US20070157370A1 - Semi-rigid protective helmet - Google Patents

Semi-rigid protective helmet Download PDF

Info

Publication number
US20070157370A1
US20070157370A1 US10/587,337 US58733705A US2007157370A1 US 20070157370 A1 US20070157370 A1 US 20070157370A1 US 58733705 A US58733705 A US 58733705A US 2007157370 A1 US2007157370 A1 US 2007157370A1
Authority
US
United States
Prior art keywords
helmet
shell segments
foam liner
helmet according
segments
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/587,337
Inventor
Pascal Joubert Des Ouches
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of US20070157370A1 publication Critical patent/US20070157370A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A42HEADWEAR
    • A42BHATS; HEAD COVERINGS
    • A42B3/00Helmets; Helmet covers ; Other protective head coverings
    • A42B3/04Parts, details or accessories of helmets
    • A42B3/06Impact-absorbing shells, e.g. of crash helmets
    • A42B3/062Impact-absorbing shells, e.g. of crash helmets with reinforcing means
    • A42B3/063Impact-absorbing shells, e.g. of crash helmets with reinforcing means using layered structures
    • A42B3/064Impact-absorbing shells, e.g. of crash helmets with reinforcing means using layered structures with relative movement between layers
    • AHUMAN NECESSITIES
    • A42HEADWEAR
    • A42BHATS; HEAD COVERINGS
    • A42B3/00Helmets; Helmet covers ; Other protective head coverings
    • A42B3/04Parts, details or accessories of helmets
    • A42B3/06Impact-absorbing shells, e.g. of crash helmets
    • AHUMAN NECESSITIES
    • A42HEADWEAR
    • A42BHATS; HEAD COVERINGS
    • A42B3/00Helmets; Helmet covers ; Other protective head coverings
    • A42B3/32Collapsible helmets; Helmets made of separable parts ; Helmets with movable parts, e.g. adjustable

Definitions

  • the invention relates to a protective helmet comprising a deformable internal foam liner, a plurality of rigid external shell segments in the form of scales arranged on the foam liner so as to form at least one crown segment, at least one occipital segment and a plurality of transverse side segments, and joining means made of flexible material performing joining between the segments.
  • a protective helmet Numerous sports or leisure activities require the use of a protective helmet.
  • the helmet is relatively heavy, bulky, with a monoblock external shell to guarantee protection and safety to the detriment of the aesthetic appearance and of the comfort sought for by the user.
  • the document WO-A1-9806285 describes a protective helmet that can be adjusted to the morphology of the user's head to guarantee both protection, safety and comfort.
  • the helmet 1 comprises an internal layer 3 formed by a shock-absorbing element 2 and a plurality of structures 3 a to 3 g fixed onto the shock-absorbing element 2 and separated into several regular parts.
  • the helmet 1 also comprises an external layer 4 formed by a plurality of longitudinal panels 4 a to 4 g of substantially identical shape and spaced apart longitudinally so to fit between the structures 3 a to 3 g .
  • the panels 4 a to 4 g are all joined by their top edge to a top crown 5 .
  • the structures 3 a to 3 g are joined to the panels 4 a to 4 g by means of flexible joining means 6 , made of flexible elastic material ( FIG. 2 ). These flexible means 6 enable the structures 3 a to 3 g to be moved apart from one another and to vary the size of the helmet 1 when the helmet 1 is fitted on the user's head. This configuration of the helmet 1 thus enables the user to adjust the size of the helmet 1 to the morphology of his/her head.
  • the structures 3 a to 3 g and the panels 4 a to 4 g made of relatively rigid materials. Adjustment to the morphology of the user's head is achieved by the flexible joining means 6 , formed by pieces of flexible elastic textile joining the structures 3 a to 3 g to the panels 4 a to 4 g.
  • Deformation of the helmet 1 is however not optimum.
  • the panels 4 a to 4 g are in fact all longitudinal ( FIG. 1 ). Deformation thereof is therefore regular over the whole circumference of the helmet 1 .
  • This deformation is stressed by the flexible joining means 6 , which generate a flexible return phenomenon of the panels 4 a to 4 g on the structures 3 a to 3 g .
  • the flexible joining means 6 urge the panels 4 a to 4 g to their rest position and cause a compression effect at the level of the head. The user is then liable to suffer from headaches after prolonged use of the helmet 1 . Adjustment to the morphology of the head is therefore not optimum.
  • Comfort also remains problematic as the shock-absorbing element 2 is joined to the panels 4 a to 4 g by means of the structures 3 a to 3 g .
  • the relative deformations of the panels 4 a to 4 g and of the structures 3 a to 3 g are therefore dependent.
  • this helmet 1 generates, in addition, problems of space occupation, in particular in storage mode, as the panels 4 a to 4 g , joined to the top crown 5 , are rigid and can hardly be folded.
  • the documents DE 199 36 368 and U.S. Pat. No. 3,208,080 each describe a protective helmet having a large number of small shell segments arranged over the whole external layer of the helmet.
  • the helmet comprises a system of cords inserted in its internal layer to adjust the size of the helmet according to the size of the user's head.
  • the object of the invention is to remedy these shortcomings and to provide a protective helmet able to be adjusted to different head morphologies, and enabling the comfort and protection of a user to be optimized.
  • this object is achieved by a helmet according to the appended claims and, more particularly, by the fact that the shell segments and the flexible joining means are joined to the foam liner, in such a way as to enable a slight sliding between the foam liner and at least a part of the shell segments.
  • FIG. 1 represents a protective helmet according to the prior art.
  • FIG. 2 represents a cross-sectional view of the helmet according to FIG. 1 .
  • FIGS. 3 and 4 represent two perspective views of an embodiment of a protective helmet according to the invention.
  • FIGS. 5 and 6 schematically represent two exploded perspective views of an alternative embodiment of a protective helmet according to the invention.
  • FIG. 7 represents a perspective view of the helmet without the cap according to FIGS. 3 and 4 .
  • FIG. 8 represents a perspective view of the foam liner of the helmet according to FIGS. 3, 4 and 7 .
  • FIGS. 9 and 10 schematically represent two embodiments of a headband adjustment means of two alternative embodiments of a protective helmet according to the invention.
  • FIG. 11 schematically represents a cross-sectional view of a part of the structure of the helmet according to FIGS. 3, 4 and 7 to 10 .
  • FIG. 12 schematically represents a cross-sectional view of a part of the structure of an alternative embodiment of a helmet according to the invention.
  • FIG. 13 schematically represents a cross-sectional view of a part of the structure of an alternative embodiment of a protective helmet according to the invention.
  • FIG. 14 schematically represents a cross-sectional view of a part of a cap of an alternative embodiment of a helmet according to the invention.
  • FIGS. 15 to 18 schematically represent a part of the structure of several alternative embodiments of a protective helmet according to the invention.
  • a helmet 1 comprises an internal layer formed by a deformable foam liner 7 , flexible joining means formed, for example, by a cap 8 , and an external layer formed by a plurality of rigid shell segments 9 .
  • the shell segments 9 are fixedly secured to the cap 8 and are articulated with respect to one another by means of the cap 8 .
  • the cap 8 preferably made of flexible material of textile or elastomer nature, covers the foam liner 7 and ensures articulation between the shell segments 9 .
  • the shell segments 9 are fixed and arranged on the cap 8 in such a way as to form a crown segment 9 a , an occipital segment 9 b , four transverse side segments 9 c , and a front segment 9 d .
  • the different shell segments 9 are not joined and are separated from one another by gaps 10 . These separating gaps 10 enable a very flexible articulation of the shell segments 9 , when the helmet 1 is fitted on the user's head.
  • the cap 8 is joined to the foam liner 7 in such a way as to allow a slight sliding between the foam liner 7 and a part of the shell segments 9 , when the helmet 1 is shaped on a user's head.
  • the join between the foam liner 7 and the cap 8 is achieved, for example, by a seam of the cap 8 , which envelopes the foam liner 7 along the whole of the edge of the helmet 1 .
  • This configuration thus allows a slight sliding between the foam liner 7 and the cap 8 , which bears and articulates the shell segments 9 .
  • the flexibility of the whole of the helmet 1 is preserved, and this slight sliding enables easy deformation of the helmet 1 , when the helmet 1 is fitted on the user's head.
  • An alternative embodiment consists in achieving the join between the foam liner 7 and the cap 8 by sticking the foam liner 7 and cap 8 under the crown segment 9 a .
  • the crown segment 9 a is then fixed onto the foam liner 7
  • the front segment 9 d , the occipital segment 9 b and the transverse side segments 9 c form “the headband” of the helmet 1 and are designed to perform the slight sliding with respect to the foam liner 7 , when the helmet 1 is fitted on the user's head.
  • the shell segments 9 are rigid and preferably made of shock-resistant material.
  • the material chosen must preferably be sufficiently rigid to distribute the impact of the shocks over the whole of the foam liner 7 .
  • the material is chosen for example from a polycarbonate (PC), a copolymer formed from acrylonitrile, butadiene and styrene (noted ABS), a long fibres thermoplastic or thermosetting matrix composite, or even aluminium.
  • the thickness of the shell segments 9 is preferably about 1 mm to 3 mm.
  • the shell segments 9 are manufactured by methods known in industry, in particular by injection, thermoforming, compression or drawing. For example, it is possible to inject the crown segment 9 a directly on the cap 8 and to stick or weld the other segments 9 onto the cap 8 . It is also possible to weld, stitch or even stick all the shell segments 9 , or a part of the shell segments 9 , in the same way.
  • the protective helmet 1 differs from the previous embodiment by the shape of the shell segments 9 .
  • These shell segments can comprise edges 19 , with a thickness smaller than or equal to that of the shell segments 9 , designed to block off the separating gaps 10 between the shell segments 9 to prevent any penetration of a sharp object and to enhance the user's safety.
  • the edges 19 are superposed above or below the adjacent shell segments 9 with which they cooperate, so as to optimize the user's safety.
  • the transverse side segments 9 c comprise edges 19 c designed to cooperate with the crown segment 9 a and the occipital segment 9 b
  • the front segment 9 d comprises an edge 19 d designed to cooperate with the crown segment 9 a and a part of the transverse side segments 9 c
  • the occipital segment 9 b comprises an edge 19 b designed to cooperate with the crown segment 9 a.
  • the shell segments 9 are thermoformed in a single plate so as to form a single shell covering the foam liner 7 completely, with zones of large thickness constituting the shell segments 9 and zones of small thickness constituting small material bridging parts joining the shell segments 9 .
  • the thinner zones form hinges for articulation of the shell segments 9 and enable the different safety criteria to be complied with, in particular concerning the cone penetration test imposed notably by the standard EN1077.
  • the cap 8 is made of textile or elastomer. It is preferably perforated to enhance airing.
  • the cap 8 is preferably made from an anti-perforation textile improving airing, of the high tenacity polyester type.
  • the elasticity must be limited to avoid the shell segments 9 being spaced too far apart and the shell segments 9 and cap 8 possibly coming loose from one another. This feature is important, in particular in the case of a helmet subjected to an impact from a sharp object, to protect the user in compliance with the standard EN1077 for skiing helmets.
  • the helmet 1 advantageously comprises attachment straps 12 securedly fixed to the cap 8 .
  • the helmet 1 comprises a chinstrap 12 a and a harnessing strap 12 b .
  • the harnessing strap 12 b surrounds the foam liner 7 via the top and rear, to ensure a good safety and a good resistance against loosening.
  • the chinstrap 12 a and harnessing strap 12 b are for example stitched or riveted onto the cap 8 .
  • the foam liner 7 illustrated in FIGS. 7 and 8 is made of a semi-rigid alveolate material, absorbing the energy of compression shocks, and deformable in flexion by its material and its geometry so as to fit the shape of the user's head to the maximum when the helmet 1 is put on.
  • the helmet 1 thus behaves as a genuine deformable protective shell.
  • the foam liner 7 is manufactured for example by flat cutting from a sheet of polymer foam, for example expanded polypropylene.
  • the foam is calibrated in thickness, about 15 mm to 30 mm, and in density, about 60 g/l to 100 g/l.
  • the shock-absorbing properties of this type of foam present a memory effect enabling it to return to its initial shape after a shock.
  • the foam liner 7 returns to its initial shape after an impact on the helmet 1 .
  • the foam liner 7 advantageously comprises a plurality of cut-outs 11 over the thickness of the wall of the foam liner 7 .
  • the cut-outs 11 are preferably offset with respect to the gaps 10 separating the shell segments 9 , notably for safety reasons and to prevent any penetration of sharp objects.
  • the main function of the cut-outs 11 is to foster deformation of the foam liner 7 when the helmet 1 is fitted on the user's head. They also enable a good circulation of the air collected by air vents 15 provided in the crown segment 9 a ( FIGS. 3 and 7 ).
  • the vents 15 are in fact preferably located facing the cut-outs 11 of the foam liner 7 ( FIG. 7 ).
  • the helmet 1 advantageously comprises a headband adjustment means 14 , designed to adjust the size of the helmet 1 and to better distribute the tightness at the level of the user's headband, to optimize his/her comfort.
  • the adjustment means 14 is preferably inserted in the occipital segment 9 b and enables all the shell segments 9 constituting the headband of the helmet 1 , i.e. the occipital segment 9 b , the front segment 9 d and a part of the transverse side segments 9 c , to be moved towards one another.
  • the adjustment means 14 is formed by a quick attachment strip, or a self-gripping strip, joining the occipital segment 9 b and two transverse side segments 9 c.
  • adjustment is performed by means of a multidirectional lacing system.
  • the adjustment means 14 comprises a lace 20 wound around a knurled knob 21 preferably fixed on the occipital segment 9 b .
  • the lace 20 links the shell segments 9 forming the headband of the helmet 1 to one another, passing via tightening points 22 , preferably arranged on the edges of the shell segments 9 .
  • Operation of the adjustment means 14 consists in actuating the knurled knob 21 , for example in the clockwise direction to tighten the helmet 1 , and in the counterclockwise direction to loosen the helmet 1 . This type of tightening enables the headband and the depth of the helmet 1 to be adjusted simultaneously.
  • adjustment is performed by means of a rack and pinion system.
  • the adjustment means 14 comprises a tab 23 , equipped with a plurality of teeth 24 forming a rack, designed to cooperate with a pinion 25 preferably fixed on the occipital segment 9 b .
  • the tab 23 is formed, for example, in the extension of a side segment 9 c and is inserted in the pinion 25 of the occipital segment 9 b to move the segments 9 forming the headband of the helmet 1 towards one another.
  • Operation of the adjustment means 14 consists in making the teeth 24 slide into the pinion 25 to tighten the helmet 1 , and in pressing on two buttons 26 of the pinion 25 to release the tab 23 and loosen the helmet 1 .
  • FIG. 11 the arrangement of the three layers, i.e. the foam liner 7 , cap 8 and shell segments 9 , is represented.
  • the cap 8 covers the foam liner 7 completely, and the cut-outs 11 of the foam liner 7 are offset with respect to the gaps 10 separating the shell segments 9 .
  • the cap 8 represents the flexible link ensuring articulation between the shell segments 9 . This configuration therefore fosters the sliding sought for between the foam liner 7 and shell segments 9 to obtain optimum deformation of the helmet 1 .
  • the slight clearance between the foam liner 7 and cap 8 represented in exaggerated manner in FIG. 7 , illustrates this possibility of sliding between the foam liner 7 and shell segments 9 .
  • the alternative embodiment according to FIG. 12 differs from the previous embodiment by the shape of the foam liner 7 .
  • the foam liner 7 comprises thinned zones 16 in the thickness of the wall of the foam liner 7 , so as to foster deformation of the foam liner 7 .
  • the thinned zones 16 are preferably offset with respect to the gaps 10 between the shell segments 9 . This configuration of the foam liner 7 with the thinned zones 16 enables any risk of a sharp object penetrating through the helmet 1 to be prevented, substantially improving the user's safety.
  • FIG. 13 An alternative embodiment represented in FIG. 13 consists in providing a foam liner 7 presenting a multi-layer structure.
  • the foam liner 7 is formed by a superposition of sheets 27 , presenting good compression absorption and flexion elasticity characteristics, to ensure a greater deformation aptitude of the whole of the foam liner 7 , for the comfort and safety of the user.
  • the sheets 27 preferably made of foam, can be of different nature, so as to achieve a progressive variation of the density of the foam liner 7 , to foster comfort and shock absorption.
  • An alternative embodiment of the helmet 1 differs from the previous embodiments by the shape of the cap 8 .
  • Compartments 13 in which the shell segments 9 are housed, are in this case formed on the cap 8 .
  • the shell segments 9 are free inside the compartments 13 , securedly fixed to the cap 8 .
  • the compartments 13 are manufactured, on their internal face, with an identical material to that of the cap 8 and, on their external face, with a much more decorative material.
  • the helmet 1 allows a slight sliding between the shell segments 9 and the cap 8 . Deformation of the helmet 1 is therefore optimum with a slight sliding both between the foam liner 7 and shell segments 9 , and between the cap 8 and shell segments 9 .
  • this alternative embodiment enables different fabrics to be chosen for the compartments 13 covering the shell segments 9 and enables, for example, shell segments 9 presenting a rough finished state to be used.
  • the advantage of such a solution compared with welding or sticking also lies in the use of the possibly elastic properties of the textile over the whole surface of the cap 8 .
  • the alternative embodiment of the helmet 1 differs from the previous embodiments by the flexible joining means articulating the shell segments 9 .
  • the foam liner 7 is fixedly secured to the crown segment 9 a and comprises the cut-outs 11 offset with respect to the separating gaps 10 between the shell segments 9 .
  • the crown segment 9 a and the transverse side segments 9 c are articulated with respect to one another by means of strips 17 , for example made of flexible material.
  • the strips 17 are made for example from the same fabric as that used for the cap 8 in the previous embodiments.
  • the strips 17 can be made of elastomer.
  • the shell segments 9 are not joined and the separating gaps 10 between the shell segments 9 are filled by the elastomer forming the strips 17 , which prevents any penetration of an object and enhances user safety.
  • the shell segments 9 can have a slight overlap to guarantee the anti-perforation feature of the helmet 1 and, particularly, to meet the requirements of the standard EN 1077.
  • the shell segments 9 are articulated by strips 17 of flexible material or of elastomer, and overlapping of the shell segments 9 does not impair the slight sliding between the foam liner 7 and the shell segments 9 , when the helmet 1 is fitted on the user's head.
  • the helmet 1 can comprise a plurality of additional shell segments 18 , fixedly secured to the foam liner 7 and arranged facing separating gaps 10 between the shell segments 9 .
  • the shell segments 9 are articulated by strips 17 of flexible material or of elastomer, arranged facing additional shell segments 18 . The anti-perforation feature of the helmet 1 is then ensured.
  • the helmet 1 advantageously comprises an external textile envelope covering the shell segments 9 .
  • This external envelope enables a helmet 1 with a much more aesthetic appearance to be obtained.
  • the external envelope can cover a part of the shell segments 9 only. It is possible, for example, to leave the crown segment 9 a apparent and to cover the other segments 9 b , 9 c and 9 d with the external envelope.
  • This very advantageous configuration enables a multitude of possible ranges to be envisaged for the helmet 1 , by varying the combinations of materials and colours of the external envelope and of the crown segment 9 a.
  • the transverse side segments 9 c , occipital segment 9 b and front segment 9 d fold in towards the inside of the helmet 1 , thus significantly reducing its overall dimensions.
  • the helmet 1 thus becomes easier to stow away and to transport, for example in a rucksack.
  • This deformable helmet structure enables several helmet sizes to be covered (2 to 3 sizes), due to the flexibility of the structure, the possibility of sliding between the layers and the headband adjustment means 14 .
  • This helmet can cover a range of sizes (for example from size 50 to size 63) with a limited number of references.
  • the weight of the helmet 1 is greatly reduced, due to optimization of the thicknesses and of the volume of the foam liner 7 .
  • the useful thickness of the foam of the foam liner 7 is optimized to fit the shape of the head. Reducing the dead volume usually necessary to adjust the comfort enables the foam liner 7 to be placed very close to the head.
  • the main effect is reduction of the leverage effect generated by a shock on a surface too far away from the head.
  • the helmet 1 does not accelerate before coming up against the buffer stop formed by the user's head.
  • the impact surface is better distributed, resulting in improved comfort and safety.
  • the configuration of the helmet 1 with the shell segments 9 makes for real fitting of the helmet 1 , with excellent adjustment to the shape of the head, due to the relative mobility of each shell segment 9 .
  • the occipital segment 9 b pressing firmly against the user's head results in a better holding of the helmet 1 and an enhanced feeling of safety.
  • the position and the distinctive shape of the shell segments 9 and gaps 10 result in optimum deformation.
  • the larger the number of shell segments 9 the more the user's comfort is improved.
  • the user does not feel any elastic return that could cause headaches, and the helmet 1 presents a reduced global volume, while remaining easy and pleasant to put on.
  • the helmet 1 is more aesthetic and less protuberant, as its general appearance is more like that of a cap.
  • the helmet 1 also enables the user's field of vision to be improved, as it is closer to the head.
  • helmets 1 Providing a whole range of helmets 1 is easy on account of all the possible combinations of materials and colours for the crown segment 9 a , the other shell segments 9 , and the external envelope covering the shell segments 9 , if applicable.
  • This concept of a helmet 1 can be applied to provide stylistic and functional versions proper to each field of activity: water sports, cycling, biking, skating & roller skating, potholing, mountaineering, climbing, skiing, snowboarding, etc.
  • the invention is not limited to the different embodiments described above. As in all types of helmets, it is possible to line the inside of the helmet 1 with a draining, breathing and anti-bacterial fabric to improve the comfort of contact between the head and foam liner 7 .
  • the foam liner 7 thus formed then has a very great aptitude for deformation, due to its granular behaviour.
  • the shell segments 9 can be thermoformed in a single operation from a plate, then cut out with a water jet or by digitally controlled machining, and are then fixed onto the cap 8 or the strips 17 .
  • vents 15 of the crown segment 9 a it is possible, in addition to the vents 15 of the crown segment 9 a , to perforate the different shell segments 9 with small holes and to cover them with a very open mesh type fabric or with a breathing membrane. Ventilation can also be performed at the level of the cap 8 or the strips 17 , by choosing a very breathing textile.
  • the shell segments 9 , the cap 8 or strips 17 it is possible to use other shapes for the shell segments 9 , the cap 8 or strips 17 , the structure of the helmet 1 having to allow a slight sliding between at least a part of the shell segments 9 and the foam liner 7 when the helmet 1 is fitted on the user's head, in order to optimize his/her comfort.

Abstract

The protective helmet (1) comprises a deformable foam liner (7), a plurality of shell segments (9), and joining means made of flexible material performing joining between the shell segments (9). The shell segments (9) are arranged on the foam liner (7) so as to form at least one crown segment (9 a), at least one occipital segment and a plurality of transverse side segments (9 c). The shell segments (9) and the joining means made of flexible material are joined to the foam liner (7) in such a way as to allow a slight sliding between the foam liner (7) and at least a part of the shell segments (9). The helmet (1) preferably comprises a headband adjustment means (14) designed to adjust the size of the helmet (1) and to optimize user comfort.

Description

    BACKGROUND OF THE INVENTION
  • The invention relates to a protective helmet comprising a deformable internal foam liner, a plurality of rigid external shell segments in the form of scales arranged on the foam liner so as to form at least one crown segment, at least one occipital segment and a plurality of transverse side segments, and joining means made of flexible material performing joining between the segments.
  • STATE OF THE ART
  • Numerous sports or leisure activities require the use of a protective helmet. Generally, the helmet is relatively heavy, bulky, with a monoblock external shell to guarantee protection and safety to the detriment of the aesthetic appearance and of the comfort sought for by the user.
  • For this purpose, the document WO-A1-9806285 describes a protective helmet that can be adjusted to the morphology of the user's head to guarantee both protection, safety and comfort. In FIGS. 1 and 2, the helmet 1 comprises an internal layer 3 formed by a shock-absorbing element 2 and a plurality of structures 3 a to 3 g fixed onto the shock-absorbing element 2 and separated into several regular parts. The helmet 1 also comprises an external layer 4 formed by a plurality of longitudinal panels 4 a to 4 g of substantially identical shape and spaced apart longitudinally so to fit between the structures 3 a to 3 g. The panels 4 a to 4 g are all joined by their top edge to a top crown 5. The structures 3 a to 3 g are joined to the panels 4 a to 4 g by means of flexible joining means 6, made of flexible elastic material (FIG. 2). These flexible means 6 enable the structures 3 a to 3 g to be moved apart from one another and to vary the size of the helmet 1 when the helmet 1 is fitted on the user's head. This configuration of the helmet 1 thus enables the user to adjust the size of the helmet 1 to the morphology of his/her head.
  • Protection and safety are ensured by the structures 3 a to 3 g and the panels 4 a to 4 g, made of relatively rigid materials. Adjustment to the morphology of the user's head is achieved by the flexible joining means 6, formed by pieces of flexible elastic textile joining the structures 3 a to 3 g to the panels 4 a to 4 g.
  • Deformation of the helmet 1 is however not optimum. The panels 4 a to 4 g are in fact all longitudinal (FIG. 1). Deformation thereof is therefore regular over the whole circumference of the helmet 1. This deformation is stressed by the flexible joining means 6, which generate a flexible return phenomenon of the panels 4 a to 4 g on the structures 3 a to 3 g. The flexible joining means 6 urge the panels 4 a to 4 g to their rest position and cause a compression effect at the level of the head. The user is then liable to suffer from headaches after prolonged use of the helmet 1. Adjustment to the morphology of the head is therefore not optimum. Comfort also remains problematic as the shock-absorbing element 2 is joined to the panels 4 a to 4 g by means of the structures 3 a to 3 g. The relative deformations of the panels 4 a to 4 g and of the structures 3 a to 3 g are therefore dependent.
  • The structure of this helmet 1 generates, in addition, problems of space occupation, in particular in storage mode, as the panels 4 a to 4 g, joined to the top crown 5, are rigid and can hardly be folded.
  • Moreover, the documents DE 199 36 368 and U.S. Pat. No. 3,208,080 each describe a protective helmet having a large number of small shell segments arranged over the whole external layer of the helmet. Furthermore, in the document DE 199 36 368, the helmet comprises a system of cords inserted in its internal layer to adjust the size of the helmet according to the size of the user's head.
  • However, the structures of these helmets prove relatively uncomfortable, and the adjustment system described by the document DE 199 36 368 is not efficient and is too complex to implement.
  • OBJECT OF THE INVENTION
  • The object of the invention is to remedy these shortcomings and to provide a protective helmet able to be adjusted to different head morphologies, and enabling the comfort and protection of a user to be optimized.
  • According to the invention, this object is achieved by a helmet according to the appended claims and, more particularly, by the fact that the shell segments and the flexible joining means are joined to the foam liner, in such a way as to enable a slight sliding between the foam liner and at least a part of the shell segments.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Other advantages and features will become more clearly apparent from the following description of particular embodiments of the invention given as non-restrictive examples only and represented in the accompanying drawings, in which:
  • FIG. 1 represents a protective helmet according to the prior art.
  • FIG. 2 represents a cross-sectional view of the helmet according to FIG. 1.
  • FIGS. 3 and 4 represent two perspective views of an embodiment of a protective helmet according to the invention.
  • FIGS. 5 and 6 schematically represent two exploded perspective views of an alternative embodiment of a protective helmet according to the invention.
  • FIG. 7 represents a perspective view of the helmet without the cap according to FIGS. 3 and 4.
  • FIG. 8 represents a perspective view of the foam liner of the helmet according to FIGS. 3, 4 and 7.
  • FIGS. 9 and 10 schematically represent two embodiments of a headband adjustment means of two alternative embodiments of a protective helmet according to the invention.
  • FIG. 11 schematically represents a cross-sectional view of a part of the structure of the helmet according to FIGS. 3, 4 and 7 to 10.
  • FIG. 12 schematically represents a cross-sectional view of a part of the structure of an alternative embodiment of a helmet according to the invention.
  • FIG. 13 schematically represents a cross-sectional view of a part of the structure of an alternative embodiment of a protective helmet according to the invention.
  • FIG. 14 schematically represents a cross-sectional view of a part of a cap of an alternative embodiment of a helmet according to the invention.
  • FIGS. 15 to 18 schematically represent a part of the structure of several alternative embodiments of a protective helmet according to the invention.
  • DESCRIPTION OF PARTICULAR EMBODIMENTS
  • In FIGS. 3 and 4, a helmet 1 comprises an internal layer formed by a deformable foam liner 7, flexible joining means formed, for example, by a cap 8, and an external layer formed by a plurality of rigid shell segments 9. The shell segments 9 are fixedly secured to the cap 8 and are articulated with respect to one another by means of the cap 8. The cap 8, preferably made of flexible material of textile or elastomer nature, covers the foam liner 7 and ensures articulation between the shell segments 9. The shell segments 9 are fixed and arranged on the cap 8 in such a way as to form a crown segment 9 a, an occipital segment 9 b, four transverse side segments 9 c, and a front segment 9 d. In the particular embodiment of the helmet 1 represented in FIG. 3, the different shell segments 9 are not joined and are separated from one another by gaps 10. These separating gaps 10 enable a very flexible articulation of the shell segments 9, when the helmet 1 is fitted on the user's head.
  • The cap 8 is joined to the foam liner 7 in such a way as to allow a slight sliding between the foam liner 7 and a part of the shell segments 9, when the helmet 1 is shaped on a user's head. The join between the foam liner 7 and the cap 8 is achieved, for example, by a seam of the cap 8, which envelopes the foam liner 7 along the whole of the edge of the helmet 1. This configuration thus allows a slight sliding between the foam liner 7 and the cap 8, which bears and articulates the shell segments 9. The flexibility of the whole of the helmet 1 is preserved, and this slight sliding enables easy deformation of the helmet 1, when the helmet 1 is fitted on the user's head.
  • An alternative embodiment consists in achieving the join between the foam liner 7 and the cap 8 by sticking the foam liner 7 and cap 8 under the crown segment 9 a. The crown segment 9 a is then fixed onto the foam liner 7, whereas the front segment 9 d, the occipital segment 9 b and the transverse side segments 9 c form “the headband” of the helmet 1 and are designed to perform the slight sliding with respect to the foam liner 7, when the helmet 1 is fitted on the user's head.
  • The shell segments 9 are rigid and preferably made of shock-resistant material. The material chosen must preferably be sufficiently rigid to distribute the impact of the shocks over the whole of the foam liner 7. The material is chosen for example from a polycarbonate (PC), a copolymer formed from acrylonitrile, butadiene and styrene (noted ABS), a long fibres thermoplastic or thermosetting matrix composite, or even aluminium. The thickness of the shell segments 9 is preferably about 1 mm to 3 mm.
  • The shell segments 9 are manufactured by methods known in industry, in particular by injection, thermoforming, compression or drawing. For example, it is possible to inject the crown segment 9 a directly on the cap 8 and to stick or weld the other segments 9 onto the cap 8. It is also possible to weld, stitch or even stick all the shell segments 9, or a part of the shell segments 9, in the same way.
  • In the alternative embodiment represented in FIGS. 5 and 6, the protective helmet 1 differs from the previous embodiment by the shape of the shell segments 9. These shell segments can comprise edges 19, with a thickness smaller than or equal to that of the shell segments 9, designed to block off the separating gaps 10 between the shell segments 9 to prevent any penetration of a sharp object and to enhance the user's safety. For example, the edges 19 are superposed above or below the adjacent shell segments 9 with which they cooperate, so as to optimize the user's safety. In FIGS. 5 and 6, the transverse side segments 9 c comprise edges 19 c designed to cooperate with the crown segment 9 a and the occipital segment 9 b, the front segment 9 d comprises an edge 19 d designed to cooperate with the crown segment 9 a and a part of the transverse side segments 9 c, and the occipital segment 9 b comprises an edge 19 b designed to cooperate with the crown segment 9 a.
  • In another alternative embodiment, not represented, the shell segments 9 are thermoformed in a single plate so as to form a single shell covering the foam liner 7 completely, with zones of large thickness constituting the shell segments 9 and zones of small thickness constituting small material bridging parts joining the shell segments 9. The thinner zones form hinges for articulation of the shell segments 9 and enable the different safety criteria to be complied with, in particular concerning the cone penetration test imposed notably by the standard EN1077.
  • In the particular embodiment of FIGS. 3 to 6, the cap 8 is made of textile or elastomer. It is preferably perforated to enhance airing. The cap 8 is preferably made from an anti-perforation textile improving airing, of the high tenacity polyester type.
  • In the particular case of a flexible and elastic cap 8, the elasticity must be limited to avoid the shell segments 9 being spaced too far apart and the shell segments 9 and cap 8 possibly coming loose from one another. This feature is important, in particular in the case of a helmet subjected to an impact from a sharp object, to protect the user in compliance with the standard EN1077 for skiing helmets.
  • As represented in FIGS. 3, 4 and 7, 8, the helmet 1 advantageously comprises attachment straps 12 securedly fixed to the cap 8. The helmet 1 comprises a chinstrap 12 a and a harnessing strap 12 b. In FIG. 6, the harnessing strap 12 b surrounds the foam liner 7 via the top and rear, to ensure a good safety and a good resistance against loosening. The chinstrap 12 a and harnessing strap 12 b are for example stitched or riveted onto the cap 8.
  • The foam liner 7 illustrated in FIGS. 7 and 8 is made of a semi-rigid alveolate material, absorbing the energy of compression shocks, and deformable in flexion by its material and its geometry so as to fit the shape of the user's head to the maximum when the helmet 1 is put on. The helmet 1 thus behaves as a genuine deformable protective shell.
  • The foam liner 7 is manufactured for example by flat cutting from a sheet of polymer foam, for example expanded polypropylene. The foam is calibrated in thickness, about 15 mm to 30 mm, and in density, about 60 g/l to 100 g/l.
  • The shock-absorbing properties of this type of foam present a memory effect enabling it to return to its initial shape after a shock. The foam liner 7 returns to its initial shape after an impact on the helmet 1.
  • The foam liner 7 advantageously comprises a plurality of cut-outs 11 over the thickness of the wall of the foam liner 7. The cut-outs 11 are preferably offset with respect to the gaps 10 separating the shell segments 9, notably for safety reasons and to prevent any penetration of sharp objects. The main function of the cut-outs 11 is to foster deformation of the foam liner 7 when the helmet 1 is fitted on the user's head. They also enable a good circulation of the air collected by air vents 15 provided in the crown segment 9 a (FIGS. 3 and 7). The vents 15 are in fact preferably located facing the cut-outs 11 of the foam liner 7 (FIG. 7).
  • As represented in FIGS. 4, 7, 9 and 10, the helmet 1 advantageously comprises a headband adjustment means 14, designed to adjust the size of the helmet 1 and to better distribute the tightness at the level of the user's headband, to optimize his/her comfort. The adjustment means 14 is preferably inserted in the occipital segment 9 b and enables all the shell segments 9 constituting the headband of the helmet 1, i.e. the occipital segment 9 b, the front segment 9 d and a part of the transverse side segments 9 c, to be moved towards one another. For example, as represented in FIGS. 4 and 7, the adjustment means 14 is formed by a quick attachment strip, or a self-gripping strip, joining the occipital segment 9 b and two transverse side segments 9 c.
  • In the alternative embodiment of the adjustment means 14 represented in FIG. 9, adjustment is performed by means of a multidirectional lacing system. The adjustment means 14 comprises a lace 20 wound around a knurled knob 21 preferably fixed on the occipital segment 9 b. The lace 20 links the shell segments 9 forming the headband of the helmet 1 to one another, passing via tightening points 22, preferably arranged on the edges of the shell segments 9. Operation of the adjustment means 14 consists in actuating the knurled knob 21, for example in the clockwise direction to tighten the helmet 1, and in the counterclockwise direction to loosen the helmet 1. This type of tightening enables the headband and the depth of the helmet 1 to be adjusted simultaneously.
  • In another alternative embodiment represented in FIG. 10, adjustment is performed by means of a rack and pinion system. The adjustment means 14 comprises a tab 23, equipped with a plurality of teeth 24 forming a rack, designed to cooperate with a pinion 25 preferably fixed on the occipital segment 9 b. The tab 23 is formed, for example, in the extension of a side segment 9 c and is inserted in the pinion 25 of the occipital segment 9 b to move the segments 9 forming the headband of the helmet 1 towards one another. Operation of the adjustment means 14 consists in making the teeth 24 slide into the pinion 25 to tighten the helmet 1, and in pressing on two buttons 26 of the pinion 25 to release the tab 23 and loosen the helmet 1.
  • In FIG. 11, the arrangement of the three layers, i.e. the foam liner 7, cap 8 and shell segments 9, is represented. The cap 8 covers the foam liner 7 completely, and the cut-outs 11 of the foam liner 7 are offset with respect to the gaps 10 separating the shell segments 9. The cap 8 represents the flexible link ensuring articulation between the shell segments 9. This configuration therefore fosters the sliding sought for between the foam liner 7 and shell segments 9 to obtain optimum deformation of the helmet 1. The slight clearance between the foam liner 7 and cap 8, represented in exaggerated manner in FIG. 7, illustrates this possibility of sliding between the foam liner 7 and shell segments 9.
  • The alternative embodiment according to FIG. 12 differs from the previous embodiment by the shape of the foam liner 7. The foam liner 7 comprises thinned zones 16 in the thickness of the wall of the foam liner 7, so as to foster deformation of the foam liner 7. The thinned zones 16 are preferably offset with respect to the gaps 10 between the shell segments 9. This configuration of the foam liner 7 with the thinned zones 16 enables any risk of a sharp object penetrating through the helmet 1 to be prevented, substantially improving the user's safety.
  • An alternative embodiment represented in FIG. 13 consists in providing a foam liner 7 presenting a multi-layer structure. The foam liner 7 is formed by a superposition of sheets 27, presenting good compression absorption and flexion elasticity characteristics, to ensure a greater deformation aptitude of the whole of the foam liner 7, for the comfort and safety of the user. The sheets 27, preferably made of foam, can be of different nature, so as to achieve a progressive variation of the density of the foam liner 7, to foster comfort and shock absorption.
  • An alternative embodiment of the helmet 1, represented schematically in FIG. 14, differs from the previous embodiments by the shape of the cap 8. Compartments 13, in which the shell segments 9 are housed, are in this case formed on the cap 8. The shell segments 9 are free inside the compartments 13, securedly fixed to the cap 8. The compartments 13 are manufactured, on their internal face, with an identical material to that of the cap 8 and, on their external face, with a much more decorative material. The helmet 1 allows a slight sliding between the shell segments 9 and the cap 8. Deformation of the helmet 1 is therefore optimum with a slight sliding both between the foam liner 7 and shell segments 9, and between the cap 8 and shell segments 9.
  • For example, this alternative embodiment enables different fabrics to be chosen for the compartments 13 covering the shell segments 9 and enables, for example, shell segments 9 presenting a rough finished state to be used. The advantage of such a solution compared with welding or sticking also lies in the use of the possibly elastic properties of the textile over the whole surface of the cap 8.
  • In FIG. 15, the alternative embodiment of the helmet 1 differs from the previous embodiments by the flexible joining means articulating the shell segments 9. The foam liner 7 is fixedly secured to the crown segment 9 a and comprises the cut-outs 11 offset with respect to the separating gaps 10 between the shell segments 9. The crown segment 9 a and the transverse side segments 9 c are articulated with respect to one another by means of strips 17, for example made of flexible material. The strips 17 are made for example from the same fabric as that used for the cap 8 in the previous embodiments.
  • According to an alternative embodiment represented in FIG. 16, the strips 17 can be made of elastomer. The shell segments 9 are not joined and the separating gaps 10 between the shell segments 9 are filled by the elastomer forming the strips 17, which prevents any penetration of an object and enhances user safety.
  • In FIG. 17, the shell segments 9 can have a slight overlap to guarantee the anti-perforation feature of the helmet 1 and, particularly, to meet the requirements of the standard EN 1077. In this particular embodiment, the shell segments 9 are articulated by strips 17 of flexible material or of elastomer, and overlapping of the shell segments 9 does not impair the slight sliding between the foam liner 7 and the shell segments 9, when the helmet 1 is fitted on the user's head.
  • Likewise, in FIG. 18, the helmet 1 can comprise a plurality of additional shell segments 18, fixedly secured to the foam liner 7 and arranged facing separating gaps 10 between the shell segments 9. The shell segments 9 are articulated by strips 17 of flexible material or of elastomer, arranged facing additional shell segments 18. The anti-perforation feature of the helmet 1 is then ensured.
  • According to another alternative embodiment (not represented), the helmet 1 advantageously comprises an external textile envelope covering the shell segments 9. This external envelope enables a helmet 1 with a much more aesthetic appearance to be obtained. For example, the external envelope can cover a part of the shell segments 9 only. It is possible, for example, to leave the crown segment 9 a apparent and to cover the other segments 9 b, 9 c and 9 d with the external envelope. This very advantageous configuration enables a multitude of possible ranges to be envisaged for the helmet 1, by varying the combinations of materials and colours of the external envelope and of the crown segment 9 a.
  • It is in addition possible to achieve a folding version of the helmet 1. The transverse side segments 9 c, occipital segment 9 b and front segment 9 d fold in towards the inside of the helmet 1, thus significantly reducing its overall dimensions. The helmet 1 thus becomes easier to stow away and to transport, for example in a rucksack.
  • The advantages procured by the helmet 1 are numerous. This deformable helmet structure enables several helmet sizes to be covered (2 to 3 sizes), due to the flexibility of the structure, the possibility of sliding between the layers and the headband adjustment means 14.
  • This helmet can cover a range of sizes (for example from size 50 to size 63) with a limited number of references. In addition, it is envisageable, between two size references, to keep certain shell segments 9 (for example the crown segment 9 a) and to only modify the size of the other shell segments 9. The number of toolings required for manufacturing the helmet 1 is then reduced.
  • The weight of the helmet 1 is greatly reduced, due to optimization of the thicknesses and of the volume of the foam liner 7. The useful thickness of the foam of the foam liner 7 is optimized to fit the shape of the head. Reducing the dead volume usually necessary to adjust the comfort enables the foam liner 7 to be placed very close to the head. The main effect is reduction of the leverage effect generated by a shock on a surface too far away from the head. The helmet 1 does not accelerate before coming up against the buffer stop formed by the user's head. The impact surface is better distributed, resulting in improved comfort and safety.
  • The configuration of the helmet 1 with the shell segments 9 makes for real fitting of the helmet 1, with excellent adjustment to the shape of the head, due to the relative mobility of each shell segment 9. In particular, the occipital segment 9 b pressing firmly against the user's head results in a better holding of the helmet 1 and an enhanced feeling of safety. The position and the distinctive shape of the shell segments 9 and gaps 10 result in optimum deformation. In addition, the larger the number of shell segments 9, the more the user's comfort is improved.
  • The user does not feel any elastic return that could cause headaches, and the helmet 1 presents a reduced global volume, while remaining easy and pleasant to put on.
  • The helmet 1 is more aesthetic and less protuberant, as its general appearance is more like that of a cap. The helmet 1 also enables the user's field of vision to be improved, as it is closer to the head.
  • Providing a whole range of helmets 1 is easy on account of all the possible combinations of materials and colours for the crown segment 9 a, the other shell segments 9, and the external envelope covering the shell segments 9, if applicable. This concept of a helmet 1 can be applied to provide stylistic and functional versions proper to each field of activity: water sports, cycling, biking, skating & roller skating, potholing, mountaineering, climbing, skiing, snowboarding, etc.
  • The invention is not limited to the different embodiments described above. As in all types of helmets, it is possible to line the inside of the helmet 1 with a draining, breathing and anti-bacterial fabric to improve the comfort of contact between the head and foam liner 7.
  • It is possible to segment the foam liner 7 into small pieces individually joined to the cap 8. It is also possible to create compartments in the foam liner 7 filled with foamed balls. The foam liner 7 thus formed then has a very great aptitude for deformation, due to its granular behaviour.
  • The shell segments 9 can be thermoformed in a single operation from a plate, then cut out with a water jet or by digitally controlled machining, and are then fixed onto the cap 8 or the strips 17.
  • To facilitate ventilation of the helmet 1, it is possible, in addition to the vents 15 of the crown segment 9 a, to perforate the different shell segments 9 with small holes and to cover them with a very open mesh type fabric or with a breathing membrane. Ventilation can also be performed at the level of the cap 8 or the strips 17, by choosing a very breathing textile.
  • It is possible to use other shapes for the shell segments 9, the cap 8 or strips 17, the structure of the helmet 1 having to allow a slight sliding between at least a part of the shell segments 9 and the foam liner 7 when the helmet 1 is fitted on the user's head, in order to optimize his/her comfort.

Claims (17)

1. Protective helmet comprising a deformable internal foam liner, a plurality of rigid external shell segments arranged on the foam liner so as to form at least one crown segment, at least one occipital segment and a plurality of transverse side segments, and joining means made of flexible material performing joining between the shell segments, helmet wherein the shell segments and the joining means made of flexible material are joined to the foam liner in such a way as to enable a slight sliding between the foam liner and at least a part of the shell segments.
2. Helmet according to claim 1, comprising at least one front segment.
3. Helmet according to claim 1, comprising at least four transverse side segments.
4. Helmet according to claim 1, comprising a headband adjustment means fixedly secured at least to the occipital segment.
5. Helmet according to claim 4, wherein the adjustment means comprise a lace joining the shell segments to one another and cooperating with a knurled knob actuating tightening and loosening of the helmet.
6. Helmet according to claim 4, wherein the adjustment means comprise a tab equipped with plurality of teeth forming a rack and designed to cooperate with a pinion fixedly secured to the occipital segment.
7. Helmet according to claim 1, comprising a textile surface covering the shell segments.
8. Helmet according to claim 1, wherein the joining means made of flexible material are formed by a cap completely covering the foam liner.
9. Helmet according to claim 8, wherein the cap comprises compartments inside which the shell segments are housed.
10. Helmet according to claim 1, wherein the joining means made of flexible material are formed by strips joining the shell segments to one another.
11. Helmet according to claim 10, wherein the strips are made of elastomer.
12. Helmet according to claim 1, wherein the flexible joining material is made from an anti-perforation fabric improving airing.
13. Helmet according to claim 1, wherein the foam liner comprises a plurality of cut-outs offset with respect to the separating gaps between the shell segments.
14. Helmet according to claim 1, wherein the foam liner comprises a plurality of thinned zones offset with respect to the separating gaps between the shell segments.
15. Helmet according to claim 1, wherein the foam liner comprises a plurality of superposed sheets forming a multi-layer structure.
16. Helmet according to claim 1, wherein the foam liner is made of polymer foam of the expanded polypropylene type presenting good compression shock-absorbing and flexion elasticity characteristics.
17. Helmet according to claim 1, comprising a plurality of additional shell segments joined to the foam liner and arranged facing the separating gaps between the shell segments.
US10/587,337 2004-01-28 2005-01-18 Semi-rigid protective helmet Abandoned US20070157370A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0400797 2004-01-28
FR0400797A FR2865356B1 (en) 2004-01-28 2004-01-28 SEMI-RIGID PROTECTION HELMET
PCT/FR2005/000111 WO2005082187A1 (en) 2004-01-28 2005-01-18 Semi-rigid protective helmet

Publications (1)

Publication Number Publication Date
US20070157370A1 true US20070157370A1 (en) 2007-07-12

Family

ID=34717465

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/587,337 Abandoned US20070157370A1 (en) 2004-01-28 2005-01-18 Semi-rigid protective helmet

Country Status (9)

Country Link
US (1) US20070157370A1 (en)
EP (1) EP1708587B1 (en)
JP (1) JP2007522352A (en)
CN (1) CN100500040C (en)
AT (1) ATE390861T1 (en)
DE (1) DE602005005786T2 (en)
ES (1) ES2304693T3 (en)
FR (1) FR2865356B1 (en)
WO (1) WO2005082187A1 (en)

Cited By (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090158506A1 (en) * 2007-12-21 2009-06-25 Harley-Davidson Motor Company Group, Inc. Liner for a protective helmet
US20090222964A1 (en) * 2007-01-26 2009-09-10 Wiles William A Advanced Combat Helmet (ACH) system replacement padding system
US20090313736A1 (en) * 2008-06-18 2009-12-24 Robert William Kocher Varying thickness Helmet for reduced weight and increased protection
US20100287687A1 (en) * 2009-05-14 2010-11-18 Chang-Hsien Ho Safety helmet structure and processing method thereof
US20110271426A1 (en) * 2007-08-20 2011-11-10 Rose Plastic Ag Industrial Impact Protection Helmet
WO2012012760A2 (en) * 2010-07-22 2012-01-26 Wingo-Princip Management, Llc Protective helmet
US20120151663A1 (en) * 2010-12-17 2012-06-21 Garry Rumbaugh Sporting helmet
US20120216338A1 (en) * 2009-07-29 2012-08-30 Philippe Arrouart Foldable protective helmet
US20130031700A1 (en) * 2011-08-01 2013-02-07 Brian Wacter Customizable Head Protection
US8533869B1 (en) * 2008-02-19 2013-09-17 Noggin Group LLC Energy absorbing helmet underwear
US8640267B1 (en) * 2012-09-14 2014-02-04 Yochanan Cohen Protective helmet
US20140075652A1 (en) * 2012-01-10 2014-03-20 Poc Ventures Protective Helmet Cap
US20140090154A1 (en) * 2012-09-28 2014-04-03 Matscitechno Licensing Company Protective headgear system
ITMI20122224A1 (en) * 2012-12-21 2014-06-22 Mako Shark Srl UNIVERSAL CRANIAL PROTECTION
WO2014124512A1 (en) * 2013-02-14 2014-08-21 Hard Knock Helmets Ltd. A sports helmet
US20140237706A1 (en) * 2013-02-25 2014-08-28 Donnie O'Conner Padded Skull Cap
US20140298571A1 (en) * 2013-03-15 2014-10-09 Playmaker Llc Three-ply padded helmet
US20140359911A1 (en) * 2011-08-26 2014-12-11 Velocity Systems Llc Versatile Protective Helmet Applique Assembly
US8911015B2 (en) 2013-03-05 2014-12-16 Yochanan Cohen Car seat
US20150157083A1 (en) * 2013-12-06 2015-06-11 Bell Sports, Inc. Multi-layer helmet and method for making the same
US20150237945A1 (en) * 2014-02-21 2015-08-27 Matscitechno Licensing Company Helmet padding system
US20150264993A1 (en) * 2014-02-21 2015-09-24 Matscitechno Licensing Company Helmet padding system
US20150282550A1 (en) * 2014-04-03 2015-10-08 Bell Sports, Inc. Adaptive fit helmet and method for fitting helmet to customer head
US9226539B2 (en) 2010-07-13 2016-01-05 Sport Maska Inc. Helmet with rigid shell and adjustable liner
WO2016004386A1 (en) * 2014-07-03 2016-01-07 Bell Sports, Inc. Flex spring helmet
US20160037850A1 (en) * 2014-08-06 2016-02-11 Thomas Lyle Benson Protective Body Covering
US20160058093A1 (en) * 2010-02-26 2016-03-03 Thl Holding Company, Llc Protective headgear with impact diffusion
US9345282B2 (en) 2011-07-27 2016-05-24 Bauer Hockey, Inc. Adjustable helmet for a hockey or lacrosse player
US9487110B2 (en) 2014-03-05 2016-11-08 Pidyon Controls Inc. Car seat
US9578917B2 (en) 2012-09-14 2017-02-28 Pidyon Controls Inc. Protective helmets
US9616782B2 (en) 2014-08-29 2017-04-11 Pidyon Controls Inc. Car seat vehicle connection system, apparatus, and method
WO2017111977A1 (en) * 2015-12-24 2017-06-29 Maloney Brad W Helmet harness
US20170273388A1 (en) * 2014-02-21 2017-09-28 Matscitechno Licensing Company Helmet padding system
US9907346B2 (en) 2012-01-10 2018-03-06 Erin Linn Hanson Protective helmet cap
US9961952B2 (en) 2015-08-17 2018-05-08 Bauer Hockey, Llc Helmet for impact protection
US10150389B2 (en) 2013-03-05 2018-12-11 Pidyon Controls Inc. Car seat and connection system
USD838922S1 (en) 2011-05-02 2019-01-22 Riddell, Inc. Football helmet
US10201208B1 (en) * 2017-07-26 2019-02-12 Ronnie Z. Bochner Foldable helmet
US10220734B2 (en) 2013-03-05 2019-03-05 Pidyon Controls Inc. Car seat
USD844255S1 (en) 2014-02-12 2019-03-26 Riddell, Inc. Football helmet
US20190090573A1 (en) * 2017-09-26 2019-03-28 Tenacious Holdings, Inc. Bump cap
US10258100B1 (en) 2012-06-18 2019-04-16 Kranos Ip Corporation Football helmet with raised plateau
US10271605B2 (en) 2007-04-16 2019-04-30 Riddell, Inc. Protective sports helmet
US10306941B2 (en) 2011-07-27 2019-06-04 Bauer Hockey, Llc Sports helmet with rotational impact protection
US10306944B1 (en) 2018-10-19 2019-06-04 Dana Ratliff Modular helmet apparatus and system
USD856601S1 (en) 2011-05-02 2019-08-13 Riddell, Inc. Football helmet
US20190269193A1 (en) * 2016-09-29 2019-09-05 AnneeLondon, Inc. Foldable Safety Helmet
US10426212B1 (en) * 2018-10-19 2019-10-01 Dana Ratliff Modular football helmet apparatus and system
US10477909B2 (en) 2013-12-19 2019-11-19 Bauer Hockey, Llc Helmet for impact protection
USRE47747E1 (en) 2007-08-17 2019-12-03 Bauer Hockey, Llc Adjustable hockey helmet
US20190387826A1 (en) * 2018-06-22 2019-12-26 Nick M. Dunton Energy Absorption System for a Helmet
US10582737B2 (en) 2013-02-12 2020-03-10 Riddell, Inc. Football helmet with impact attenuation system
EP3662774A1 (en) * 2018-12-05 2020-06-10 Matscitechno Licensing Company Helmet padding system
EP3537910A4 (en) * 2016-11-08 2020-06-17 JMH Consulting Group, LLC Helmet
US10721987B2 (en) 2014-10-28 2020-07-28 Bell Sports, Inc. Protective helmet
US10813403B2 (en) 2018-11-01 2020-10-27 Kranos Ip Corporation Football helmet having exceptional impact performance
US10874162B2 (en) 2011-09-09 2020-12-29 Riddell, Inc. Protective sports helmet
US10905187B1 (en) * 2020-03-30 2021-02-02 Gwenventions, Llc Collapsible helmet
US10948898B1 (en) 2013-01-18 2021-03-16 Bell Sports, Inc. System and method for custom forming a protective helmet for a customer's head
USD917101S1 (en) 2018-09-26 2021-04-20 Dana Ratliff Football helmet
US11027186B2 (en) * 2015-03-17 2021-06-08 Major League Baseball Properties, Inc. Protective headgear for sports participants, especially baseball fielders
USD927084S1 (en) 2018-11-22 2021-08-03 Riddell, Inc. Pad member of an internal padding assembly of a protective sports helmet
US20210307441A1 (en) * 2016-09-01 2021-10-07 Adrienne Yeung Headband with impact protection
US20210315306A1 (en) * 2017-11-01 2021-10-14 Anti Ordinary Pty Ltd Impact protection system
CN113520689A (en) * 2021-07-08 2021-10-22 曲靖市妇幼保健院 Skull correction device for preventing and treating newborn infants
US11167198B2 (en) 2018-11-21 2021-11-09 Riddell, Inc. Football helmet with components additively manufactured to manage impact forces
US11191316B2 (en) 2017-04-26 2021-12-07 Fend Corp. Collapsible helmet
US11213736B2 (en) 2016-07-20 2022-01-04 Riddell, Inc. System and methods for designing and manufacturing a bespoke protective sports helmet
EP3624625B1 (en) 2017-05-19 2022-03-09 Mips AB Helmet
US20220087355A1 (en) * 2019-03-14 2022-03-24 Socovar L.P. Helmet with padding arrangement
US20220095737A1 (en) * 2017-01-26 2022-03-31 Bell Sports, Inc. Helmet comprising a segmented shell
US11311060B2 (en) 2014-01-06 2022-04-26 Lisa Ferrara Composite devices and methods for providing protection against traumatic tissue injury
KR20220081045A (en) * 2020-12-08 2022-06-15 이유미 Foldable Helmet
US11399589B2 (en) 2018-08-16 2022-08-02 Riddell, Inc. System and method for designing and manufacturing a protective helmet tailored to a selected group of helmet wearers
US11540577B2 (en) 2020-03-12 2023-01-03 Matscitechno Licensing Company Helmet system
US11540578B2 (en) 2020-03-12 2023-01-03 Matscitechno Licensing Company Helmet system
US11540579B2 (en) * 2020-11-06 2023-01-03 Vault Protective Innovations, Inc. Energy dissipating protective gear
US11659882B2 (en) * 2014-02-21 2023-05-30 Matscitechno Licensing Company Helmet padding system
US11730222B2 (en) 2014-02-21 2023-08-22 Matscitechno Licensing Company Helmet padding system
US11744312B2 (en) 2014-02-21 2023-09-05 Matscitechno Licensing Company Helmet padding system
WO2023186236A1 (en) * 2022-04-01 2023-10-05 Newton Rider Aps Foldable helmet
US20230389638A1 (en) * 2022-06-06 2023-12-07 Tenacious Holdings, Inc. Headwear Assembly
US11839254B2 (en) 2017-10-19 2023-12-12 Mips Ab Helmet

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2006317514B2 (en) * 2005-11-23 2010-11-25 VHA Holdings Pty Limited A protective helmet
FR2894784B1 (en) 2005-12-15 2008-07-18 Pjdo Soc Par Actions Simplifie FOLDING PROTECTIVE HELMET
DE102009043796B4 (en) 2009-09-30 2017-09-14 Korbinian Fertig Helmet with a shockproof helmet shell
TWI507142B (en) * 2010-05-04 2015-11-11 Easton Baseball Softball Inc Helmet for baseball pitchers and fielders
US20130067645A1 (en) * 2011-09-16 2013-03-21 Easton Sports, Inc. Adjustable sports helmet
JP6715846B2 (en) * 2014-12-23 2020-07-01 サフィーロ・ソシエタ・アツィオナリア・ファブリカ・イタリアナ・ラボラツィオーネ・オッチアリ・エス・ピー・エー Protective helmet for sports, especially when skiing
AU2017228415B2 (en) * 2016-03-04 2019-11-21 Wavecel, Llc Protective liner for helmets and other articles
US10779601B2 (en) 2016-03-17 2020-09-22 Mips Ab Helmet, liner for a helmet, comfort padding for a helmet and connector
AT521073B1 (en) * 2018-04-04 2020-03-15 Gregfors Og Ventilation device for a helmet
US11849793B2 (en) * 2019-03-29 2023-12-26 Bell Sports, Inc. Flexible slip plane for helmet energy management liner
IT202000000052A1 (en) * 2020-01-07 2021-07-07 Francesco Rea Local compression helmet
US11583024B2 (en) 2020-12-08 2023-02-21 LIFT Airborne Technologies LLC Helmet fit system

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3087166A (en) * 1960-12-06 1963-04-30 Stall & Dean Mfg Company Hockey helmet
US3197784A (en) * 1962-09-04 1965-08-03 Carlisle Res And Dev Corp Segmented helmet
US3208080A (en) * 1964-03-30 1965-09-28 Hirsch Arthur Ernest Protective helmet
US3784984A (en) * 1972-03-20 1974-01-15 Gentex Corp Headgear structure
US4404690A (en) * 1981-08-21 1983-09-20 Amer Sport International Inc. Hockey helmet
US4856119A (en) * 1987-08-01 1989-08-15 Romer Gmbh Helmet with three-point chin strap
US5012533A (en) * 1989-04-04 1991-05-07 K. W. Hochschorner Gmbh Helmet
US5515546A (en) * 1994-09-14 1996-05-14 Shifrin; Roy Foldable padded helmet
US5544367A (en) * 1994-09-01 1996-08-13 March, Ii; Richard W. Flexible helmet
US5661854A (en) * 1994-09-01 1997-09-02 March, Ii; Richard W. Flexible helmet
US6088840A (en) * 1999-02-02 2000-07-18 Im; Sang Jun Bicolor reversible sparring headgear
US6154889A (en) * 1998-02-20 2000-12-05 Team Wendy, Llc Protective helmet
US20020023290A1 (en) * 1998-09-25 2002-02-28 Sportscope Inc. Insert-molded helmet

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5435781Y2 (en) * 1973-04-06 1979-10-30
JPS5838746U (en) * 1981-09-04 1983-03-14 美津濃株式会社 hat interior helmet
DE8702777U1 (en) * 1987-02-24 1987-04-02 Roemer Gmbh, 7910 Neu-Ulm, De
JP2811308B2 (en) * 1988-07-18 1998-10-15 本田技研工業 株式会社 Helmet
JP2718879B2 (en) * 1993-08-09 1998-02-25 大助 濱野 Bulletproof vest
JP3101908B2 (en) * 1996-05-30 2000-10-23 昭和ゴム機材株式会社 Size adjustment band
SE9702415L (en) * 1997-06-25 1998-12-26 Starflex Ab Protective helmet and methods for manufacturing part therein
WO1999011152A1 (en) * 1997-09-03 1999-03-11 Sean Cayless Protective wearing article, for example helmet
DE19936368C2 (en) * 1999-08-03 2003-02-20 Klaus-Dieter Wegner helmet
CA2290324C (en) * 1999-11-24 2005-05-24 Bauer Nike Hockey Inc. Adjustable protective helmet

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3087166A (en) * 1960-12-06 1963-04-30 Stall & Dean Mfg Company Hockey helmet
US3197784A (en) * 1962-09-04 1965-08-03 Carlisle Res And Dev Corp Segmented helmet
US3208080A (en) * 1964-03-30 1965-09-28 Hirsch Arthur Ernest Protective helmet
US3784984A (en) * 1972-03-20 1974-01-15 Gentex Corp Headgear structure
US4404690A (en) * 1981-08-21 1983-09-20 Amer Sport International Inc. Hockey helmet
US4856119A (en) * 1987-08-01 1989-08-15 Romer Gmbh Helmet with three-point chin strap
US5012533A (en) * 1989-04-04 1991-05-07 K. W. Hochschorner Gmbh Helmet
US5544367A (en) * 1994-09-01 1996-08-13 March, Ii; Richard W. Flexible helmet
US5661854A (en) * 1994-09-01 1997-09-02 March, Ii; Richard W. Flexible helmet
US5515546A (en) * 1994-09-14 1996-05-14 Shifrin; Roy Foldable padded helmet
US6154889A (en) * 1998-02-20 2000-12-05 Team Wendy, Llc Protective helmet
US20020023290A1 (en) * 1998-09-25 2002-02-28 Sportscope Inc. Insert-molded helmet
US6088840A (en) * 1999-02-02 2000-07-18 Im; Sang Jun Bicolor reversible sparring headgear

Cited By (146)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090222964A1 (en) * 2007-01-26 2009-09-10 Wiles William A Advanced Combat Helmet (ACH) system replacement padding system
US7765622B2 (en) * 2007-01-26 2010-08-03 Wiles William A Advanced combat helmet (ACH) system replacement padding system
US10561193B2 (en) 2007-04-16 2020-02-18 Riddell, Inc. Protective sports helmet
US10271605B2 (en) 2007-04-16 2019-04-30 Riddell, Inc. Protective sports helmet
USRE48769E1 (en) 2007-08-17 2021-10-12 Bauer Hockey, Llc Adjustable hockey helmet
USRE48048E1 (en) 2007-08-17 2020-06-16 Bauer Hockey, Llc Adjustable hockey helmet
USRE49616E1 (en) 2007-08-17 2023-08-22 Bauer Hockey, Llc Adjustable hockey helmet
USRE47747E1 (en) 2007-08-17 2019-12-03 Bauer Hockey, Llc Adjustable hockey helmet
US20110271426A1 (en) * 2007-08-20 2011-11-10 Rose Plastic Ag Industrial Impact Protection Helmet
US9642409B2 (en) * 2007-08-20 2017-05-09 Rose Plastic Ag Industrial impact protection helmet
US20090158506A1 (en) * 2007-12-21 2009-06-25 Harley-Davidson Motor Company Group, Inc. Liner for a protective helmet
US8533869B1 (en) * 2008-02-19 2013-09-17 Noggin Group LLC Energy absorbing helmet underwear
US20090313736A1 (en) * 2008-06-18 2009-12-24 Robert William Kocher Varying thickness Helmet for reduced weight and increased protection
US8782818B2 (en) * 2009-05-14 2014-07-22 Chang-Hsien Ho Safety helmet structure and processing method thereof
US20100287687A1 (en) * 2009-05-14 2010-11-18 Chang-Hsien Ho Safety helmet structure and processing method thereof
US9554611B2 (en) * 2009-07-29 2017-01-31 Overade Foldable protective helmet
US20120216338A1 (en) * 2009-07-29 2012-08-30 Philippe Arrouart Foldable protective helmet
US10681952B2 (en) 2010-02-26 2020-06-16 Thl Holding Company, Llc Protective headgear with impact diffusion
US20160058093A1 (en) * 2010-02-26 2016-03-03 Thl Holding Company, Llc Protective headgear with impact diffusion
US9943746B2 (en) * 2010-02-26 2018-04-17 The Holding Company, Llc Protective headgear with impact diffusion
US9226539B2 (en) 2010-07-13 2016-01-05 Sport Maska Inc. Helmet with rigid shell and adjustable liner
US10736372B2 (en) 2010-07-22 2020-08-11 Kanos Ip Corporation Impact attenuation system for a protective helmet
US10448691B2 (en) 2010-07-22 2019-10-22 Kranos Ip Corporation Football helmet with movable flexible section
US9498014B2 (en) 2010-07-22 2016-11-22 Kranos Ip Corporation Protective helmet
US10357075B2 (en) 2010-07-22 2019-07-23 Kranos Ip Corporation Impact attenuation system for a protective helmet
US10470515B2 (en) 2010-07-22 2019-11-12 Kranos Ip Corporation Football helmet with pressable front section
US10470516B2 (en) 2010-07-22 2019-11-12 Kranos Ip Corporation Impact attenuation system for a protective helmet
WO2012012760A2 (en) * 2010-07-22 2012-01-26 Wingo-Princip Management, Llc Protective helmet
WO2012012760A3 (en) * 2010-07-22 2014-03-20 Wingo-Princip Management, Llc Protective helmet
US10285466B2 (en) 2010-07-22 2019-05-14 Kranos Ip Corporation Football helmet with shell section defined by a non-linear channel
US10470514B2 (en) 2010-07-22 2019-11-12 Kranos Ip Corporation Football helmet with movable shell segment
US8966671B2 (en) * 2010-12-17 2015-03-03 Garry Rumbaugh Sporting helmet with outer pads
US20120151663A1 (en) * 2010-12-17 2012-06-21 Garry Rumbaugh Sporting helmet
USD856601S1 (en) 2011-05-02 2019-08-13 Riddell, Inc. Football helmet
USD856600S1 (en) 2011-05-02 2019-08-13 Riddell, Inc. Football helmet
USD838922S1 (en) 2011-05-02 2019-01-22 Riddell, Inc. Football helmet
US9345282B2 (en) 2011-07-27 2016-05-24 Bauer Hockey, Inc. Adjustable helmet for a hockey or lacrosse player
US11375766B2 (en) 2011-07-27 2022-07-05 Bauer Hockey, Llc Adjustable helmet for a hockey or lacrosse player
US10334904B2 (en) 2011-07-27 2019-07-02 Bauer Hockey, Llc Sports helmet with rotational impact protection
US10306941B2 (en) 2011-07-27 2019-06-04 Bauer Hockey, Llc Sports helmet with rotational impact protection
US10292449B2 (en) 2011-07-27 2019-05-21 Bauer Hockey, Llc Adjustable helmet for a hockey or lacrosse player
US20130031700A1 (en) * 2011-08-01 2013-02-07 Brian Wacter Customizable Head Protection
US10178889B2 (en) * 2011-08-01 2019-01-15 Brian Wacter Customizable head protection
US9557144B2 (en) * 2011-08-26 2017-01-31 Velocity Systems Llc Versatile protective helmet applique assembly
US9222758B2 (en) 2011-08-26 2015-12-29 Velocity Systems, Llc Versatile protective helmet appliqué assembly
US20140359911A1 (en) * 2011-08-26 2014-12-11 Velocity Systems Llc Versatile Protective Helmet Applique Assembly
US11503872B2 (en) 2011-09-09 2022-11-22 Riddell, Inc. Protective sports helmet
US10874162B2 (en) 2011-09-09 2020-12-29 Riddell, Inc. Protective sports helmet
US11311067B2 (en) 2011-09-09 2022-04-26 Riddell, Inc. Protective sports helmet
US11064752B2 (en) 2012-01-10 2021-07-20 Guardian Innovations, Llc Protective helmet cap
US20140075652A1 (en) * 2012-01-10 2014-03-20 Poc Ventures Protective Helmet Cap
US9314061B2 (en) * 2012-01-10 2016-04-19 Guardian Innovations, Llc Protective helmet cap
US9907346B2 (en) 2012-01-10 2018-03-06 Erin Linn Hanson Protective helmet cap
US10258100B1 (en) 2012-06-18 2019-04-16 Kranos Ip Corporation Football helmet with raised plateau
US10376011B2 (en) 2012-06-18 2019-08-13 Kranos Ip Corporation Football helmet with raised plateau
US9578917B2 (en) 2012-09-14 2017-02-28 Pidyon Controls Inc. Protective helmets
US8640267B1 (en) * 2012-09-14 2014-02-04 Yochanan Cohen Protective helmet
US20140090154A1 (en) * 2012-09-28 2014-04-03 Matscitechno Licensing Company Protective headgear system
US10149511B2 (en) * 2012-09-28 2018-12-11 Matscitechno Licensing Company Protective headgear system
EP2900099A4 (en) * 2012-09-28 2017-03-08 Matscitechno Licensing Company Protective headgear systems
WO2014052114A1 (en) 2012-09-28 2014-04-03 Matscitechno Licensing Company Protective headgear systems
WO2014097212A1 (en) * 2012-12-21 2014-06-26 Mako Shark S.R.L. Cranial protection
ITMI20122224A1 (en) * 2012-12-21 2014-06-22 Mako Shark Srl UNIVERSAL CRANIAL PROTECTION
US11419383B2 (en) 2013-01-18 2022-08-23 Riddell, Inc. System and method for custom forming a protective helmet for a customer's head
US11889883B2 (en) 2013-01-18 2024-02-06 Bell Sports, Inc. System and method for forming a protective helmet for a customer's head
US10948898B1 (en) 2013-01-18 2021-03-16 Bell Sports, Inc. System and method for custom forming a protective helmet for a customer's head
US11910859B2 (en) * 2013-02-12 2024-02-27 Riddell, Inc. Football helmet with impact attenuation system
US20200205506A1 (en) * 2013-02-12 2020-07-02 Riddell, Inc. Football helmet with impact attenuation system
US10582737B2 (en) 2013-02-12 2020-03-10 Riddell, Inc. Football helmet with impact attenuation system
WO2014124512A1 (en) * 2013-02-14 2014-08-21 Hard Knock Helmets Ltd. A sports helmet
US20140237706A1 (en) * 2013-02-25 2014-08-28 Donnie O'Conner Padded Skull Cap
US10220734B2 (en) 2013-03-05 2019-03-05 Pidyon Controls Inc. Car seat
US10150389B2 (en) 2013-03-05 2018-12-11 Pidyon Controls Inc. Car seat and connection system
US8911015B2 (en) 2013-03-05 2014-12-16 Yochanan Cohen Car seat
US10829013B2 (en) 2013-03-05 2020-11-10 Pidyon Controls Inc. Car seat and connection system
US10500990B2 (en) 2013-03-05 2019-12-10 Pidyon Controls Inc. Car seat
US9775394B2 (en) * 2013-03-15 2017-10-03 Playmaker Llc Three-ply padded helmet
US20140298571A1 (en) * 2013-03-15 2014-10-09 Playmaker Llc Three-ply padded helmet
US11871809B2 (en) 2013-12-06 2024-01-16 Bell Sports, Inc. Multi-layer helmet and method for making the same
US11291263B2 (en) 2013-12-06 2022-04-05 Bell Sports, Inc. Multi-layer helmet and method for making the same
US10362829B2 (en) * 2013-12-06 2019-07-30 Bell Sports, Inc. Multi-layer helmet and method for making the same
US20150157083A1 (en) * 2013-12-06 2015-06-11 Bell Sports, Inc. Multi-layer helmet and method for making the same
US10477909B2 (en) 2013-12-19 2019-11-19 Bauer Hockey, Llc Helmet for impact protection
US11425951B2 (en) 2013-12-19 2022-08-30 Bauer Hockey Llc Helmet for impact protection
US11311060B2 (en) 2014-01-06 2022-04-26 Lisa Ferrara Composite devices and methods for providing protection against traumatic tissue injury
USD927078S1 (en) 2014-02-12 2021-08-03 Riddell, Inc. Football helmet
USD844255S1 (en) 2014-02-12 2019-03-26 Riddell, Inc. Football helmet
US10993496B2 (en) * 2014-02-21 2021-05-04 Matscitechno Licensing Company Helmet padding system
US20170273388A1 (en) * 2014-02-21 2017-09-28 Matscitechno Licensing Company Helmet padding system
US20150237945A1 (en) * 2014-02-21 2015-08-27 Matscitechno Licensing Company Helmet padding system
US11659882B2 (en) * 2014-02-21 2023-05-30 Matscitechno Licensing Company Helmet padding system
US20150264993A1 (en) * 2014-02-21 2015-09-24 Matscitechno Licensing Company Helmet padding system
US11253771B2 (en) * 2014-02-21 2022-02-22 Matscitechno Licensing Company Helmet padding system
US11730222B2 (en) 2014-02-21 2023-08-22 Matscitechno Licensing Company Helmet padding system
US11744312B2 (en) 2014-02-21 2023-09-05 Matscitechno Licensing Company Helmet padding system
US9487110B2 (en) 2014-03-05 2016-11-08 Pidyon Controls Inc. Car seat
US20150282550A1 (en) * 2014-04-03 2015-10-08 Bell Sports, Inc. Adaptive fit helmet and method for fitting helmet to customer head
EP3116339B1 (en) * 2014-04-03 2021-04-07 Bell Sports Inc. Adaptive fit helmet and method for fitting helmet to customer head
WO2016004386A1 (en) * 2014-07-03 2016-01-07 Bell Sports, Inc. Flex spring helmet
US9907347B2 (en) 2014-07-03 2018-03-06 Bell Sports, Inc. Flex spring helmet
US20160037850A1 (en) * 2014-08-06 2016-02-11 Thomas Lyle Benson Protective Body Covering
US9616782B2 (en) 2014-08-29 2017-04-11 Pidyon Controls Inc. Car seat vehicle connection system, apparatus, and method
US11638457B2 (en) 2014-10-28 2023-05-02 Bell Sports, Inc. Protective helmet
US10721987B2 (en) 2014-10-28 2020-07-28 Bell Sports, Inc. Protective helmet
US11027186B2 (en) * 2015-03-17 2021-06-08 Major League Baseball Properties, Inc. Protective headgear for sports participants, especially baseball fielders
US11089833B2 (en) 2015-08-17 2021-08-17 Bauer Hockey Llc Helmet for impact protection
US11638458B2 (en) 2015-08-17 2023-05-02 Bauer Hockey Llc Helmet for impact protection
US9961952B2 (en) 2015-08-17 2018-05-08 Bauer Hockey, Llc Helmet for impact protection
WO2017111977A1 (en) * 2015-12-24 2017-06-29 Maloney Brad W Helmet harness
US11712615B2 (en) 2016-07-20 2023-08-01 Riddell, Inc. System and method of assembling a protective sports helmet
US11213736B2 (en) 2016-07-20 2022-01-04 Riddell, Inc. System and methods for designing and manufacturing a bespoke protective sports helmet
US20210307441A1 (en) * 2016-09-01 2021-10-07 Adrienne Yeung Headband with impact protection
US20190269193A1 (en) * 2016-09-29 2019-09-05 AnneeLondon, Inc. Foldable Safety Helmet
EP3537910A4 (en) * 2016-11-08 2020-06-17 JMH Consulting Group, LLC Helmet
US11229255B2 (en) 2016-11-08 2022-01-25 JMH Consulting Group, LLC Helmet
US11839257B2 (en) * 2017-01-26 2023-12-12 Bell Sports, Inc. Helmet comprising a segmented shell
US20220095737A1 (en) * 2017-01-26 2022-03-31 Bell Sports, Inc. Helmet comprising a segmented shell
US11191316B2 (en) 2017-04-26 2021-12-07 Fend Corp. Collapsible helmet
US11589634B2 (en) 2017-04-26 2023-02-28 Fend Corp. Collapsible helmet
US11678709B2 (en) 2017-05-19 2023-06-20 Mips Ab Helmet
EP3624625B1 (en) 2017-05-19 2022-03-09 Mips AB Helmet
US10201208B1 (en) * 2017-07-26 2019-02-12 Ronnie Z. Bochner Foldable helmet
US20190090573A1 (en) * 2017-09-26 2019-03-28 Tenacious Holdings, Inc. Bump cap
US10779599B2 (en) * 2017-09-26 2020-09-22 Tenacious Holdings, Inc. Bump cap
US11839254B2 (en) 2017-10-19 2023-12-12 Mips Ab Helmet
US20210315306A1 (en) * 2017-11-01 2021-10-14 Anti Ordinary Pty Ltd Impact protection system
US20190387826A1 (en) * 2018-06-22 2019-12-26 Nick M. Dunton Energy Absorption System for a Helmet
US11317672B2 (en) * 2018-06-22 2022-05-03 Nick M. Dunton Energy absorption system for a helmet
US11399589B2 (en) 2018-08-16 2022-08-02 Riddell, Inc. System and method for designing and manufacturing a protective helmet tailored to a selected group of helmet wearers
USD917101S1 (en) 2018-09-26 2021-04-20 Dana Ratliff Football helmet
US10306944B1 (en) 2018-10-19 2019-06-04 Dana Ratliff Modular helmet apparatus and system
US10426212B1 (en) * 2018-10-19 2019-10-01 Dana Ratliff Modular football helmet apparatus and system
US10813403B2 (en) 2018-11-01 2020-10-27 Kranos Ip Corporation Football helmet having exceptional impact performance
US11167198B2 (en) 2018-11-21 2021-11-09 Riddell, Inc. Football helmet with components additively manufactured to manage impact forces
USD927084S1 (en) 2018-11-22 2021-08-03 Riddell, Inc. Pad member of an internal padding assembly of a protective sports helmet
EP3662774A1 (en) * 2018-12-05 2020-06-10 Matscitechno Licensing Company Helmet padding system
US20220087355A1 (en) * 2019-03-14 2022-03-24 Socovar L.P. Helmet with padding arrangement
US11540578B2 (en) 2020-03-12 2023-01-03 Matscitechno Licensing Company Helmet system
US11540577B2 (en) 2020-03-12 2023-01-03 Matscitechno Licensing Company Helmet system
US10905187B1 (en) * 2020-03-30 2021-02-02 Gwenventions, Llc Collapsible helmet
US11540579B2 (en) * 2020-11-06 2023-01-03 Vault Protective Innovations, Inc. Energy dissipating protective gear
KR102463746B1 (en) * 2020-12-08 2022-11-04 이유미 Foldable Helmet
KR20220081045A (en) * 2020-12-08 2022-06-15 이유미 Foldable Helmet
CN113520689A (en) * 2021-07-08 2021-10-22 曲靖市妇幼保健院 Skull correction device for preventing and treating newborn infants
WO2023186236A1 (en) * 2022-04-01 2023-10-05 Newton Rider Aps Foldable helmet
US20230389638A1 (en) * 2022-06-06 2023-12-07 Tenacious Holdings, Inc. Headwear Assembly

Also Published As

Publication number Publication date
ATE390861T1 (en) 2008-04-15
DE602005005786T2 (en) 2009-04-09
WO2005082187A1 (en) 2005-09-09
FR2865356B1 (en) 2007-01-12
CN1913796A (en) 2007-02-14
CN100500040C (en) 2009-06-17
FR2865356A1 (en) 2005-07-29
DE602005005786D1 (en) 2008-05-15
EP1708587B1 (en) 2008-04-02
EP1708587A1 (en) 2006-10-11
JP2007522352A (en) 2007-08-09
ES2304693T3 (en) 2008-10-16

Similar Documents

Publication Publication Date Title
US20070157370A1 (en) Semi-rigid protective helmet
US8898819B2 (en) Form-fitting protective headwear
US20140007324A1 (en) Soft helmet incorporating rigid panels
US9247778B2 (en) Form-fitting protective headwear
US6883183B2 (en) Protective sport helmet
US5946734A (en) Head protector apparatus
US11027186B2 (en) Protective headgear for sports participants, especially baseball fielders
US5734994A (en) Ventilated safety helmet with progressively crushable liner
US6159324A (en) Process for manufacturing protective helmets
US9226539B2 (en) Helmet with rigid shell and adjustable liner
US8973171B2 (en) Form-fitting protective headwear
US20060143807A1 (en) Sports helmet having slotted padding for receiving the ears of a user
KR102648046B1 (en) Safety helmet with adjustable comfort liner
JP2017507255A (en) Multibody helmet construction and strap attachment method
JP2017509809A (en) Adaptive fit helmet and method for fitting a helmet to a customer's head
US20170245579A1 (en) Helmet with chin cup
CN111565805B (en) Impact protection system
US20200375296A1 (en) Protective headwear
WO2010000102A1 (en) Lighting helmet
US6862750B1 (en) Soft strap helmet stabilizer
EP2605674B1 (en) Form-fitting protective headwear
WO2002017740A1 (en) Helmet with compressable covering
WO2013039559A1 (en) Form-fitting protective headwear

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION