US20070151500A1 - Pontoon and a carrier element for pontoon - Google Patents
Pontoon and a carrier element for pontoon Download PDFInfo
- Publication number
- US20070151500A1 US20070151500A1 US10/558,904 US55890404A US2007151500A1 US 20070151500 A1 US20070151500 A1 US 20070151500A1 US 55890404 A US55890404 A US 55890404A US 2007151500 A1 US2007151500 A1 US 2007151500A1
- Authority
- US
- United States
- Prior art keywords
- pontoon
- carrier
- carrier element
- frame
- carrier elements
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B35/00—Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
- B63B35/34—Pontoons
- B63B35/38—Rigidly-interconnected pontoons
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B3/00—Hulls characterised by their structure or component parts
- B63B3/02—Hulls assembled from prefabricated sub-units
- B63B3/04—Hulls assembled from prefabricated sub-units with permanently-connected sub-units
- B63B3/06—Hulls assembled from prefabricated sub-units with permanently-connected sub-units the sub-units being substantially identical
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B5/00—Hulls characterised by their construction of non-metallic material
- B63B5/24—Hulls characterised by their construction of non-metallic material made predominantly of plastics
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B2231/00—Material used for some parts or elements, or for particular purposes
- B63B2231/40—Synthetic materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B2231/00—Material used for some parts or elements, or for particular purposes
- B63B2231/40—Synthetic materials
- B63B2231/50—Foamed synthetic materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B59/00—Hull protection specially adapted for vessels; Cleaning devices specially adapted for vessels
- B63B59/02—Fenders integral with waterborne vessels or specially adapted therefor, e.g. fenders forming part of the hull or incorporated in the hull; Rubbing-strakes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B73/00—Building or assembling vessels or marine structures, e.g. hulls or offshore platforms
- B63B73/40—Building or assembling vessels or marine structures, e.g. hulls or offshore platforms characterised by joining methods
Definitions
- the present invention relates to a pontoon for use in a lake, pool or corresponding water area, and comprising a carrier element for realising buoyancy and an upwardly facing support surface for carrying a load.
- the present invention also relates to a carrier element for a pontoon.
- Pontoons are known in a huge number of different fields of use, such as for bathing landing stages, mooring boats, fishing and other activities where the wish is for ready access to water of a certain depth.
- the pontoons are moored in lakes, seas, pools and similar waterways. They may be disposed beside beaches, piers or fixed landing stages, but may also be placed freely by being anchored with the aid of an anchor or other weight which causes the pontoon to remain in the desired position in the water.
- the advantages inherent in pontoons are numerous: they are easy to move, are independent of the structure of the bottom, are substantially insensitive to differences in the water level, since they always float on the surface, and they can always be moved and rebuilt for realising a different pontoon structure.
- a further disadvantage is that the assembly of pontoons is quite a complicated procedure. They are often built at factories, which contributes to the large space requirements on transport, since such pontoons are generally transported in the finished state.
- the pontoon is characterised in that the carrier element and the support surface are of one piece manufacture with one another.
- the carrier element the object of the present invention is attained wherein it has a shell and foamed material disposed therein.
- FIG. 1 is a perspective view of a pontoon according to the present invention
- FIG. 2 is a top plan view of a carrier element included in the pontoon of FIG. 1 ;
- FIG. 3 is a straight side elevation of the carrier element of FIG. 2 ;
- FIG. 4 is a sectional view of a frame included in the pontoon according to the present invention.
- FIG. 5 is a perspective view of a corner element included in the frame.
- FIG. 1 shows a pontoon 1 according to the present invention.
- the pontoon is constructed from a number of buoyant bodies or carrier elements 2 which are united by at least two longitudinal profile bodies, but preferably by a circumferential, complete frame 3 .
- the carrier elements 2 possess the buoyancy which entails that the pontoon 1 floats on the surface of the water and is capable of carrying a load, for example people on the pontoon.
- the carrier elements 2 are mutually identical and are replaceable. In the illustrated embodiment, they are five in number, but this number is optional depending on the desired length of the pontoon 1 .
- the carrier elements 2 are intended to serve an upwardly facing support surface 9 at the same time as they realise the requisite buoyancy of the pontoon 1 .
- the frame or the profile bodies are flexurally rigid in the vertical direction when the pontoon is in use, so that the entire pontoon moves in the water as a rigid unit.
- the carrier elements 2 are provided with engagement members for cooperation with the surrounding frame 3 or the longitudinal profile bodies.
- the engagement members are not visible in FIG. 1 , but are concealed by the frame 3 since they are accommodated in it.
- the frame 3 includes a profile which, in the preferred embodiment, is extruded and is manufactured, for example, from aluminium or plastic.
- the frame 3 has two longitudinal sides 4 and two short sides 5 which are built up from the same profile.
- the longitudinal sides 4 and the short sides 5 are united in the corners by specific corner elements 6 which, in the preferred embodiment, are manufactured from plastic.
- specific corner elements 6 which, in the preferred embodiment, are manufactured from plastic.
- other production materials such as aluminium are conceivable.
- the frame 3 is interconnected to the carrier elements 2 preferably in that the carrier elements 2 display specific projections which are accommodated in corresponding recesses on the inside of the frame 3 . With the aid of the frame 3 , a torsionally rigid arrangement is realised of the individual carrier elements 2 .
- the frame 3 further serves for securing anchorage members 7 in which the pontoon 1 may there be secured to some other structure or other objects such as, for example, small craft which may be moored to the pontoon 1 .
- FIG. 2 shows an individual carrier element 2 straight from above.
- the engagement members 8 which cooperate with the inside of the frame 3 are visible.
- the engagement members 8 are in the form of projections which extend over a substantial part of the short sides of the carrier elements 2 .
- the engagement members 8 may naturally be given a different extent, but should be quite elongate in order to reduce the risk of twisting of the carrier element 2 in relation to the frame 3 and thereby causing instability in the pontoon 1 .
- an increased length of the engagement members 8 results in increased rigidity in the pontoon 1 as a whole.
- the carrier element 2 further has a support surface 9 which is intended to directly support a load, for example a person walking on the pontoon 1 .
- a support surface 9 which is intended to directly support a load, for example a person walking on the pontoon 1 .
- the support surface 9 is further advantageously provided with some form of friction-increasing surface structural pattern for reducing the risk of slipping. Such patterns may have very different appearances, and for the sake of simplicity they are not shown in FIG. 2 .
- the carrier element 2 has an outer shell which is of one piece manufacture, preferably by blow moulding or rotation casting. As a result, the carrier element will be substantially without joints, with the exception of an aperture for the introduction of a filler material.
- filler material of low density in the form of a continuous foamed element.
- filler material are expanded polystyrene or polyurethane foam.
- the foamed element On the expansion of the filler material so that the foamed element is formed, this will have a surface layer, a so-called casting skin, which imparts to the foamed element superior mechanical strength and in particular torsional rigidity.
- the foamed element interiorly in the outer skin supports this from inside so that it will display superior mechanical strength and may also resist spot loadings from the outside without buckling inwards.
- the superior strength of the carrier element 2 contributes to a great extent to the pontoon 1 being capable of being built up without any specific carrying surface needing to be provided on top of the carrier elements, even though the function of the frame 3 is also important for ensuring torsional rigidity between the carrier elements 2 .
- a feature common to those materials that are employed as filler materials is that they have low density and preferably closed cells.
- each respective carrier element 2 has proved to be able to carry loads of about 120 kg. These levels naturally depend on the production material in and size of the carrier elements 2 .
- FIG. 3 shows the carrier element 2 straight from the side, i.e. in the direction of the arrow A in FIG. 2 .
- the cross sectional profile of the projections 8 is apparent. In such instance, it will be seen that the profile is undercut for realising a reliable anchorage with the frame 3 .
- the thickness of the carrier elements 2 i.e. their extent in the vertical direction, is of the same order of magnitude as the height of the frame 3 .
- the profile included in the frame 3 is shown in cross section in FIG. 4 . As was mentioned previously, the profile is particularly well suited for extrusion, for example in plastic or aluminium.
- the frame 3 has an undercut groove 10 for accommodating the elongate projections 8 of the carrier elements 2 .
- the projections 8 are intended to be slid into the undercut groove 10 , but depending on material properties in both the carrier elements 2 and the frame 3 , a snap action locking may also come into consideration.
- the dimensioning of the undercut in the groove 10 and the projections 8 is also decisive as to whether a snap action locking is possible.
- a longitudinal upper groove 11 In the upper region of the frame 3 , there is provided a longitudinal upper groove 11 .
- the groove 11 serves for receiving and accommodating screws so that extra equipment may be provided anywhere whatever along the length of the frame 3 .
- extra equipment may be devices for mooring boats, simple taffrails and handrails and means for interconnection with other pontoons 1 provided with frames.
- the screw groove or pocket 11 further displays a laterally disposed space 14 which functions as a drawing groove for a strip disposed therein.
- Such a strip may be provided either for decorative purposes or also for interconnection with a substantially parallel groove on another pontoon 1 which is positioned adjacent the first pontoon.
- a lower longitudinal groove 12 which, like the groove 11 , functions as a screw pocket for disposing equipment on the frame.
- Such possible equipment is advantageously secured in position with the aid of screws which engage in both the upper screw pocket 11 and the lower screw pocket 12 .
- a longitudinal groove 13 This serves as a countersink for parts such as the anchorage means 7 which are disposed on the outside of the frame 3 . Consequently, the risk is reduced that people sustain injuries on projecting parts such as screw heads, fittings or the like.
- FIG. 5 is a close up view of a corner element 6 included in the frame 3 , this element being disposed between the longitudinal sides 4 and the short sides 5 in the frame 3 .
- the corner element 6 In the mounted position, the corner element 6 has an outwardly facing corner portion 15 which forms a unitary transition between a longitudinal side 4 and a short-side 5 in the frame 3 .
- the corner element 6 further displays two more powerful arms 16 which are disposed, like the projections 8 of the carrier elements 2 , to project inwards in the undercut longitudinal groove 10 of the frame 3 .
- the arms 16 are secured with the aid of anchorage means such as screws or rivets in the holes 18 .
- the corner element 6 is further provided with two shorter, narrower projections 17 which are screwed in position in the straight section 19 of the frame 3 which is disposed below the elongate undercut groove 10 .
- the shorter projections 17 are also provided with holes 18 for anchorage members such as screws or rivets.
- the frame 3 included in the pontoon 1 It is possible to vary the frame 3 included in the pontoon 1 .
- a frame 3 with quite a detailed cross section. It is naturally possible to simplify the frame 3 considerably even if some of the advantage attained by the provision of the screw pockets 11 and 12 is lost.
- the simplification that is most readily to hand is that the frame 3 in its entirety consists of a C-profile which substantially corresponds to the elongate projections 8 of the carrier elements 2 .
- the simpler, just-described embodiment of the frame 3 is selected. It is possible to modify both manner of manufacture and choice of materials. For a simpler frame 3 , forming by means of roll forming of sheet material is a conceivable alternative.
- the projections 8 on the carrier elements 2 may be dispensed with. Instead, there are provided material accumulations along the short sides of the carrier elements 2 so that the material thickness will be sufficient to permit screwing the carrier elements 2 to the frame 3 or the longitudinal profile bodies.
- Another method of modifying the pontoon 1 according to the present invention is to provide, between the carrier elements 2 included in the pontoon 1 , specific joint profiles in order to overbridge the joints between them.
- Such joint profiles give a smoother surface and also contribute to increased rigidity in the pontoon 1 , in particular in the event of a moving cargo, such as when a person moves along the pontoon 1 .
- the joint profiles are secured in or inside the longitudinal sides 4 of the frame 3 .
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- Ocean & Marine Engineering (AREA)
- Bridges Or Land Bridges (AREA)
Abstract
A pontoon for use in a lake, pool or corresponding water area includes a carrier element and a support surface. The carrier element is intended to realise buoyancy and the support surface is intended to carry a load. The carrier element and the support surface are of one piece manufacture with one another. A series of carrier elements with integrated support surfaces are advantageously united with one another by means of an included frame. The carrier elements included in the pontoon have a shell and foamed material disposed therein.
Description
- The present invention relates to a pontoon for use in a lake, pool or corresponding water area, and comprising a carrier element for realising buoyancy and an upwardly facing support surface for carrying a load. The present invention also relates to a carrier element for a pontoon.
- Pontoons are known in a huge number of different fields of use, such as for bathing landing stages, mooring boats, fishing and other activities where the wish is for ready access to water of a certain depth. Typically, the pontoons are moored in lakes, seas, pools and similar waterways. They may be disposed beside beaches, piers or fixed landing stages, but may also be placed freely by being anchored with the aid of an anchor or other weight which causes the pontoon to remain in the desired position in the water. The advantages inherent in pontoons are numerous: they are easy to move, are independent of the structure of the bottom, are substantially insensitive to differences in the water level, since they always float on the surface, and they can always be moved and rebuilt for realising a different pontoon structure.
- Unfortunately, there are also disadvantages. Even if the pontoons always float, the construction as a whole is heavy and unwieldy when being transported on land. They also show a tendency to be bulky, since they must include large elements of low density in order to obtain maximum buoyancy. In general, such elements are disposed on the underside of the pontoon, which implies that the pontoon is not only of considerable length, but also considerable depth. To sum up, it may be said that the transport and storage of pontoons require considerable space.
- A further disadvantage is that the assembly of pontoons is quite a complicated procedure. They are often built at factories, which contributes to the large space requirements on transport, since such pontoons are generally transported in the finished state.
- It is thus one object of the present invention to realise a pontoon which requires little space on transport and storage in relation to its final size, at the same time as maximum payload is obtained. Assembly should be so simple that it can be put into effect wholly or partly close to the site of final use.
- The foregoing object of the present invention is attained wherein the pontoon is characterised in that the carrier element and the support surface are of one piece manufacture with one another. Concerning the carrier element, the object of the present invention is attained wherein it has a shell and foamed material disposed therein.
- The present invention will now be described in greater detail hereinbelow with reference to the accompanying Drawings. In the accompanying Drawings:
-
FIG. 1 is a perspective view of a pontoon according to the present invention; -
FIG. 2 is a top plan view of a carrier element included in the pontoon ofFIG. 1 ; -
FIG. 3 is a straight side elevation of the carrier element ofFIG. 2 ; -
FIG. 4 is a sectional view of a frame included in the pontoon according to the present invention; and -
FIG. 5 is a perspective view of a corner element included in the frame. -
FIG. 1 shows a pontoon 1 according to the present invention. The pontoon is constructed from a number of buoyant bodies orcarrier elements 2 which are united by at least two longitudinal profile bodies, but preferably by a circumferential,complete frame 3. - The
carrier elements 2 possess the buoyancy which entails that the pontoon 1 floats on the surface of the water and is capable of carrying a load, for example people on the pontoon. Thecarrier elements 2 are mutually identical and are replaceable. In the illustrated embodiment, they are five in number, but this number is optional depending on the desired length of the pontoon 1. Thecarrier elements 2 are intended to serve an upwardly facingsupport surface 9 at the same time as they realise the requisite buoyancy of the pontoon 1. - Regardless of how the
carrier elements 2 are joined together, by means of acomplete frame 3 or opposing longitudinal profile bodies in the longitudinal direction of the pontoon, it is important that the frame or the profile bodies are flexurally rigid in the vertical direction when the pontoon is in use, so that the entire pontoon moves in the water as a rigid unit. - At their short sides, the
carrier elements 2 are provided with engagement members for cooperation with the surroundingframe 3 or the longitudinal profile bodies. However, the engagement members are not visible inFIG. 1 , but are concealed by theframe 3 since they are accommodated in it. - The
frame 3 includes a profile which, in the preferred embodiment, is extruded and is manufactured, for example, from aluminium or plastic. Theframe 3 has twolongitudinal sides 4 and twoshort sides 5 which are built up from the same profile. Thelongitudinal sides 4 and theshort sides 5 are united in the corners byspecific corner elements 6 which, in the preferred embodiment, are manufactured from plastic. However, other production materials such as aluminium are conceivable. Theframe 3 is interconnected to thecarrier elements 2 preferably in that thecarrier elements 2 display specific projections which are accommodated in corresponding recesses on the inside of theframe 3. With the aid of theframe 3, a torsionally rigid arrangement is realised of theindividual carrier elements 2. Theframe 3 further serves for securinganchorage members 7 in which the pontoon 1 may there be secured to some other structure or other objects such as, for example, small craft which may be moored to the pontoon 1. -
FIG. 2 shows anindividual carrier element 2 straight from above. In this Figure, theengagement members 8 which cooperate with the inside of theframe 3 are visible. Theengagement members 8 are in the form of projections which extend over a substantial part of the short sides of thecarrier elements 2. Theengagement members 8 may naturally be given a different extent, but should be quite elongate in order to reduce the risk of twisting of thecarrier element 2 in relation to theframe 3 and thereby causing instability in the pontoon 1. Thus, an increased length of theengagement members 8 results in increased rigidity in the pontoon 1 as a whole. - The
carrier element 2 further has asupport surface 9 which is intended to directly support a load, for example a person walking on the pontoon 1. Thus, no specific coating is required on the carrier elements, but these per se and with the aid of theframe 3 possess the requisite rigidity to permit direct access to the pontoon. Thesupport surface 9 is further advantageously provided with some form of friction-increasing surface structural pattern for reducing the risk of slipping. Such patterns may have very different appearances, and for the sake of simplicity they are not shown inFIG. 2 . - The
carrier element 2 has an outer shell which is of one piece manufacture, preferably by blow moulding or rotation casting. As a result, the carrier element will be substantially without joints, with the exception of an aperture for the introduction of a filler material. - Inside the
carrier element 2, there is disposed a filler material of low density in the form of a continuous foamed element. A few examples of filler material are expanded polystyrene or polyurethane foam. - On the expansion of the filler material so that the foamed element is formed, this will have a surface layer, a so-called casting skin, which imparts to the foamed element superior mechanical strength and in particular torsional rigidity. The foamed element interiorly in the outer skin supports this from inside so that it will display superior mechanical strength and may also resist spot loadings from the outside without buckling inwards. The superior strength of the
carrier element 2 contributes to a great extent to the pontoon 1 being capable of being built up without any specific carrying surface needing to be provided on top of the carrier elements, even though the function of theframe 3 is also important for ensuring torsional rigidity between thecarrier elements 2. A feature common to those materials that are employed as filler materials is that they have low density and preferably closed cells. - In practical trials, each
respective carrier element 2 has proved to be able to carry loads of about 120 kg. These levels naturally depend on the production material in and size of thecarrier elements 2. -
FIG. 3 shows thecarrier element 2 straight from the side, i.e. in the direction of the arrow A inFIG. 2 . In this view, the cross sectional profile of theprojections 8 is apparent. In such instance, it will be seen that the profile is undercut for realising a reliable anchorage with theframe 3. The thickness of thecarrier elements 2, i.e. their extent in the vertical direction, is of the same order of magnitude as the height of theframe 3. - The profile included in the
frame 3 is shown in cross section inFIG. 4 . As was mentioned previously, the profile is particularly well suited for extrusion, for example in plastic or aluminium. - The
frame 3 has an undercutgroove 10 for accommodating theelongate projections 8 of thecarrier elements 2. Preferably, theprojections 8 are intended to be slid into the undercutgroove 10, but depending on material properties in both thecarrier elements 2 and theframe 3, a snap action locking may also come into consideration. The dimensioning of the undercut in thegroove 10 and theprojections 8 is also decisive as to whether a snap action locking is possible. - In the upper region of the
frame 3, there is provided a longitudinalupper groove 11. Thegroove 11 serves for receiving and accommodating screws so that extra equipment may be provided anywhere whatever along the length of theframe 3. Such extra equipment may be devices for mooring boats, simple taffrails and handrails and means for interconnection with other pontoons 1 provided with frames. The screw groove orpocket 11 further displays a laterally disposedspace 14 which functions as a drawing groove for a strip disposed therein. Such a strip may be provided either for decorative purposes or also for interconnection with a substantially parallel groove on another pontoon 1 which is positioned adjacent the first pontoon. - At the lower end of the
frame 3, there is provided a lowerlongitudinal groove 12 which, like thegroove 11, functions as a screw pocket for disposing equipment on the frame. Such possible equipment is advantageously secured in position with the aid of screws which engage in both theupper screw pocket 11 and thelower screw pocket 12. - Along the outside of the
frame 3, there is provided alongitudinal groove 13. This serves as a countersink for parts such as the anchorage means 7 which are disposed on the outside of theframe 3. Consequently, the risk is reduced that people sustain injuries on projecting parts such as screw heads, fittings or the like. -
FIG. 5 is a close up view of acorner element 6 included in theframe 3, this element being disposed between thelongitudinal sides 4 and theshort sides 5 in theframe 3. In the mounted position, thecorner element 6 has an outwardly facingcorner portion 15 which forms a unitary transition between alongitudinal side 4 and a short-side 5 in theframe 3. - The matching with the outside of the frame results in smooth transitions between the
corner element 6 and the profiles included in theframe 3, whereby the risk of injury on projecting corners or edges is eliminated. - The
corner element 6 further displays two morepowerful arms 16 which are disposed, like theprojections 8 of thecarrier elements 2, to project inwards in the undercutlongitudinal groove 10 of theframe 3. In order that thearms 16 remain in position in thegroove 10, they are secured with the aid of anchorage means such as screws or rivets in theholes 18. - The
corner element 6 is further provided with two shorter,narrower projections 17 which are screwed in position in thestraight section 19 of theframe 3 which is disposed below the elongate undercutgroove 10. Theshorter projections 17 are also provided withholes 18 for anchorage members such as screws or rivets. - It is possible to vary the
frame 3 included in the pontoon 1. In the preferred embodiment, there was shown aframe 3 with quite a detailed cross section. It is naturally possible to simplify theframe 3 considerably even if some of the advantage attained by the provision of the screw pockets 11 and 12 is lost. The simplification that is most readily to hand is that theframe 3 in its entirety consists of a C-profile which substantially corresponds to theelongate projections 8 of thecarrier elements 2. In particular if the simpler, just-described embodiment of theframe 3 is selected. It is possible to modify both manner of manufacture and choice of materials. For asimpler frame 3, forming by means of roll forming of sheet material is a conceivable alternative. - In one particularly simple and economical variation of the subject matter of the present invention, the
projections 8 on thecarrier elements 2 may be dispensed with. Instead, there are provided material accumulations along the short sides of thecarrier elements 2 so that the material thickness will be sufficient to permit screwing thecarrier elements 2 to theframe 3 or the longitudinal profile bodies. - Another method of modifying the pontoon 1 according to the present invention is to provide, between the
carrier elements 2 included in the pontoon 1, specific joint profiles in order to overbridge the joints between them. Such joint profiles give a smoother surface and also contribute to increased rigidity in the pontoon 1, in particular in the event of a moving cargo, such as when a person moves along the pontoon 1. Advantageously, the joint profiles are secured in or inside thelongitudinal sides 4 of theframe 3. - Finally, it is naturally possible to provide, on the pontoon 1, an additional upwardly facing carrying surface. Such a provision preferably serves a decorative purpose, since a separate carrying surface is not necessary for the stability and rigidity of the pontoon 1.
Claims (19)
1-17. (canceled)
18. A pontoon for use in a lake, pool or corresponding water area, and comprising a carrier element (2) for realising buoyancy and an upwardly facing support surface (9) for carrying a load, wherein the carrier element (2) and the support surface (9) are of one piece manufacture with one another.
19. The pontoon as claimed in claim 18 , wherein a series of carrier elements (2) with integrated support surfaces (9) are united with one another by means of a circumferential frame (3).
20. The pontoon as claimed in claim 18 , wherein a series of carrier elements (2) with integrated support surfaces (9) are united with one another by means of elongate profile bodies disposed at opposing longitudinal sides.
21. The pontoon as claimed in claim 19 , wherein the circumferential frame (3) include engagement members (10) for cooperation with portions (8) of the carrier elements (2).
22. The pontoon as claimed in claim 20 , wherein in the profile bodies include engagement members (10) for cooperation with portions (8) of the carrier elements (2).
23. The pontoon as claimed in claim 18 , wherein the carrier elements (2) have, along two opposing edges, portions displaying increased material thickness.
24. The pontoon as claimed in claim 23 , wherein the carrier elements (2) include engagement members (10) for cooperation with the circumferential frame (3) or the profile bodies.
25. The pontoon as claimed in claim 24 , wherein an elongate groove (10) is disposed in the circumferential frame (3) or the profile bodies for accommodating portions (8) of the carrier elements (2).
26. The pontoon as claimed in claim 23 , wherein elongate projections (8) are disposed along the sides of the carrier elements (2) for accommodation in the circumferential frame (3) or the profile bodies.
27. The pontoon as claimed in claim 21 , wherein the circumferential frame (3) cooperates with the carrier elements (2) by means of an undercut.
28. The pontoon as claimed in claim 19 , wherein the frame (3) includes separate corner elements (6) and side pieces (4, 5) which are mechanically connected to one another.
29. The pontoon as claimed in claim 20 , wherein the corner elements (6) are insertable a distance in the side pieces (4, 5).
30. A carrier element for a pontoon (1), comprising a shell with foamed material disposed therein.
31. The carrier element as claimed in claim 30 , further comprising an upper side (9) provided with a friction-increasing surface pattern.
32. The carrier element as claimed in claim 30 , wherein the shell is formed of blow moulded polyethylene.
33. The carrier element as claimed in claim 30 , wherein the shell is a rotation casting.
34. The carrier element as claimed in claim 30 , wherein the foamed material is expanded polystyrene.
35. The carrier element as claimed in claim 30 , wherein its shell has, along two opposing edges, portions of increased material thickness.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE0301739-9 | 2003-06-13 | ||
SE0301739A SE525315C2 (en) | 2003-06-13 | 2003-06-13 | Floating bridge and support element for a floating bridge |
PCT/SE2004/000865 WO2004111342A1 (en) | 2003-06-13 | 2004-06-04 | Pontoon and a carrier element for a pontoon |
Publications (1)
Publication Number | Publication Date |
---|---|
US20070151500A1 true US20070151500A1 (en) | 2007-07-05 |
Family
ID=27607318
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/558,904 Abandoned US20070151500A1 (en) | 2003-06-13 | 2004-06-04 | Pontoon and a carrier element for pontoon |
Country Status (5)
Country | Link |
---|---|
US (1) | US20070151500A1 (en) |
EP (1) | EP1636426A1 (en) |
CA (1) | CA2528429A1 (en) |
SE (1) | SE525315C2 (en) |
WO (1) | WO2004111342A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080282958A1 (en) * | 2007-05-15 | 2008-11-20 | Jeffrey Jackson | Foam filled watercraft float with rollers |
WO2024055826A1 (en) * | 2022-09-15 | 2024-03-21 | 夏尔特拉(上海)新能源科技有限公司 | Pontoon |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NZ544702A (en) * | 2006-01-13 | 2008-08-29 | Kiwi Offshore Pools Ltd | A floating modular frame for an outdoor swimming pool |
KR101203084B1 (en) | 2012-07-09 | 2012-11-21 | 김희연 | Floating structure with pontoon |
SE544507C2 (en) * | 2020-03-05 | 2022-06-28 | Nimolin Ab | Pontoon unit and an arrangment for a pontoon |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3195154A (en) * | 1964-03-09 | 1965-07-20 | Alumakit Company Inc | Boat |
US4555292A (en) * | 1984-02-16 | 1985-11-26 | Thom-Mci, Inc. | Method of forming a non-skid surface wood panel |
US5915325A (en) * | 1997-04-15 | 1999-06-29 | Gerco, Inc. | Portable floating dock system |
US6098564A (en) * | 1998-04-24 | 2000-08-08 | Playstar, Inc. | Floating dock section |
US6179525B1 (en) * | 1999-05-11 | 2001-01-30 | Schafer Systems Inc. | Floating dock section |
US6230644B1 (en) * | 2000-01-27 | 2001-05-15 | Eastern Flotation Systems, Inc. | Dock and buoyant module adapted to be connected to a pile |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2154209A1 (en) | 1971-10-30 | 1973-05-03 | Otto Arnold | FLOATING Jetty, especially the jetty |
US3859000A (en) * | 1972-03-30 | 1975-01-07 | Reynolds Metals Co | Road construction and panel for making same |
DE2910052C2 (en) | 1979-03-14 | 1982-02-18 | Franz 8206 Heufeld Voggenreiter | Floating jetty for port facilities consisting of individual elements |
US4365914A (en) | 1980-10-20 | 1982-12-28 | Builders Concrete, Inc. | Transverse post-tensioned tendon interconnecting system for marine floats |
US4974538A (en) * | 1989-09-01 | 1990-12-04 | The Louis Berkman Company | Filled float drum |
US5081946A (en) * | 1990-09-11 | 1992-01-21 | Nannig Urban R | Floating dock |
US5315947A (en) | 1992-08-12 | 1994-05-31 | Francis Knight | Multi-section hull structures |
AU688988B2 (en) | 1994-11-18 | 1998-03-19 | Nitta Corporation | Pier unit and floating pier including such a pier |
US6205945B1 (en) | 1999-10-25 | 2001-03-27 | Eastern Floatation Systems, Inc. | Floating dock including buoyant wharf modules and method of making such modules |
-
2003
- 2003-06-13 SE SE0301739A patent/SE525315C2/en not_active IP Right Cessation
-
2004
- 2004-06-04 EP EP04736160A patent/EP1636426A1/en not_active Withdrawn
- 2004-06-04 CA CA002528429A patent/CA2528429A1/en not_active Abandoned
- 2004-06-04 US US10/558,904 patent/US20070151500A1/en not_active Abandoned
- 2004-06-04 WO PCT/SE2004/000865 patent/WO2004111342A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3195154A (en) * | 1964-03-09 | 1965-07-20 | Alumakit Company Inc | Boat |
US4555292A (en) * | 1984-02-16 | 1985-11-26 | Thom-Mci, Inc. | Method of forming a non-skid surface wood panel |
US5915325A (en) * | 1997-04-15 | 1999-06-29 | Gerco, Inc. | Portable floating dock system |
US6098564A (en) * | 1998-04-24 | 2000-08-08 | Playstar, Inc. | Floating dock section |
US6179525B1 (en) * | 1999-05-11 | 2001-01-30 | Schafer Systems Inc. | Floating dock section |
US6230644B1 (en) * | 2000-01-27 | 2001-05-15 | Eastern Flotation Systems, Inc. | Dock and buoyant module adapted to be connected to a pile |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080282958A1 (en) * | 2007-05-15 | 2008-11-20 | Jeffrey Jackson | Foam filled watercraft float with rollers |
WO2024055826A1 (en) * | 2022-09-15 | 2024-03-21 | 夏尔特拉(上海)新能源科技有限公司 | Pontoon |
Also Published As
Publication number | Publication date |
---|---|
CA2528429A1 (en) | 2004-12-23 |
SE0301739D0 (en) | 2003-06-13 |
SE0301739L (en) | 2004-12-14 |
WO2004111342A1 (en) | 2004-12-23 |
SE525315C2 (en) | 2005-02-01 |
EP1636426A1 (en) | 2006-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6805066B2 (en) | Modular floating swim platform | |
US6773355B1 (en) | Water entertainment center | |
US7000558B2 (en) | Modular floating swim platforms | |
CA2389842A1 (en) | Modular dock system | |
US3580202A (en) | Floating wharf structure | |
KR101009264B1 (en) | Floating assembly for water surface structure | |
US5081946A (en) | Floating dock | |
US20070151500A1 (en) | Pontoon and a carrier element for pontoon | |
US3602925A (en) | Floating swimming pool | |
US3861340A (en) | Floating dock structure | |
US4602587A (en) | Float structure | |
WO2004065728A2 (en) | Collapsible swimming pool | |
US5743205A (en) | Floating dock element | |
US5732649A (en) | Floating dock system | |
US20050181688A1 (en) | Island swim raft | |
US3571831A (en) | Float | |
US20050098077A1 (en) | Pontoon boat | |
JP4143701B2 (en) | Floating structure | |
EP2035272B1 (en) | Collapsible boat formed from releasably connected laminar panels | |
NL2000951C1 (en) | Artificial beach. | |
US6003464A (en) | Floatable system utilizing structural deck plates | |
US3522614A (en) | Swimming pool structure | |
US20100281634A1 (en) | Bridging system | |
US20240209581A1 (en) | Floating docks | |
KR101384447B1 (en) | Gangway |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: BLOWTECH AB, SWEDEN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:JANSSON, KLAS;REEL/FRAME:018176/0039 Effective date: 20051208 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |