed, if desired, with the short lengths extending vertically and the long lengths extending horizontally.
  • long lengths can be used both vertically and horizontally with the sealing strips being crossed at each panel corner.
  • the panels of FIG. 7 utilize the clip 108 of FIG. 6 with the hook thereof reversed to engage the groove 107 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Building Environments (AREA)

Abstract

A lightweight concrete panel for use as an outer layer of a dwelling wall, said panel made of concrete mix of cement, sand, lightweight concrete aggregate such as polystyrene beads, superplasticiser and water, said concrete mix having a nominal density in the range of 500 to 1500 kg/m3. The panel preferably has a backing sheet of polystyrene affixed thereto. The panel is used as in a cladding and insulating veneer arrangement for a load bearing subwall formed from studs or masonry. The panels are loose fixed in vertical alignment in a horizontally and vertically extending stack of panels and retained in position by retaining clips without any bonding jointing material between the panels. A method of forming such a cladding and insulating arrangement is also disclosed.

Description

    FIELD OF THE INVENTION
  • The present invention relates to a lightweight panel for use as an outer layer of a dwelling wall and a dwelling wall constructed using such lightweight panels.
  • BACKGROUND
  • Many conventional dwellings have brick veneer walls that typically comprise a structural frame having an outer layer of bricks and an inner layer of plasterboard liner. In recent years such walls have been constructed with insulation foil disposed therein. The use of the insulation foil increases the thermal resistance of the dwelling wall and results in a far more energy efficient home. Whilst many home builders and the general public at large are becoming more aware of the advantages of energy efficient homes, their cost of construction are still quite considerable, particularly due to the labour and materials handling required.
  • The brick veneer is a form of cladding which covers the load bearing wall and generally provides an aesthetically pleasing exterior finish. Because of thermal expansion and contraction (and indeed even expansion of bricks with age) about every 50 feet (15 meters) in a brick veneer wall it is necessary to provide a control joint. This is a vertical gap in the bricks up to 15 mm in width which is filled with a compressible sealing material. Between the bricks themselves is a layer of mortar which bonds to the bricks and thus binds all the bricks together. The cost of conventionally laid bricks is relatively high because of the need for skilled (and therefore highly paid) bricklayers and the need for mortar with its inherent delays involved in mixing, laying and subsequent clean up.
  • The genesis of the present invention is a desire to provide a lightweight panel that can be used in the construction of a dwelling wall that has a thermal resistance greater than that of a brick veneer wall, and is relatively simple to construct.
  • SUMMARY OF INVENTION
  • According to a first aspect the present invention there is disclosed a cladding and insulating veneer arrangement fixed to a load bearing subwall, said arrangement comprising a vertically and horizontally extending stack of substantially vertically aligned panels which are loose fixed without bonding jointing material between the panels, and retaining clips extending between said panels and the subwall.
  • According to a second aspect the present invention there is disclosed a method of erecting a cladding and insulating veneer arrangement for a load bearing subwall, said method comprising the steps of:
  • (i) positioning a plurality of substantially vertically aligned panels in edge abutment to form a row,
  • (ii) loose fixing said panels without bonding jointing material between the panels,
  • (iii) utilizing retaining clips extending between said panels and said subwall to retain said panels in said row, and
  • (iv) repeating step (i) for a vertically adjacent row.
  • According to a third aspect the present invention there is disclosed a lightweight panel for use in the abovementioned cladding and insulating arrangement, said panel being formed substantially from concrete which comprises cement, sand, lightweight aggregate, superplasticiser and water; having a density in the range of 500-1500 kg/m3; and having an inter-engagement means to enable said panel to be loose fixed with a plurality of like panels in a vertically and horizontally extending stack of said panels, and said inter-engagement means being shaped to permit engagement with a retaining clip which permits said stack of panels to be retained adjacent a subwall from which said retaining clip extends.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a perspective cut-away corner view of a first embodiment of a dwelling wall in accordance with the present invention.
  • FIG. 2 is a horizontal cross-sectional view of the dwelling wall shown in FIG. 1.
  • FIG. 3 is a perspective view of a standard lightweight concrete panel used in the construction of the dwelling wall shown in FIG. 1;
  • FIGS. 4 a and 4 b depict perspective views of corner lightweight concrete panels used in the construction of the dwelling wall shown in FIG. 1;
  • FIG. 5 is a perspective view of a first embodiment of a panel clip used in the construction of the dwelling wall shown in FIG. 1,
  • FIG. 6 is a perspective view of a wall in accordance with a second embodiment, and
  • FIG. 7 is a horizontal cross-sectional view through adjoining panels of a third embodiment.
  • MODE OF CARRYING OUT INVENTION
  • FIGS. 1 and 2 illustrate, in a simplified schematic fashion, the construction of a dwelling wall 1 having a structural frame comprising of wooden studs 2 and noggings 3. In this embodiment the studs 2 and noggings 3 are preferably 100 mm×50 mm (4×2 inches) pine, but in other embodiments may be of different size, timber or material.
  • The inner layer of dwelling wall 1 comprises of conventional plasterboard liner 4, which is typically about 13 mm thick, attached to the structural frame of studs 2 and noggings 3.
  • The outer layer of dwelling wall 1 comprises of a plurality of lightweight concrete panels 5 a, 5 b, 5 c, 5 d and 5 e. Each standard panel 5 a and corner panel 5 b is about 600 mm×300 mm×50 mm, whilst smaller corner panel 5 c is about 300 mm×300 mm×50 mm, however this size is not critical. What is of substantial economic importance is that each panel is of a size equivalent in wall surface area to many bricks and can be much more quickly and conventionally lifted, handled and placed in position than the many bricks of equivalent wall surface area.
  • All panels 5 a-c have a tongue 6 a along their upper horizontal extent and a groove 7 a extending along their lower horizontal extent, for horizontal stacked engagement in tongue and groove relationship with other like panels 5 a-c. The standard panels 5 a also have a tongue 6 b and groove 7 b disposed oppositely to each other along their vertical edges, for vertical abutment in tongue and groove relationship with other like panels 5 a-c.
  • The corner panels 5 b and 5 c vary on the vertical edges, in that the groove 7 b is replaced by a flat face 7 c. It should be noted that in FIGS. 4 a and 4 b the corner panels shown are for starting at left and travelling right, however, corner panels starting at right and travelling left 5 d and 5 e, vary from panel 5 a by replacing the tongue 6 b by a flat face.
  • Panel clips 8 secured to studs 2 at 450-600 mm spacing by nail or screw fasteners, are used to secure panels 5 a-c to the structural frame. Each panel clip 8 has a back portion 9 adapted to sit flush against the stud 2 to which it is secured. The ledge portion 10 which projects from back portion 9, is adapted to engage with adjacent lightweight panels 5 a-c at the junction of their substantially horizontal respective tongue 6 a and groove 7 a.
  • In this way the panels are able to be stacked horizontally in a row and vertically with one row above another. As each panel is placed in position it is kept in place by means of one of the clips 8 until the next row of panels is positioned above the previous row. In this way no skilled labour such as a bricklayer is required. Furthermore, the clips 8 are hidden from view and thus provide a concealed temporary fixing.
  • Furthermore, the inter-engagement of the tongues 6 and grooves 7 provides an overlap between adjacent panels 5 which is sufficient to seal against the ingress of wind and/or moisture. Since the panels 5 are loose fitted in the stack the panels 5 can move relative to each other and the clips 8 to accommodate thermal expansion and contraction. This is to be contrasted with conventional brick veneer construction where a bonding jointing compound such as mortar actually binds each brick to its adjacent bricks. It follows that because of this loose fitting of the panels 5 no control joints are required.
  • Concertina (or zig-zag) foil batts 11 are preferably disposed within the structural frame between the inner layer of plasterboard liner 4 and outer layer lightweight concrete panels 5 a-e. One suitable type of batt 11 is the commercially available RENFOIL aluminium concertina batt.
  • Also a second layer of foil sheet 12, as shown in FIG. 2, but omitted for purposes of clarity from FIG. 1, is preferably attached to the studs 2 of the structural frame, and also preferably dished a minimum of 25 mm. A suitable type of foil sheet 12 is the commercially available RENFOIL aluminium foil sheet.
  • The lower portion of wall 1 has an apron 14 which extends downwardly from a 100 mm×75 mm hardwood plate 15. The apron 14 does not extend to the ground line. A mesh 17, preferably of stainless steel covers the gap between apron 14 and the ground, and is affixed to a pine fixing plate 18. A flashing 16 is placed between the bottom row of panels 5 and the plate 15.
  • The lightweight panels 5 a-c are manufactured by moulding and in this embodiment are preferably moulded to a thickness of about 50 mm. Once the panels are moulded, if desired they each can have a polystyrene sheet 13 of about 8-12 mm adhered to their back. However, this is not essential and in many circumstances undesirable since the panels with the polystyrene sheet 13 are much less robust and are more difficult to handle than the panels 5 without the polystyrene sheet 13. The panels are then cured in racks. The resulting thickness of the panels in this embodiment is about 60 mm. In an alternative embodiment, the polystyrene sheet 13 may be affixed to the panel during moulding/casting.
  • The concrete mix used to make the panels 5 a-c is extremely lightweight. Generally speaking, “lightweight” is typically regarded as low-density concrete of less than 2100 kg/m3 using lightweight aggregate (for example scoria) or (polystyrene beads) which are preferably uncoated with any chemicals.
  • In the present invention the concrete mix used to make the panels has a density substantially less than 2100 kg/m3 and preferably in the range of 500-1500 kg/m3. More preferably the density of the concrete mix is in the range 700-1200 kg/m3. A density of 1100 kg/m3 is particularly preferred. The concrete mix comprises cement, sand, lightweight concrete aggregate, a high range superplasticiser and water.
  • Examples of suitable mixes are shown in the table below.
    Nominal Density
    Materials 1200 kg/m3 800 kg/m3 700 kg/m3
    Type GP Cement 40 kg 40 kg 40 kg
    Fine sand 55 kg 24 kg 20 kg
    Polystyrene beads 70 litres 110 litres 120 litres
    Superplasticiser 295 ml 295 ml 295 ml
    Water 13.0 litres 13.0 litres 13.0 litres
  • Whilst in the abovementioned examples the cement used is General Purpose Cement (Type GP), other types of cement such as High Early Strength Cement (Type HE), or blended cements including slag or fly ash blends may be used.
  • In the abovementioned examples, the sand weights are measured as “saturated, surface dry”.
  • In the abovementioned examples the preferred proportion of superplasticiser is 0.8% of cement by weight, but may vary from 0.5% to 1.5%. The preferred proportion of 0.8% is based on using the commercially available Sika ViscoCrete®-5 superplasticiser. In other embodiments other brands of superplasticiser may be used. Carbosylic ether polymer is also a suitable superplasticiser.
  • In the abovementioned examples water quantity is designed to achieve a water/cement ratio in the range of 0.30-0.35 or 0.3-0.4 by weight of cement. This low water/cement ratio is used to optimise concrete strengths and to suit compaction of the concrete.
  • One advantage of constructing a dwelling wall utilising lightweight concrete panels as described above, is that the wall will have a thermal resistance at least twice that of a conventional brick veneer wall incorporating foil insulation, thereby making the dwelling more energy efficient. A further advantage of the dwelling wall utilising such lightweight panels is that its weight/mass is considerably less than a brick veneer wall and may be constructed faster and with less skilled labour than a brick veneer wall, thereby reducing the overall cost for constructing the dwelling.
  • A further advantage is that the concrete panels as described above have suitable aesthetic appeal and look somewhat like a sandstone finish. This is achieved by placing sand in the bottom of the mould (not illustrated) in which the panels 5 are cast. This bottom surface becomes the front face of the panel and the sand bonds with the concrete as the concrete sets. The panels thus formed also have a high impact resistance and good moisture resistance.
  • Turning now to FIG. 6, in a second embodiment of a wall 100 the panels 5 are substantially as before but the load bearing subwall which is to be cladded and insulated is a brick or masonry wall 102. No air gap or other insulation such as aluminium foil is provided between the subwall 102 and the panels 5. Each panel is loose stacked in a horizontally extending row 110 with adjacent rows located one above the other. Each panel 5 is positioned in its intended position and temporarily held in place by means of a clip 108 (only one of which is illustrated in FIG. 7).
  • The clip 108 has a hook shaped tip which mates with the horizontally extending groove 6 a of the panel 5. The vertical base of the clip 108 is secured to the subwall 102 in any convenient fashion using power nails, adhesives, or the like.
  • It is not essential that the panels 5 be provided with a tongue and groove jointing arrangement. Instead the panels 5 can be provided with a groove 107 that extends entirely around the edge of the panel. As seen in FIG. 7, two adjacent panels 5 in a row of panels will have the vertical grooves 107 form a vertically extending cavity. This cavity receives a sealing strip 109 which loosely occupies the cavity and seals the vertically extending gap 120 between the horizontally adjacent panels 5. In the embodiment of FIG. 7 the panels 5 abut studs 2 as in FIGS. 1 and 2 which have an interior surface formed by plasterboard 4.
  • The panels 5 of FIG. 7 also have horizontally extending grooves 107 on their upper and lower edges which form similar horizontally extending cavities between vertically adjacent panels 5. These horizontally extending cavities can be sealed with a length of sealing strip 109 which is approximately the length of the panels 5. Thus the short lengths of horizontally extending sealing strip extend between the long lengths of vertically extending sealing strip. Naturally, this arrangement can be reversed, if desired, with the short lengths extending vertically and the long lengths extending horizontally. In a still further variation, long lengths can be used both vertically and horizontally with the sealing strips being crossed at each panel corner. The panels of FIG. 7 utilize the clip 108 of FIG. 6 with the hook thereof reversed to engage the groove 107.
  • The foregoing describes only some embodiments of the present invention and modifications, obvious to those skilled in the building arts, can be made thereto without departing from the scope of the present invention.
  • The term “comprising” and its grammatical variations as used herein is used in the inclusive sense of “having” or “including” and not in the exhaustive sense of “consisting of”.

Claims (20)

1. A cladding and insulating veneer arrangement fixed to a load bearing subwall, said arrangement comprising a vertically and horizontally extending stack of substantially vertically aligned panels which are loose fixed without bonding jointing material between the panels, and retaining clips extending between said panels and the subwall.
2. The arrangement as defined in claim 1 wherein said load bearing subwall comprises a framework of vertically extending studs.
3. The arrangement as defined in claim 1 wherein said load bearing subwall comprises a masonry wall.
4. The arrangement as claimed in claim 1 wherein said panels have tongue and groove inter-engagement means.
5. The arrangement as claimed in claim 4 wherein said retaining clips each have a hook which mates with the tongue of said tongue and groove inter-engagement means.
6. The arrangement as claimed in claim 1 wherein said panels have an inter-engagement means comprising a peripheral groove and a sealing strip dimensioned to be retained in a cavity formed by opposed grooves of abutting panels.
7. The arrangement as claimed in claim 1 wherein said panel stack does not include control joints and any thermal expansion or contraction of said panels is accommodated by the loose fixing thereof.
8. The arrangement as claimed in claim 1 wherein said panels comprise lightweight concrete.
9. The arrangement as claimed in claim 8 wherein said lightweight concrete comprises cement, sand, lightweight aggregate, superplasticiser and water.
10. The arrangement as claimed in claim 9 wherein said lightweight aggregate comprises polystyrene beads.
11. The arrangement as claimed in claim 10 wherein said polystyrene beads are uncoated.
12. The arrangement as claimed in claim 9 wherein the ratio of water/cement is 0.30-0.35 or 0.30-0.40 by weight.
13. The arrangement as claimed in claim 9 wherein the proportion of said superplasticiser comprises 0.5-1.5% of cement by weight.
14. The arrangement as claimed in claim 1 wherein the density of said panels is in the range of 500-1500 kg/m3.
15. A method of erecting a cladding and insulating veneer arrangement for a load bearing subwall, said method comprising the steps of:
(i) positioning a plurality of substantially vertically aligned panels in edge abutment to form a row,
(ii) loose fixing said panels without bonding jointing material between the panels,
(iii) utilizing retaining clips extending between said panels and said subwall to retain said panels in said row, and
(iv) repeating step (i) for a vertically adjacent row.
16. The method as claimed in claim 15 including the step of:
(v) forming said subwall from a frame of vertically extending studs.
17. The method as claimed in claim 16 including the step of:
(vi) securing plasterboard to that side of said studs to which said panels are not secured.
18. The method as claimed in claim 15 including the step of:
(vii) forming said subwall from masonry.
19. A lightweight panel for use in the arrangement of claim 1, said panel being formed substantially from concrete which comprises cement, sand, lightweight aggregate, superplasticiser and water; having a density in the range of 500-1500 kg/m3; and having an inter-engagement means to enable said panel to be loose fixed with a plurality of like panels in a vertically and horizontally extending stack of said panels, and said inter-engagernent means being shaped to permit engagement with a retaining clip which permits said stack of panels to be retained adjacent a subwall from which said retaining clip extends.
20. The panel as claimed in claim 19 wherein:
said lightweight aggregate comprises polystyrene beads,
the ratio of water/cement is 0.30-0.35 or 0.30-0.40 by weight, and
the proportion of said superplasticiser comprises 0.5-1.5% of cement by weight.
US11/566,962 2003-10-13 2006-12-05 wall panel and wall structure Abandoned US20070175159A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/566,962 US20070175159A1 (en) 2003-10-13 2006-12-05 wall panel and wall structure

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
NZ5288003 2003-10-13
NZ528803 2003-10-13
US10/727,564 US20040148890A1 (en) 2002-10-16 2003-12-05 Wall panel and wall structure
US11/566,962 US20070175159A1 (en) 2003-10-13 2006-12-05 wall panel and wall structure

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/727,564 Continuation-In-Part US20040148890A1 (en) 2002-10-16 2003-12-05 Wall panel and wall structure

Publications (1)

Publication Number Publication Date
US20070175159A1 true US20070175159A1 (en) 2007-08-02

Family

ID=38326905

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/566,962 Abandoned US20070175159A1 (en) 2003-10-13 2006-12-05 wall panel and wall structure

Country Status (1)

Country Link
US (1) US20070175159A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090188180A1 (en) * 2008-01-29 2009-07-30 Cmi Limited Company Integrated wall system
US20090193742A1 (en) * 2008-02-06 2009-08-06 Wolf David H Prefabricated wall panel with tongue and groove construction
US20100005746A1 (en) * 2008-07-10 2010-01-14 Dany Lemay Insulating prefab wall structure
US20100290843A1 (en) * 2009-05-12 2010-11-18 Cmi Limited Company System and method for installing sheet piles
US20110173922A1 (en) * 2010-01-18 2011-07-21 Boral Stone Products Llc Trim kit for building construction
USD670009S1 (en) 2011-01-18 2012-10-30 Boral Stone Products Llc Trim kit for building construction
US8448401B2 (en) 2010-02-17 2013-05-28 Fiber Cement Foam Systems Insulation, LLC Fiber cement board surface product
US8590236B2 (en) 2010-02-17 2013-11-26 Fiber Cement Foam Systems Insulation, LLC Alignable foam board
US20140196398A1 (en) * 2011-07-26 2014-07-17 Asahi Kasei Homes Corporation Masonry building and method for constructing masonry building
US9027302B2 (en) 2012-08-08 2015-05-12 Boral Stone Products, LLC Wall panel
WO2016209320A1 (en) * 2015-06-26 2016-12-29 Oldcastle Architectural, Inc. Dry-cast lightweight veneer block, system, and method
US10844608B2 (en) 2015-09-11 2020-11-24 Oldcastle Building Products Canada Inc. Cladding system
USD903478S1 (en) 2018-08-13 2020-12-01 Eldorado Stone Operations, Llc Positioning clip
US11332943B2 (en) 2019-10-08 2022-05-17 D.A. Distribution Inc. Wall covering with adjustable spacing

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US777334A (en) * 1904-03-07 1904-12-13 Karl G Dieterich Covering for walls and ceilings.
US2078069A (en) * 1935-08-17 1937-04-20 Albert F Eliel Building veneer construction
US3867244A (en) * 1971-12-22 1975-02-18 Boeing Co Insulation and condensation control blanket
US4314431A (en) * 1979-12-31 1982-02-09 S & M Block System Of U.S. Corporation Mortar-less interlocking building block system
US4407104A (en) * 1980-10-02 1983-10-04 Francis Gerald T Brick panel insulation with load bearing clip
US4488909A (en) * 1983-11-25 1984-12-18 United States Gypsum Company Non-expansive, rapid setting cement
US4578915A (en) * 1984-03-12 1986-04-01 National Gypsum Company Exterior wall
US4817355A (en) * 1986-06-13 1989-04-04 Metsec Plc Wall construction
US5713176A (en) * 1995-10-25 1998-02-03 Hunt; Donald Patrick Combination metal and composite stud
US5930964A (en) * 1998-02-04 1999-08-03 Boehning; John W. Composite lightweight building element and methods of making and using same
US20050014034A1 (en) * 2001-06-07 2005-01-20 Patrice Bouscal Cement binder based plate

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US777334A (en) * 1904-03-07 1904-12-13 Karl G Dieterich Covering for walls and ceilings.
US2078069A (en) * 1935-08-17 1937-04-20 Albert F Eliel Building veneer construction
US3867244A (en) * 1971-12-22 1975-02-18 Boeing Co Insulation and condensation control blanket
US4314431A (en) * 1979-12-31 1982-02-09 S & M Block System Of U.S. Corporation Mortar-less interlocking building block system
US4407104A (en) * 1980-10-02 1983-10-04 Francis Gerald T Brick panel insulation with load bearing clip
US4488909A (en) * 1983-11-25 1984-12-18 United States Gypsum Company Non-expansive, rapid setting cement
US4578915A (en) * 1984-03-12 1986-04-01 National Gypsum Company Exterior wall
US4817355A (en) * 1986-06-13 1989-04-04 Metsec Plc Wall construction
US5713176A (en) * 1995-10-25 1998-02-03 Hunt; Donald Patrick Combination metal and composite stud
US5930964A (en) * 1998-02-04 1999-08-03 Boehning; John W. Composite lightweight building element and methods of making and using same
US20050014034A1 (en) * 2001-06-07 2005-01-20 Patrice Bouscal Cement binder based plate

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090188180A1 (en) * 2008-01-29 2009-07-30 Cmi Limited Company Integrated wall system
US8782988B2 (en) 2008-02-06 2014-07-22 Boral Stone Products Llc Prefabricated wall panel with tongue and groove construction
US20090193742A1 (en) * 2008-02-06 2009-08-06 Wolf David H Prefabricated wall panel with tongue and groove construction
US10557273B2 (en) 2008-02-06 2020-02-11 Boral Stone Products Llc Prefabricated wall panel with tongue and groove construction
US10378216B2 (en) 2008-02-06 2019-08-13 Boral Stone Products Llc Prefabricated wall panel with tongue and groove construction
US10329775B2 (en) 2008-02-06 2019-06-25 Boral Ip Holdings (Australia) Pty Limited Method of forming a wall panel
US9903124B2 (en) 2008-02-06 2018-02-27 Boral Stone Products Llc Prefabricated wall panel with tongue and groove construction
US11891814B2 (en) 2008-02-06 2024-02-06 Westlake Royal Stone Llc Prefabricated wall panel with tongue and groove construction
US20100005746A1 (en) * 2008-07-10 2010-01-14 Dany Lemay Insulating prefab wall structure
US20100290843A1 (en) * 2009-05-12 2010-11-18 Cmi Limited Company System and method for installing sheet piles
US8419317B2 (en) 2009-05-12 2013-04-16 Cmi Limited Company System and method for installing sheet piles
US20110173922A1 (en) * 2010-01-18 2011-07-21 Boral Stone Products Llc Trim kit for building construction
US9163412B2 (en) 2010-02-17 2015-10-20 Fiber Cement Foam Systems Insulation, LLC Alignable foam board
US8590236B2 (en) 2010-02-17 2013-11-26 Fiber Cement Foam Systems Insulation, LLC Alignable foam board
US8448401B2 (en) 2010-02-17 2013-05-28 Fiber Cement Foam Systems Insulation, LLC Fiber cement board surface product
USD674920S1 (en) 2011-01-18 2013-01-22 Boral Stone Products Llc Trim kit for building construction
USD670009S1 (en) 2011-01-18 2012-10-30 Boral Stone Products Llc Trim kit for building construction
US20140196398A1 (en) * 2011-07-26 2014-07-17 Asahi Kasei Homes Corporation Masonry building and method for constructing masonry building
US9027302B2 (en) 2012-08-08 2015-05-12 Boral Stone Products, LLC Wall panel
USRE47694E1 (en) 2012-08-08 2019-11-05 Boral Stone Products Llc Wall panel
US11028598B2 (en) 2015-06-26 2021-06-08 Anchor Wall Systems Limited Dry-cast lightweight veneer block, system, and method
US11454034B2 (en) 2015-06-26 2022-09-27 Anchor Wall Systems Limited Dry-cast lightweight veneer block, system, and method
WO2016209320A1 (en) * 2015-06-26 2016-12-29 Oldcastle Architectural, Inc. Dry-cast lightweight veneer block, system, and method
US10844608B2 (en) 2015-09-11 2020-11-24 Oldcastle Building Products Canada Inc. Cladding system
USD903478S1 (en) 2018-08-13 2020-12-01 Eldorado Stone Operations, Llc Positioning clip
USD1019368S1 (en) 2018-08-13 2024-03-26 Westlake Royal Stone, LLC Positioning clip
US11332943B2 (en) 2019-10-08 2022-05-17 D.A. Distribution Inc. Wall covering with adjustable spacing

Similar Documents

Publication Publication Date Title
US20070175159A1 (en) wall panel and wall structure
AU2006246443B2 (en) A Wall Panel and Wall Structure
US3775916A (en) Prefabricated wall panel
US8240103B2 (en) Wall construction method using injected urethane foam between the wall frame and autoclaved aerated concrete (AAC) blocks
US4669240A (en) Precast reinforced concrete wall panels and method of erecting same
US5934039A (en) Apparatus and method for dimensionally uniform building construction using interlocking connectors
US8607523B2 (en) Building that uses composite light-weight panels for structure and a construction method therefor
US20070144093A1 (en) Method and apparatus for fabricating a low density wall panel with interior surface finished
HRP20030689A2 (en) Earthquake, wind resistant and fire resistant pre-fabricated building panels and structures formed therefrom
US9890531B2 (en) Modular building system with adhesive-joined spline connections between wall sections
US2457982A (en) Method of producing building panels
WO2011100592A1 (en) A building module, a method for making same, and a method for using same to construct a building
US20070039265A1 (en) Prefabricated masonry covered structural wall panel
KR100994783B1 (en) Unit panel by eco material and eco house thereof
US2250319A (en) Building wall
KR20010012388A (en) Modular Sandwich Panel and Method for Housing Construction
CN211523508U (en) Be used for house heat preservation intergral template external wall insulation node
KR20090098729A (en) Improved construction system for buildings
CA1173264A (en) Building elements and method of constructing a building
JP3641038B2 (en) Outside heat insulation foundation structure
AU745114B2 (en) Construction technique
KR100207857B1 (en) Masonry outer wall structure and the work method thereof
CN210562584U (en) Assembly type building structure
CN220889614U (en) Old house balcony reinforced structure and old house balcony
CN218779699U (en) Assembled foaming concrete wall

Legal Events

Date Code Title Description
AS Assignment

Owner name: SOL-U-WALL SYSTEMS PTY LIMITED, AUSTRALIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MINITER, FREDERICK M.;REEL/FRAME:019068/0210

Effective date: 20070313

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION