US20070157510A1 - Fuel additive comprising an alkyl halide - Google Patents

Fuel additive comprising an alkyl halide Download PDF

Info

Publication number
US20070157510A1
US20070157510A1 US10/585,931 US58593105A US2007157510A1 US 20070157510 A1 US20070157510 A1 US 20070157510A1 US 58593105 A US58593105 A US 58593105A US 2007157510 A1 US2007157510 A1 US 2007157510A1
Authority
US
United States
Prior art keywords
fuel
alkyl halide
dibromoethane
fuel additive
cyclohexane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/585,931
Inventor
Yair Grof
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Israel Atomic Energy Commission
Original Assignee
Israel Atomic Energy Commission
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Israel Atomic Energy Commission filed Critical Israel Atomic Energy Commission
Priority to US10/585,931 priority Critical patent/US20070157510A1/en
Assigned to SOREQ NUCLEAR RESEARCH CENTER reassignment SOREQ NUCLEAR RESEARCH CENTER ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GROF, YAIR
Publication of US20070157510A1 publication Critical patent/US20070157510A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/20Organic compounds containing halogen
    • C10L1/201Organic compounds containing halogen aliphatic bond
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes

Definitions

  • the present invention relates generally to fuel additives and method therefor.
  • the fuel is generally marked by a substance that can be detected, thereby identifying the source of the fuel.
  • a simple dyeing substance may be mixed with the fuel, thereby changing the color of the fuel and allowing the fuel to be identified according to the marked color.
  • the marking substance can emit light at an invisible wavelength, wherein the fuel is identified by measuring the emitted wavelength by an optical detector.
  • the fuel is marked with an organic compound whose presence is later detected by a spectrometer.
  • the present invention seeks to provide a novel fuel additive, as is described more in detail hereinbelow.
  • TBE tetrabromoethane
  • the fuel additive of the present invention may be added in small amounts to fuel, such as but not limited to, 1-10 ppm. This small amount does not affect the color or operative properties of the fuel.
  • fuel refers to any liquid hydrocarbon, including but not limited to, petroleum products either refined or unrefined, such as crude oil, naphtha, gasoline, diesel fuel, jet fuel, kerosene, propane, lubricant (e. g., engine oil), hydraulic fluid, natural gas (either in gaseous or liquefied form), and the like.
  • lubricant e. g., engine oil
  • hydraulic fluid e. g., natural gas (either in gaseous or liquefied form), and the like.
  • the fuel additive of the present invention is stable, miscible in and compatible with the fuel.
  • An example of such an alkyl halide is tetrabromoethane (TBE)
  • alkyl halides which may be used to carry out the invention include but are not limited to: 1,1,2,2 tetrachloroethane (C 2 H 2 Cl 4 ), 1,1,2 trichloroethane (C 2 H 3 Cl 3 ), pentachloroethane (C 2 HCl 5 ), hexachloroethane (C 2 Cl 6 ), 1,2,4 trichloro cyclohexane (C 6 H 9 Cl 3 ), 1,2,4,5 tetrachloro cyclohexane (C 6 H 8 Cl 4 ), ethyliodide (C 2 H 5 I), ethylbromide (C 2 H 5 Br), dichloro 1,2 dibromoethane (C 2 H 2 Cl 2 Br 2 ), dichlorotribromoethane (C 2 HCl 2 Br 3 ), difluoro 1 chloroethane (C 2 H 3 F 2 Cl), difluoro 1,2 dibrom
  • the fuel additive of the present invention is preferably immiscible in water.
  • One of the advantages of this property is that sometimes there is a water phase in fuels or in storage tanks, and the insolubility of the fuel additive in water means that the fuel additive remains in solution with the fuel and is not lost to the water phase.
  • the fuel additive of the present invention may create a large amount of free radicals. Free radicals lead to a smoother and more uniform temperature gradient and more complete combustion in the combustion chamber. In this manner, the fuel additive improves fuel consumption.
  • the fuel additive of the present invention may trap heavy metal ions present in petroleum-based fuels.
  • the trapped heavy metal ions then exit with the exhaust, instead of accumulating on the inner walls and surfaces of the combustion chamber.
  • the fuel additive has the synergistic effect of not only improving fuel consumption but also causing the combustion chamber to be cleaner, which in turn further improves fuel consumption.
  • the present invention is not bound or limited in any way to the above postulations of free radicals and trapping heavy metal ions. They are presented merely as a possible way of understanding how the fuel additive of the present invention improves performance of an internal combustion engine.

Abstract

A method including using an alkyl halide, such as but not limited to, tetrabromoethane, as a fuel additive to a fuel to increase completeness of combustion of the fuel.

Description

    FIELD OF THE INVENTION
  • The present invention relates generally to fuel additives and method therefor.
  • BACKGROUND OF THE INVENTION
  • Methods and systems for marking liquid hydrocarbons or fuels are known in the art. The fuel is generally marked by a substance that can be detected, thereby identifying the source of the fuel. For example, a simple dyeing substance may be mixed with the fuel, thereby changing the color of the fuel and allowing the fuel to be identified according to the marked color. Alternatively, the marking substance can emit light at an invisible wavelength, wherein the fuel is identified by measuring the emitted wavelength by an optical detector. According to other methods, the fuel is marked with an organic compound whose presence is later detected by a spectrometer.
  • One example of fuel marking systems is described in PCT published patent application WO 02/098199 (PCT application PCT/IL02/00431).
  • SUMMARY OF THE INVENTION
  • The present invention seeks to provide a novel fuel additive, as is described more in detail hereinbelow.
  • The inventors have surprisingly found a new property for a substance that had been previously used simply to mark fuels, as in PCT published patent application WO 02/098199. For example, tetrabromoethane (TBE) has been added to petroleum-based fuels, such as gasoline or diesel fuel, for the purposes of marking the fuel as an anti-theft procedure. The inventors have now found that TBE (and other substances) may be used as a fuel additive to improve combustion characteristics, as is described more in detail hereinbelow.
  • DETAILED DESCRIPTION OF EMBODIMENTS
  • The fuel additive of the present invention may be added in small amounts to fuel, such as but not limited to, 1-10 ppm. This small amount does not affect the color or operative properties of the fuel.
  • Throughout the specification and claims, the term “fuel” refers to any liquid hydrocarbon, including but not limited to, petroleum products either refined or unrefined, such as crude oil, naphtha, gasoline, diesel fuel, jet fuel, kerosene, propane, lubricant (e. g., engine oil), hydraulic fluid, natural gas (either in gaseous or liquefied form), and the like.
  • The fuel additive of the present invention is stable, miscible in and compatible with the fuel. For example, the fuel additive may comprise a halogenic compound, such as an alkyl halide having the general formula CnH2n+2−mXm, where n=1,2,3 . . . , m=1,2,3 . . . X is a halogen such as fluorine (F), chlorine (Cl), bromine (Br), and iodine (I). An example of such an alkyl halide is tetrabromoethane (TBE) (C2H2Br4).
  • Other examples of alkyl halides, which may be used to carry out the invention include but are not limited to: 1,1,2,2 tetrachloroethane (C2H2Cl4), 1,1,2 trichloroethane (C2H3Cl3), pentachloroethane (C2HCl5), hexachloroethane (C2Cl6), 1,2,4 trichloro cyclohexane (C6H9Cl3), 1,2,4,5 tetrachloro cyclohexane (C6H8Cl4), ethyliodide (C2H5I), ethylbromide (C2H5Br), dichloro 1,2 dibromoethane (C2H2Cl2Br2), dichlorotribromoethane (C2HCl2Br3), difluoro 1 chloroethane (C2H3F2Cl), difluoro 1,2 dibromoethane (C2H2F2Br2), trifluor 1,2,2 dibromoethane (C2HF3Br2), tribromopropane (C3H5Br3), dibromocyclohexane (C6H10Br2), dibromoethane (C2H4Br4), n-propylbromide (C3H7Br), 1-bromo, 4-fluoro cyclohexane (C6H10FBr), butylbromide (C4H9Br) and octylbromide (C8H17Br).
  • The fuel additive of the present invention is preferably immiscible in water. One of the advantages of this property is that sometimes there is a water phase in fuels or in storage tanks, and the insolubility of the fuel additive in water means that the fuel additive remains in solution with the fuel and is not lost to the water phase.
  • The fuel additive of the present invention may create a large amount of free radicals. Free radicals lead to a smoother and more uniform temperature gradient and more complete combustion in the combustion chamber. In this manner, the fuel additive improves fuel consumption.
  • In addition, the fuel additive of the present invention may trap heavy metal ions present in petroleum-based fuels. The trapped heavy metal ions then exit with the exhaust, instead of accumulating on the inner walls and surfaces of the combustion chamber. Thus the fuel additive has the synergistic effect of not only improving fuel consumption but also causing the combustion chamber to be cleaner, which in turn further improves fuel consumption.
  • It is noted that the present invention is not bound or limited in any way to the above postulations of free radicals and trapping heavy metal ions. They are presented merely as a possible way of understanding how the fuel additive of the present invention improves performance of an internal combustion engine.
  • It will be appreciated by persons skilled in the art that the present invention is not limited by what has been particularly shown and described hereinabove. Rather the scope of the present invention includes both combinations and subcombinations of the features described hereinabove as well as modifications and variations thereof which would occur to a person of skill in the art upon reading the foregoing description and which are not in the prior art.

Claims (4)

1. A method comprising:
using an alkyl halide as a fuel additive to a fuel to increase completeness of combustion of the fuel.
2. The method according to claim 1, further comprising using the alkyl halide to increase cleanliness of a combustion chamber in which the fuel undergoes combustion.
3. The method according to claim 1, wherein said alkyl halide comprises tetrabromoethane.
4. The method according to claim 1, wherein said alkyl halide comprises at least one of tetrabromoethane (C2H2Br4), 1,1,2,2 tetrachloroethane (C2H2Cl4), 1,1,2 trichloroethane (C2H3Cl3), pentachloroethane (C2HCl5), hexachloroethane (C2Cl6), 1,2,4 trichloro cyclohexane (C6H9Cl3), 1,2,4,5 tetrachloro cyclohexane (C6H8Cl4), ethyliodide (C2H5I), ethylbromide (C2H5Br), dichloro 1,2 dibromoethane (C2H2Cl2Br2), dichlorotribromoethane (C2HCl2Br3), difluoro 1 chloroethane (C2H3F2Cl), difluoro 1,2 dibromoethane (C2H2F2Br2), trifluor 1,2,2 dibromoethane (C2HF3Br2), tribromopropane (C3H5Br3), dibromo cyclohexane (C6H10Br2), dibromoethane (C2H4Br4), n-propylbromide (C3H7Br), 1-bromo, 4-fluoro cyclohexane (C6H10FBr), butylbromide (C4H9Br) and octylbromide (C8H17Br).
US10/585,931 2004-01-14 2005-01-16 Fuel additive comprising an alkyl halide Abandoned US20070157510A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/585,931 US20070157510A1 (en) 2004-01-14 2005-01-16 Fuel additive comprising an alkyl halide

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US53622304P 2004-01-14 2004-01-14
US10/585,931 US20070157510A1 (en) 2004-01-14 2005-01-16 Fuel additive comprising an alkyl halide
PCT/IL2005/000058 WO2006072927A1 (en) 2004-01-14 2005-01-16 Fuel additive comprising an alkyl halide

Publications (1)

Publication Number Publication Date
US20070157510A1 true US20070157510A1 (en) 2007-07-12

Family

ID=34961024

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/585,931 Abandoned US20070157510A1 (en) 2004-01-14 2005-01-16 Fuel additive comprising an alkyl halide

Country Status (3)

Country Link
US (1) US20070157510A1 (en)
EP (1) EP1711585A1 (en)
WO (1) WO2006072927A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140315768A1 (en) * 2013-04-22 2014-10-23 Basf Se Seal Compatibility Additive To Improve Fluoropolymer Seal Compatibility of Lubricant Compositions
US20150191673A1 (en) * 2013-04-22 2015-07-09 Basf Se Lubricating Oil Compositions Containing A Halide Seal Compatibility Additive And A Second Seal Compatibility Additive

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2490606A (en) * 1948-05-20 1949-12-06 Shell Dev Fuel compositions
US4289501A (en) * 1978-03-20 1981-09-15 Bwm Corporation Hydrocarbon fuel additive
US4430092A (en) * 1980-12-16 1984-02-07 Walter Rosenthal Scavenging additive for leaded automotive fuel and method of using same
US4451266A (en) * 1982-01-22 1984-05-29 John D. Barclay Additive for improving performance of liquid hydrocarbon fuels
US20040248307A1 (en) * 2001-06-04 2004-12-09 Yair Grof Method and system for marking and determining the authenticity of liquid hydrocarbons

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB718567A (en) * 1951-08-23 1954-11-17 Bataafsche Petroleum Improvements in and relating to gasoline fuels
DE1115520B (en) * 1957-08-05 1961-10-19 Exxon Research Engineering Co Motor gasoline and additional mixture for motor gasoline

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2490606A (en) * 1948-05-20 1949-12-06 Shell Dev Fuel compositions
US4289501A (en) * 1978-03-20 1981-09-15 Bwm Corporation Hydrocarbon fuel additive
US4430092A (en) * 1980-12-16 1984-02-07 Walter Rosenthal Scavenging additive for leaded automotive fuel and method of using same
US4451266A (en) * 1982-01-22 1984-05-29 John D. Barclay Additive for improving performance of liquid hydrocarbon fuels
US20040248307A1 (en) * 2001-06-04 2004-12-09 Yair Grof Method and system for marking and determining the authenticity of liquid hydrocarbons

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140315768A1 (en) * 2013-04-22 2014-10-23 Basf Se Seal Compatibility Additive To Improve Fluoropolymer Seal Compatibility of Lubricant Compositions
US20140315767A1 (en) * 2013-04-22 2014-10-23 Basf Se Seal Compatibility Additive To Improve Fluoropolymer Seal Compatibility of Lubricant Compositions
US20150191673A1 (en) * 2013-04-22 2015-07-09 Basf Se Lubricating Oil Compositions Containing A Halide Seal Compatibility Additive And A Second Seal Compatibility Additive
JP2016516869A (en) * 2013-04-22 2016-06-09 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Seal compatibility additives for improving fluoropolymer seal compatibility of lubricant compositions
JP2016520688A (en) * 2013-04-22 2016-07-14 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Seal compatibility additives for improving fluoropolymer seal compatibility of lubricant compositions
JP2016521307A (en) * 2013-04-22 2016-07-21 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Seal compatibility additives for improving fluoropolymer seal compatibility of lubricant compositions
US10066186B2 (en) * 2013-04-22 2018-09-04 Basf Se Lubricating oil compositions containing a halide seal compatibility additive and a second seal compatibility additive
US10106759B2 (en) * 2013-04-22 2018-10-23 Basf Se Seal compatibility additive to improve fluoropolymer seal compatibility of lubricant compositions

Also Published As

Publication number Publication date
EP1711585A1 (en) 2006-10-18
WO2006072927A1 (en) 2006-07-13

Similar Documents

Publication Publication Date Title
Aeppli et al. Oil weathering after the Deepwater Horizon disaster led to the formation of oxygenated residues
Stogiannidis et al. Source characterization of polycyclic aromatic hydrocarbons by using their molecular indices: an overview of possibilities
Gros et al. Simulating gas–liquid− water partitioning and fluid properties of petroleum under pressure: implications for deep-sea blowouts
Fayyazbakhsh et al. Investigating the influence of additives-fuel on diesel engine performance and emissions: Analytical modeling and experimental validation
Eneh A review on petroleum: Source, uses, processing, products and the environment
Arkoudeas et al. Study of using JP-8 aviation fuel and biodiesel in CI engines
Amaral et al. Effects of gasoline composition on engine performance, exhaust gases and operational costs
BR9909817B1 (en) process for marking liquids, and, process for detecting markers in liquids.
Hutin et al. Mass transfer between crude oil and water. Part 1: Effect of oil components
US20070157510A1 (en) Fuel additive comprising an alkyl halide
US11125690B2 (en) Corrosion inhibitors and kinetic hydrate inhibitors
US20160222278A1 (en) Encapsulated Production Chemicals
Cordtz et al. Modeling the distribution of sulfur compounds in a large two stroke diesel engine
Ortmann et al. Measuring the fate of different diluted bitumen products in coastal surface waters
Alexeev et al. Evolution of the classification of flammable and combustible liquids in Russia
Ashok et al. Performance and emission of the emulsified fuel in a DI diesel engine using oxygenated additive diethyl ether with surfactant of Span− 80
Garrett et al. Pyrogenic polycyclic aromatic hydrocarbons in oil burn residues
Gouli et al. Effects of some oxygenated substitutes on gasoline properties, spark ignition engine performance, and emissions
Okeagu et al. The environmental and social impact of petroleum and natural gas exploitation in Nigeria
RU2323954C1 (en) Composition for removing asphalten-resin-paraffin deposites
Lackner et al. Laser ignition in internal combustion engines-a contribution to a sustainable environment
Schneider et al. Humic-like Substances (HULIS) in Ship Engine Emissions: Molecular Composition Effected by Fuel Type, Engine Mode, and Wet Scrubber Usage
Awadh et al. The Effect of Nickel, Vanadium, Asphaltene, NSO and Sulfur on Crude Oil Quality
Alqudah et al. Impact of Thermal Maturation of the Upper Cretaceous Bituminous Limestone of Attarat Um Ghudran Central Jordan on Calcareous Nannofossil Preservation
ABU-MADOJEMU et al. COMPARING KEY PHYSICAL PARAMETERS OF ARTISANAL AND REGULAR DPK AND PMS PRODUCTS IN RIVERS STATE-NIGERIA

Legal Events

Date Code Title Description
AS Assignment

Owner name: SOREQ NUCLEAR RESEARCH CENTER, ISRAEL

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GROF, YAIR;REEL/FRAME:018076/0431

Effective date: 20060712

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION