US20070150997A1 - Wet/dry high-temperature glove - Google Patents

Wet/dry high-temperature glove Download PDF

Info

Publication number
US20070150997A1
US20070150997A1 US11/369,411 US36941106A US2007150997A1 US 20070150997 A1 US20070150997 A1 US 20070150997A1 US 36941106 A US36941106 A US 36941106A US 2007150997 A1 US2007150997 A1 US 2007150997A1
Authority
US
United States
Prior art keywords
glove
minutes
water
temperature
poly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/369,411
Inventor
Xun Ma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/321,923 external-priority patent/US20080028496A1/en
Application filed by Individual filed Critical Individual
Priority to US11/369,411 priority Critical patent/US20070150997A1/en
Priority to PCT/US2006/049314 priority patent/WO2007079093A1/en
Publication of US20070150997A1 publication Critical patent/US20070150997A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D19/00Gloves
    • A41D19/015Protective gloves
    • A41D19/01529Protective gloves with thermal or fire protection
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D31/00Materials specially adapted for outerwear
    • A41D31/04Materials specially adapted for outerwear characterised by special function or use
    • A41D31/08Heat resistant; Fire retardant
    • A41D31/085Heat resistant; Fire retardant using layered materials

Definitions

  • the present invention is related to a glove for handling high temperature objects and useful both when wet and dry.
  • Oven mitts and gloves are formed generally of materials that serve to protect a wearer's hand, wrist, and lower forearm. These articles are primarily used by home consumers but may also have industrial applications. There is a growing demand to improve the effectiveness of these gloves in different environments.
  • a multilayer glove comprising:
  • thermoset material an inner layer consisting essentially of a thermoset material
  • a hand contact layer comprising polyester, animal, or plant fiber
  • inside palm of said glove remains below about 49 C. (120 F.), at least 15 seconds after the glove is immersed in water at room temperature for 2 minutes, removed from the water, hung in a vertical position for 5 minutes, and heated at a temperature of about 280 C. (536 F.).
  • FIGURE presents in graph form the performance of a prior art high-temperature glove and gloves of the present invention.
  • the invention relates to a multilayer glove comprising:
  • thermoset material an inner layer consisting essentially of a thermoset material
  • a hand contact layer comprising polyester, animal, or plant fiber
  • inside palm of said glove remains below about 49 C. (120 F.), at least 15 seconds after the glove is immersed in water at room temperature for 2 minutes, removed from the water, hung in a vertical position for 5 minutes, and heated at a temperature of about 280 C. (536 F.).
  • the invention relates to the method of making the above glove.
  • the invention relates to a multilayer glove comprising:
  • a woven, non-woven, or knit fabric spun yarn outer layer consisting essentially of about 90%-10% poly(metaphenylene isophthalamide) and 10%-90% poly(paraphenylene terephthalamide),
  • an inner layer consisting essentially of one of nitrile rubber, butyl rubber, fluoroelastomer, silicone, or mixtures thereof, and
  • a hand contact layer comprising polyester, animal, or plant fiber
  • inside palm of the glove remains below about 120 F. (49 C.), at least 15 seconds after the glove is immersed in water at room temperature for 2 minutes, removed from the water, hung in a vertical position for 5 minutes, and heated at a temperature of about 280 C.
  • the invention relates to the method of making the above glove.
  • suitable fibers for use in the layers include polyaramids, such as poly(paraphenylene terephthalamide) sold by E. I. du Pont de Nemours and Company (DuPont), Wilmington, Del. under the trade name KEVLAR®.
  • polyaramids such as poly(paraphenylene terephthalamide) sold by E. I. du Pont de Nemours and Company (DuPont), Wilmington, Del. under the trade name KEVLAR®.
  • aramid is preferred.
  • aramid is meant a polyamide wherein at least 85% of the amide (—CO—NH—) linkages are attached directly to two aromatic rings.
  • Aramid fibers are disclosed in U.S. Pat. Nos. 4,172,938; 3,869,429; 3,819,587; 3,673,143; 3,354,127, and 3,094,511. Additives can be used with the aramid, and it has been found that up to as much as 10 percent, by weight, of other polymeric material can be blended with the aramid. Also, copolymers can be used having as much as 10 percent of other diamine substituted for the diamine of the aramid or as much as 10 percent of other diacid chloride substituted for the diacid chloride or the aramid.
  • aramid fibers Two common types include (1) meta-aramid fibers, one of which is composed of poly(metaphenylene isophthalamide), which is also referred to as MPD-I, and (2) para-aramid fibers, one of which is composed of poly(paraphenylene terephthalamide), also referred to as PPD-T.
  • Meta-aramid fibers are currently available from DuPont in several forms under the trademark Nomex®.
  • Nomex® T-450 is 100% meta-aramid fiber
  • Nomex® T455 is a staple blend of 95% Nomex® meta-aramid fiber and 5% Kevlar® para-aramid fiber
  • Nomex® T462 is a staple blend of 93% Nomex® meta-aramid fiber, 5% Kevlar® para-aramid fiber, and 2% carbon core nylon fiber
  • Nomex® N302 is a staple blend of 93% producer-colored Nomex® meta-aramid fiber, 5% producer-colored Kevlar® para-aramid fiber, and 2% carbon core nylon fiber.
  • meta-aramid fibers are available in various styles under the trademarks Conex® and Apyeil® which are produced by Teijin, Ltd. of Tokyo, Japan and Unitika, Ltd. of Osaka, Japan, respectively.
  • the preferred aramid is a para-aramid and poly(p-phenylene terephthalamide)(PPD-T) is the preferred para-aramid.
  • PPD-T is meant the homopolymer resulting from approximately mole-for-mole polymerization of p-phenylene diamine and terephthaloyl chloride and, also, copolymers resulting from incorporation of small amounts of other diamines with the p-phenylene diamine and of small amounts of other diacid chlorides with the terephthaloyl chloride.
  • PPD-T means copolymers resulting from incorporation of other aromatic diamines and other aromatic diacid chlorides such as, for example, 2,6-naphthaloyl chloride or chloro- or dichloroterephthaloyl chloride or 3,4′-diaminodiphenylether.
  • animal fibers textile fibers of animal origin including, but not limited to, wool, cashmere, alpaca, camel hair, and silk.
  • plant fibers textile fibers of plant origin including, but not limited to, cofton, kapok, jute, ramie, flax, and blends or mixtures thereof.
  • fiber is defined as a relatively flexible, macroscopically homogeneous body having a high ratio of length to width across its cross-sectional area perpendicular to its length.
  • the fiber cross-section can be any shape, but is typically round.
  • filament or “continuous filament” is used interchangeably with the term “fiber.”
  • staple fibers refers to fibers that are cut to a desired length or fibers that occur naturally with or naturally have a low ratio of length to width across its cross-sectional area perpendicular to its length when compared with filaments. Length can vary from about 0.1 inch to several feet. In some embodiments, the length is from 0.1 inch to about 8 inches. Man-made staple fibers are cut to a length suitable for processing on cotton, woolen, or worsted yarn spinning equipment.
  • the staple fibers can have (a) substantially uniform length, (b) variable or random length, or (c) subsets of the staple fibers have substantially uniform length and the staple fibers in the other subsets have different lengths, with the staple fibers in the subsets mixed together forming a substantially uniform distribution.
  • suitable staple fibers have a length of 1 to 30 centimeters. Staple fibers made by short staple processes result in a fiber length of 1 to 6 centimeters.
  • the staple fibers can be made by any process.
  • the staple fibers can be formed by stretch-breaking continuous fibers resulting in staple fibers with deformed sections that act as crimps.
  • the staple fibers can be cut from continuous straight fibers using a rotary cutter or a guillotine cutter resulting in straight (i.e., non crimped) staple fiber, or additionally cut from crimped continuous fibers having a saw tooth-shaped crimp along the length of the staple fiber, with a crimp (or repeating bend) frequency of no more than 8 crimps per centimeter.
  • Stretch-broken staple fibers can be made by breaking a tow or a bundle of continuous filaments during a stretch-break operation having one or more break zones that are at a prescribed distance creating a random variable mass of fibers having an average cut length controlled by break-zone adjustment.
  • Staple fibers of this invention can be converted into yarns using traditional long and short staple ring spinning processes that are well known in the art.
  • short staple cotton system spinning fiber lengths from 3 ⁇ 4inch to 2 1 ⁇ 4inch (1.9 to 5.7 cm.) are typically used.
  • worsted, or woolen system spinning fibers up to 6 1 ⁇ 2inches (16.5 cm.) are typically used.
  • this is not intended to be limiting to ring spinning because the yarns may also be spun using air jet spinning, open end spinning and many other types of spinning that converts staple fiber into useable yarns.
  • the stretch-broken staple fibers typically have length of up to 7 inches (17.8 cm.) long and can be made using traditional stretch-broken tow processes. Staple fibers having maximum lengths of up to around 20 inches (51 cm) are possible through processes as described, for example in PCT Patent Application No. WO 0077283. Yarns are so made by consolidated fibers into spun yarn using filament entanglement with air jets having a tenacity in the range of 3 to 7 grams per decitex. These yarns may have secondary twist, that is, they may be twisted after formation to impart more tenacity to the yarn, in which case the tenacity can be in the 10 to 18 grams per denier (9 to 17 grams per dtex) range. Stretch-broken staple fibers normally do not require crimp because the process imparts a degree of crimp into the fiber.
  • continuous filament refers to a flexible fiber having relatively small-diameter and whose length is longer than those indicated for staple fibers.
  • Continuous filament fibers can be converted to multifilament yarns by processes well known to those skilled in the art.
  • Fabrics of this invention can take on numerous configurations, including, but not limited to, knitted or woven fabrics or non-woven structures. Such fabric configurations are well known to those skilled in the art.
  • non-woven fabric is meant a network of fibers typically in a random orientation but can be unidirectional (if contained within a matrix resin), felt, fiber batts, and the like.
  • woven fabric is meant a fabric woven using any fabric weave, such as plain weave, crowfoot weave, basket weave, satin weave, twill weave, and the like. Plain and twill weaves are believed to be the most common weaves used in the trade.
  • the oven gloves available from JE Enterprises under the trademark “OveGlove”®, had an outer layer of Kevlar® 29, Nomex® 450, 1.7 dtex denier spun yarn with a linear density of 1.7 dtex denier, and a hand contact layer of polyester and cotton. These gloves were conditioned by total immersion in water at room temperature for 2 minutes. However, the immersion in water was done in a manner that prevented water from entering the interior of the glove through the wrist or arm opening. Gloves were then removed from the water and hung in a vertical position for 5 minutes. The gloves were tested as below within 5 minutes of completion of the conditioning.
  • thermocouple TC 1-TC3
  • Table 1 The individual temperature from each thermocouple (TC 1-TC3) and their average as a function of time are presented in Table 1.
  • the average temperature reaches 84.1 C. (183.4 F.) in 12 seconds (s).
  • a typical task time for a person to remove an article at an elevated temperature from an oven or other heat source is about 15 seconds and the temperature at which one would experience discomfort is about 49 C.-55 C. (120 -131 F.). Of course, the level of discomfort and the temperatures will vary from person to person.
  • Oven gloves having identical outer and inner layers and palm layer as above, additionally having a middle layer of nitrile rubber were tested in the same way as described above.
  • Examples 1-3 had nitrile layer thicknesses of 4.1 mils (0.104 mm), 8.5 mils (0.216 mm), 13.5 mils (0.343 mm), respectively.
  • the temperature profiles inside the gloves are presented as a function of time in the following tables. The temperature inside the glove gradually increases and only reaches 36 C.
  • the figure presents in a graph the temperature as a function of time for the inventive glove of Example 1-3 and for the prior art glove of Comparative Example A.

Abstract

The invention concerns a multilayer glove comprising an outer layer consisting essentially of aramid fibers, an inner layer consisting essentially of a thermoset material, and a hand contact layer comprising animal or plant fiber, wherein the inside palm of the glove remains below about 49 C. (120 F.), at least 15 seconds after the glove is immersed in water at room temperature for 2 minutes, removed from the water, hung in a vertical position for 5 minutes, and heated at a temperature of about 280 C. (536 F.).

Description

    BACKGROUND OF THE INVENTION
  • 1. Field Of The Invention
  • The present invention is related to a glove for handling high temperature objects and useful both when wet and dry.
  • 2. Description Of The Related Art
  • Oven mitts and gloves are formed generally of materials that serve to protect a wearer's hand, wrist, and lower forearm. These articles are primarily used by home consumers but may also have industrial applications. There is a growing demand to improve the effectiveness of these gloves in different environments.
  • Particularly, there is a need for gloves with improved performance in wet environments.
  • SUMMARY OF THE INVENTION
  • Provided is a multilayer glove comprising:
  • an outer layer consisting essentially of aramid fibers,
  • an inner layer consisting essentially of a thermoset material, and
  • a hand contact layer comprising polyester, animal, or plant fiber,
  • wherein the inside palm of said glove remains below about 49 C. (120 F.), at least 15 seconds after the glove is immersed in water at room temperature for 2 minutes, removed from the water, hung in a vertical position for 5 minutes, and heated at a temperature of about 280 C. (536 F.).
  • Also provided is a method of making such a glove.
  • The foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention, as defined in the appended claims.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The attached FIGURE presents in graph form the performance of a prior art high-temperature glove and gloves of the present invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • In some embodiments, the invention relates to a multilayer glove comprising:
  • an outer layer consisting essentially of aramid fibers,
  • an inner layer consisting essentially of a thermoset material, and
  • a hand contact layer comprising polyester, animal, or plant fiber,
  • wherein the inside palm of said glove remains below about 49 C. (120 F.), at least 15 seconds after the glove is immersed in water at room temperature for 2 minutes, removed from the water, hung in a vertical position for 5 minutes, and heated at a temperature of about 280 C. (536 F.).
  • In some embodiments, the invention relates to the method of making the above glove.
  • In some embodiments, the invention relates to a multilayer glove comprising:
  • a woven, non-woven, or knit fabric spun yarn outer layer consisting essentially of about 90%-10% poly(metaphenylene isophthalamide) and 10%-90% poly(paraphenylene terephthalamide),
  • an inner layer consisting essentially of one of nitrile rubber, butyl rubber, fluoroelastomer, silicone, or mixtures thereof, and
  • a hand contact layer comprising polyester, animal, or plant fiber,
  • wherein the inside palm of the glove remains below about 120 F. (49 C.), at least 15 seconds after the glove is immersed in water at room temperature for 2 minutes, removed from the water, hung in a vertical position for 5 minutes, and heated at a temperature of about 280 C.
  • In some embodiments, the invention relates to the method of making the above glove.
  • The present invention may be understood more readily by reference to the following detailed description of illustrative and preferred embodiments that form a part of this disclosure. It is to be understood that the scope of the claims is not limited to the specific devices, methods, conditions or parameters described and/or shown herein, and that the terminology used herein is for the purpose of describing particular embodiments by way of example only and is not intended to be limiting of the claimed invention. Also, as used in the specification including the appended claims, the singular forms “a,” “an,” and “the” include the plural, and reference to a particular numerical value includes at least that particular value, unless the context clearly dictates otherwise. When a range of values is expressed, another embodiment includes from the one particular value and/or to the other particular value. Similarly, when values are expressed as approximations, by use of the antecedent “about,” it will be understood that the particular value forms another embodiment. All ranges are inclusive and combinable.
  • Examples of suitable fibers for use in the layers include polyaramids, such as poly(paraphenylene terephthalamide) sold by E. I. du Pont de Nemours and Company (DuPont), Wilmington, Del. under the trade name KEVLAR®.
  • When the polymer is a polyamide, aramid is preferred. By “aramid” is meant a polyamide wherein at least 85% of the amide (—CO—NH—) linkages are attached directly to two aromatic rings. Aramid fibers are disclosed in U.S. Pat. Nos. 4,172,938; 3,869,429; 3,819,587; 3,673,143; 3,354,127, and 3,094,511. Additives can be used with the aramid, and it has been found that up to as much as 10 percent, by weight, of other polymeric material can be blended with the aramid. Also, copolymers can be used having as much as 10 percent of other diamine substituted for the diamine of the aramid or as much as 10 percent of other diacid chloride substituted for the diacid chloride or the aramid.
  • Two common types of aramid fibers include (1) meta-aramid fibers, one of which is composed of poly(metaphenylene isophthalamide), which is also referred to as MPD-I, and (2) para-aramid fibers, one of which is composed of poly(paraphenylene terephthalamide), also referred to as PPD-T. Meta-aramid fibers are currently available from DuPont in several forms under the trademark Nomex®. Commercially available Nomex® T-450 is 100% meta-aramid fiber; Nomex® T455 is a staple blend of 95% Nomex® meta-aramid fiber and 5% Kevlar® para-aramid fiber; and Nomex® T462 is a staple blend of 93% Nomex® meta-aramid fiber, 5% Kevlar® para-aramid fiber, and 2% carbon core nylon fiber. Nomex® N302 is a staple blend of 93% producer-colored Nomex® meta-aramid fiber, 5% producer-colored Kevlar® para-aramid fiber, and 2% carbon core nylon fiber. In addition, meta-aramid fibers are available in various styles under the trademarks Conex® and Apyeil® which are produced by Teijin, Ltd. of Tokyo, Japan and Unitika, Ltd. of Osaka, Japan, respectively.
  • The preferred aramid is a para-aramid and poly(p-phenylene terephthalamide)(PPD-T) is the preferred para-aramid. By PPD-T is meant the homopolymer resulting from approximately mole-for-mole polymerization of p-phenylene diamine and terephthaloyl chloride and, also, copolymers resulting from incorporation of small amounts of other diamines with the p-phenylene diamine and of small amounts of other diacid chlorides with the terephthaloyl chloride. As a general rule, other diamines and other diacid chlorides can be used in amounts up to as much as about 10 mole percent of the p-phenylene diamine or the terephthaloyl chloride, or slightly higher, provided only that the other diamines and diacid chlorides have no reactive groups which interfere with the polymerization reaction. PPD-T, also, means copolymers resulting from incorporation of other aromatic diamines and other aromatic diacid chlorides such as, for example, 2,6-naphthaloyl chloride or chloro- or dichloroterephthaloyl chloride or 3,4′-diaminodiphenylether.
  • By “animal fibers” is meant textile fibers of animal origin including, but not limited to, wool, cashmere, alpaca, camel hair, and silk.
  • By “plant fibers” is meant textile fibers of plant origin including, but not limited to, cofton, kapok, jute, ramie, flax, and blends or mixtures thereof.
  • For purposes herein, the term “fiber” is defined as a relatively flexible, macroscopically homogeneous body having a high ratio of length to width across its cross-sectional area perpendicular to its length. The fiber cross-section can be any shape, but is typically round. Herein, the term “filament” or “continuous filament” is used interchangeably with the term “fiber.”
  • As used herein, the term “staple fibers” refers to fibers that are cut to a desired length or fibers that occur naturally with or naturally have a low ratio of length to width across its cross-sectional area perpendicular to its length when compared with filaments. Length can vary from about 0.1 inch to several feet. In some embodiments, the length is from 0.1 inch to about 8 inches. Man-made staple fibers are cut to a length suitable for processing on cotton, woolen, or worsted yarn spinning equipment.
  • The staple fibers can have (a) substantially uniform length, (b) variable or random length, or (c) subsets of the staple fibers have substantially uniform length and the staple fibers in the other subsets have different lengths, with the staple fibers in the subsets mixed together forming a substantially uniform distribution.
  • In some embodiments, suitable staple fibers have a length of 1 to 30 centimeters. Staple fibers made by short staple processes result in a fiber length of 1 to 6 centimeters.
  • The staple fibers can be made by any process. The staple fibers can be formed by stretch-breaking continuous fibers resulting in staple fibers with deformed sections that act as crimps. The staple fibers can be cut from continuous straight fibers using a rotary cutter or a guillotine cutter resulting in straight (i.e., non crimped) staple fiber, or additionally cut from crimped continuous fibers having a saw tooth-shaped crimp along the length of the staple fiber, with a crimp (or repeating bend) frequency of no more than 8 crimps per centimeter.
  • Stretch-broken staple fibers can be made by breaking a tow or a bundle of continuous filaments during a stretch-break operation having one or more break zones that are at a prescribed distance creating a random variable mass of fibers having an average cut length controlled by break-zone adjustment.
  • Staple fibers of this invention can be converted into yarns using traditional long and short staple ring spinning processes that are well known in the art. For short staple, cotton system spinning fiber lengths from ¾inch to 2 ¼inch (1.9 to 5.7 cm.) are typically used. For long staple, worsted, or woolen system spinning, fibers up to 6 ½inches (16.5 cm.) are typically used. However, this is not intended to be limiting to ring spinning because the yarns may also be spun using air jet spinning, open end spinning and many other types of spinning that converts staple fiber into useable yarns.
  • The stretch-broken staple fibers typically have length of up to 7 inches (17.8 cm.) long and can be made using traditional stretch-broken tow processes. Staple fibers having maximum lengths of up to around 20 inches (51 cm) are possible through processes as described, for example in PCT Patent Application No. WO 0077283. Yarns are so made by consolidated fibers into spun yarn using filament entanglement with air jets having a tenacity in the range of 3 to 7 grams per decitex. These yarns may have secondary twist, that is, they may be twisted after formation to impart more tenacity to the yarn, in which case the tenacity can be in the 10 to 18 grams per denier (9 to 17 grams per dtex) range. Stretch-broken staple fibers normally do not require crimp because the process imparts a degree of crimp into the fiber.
  • The term continuous filament refers to a flexible fiber having relatively small-diameter and whose length is longer than those indicated for staple fibers. Continuous filament fibers can be converted to multifilament yarns by processes well known to those skilled in the art.
  • Fabrics of this invention can take on numerous configurations, including, but not limited to, knitted or woven fabrics or non-woven structures. Such fabric configurations are well known to those skilled in the art.
  • By “non-woven” fabric is meant a network of fibers typically in a random orientation but can be unidirectional (if contained within a matrix resin), felt, fiber batts, and the like.
  • By “woven” fabric is meant a fabric woven using any fabric weave, such as plain weave, crowfoot weave, basket weave, satin weave, twill weave, and the like. Plain and twill weaves are believed to be the most common weaves used in the trade.
  • The invention is exemplified by the following examples, which are not intended to limit the scope of the invention.
  • Examples Comparative Example A
  • In Comparative Example A, the oven gloves, available from JE Enterprises under the trademark “OveGlove”®, had an outer layer of Kevlar® 29, Nomex® 450, 1.7 dtex denier spun yarn with a linear density of 1.7 dtex denier, and a hand contact layer of polyester and cotton. These gloves were conditioned by total immersion in water at room temperature for 2 minutes. However, the immersion in water was done in a manner that prevented water from entering the interior of the glove through the wrist or arm opening. Gloves were then removed from the water and hung in a vertical position for 5 minutes. The gloves were tested as below within 5 minutes of completion of the conditioning.
  • Conditioned gloves were placed on a hotplate surface at temperature of 280 C.±5 C., (536 F.+18 F.). Recording of temperatures inside the glove was begun as soon as the gloves were in place on the hotplate. Temperatures inside the glove were measured by taping three Omega K-type thermocouples to the palm area.
  • The individual temperature from each thermocouple (TC 1-TC3) and their average as a function of time are presented in Table 1. The average temperature reaches 84.1 C. (183.4 F.) in 12 seconds (s). A typical task time for a person to remove an article at an elevated temperature from an oven or other heat source is about 15 seconds and the temperature at which one would experience discomfort is about 49 C.-55 C. (120 -131 F.). Of course, the level of discomfort and the temperatures will vary from person to person.
    TABLE 1
    Results of Comparative Example A
    Time (s) TC-1 TC-2 TC-3 Average
    0 14.3 13.6 13.7 13.9
    2 14.3 13.6 13.7 13.9
    4 14.2 13.6 13.7 13.8
    6 14.2 13.6 13.7 13.8
    8 14.2 15.4 15 14.9
    10 94.5 57.6 15 55.7
    12 94.5 57.6 100.2 84.1
    14 100.3 100.4 100.2 100.3
    16 100.3 100.4 100.2 100.3
    18 100.3 100.5 100.3 100.4
    20 100.3 100.5 100.3 100.4
    22 100.3 100.5 100.3 100.4
    24 100.3 100.5 100.3 100.4
    26 100.3 100.5 100.3 100.4
    28 100.3 100.5 100.3 100.4
    30 100.3 100.6 100.3 100.4
    32 100.4 100.6 100.3 100.4
    34 100.4 100.5 100.3 100.4
    36 100.3 100.5 100.3 100.4
    38 100.3 100.5 100.3 100.4
    40 100.3 100.5 100.3 100.4
    42 100.3 100.5 100.3 100.4
    44 100.3 100.5 100.3 100.4
    46 100.3 100.5 100.3 100.4
    48 100.4 100.5 100.3 100.4
    50 100.4 100.5 100.3 100.4
    52 100.4 100.5 100.3 100.4
    54 100.5 100.5 100.3 100.4
    56 100.5 100.5 100.3 100.4
    58 100.5 100.5 100.3 100.4
    60 100.5 100.5 100.3 100.4
    62 100.4 100.5 100.3 100.4
    64 100.5 100.5 100.3 100.4
    66 100.5 100.6 100.3 100.5
    68 100.5 100.6 100.3 100.5
    70 100.5 100.6 100.3 100.5
    72 100.5 100.6 100.3 100.5
    74 100.5 100.6 100.3 100.5
    76 100.5 100.6 100.3 100.5
    78 100.5 100.6 100.3 100.5
    80 100.5 100.6 100.3 100.5
    82 100.5 100.6 100.3 100.5
    84 100.5 100.6 100.3 100.5
    86 100.5 100.6 100.3 100.5
    88 100.5 100.7 100.3 100.5
    90 100.5 100.6 100.3 100.5
    92 100.5 100.6 100.3 100.5
    94 100.5 100.6 100.3 100.5
    96 100.5 100.6 100.3 100.5
    98 100.5 100.6 100.3 100.5
    100 100.5 100.6 100.3 100.5
  • Example 1-3
  • Oven gloves having identical outer and inner layers and palm layer as above, additionally having a middle layer of nitrile rubber were tested in the same way as described above. Examples 1-3 had nitrile layer thicknesses of 4.1 mils (0.104 mm), 8.5 mils (0.216 mm), 13.5 mils (0.343 mm), respectively. The temperature profiles inside the gloves are presented as a function of time in the following tables. The temperature inside the glove gradually increases and only reaches 36 C. (96.8 F.) in 20
    TABLE 2
    Results of Inventive Example 1
    Time (s) TC-1 TC-2 TC-3 Average
    0 14.5 15.3 13.9 14.6
    2 14.5 15.3 13.9 14.6
    4 14.5 15.3 13.9 14.6
    6 14.4 15.3 13.9 14.5
    8 14.4 15.4 14 14.6
    10 15.5 17.1 14 15.5
    12 15.5 17.1 17.7 16.8
    14 21.3 23.6 25.6 23.5
    16 28.8 23.6 25.6 26.0
    18 28.8 31.9 33.4 31.4
    20 35.6 38.8 33.4 35.9
    22 41.1 38.8 39.6 39.8
    24 41.1 43.9 44.5 43.2
    26 45.5 47.6 44.5 45.9
    28 45.5 47.6 48.5 47.2
    30 49.1 50.5 51.7 50.4
    32 52 50.5 51.7 51.4
    34 52 53 54.2 53.1
    36 54.4 55.5 54.2 54.7
    38 56.3 55.5 56.3 56.0
    40 56.3 57.3 58 57.2
    42 58 58.9 58 58.3
    44 58 58.9 59.4 58.8
    46 59.4 60.3 60.6 60.1
    48 60.5 60.3 60.6 60.5
    50 60.5 61.5 61.5 61.2
    52 61.5 62.5 61.5 61.8
    54 62.3 62.5 62.3 62.4
    56 62.3 63.5 63.1 63.0
    58 63 64.4 63.1 63.5
    60 63 64.4 63.7 63.7
    62 63.6 65.4 64.2 64.4
    64 64.1 65.4 64.2 64.6
    66 64.1 66.2 64.7 65.0
    68 64.6 67 64.7 65.4
    70 65.1 67 65.2 65.8
    72 65.1 67.7 65.6 66.1
    74 65.7 68.3 65.6 66.5
    76 65.7 68.3 66 66.7
    78 65.7 68.9 66.4 67.0
    80 66.8 68.9 66.4 67.4
    82 66.8 69.5 66.8 67.7
    84 67.4 70 66.8 68.1
    86 68.2 70 67.1 68.4
    88 68.2 70.7 67.7 68.9
    90 69 71.5 67.7 69.4
    92 69 71.5 68.1 69.5
    94 70 72.4 68.5 70.3
    96 71 72.4 68.5 70.6
    98 71 73.5 69 71.2
    100 72.1 74.5 69 71.9
    102 73.3 74.5 69.4 72.4
    104 73.3 75.6 69.9 72.9
    106 74.7 76.7 69.9 73.8
    108 74.7 76.7 70.3 73.9
    110 76.1 77.7 70.6 74.8
    112 77.6 77.7 70.6 75.3
    114 77.6 78.6 70.9 75.7
    116 79 79.5 70.9 76.5
    118 80.5 79.5 71.2 77.1
    120 80.5 80.4 71.6 77.5
    122 82.1 81.3 71.6 78.3
  • TABLE 3
    Results of Inventive Example 2
    TC 1 TC 2 TC 3 Average
    Time (s) (° C.) (° C.) (° C.) (° C.)
    0 15.3 15.5 15.6 15.5
    2 15.3 15.5 15.6 15.5
    4 15.3 15.4 15.6 15.4
    6 15.3 15.4 15.6 15.4
    8 15.3 15.4 15.6 15.4
    10 15.3 15.4 15.6 15.4
    12 15.4 15.4 15.6 15.5
    14 15.4 15.4 18 16.3
    16 19.8 19 18 18.9
    18 29.7 19 26.5 25.1
    20 29.7 28.6 35 31.1
    22 38.4 37.5 35 37.0
    24 38.4 37.5 41.6 39.2
    26 44.1 44 46.7 44.9
    28 48.6 44 46.7 46.4
    30 48.6 48.8 50.6 49.3
    32 52.2 52.3 50.6 51.7
    34 55.2 52.3 53.8 53.8
    36 55.2 55.1 56.5 55.6
    38 57.7 57.4 56.5 57.2
    40 57.7 57.4 58.7 57.9
    42 59.7 59.5 60.6 59.9
    44 61.5 59.5 60.6 60.5
    46 61.5 61.3 62.3 61.7
    48 63.1 63 62.3 62.8
    50 64.5 63 63.8 63.8
    52 64.5 64.4 65.4 64.8
    54 65.9 65.6 65.4 65.6
    56 65.9 65.6 66.8 66.1
    58 67.1 66.7 68.1 67.3
    60 68.2 66.7 68.1 67.7
    62 68.2 67.7 69.2 68.4
    64 69.2 68.6 69.2 69.0
    66 70.1 68.6 70.1 69.6
    68 70.1 69.4 71 70.2
    70 71 70 71 70.7
    72 71 70 71.8 70.9
    74 71.8 70.7 72.5 71.7
    76 72.5 70.7 72.5 71.9
    78 72.5 71.2 73.2 72.3
    80 73.2 71.8 73.2 72.7
    82 73.7 71.8 73.8 73.1
    84 73.7 72.3 74.3 73.4
    86 74.3 72.7 74.3 73.8
    88 74.3 72.7 74.8 73.9
    90 74.7 73.1 75.3 74.4
    92 75.2 73.1 75.3 74.5
    94 75.2 73.5 75.7 74.8
    96 75.5 73.8 75.7 75.0
    98 75.9 73.8 76.1 75.3
    100 75.9 74.1 76.5 75.5
    102 76.3 74.4 76.5 75.7
    104 76.3 74.4 76.8 75.8
    106 76.6 74.7 77.2 76.2
    108 76.9 74.7 77.2 76.3
    110 76.9 75 77.5 76.5
    112 77.6 75.3 77.5 76.8
    114 77.8 75.3 77.8 77.0
    116 77.8 75.5 78 77.1
    118 78.3 75.7 78 77.3
    120 78.3 75.7 78.2 77.4
    122 78.9 75.9 78.5 77.8
  • TABLE 4
    Results of Inventive Example 3
    TC 1 TC 2 TC 3 Average
    Time (s) (° C.) (° C.) (° C.) (° C.)
    0 17.6 18.3 17.7 17.9
    2 17.6 18.3 17.6 17.8
    4 17.7 18.3 17.6 17.9
    6 19.6 18.3 19 19.0
    8 19.6 18.8 22.1 20.2
    10 23.1 20.3 22.1 21.8
    12 23.1 20.3 26 23.1
    14 27.1 22.5 29.8 26.5
    16 30.9 22.5 29.8 27.7
    18 30.9 25.1 33.5 29.8
    20 34.3 27.7 33.5 31.8
    22 37.4 27.7 36.8 34.0
    24 37.4 30.4 39.7 35.8
    26 40.2 32.6 39.7 37.5
    28 40.2 32.6 42.3 38.4
    30 42.6 34.6 44.6 40.6
    32 44.8 34.6 44.6 41.3
    34 44.8 36.5 46.7 42.7
    36 46.7 38.4 46.7 43.9
    38 48.4 38.4 48.6 45.1
    40 48.4 40 50.3 46.2
    42 49.9 41.5 50.3 47.2
    44 49.9 41.5 51.9 47.8
    46 51.4 43 53.3 49.2
    48 52.6 43 53.3 49.6
    50 52.6 44.3 54.5 50.5
    52 53.9 45.6 54.5 51.3
    54 55.1 45.6 55.6 52.1
    56 55.1 46.8 56.6 52.8
    58 56.1 48 56.6 53.6
    60 56.1 48 57.6 53.9
    62 57 49.1 58.4 54.8
    64 57.8 49.1 58.4 55.1
    66 57.8 50.2 59.2 55.7
    68 58.6 51.2 59.2 56.3
    70 59.3 51.2 59.9 56.8
    72 59.3 52.1 60.5 57.3
    74 60 53.1 60.5 57.9
    76 60 53.1 61.1 58.1
    78 60.6 53.9 61.6 58.7
    80 61.2 53.9 61.6 58.9
    82 61.2 54.8 62.1 59.4
    84 61.7 55.6 62.1 59.8
    86 62.2 55.6 62.5 60.1
    88 62.2 56.3 62.9 60.5
    90 62.6 57.1 62.9 60.9
    92 62.6 57.1 63.3 61.0
    94 63 57.8 63.6 61.5
    96 63.4 57.8 63.6 61.6
    98 63.4 58.4 63.8 61.9
    100 63.7 59.1 63.8 62.2
    102 63.9 59.1 64 62.3
    104 63.9 59.7 64.2 62.6
    106 64.2 60.2 64.2 62.9
    108 64.2 60.2 64.5 63.0
    110 64.5 60.8 64.7 63.3
    112 64.8 60.8 64.7 63.4
    114 64.8 61.3 64.9 63.7
    116 65 61.8 64.9 63.9
    118 65.2 61.8 65 64.0
    120 65.2 62.3 65.2 64.2
    122 65.4 62.8 65.2 64.5
  • The figure presents in a graph the temperature as a function of time for the inventive glove of Example 1-3 and for the prior art glove of Comparative Example A.
  • It is to be appreciated that certain features are, for clarity, described herein the context of separate embodiments, may also be provided in combination in a single embodiment. Conversely, various features that are, for brevity, described in the context of a single embodiment, may also be provided separately or in any subcombination.

Claims (8)

1. A multilayer glove comprising:
an outer layer consisting essentially of aramid fibers,
an inner layer consisting essentially of a thermoset material, and
a hand contact layer comprising polyester, animal, or plant fiber,
wherein the inside palm of said glove remains below about 49 C. (120 F.), at least 15 seconds after the glove is immersed in water at room temperature for 2 minutes, removed from the water, hung in a vertical position for 5 minutes, and heated at a temperature of about 280 C. (536 F.).
2. The glove of claim 1 wherein the outer layer is poly(metaphenylene isophthalamide), poly(paraphenylene terephthalamide) spun yarns.
3. The glove of claim 2 wherein the poly(metaphenylene isophthalamide) is present in about 90%-10% of the outer layer and poly(paraphenylene terephthalamide) is present in about 10%-90% of the outer layer.
4. The glove of claim 1 wherein the outer layer is woven, non-woven, or knit fabric.
5. The glove of claim 1 wherein the thermoset material consists essentially of nitrile rubber, butyl rubber, fluoroelastomer, silicone, or mixtures thereof.
6. The glove of claim 1, wherein the inside palm of said glove remains below about 49 C. (120 F.), at least 28 seconds after the glove is immersed in water at room temperature for 2 minutes, removed from the water, hung in a vertical position for 5 minutes, and heated at a temperature of about 280 C. (536 F.).
7. A multilayer glove comprising:
a woven, non-woven, or knit fabric spun yarn outer layer consisting essentially of about 90%-10% poly(metaphenylene isophthalamide) and 10%-90% poly(paraphenylene terephthalamide),
an inner layer consisting essentially of nitrile rubber, butyl rubber, fluoroelastomer, silicone, or mixtures thereof, and
a hand contact layer comprising polyester, animal, or plant fiber,
wherein the inside palm of said glove remains below about 49 C. (120 F.), at least 15 seconds after the glove is immersed in water at room temperature for 2 minutes, removed from the water, hung in a vertical position for 5 minutes, and heated at a temperature of about 280 C. (536 F.).
8. The multilayer glove of claim 7, wherein the inside palm of said glove remains below about 49 C. (120 F.), at least 28 seconds after the glove is immersed in water at room temperature for 2 minutes, removed from the water, hung in a vertical position for 5 minutes, and heated at a temperature of about 280 C. (536 F.).
US11/369,411 2005-12-29 2006-03-07 Wet/dry high-temperature glove Abandoned US20070150997A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/369,411 US20070150997A1 (en) 2005-12-29 2006-03-07 Wet/dry high-temperature glove
PCT/US2006/049314 WO2007079093A1 (en) 2005-12-29 2006-12-27 Wet/dry high-temperature protective glove

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/321,923 US20080028496A1 (en) 2005-12-29 2005-12-29 Wet/dry high-temperature glove
US11/369,411 US20070150997A1 (en) 2005-12-29 2006-03-07 Wet/dry high-temperature glove

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/321,923 Continuation-In-Part US20080028496A1 (en) 2005-12-29 2005-12-29 Wet/dry high-temperature glove

Publications (1)

Publication Number Publication Date
US20070150997A1 true US20070150997A1 (en) 2007-07-05

Family

ID=38022315

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/369,411 Abandoned US20070150997A1 (en) 2005-12-29 2006-03-07 Wet/dry high-temperature glove

Country Status (2)

Country Link
US (1) US20070150997A1 (en)
WO (1) WO2007079093A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2938315A1 (en) * 2008-11-13 2010-05-14 Hutchinson Sealed heat insulation structure for use in e.g. potholder used in restaurant, has two layers respectively formed on faces of structure and superimposed on one another, where one of layers is made of brushed cotton

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3094511A (en) * 1958-11-17 1963-06-18 Du Pont Wholly aromatic polyamides
US3354127A (en) * 1966-04-18 1967-11-21 Du Pont Aromatic copolyamides
US3673143A (en) * 1970-06-24 1972-06-27 Du Pont Optically anisotropic spinning dopes of polycarbonamides
US3819587A (en) * 1969-05-23 1974-06-25 Du Pont Wholly aromatic carbocyclic polycarbonamide fiber having orientation angle of less than about 45{20
US3869429A (en) * 1971-08-17 1975-03-04 Du Pont High strength polyamide fibers and films
US4172938A (en) * 1976-06-23 1979-10-30 Teijin Limited Process for producing polyamides with lactam or urea solvent and CaCl2
US4433439A (en) * 1982-06-30 1984-02-28 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Heat resistant protective hand covering
US4569088A (en) * 1983-10-03 1986-02-11 E. I. Du Pont De Nemours And Company Foundry workers' protective garment
US5581812A (en) * 1994-07-18 1996-12-10 Comasec Safety, Inc. Leak-proof textile glove
US6594830B2 (en) * 2000-05-19 2003-07-22 Tony Geng Protective glove liner
US20050221706A1 (en) * 2004-03-30 2005-10-06 Yves Bader Fabric for protective garments

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2578188A (en) * 1948-04-16 1951-12-11 Cochran Hewitt Heat resistant covering
US4849280A (en) * 1987-10-13 1989-07-18 Cairns & Brother Inc. Laminate for fire protective gear
EP0606405A1 (en) * 1991-09-27 1994-07-20 Marmon Holdings, Inc. Heat resistant and cut and puncture protective hand covering
DE29611356U1 (en) * 1996-06-29 1996-09-05 Handschuhfabrik Seiz Gmbh & Co Protective glove, especially for the police and other security services
FR2868666B3 (en) * 2005-05-20 2006-03-24 Sacla Sa PROTECTIVE GLOVE

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3094511A (en) * 1958-11-17 1963-06-18 Du Pont Wholly aromatic polyamides
US3354127A (en) * 1966-04-18 1967-11-21 Du Pont Aromatic copolyamides
US3819587A (en) * 1969-05-23 1974-06-25 Du Pont Wholly aromatic carbocyclic polycarbonamide fiber having orientation angle of less than about 45{20
US3673143A (en) * 1970-06-24 1972-06-27 Du Pont Optically anisotropic spinning dopes of polycarbonamides
US3869429A (en) * 1971-08-17 1975-03-04 Du Pont High strength polyamide fibers and films
US4172938A (en) * 1976-06-23 1979-10-30 Teijin Limited Process for producing polyamides with lactam or urea solvent and CaCl2
US4433439A (en) * 1982-06-30 1984-02-28 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Heat resistant protective hand covering
US4569088A (en) * 1983-10-03 1986-02-11 E. I. Du Pont De Nemours And Company Foundry workers' protective garment
US5581812A (en) * 1994-07-18 1996-12-10 Comasec Safety, Inc. Leak-proof textile glove
US6594830B2 (en) * 2000-05-19 2003-07-22 Tony Geng Protective glove liner
US20050221706A1 (en) * 2004-03-30 2005-10-06 Yves Bader Fabric for protective garments

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2938315A1 (en) * 2008-11-13 2010-05-14 Hutchinson Sealed heat insulation structure for use in e.g. potholder used in restaurant, has two layers respectively formed on faces of structure and superimposed on one another, where one of layers is made of brushed cotton

Also Published As

Publication number Publication date
WO2007079093A1 (en) 2007-07-12

Similar Documents

Publication Publication Date Title
KR101032857B1 (en) Cut resistant, wicking and thermoregulating fabric and articles made therefrom
KR101473509B1 (en) Flame resistant spun staple yarns made from blends of fibers derived from diamino diphenyl sulfone and polyoxadiazole fibers and fabrics and garments made therefrom and methods for making same
US20080028496A1 (en) Wet/dry high-temperature glove
US20020123284A1 (en) Yarn and fabric having improved abrasion resistance
JP5186000B2 (en) Flame-retardant spun yarns made from blends of fibers derived from diaminodiphenylsulfone and high modulus fibers, fabrics and garments made therefrom, and methods for making them
AU778248B2 (en) Heat-resistant crimped yarn
CA2037502C (en) Composite yarn with high cut resistance and articles comprising said composite yarn
JP5186001B2 (en) Spun staple yarns made from blends of rigid rod fibers and fibers derived from diaminodiphenylsulfone, fabrics and garments made therefrom, and methods for making them
JP2022547077A (en) Cut-resistant multi-layered yarns and fabrics
US6829881B1 (en) Cut-resistant articles of aramid microfilaments
US9706804B1 (en) Flame resistant fabric having intermingled flame resistant yarns
US20070150997A1 (en) Wet/dry high-temperature glove
JP4171480B2 (en) Heat resistant crimped yarn
JP4025012B2 (en) Heat resistant crimped yarn
CN209431968U (en) The fabric composite and fender of fender for anti-stab anti-cutting
EP3041980B1 (en) Lightweight cooling fabric and articles made therefrom
JP2007092209A (en) Heat-resiatant fabric and heat-resiatant protective garment
AU2004220710B2 (en) Heat-resistant crimped yarn
CN110822996A (en) Textile composite for stab and cut protection
JP2005054294A (en) Bulky interlaced yarn

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION