JP4171480B2 - Heat resistant crimped yarn - Google Patents

Heat resistant crimped yarn Download PDF

Info

Publication number
JP4171480B2
JP4171480B2 JP2005195841A JP2005195841A JP4171480B2 JP 4171480 B2 JP4171480 B2 JP 4171480B2 JP 2005195841 A JP2005195841 A JP 2005195841A JP 2005195841 A JP2005195841 A JP 2005195841A JP 4171480 B2 JP4171480 B2 JP 4171480B2
Authority
JP
Japan
Prior art keywords
heat
yarn
fiber
resistant
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2005195841A
Other languages
Japanese (ja)
Other versions
JP2005307429A (en
Inventor
一彦 小菅
武 波多野
光彦 棚橋
伊織 中林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Du Pont Toray Co Ltd
Toray Industries Inc
Original Assignee
Du Pont Toray Co Ltd
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Du Pont Toray Co Ltd, Toray Industries Inc filed Critical Du Pont Toray Co Ltd
Priority to JP2005195841A priority Critical patent/JP4171480B2/en
Publication of JP2005307429A publication Critical patent/JP2005307429A/en
Application granted granted Critical
Publication of JP4171480B2 publication Critical patent/JP4171480B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Professional, Industrial, Or Sporting Protective Garments (AREA)

Description

本発明はアラミド繊維等の耐熱高機能繊維からなる耐熱性捲縮糸およびその製造方法に関する。より詳しくは、優れた耐熱性、難燃性、高強度特性のみならず良好な伸縮伸長率および伸縮弾性率と優れた外観とを有し、毛羽や埃の発生しにくい耐熱性捲縮糸、および高温高圧水蒸気もしくは高温高圧水処理または乾熱処理を行うことを特徴とする該耐熱性捲縮糸の製造方法に関する。
また、本発明は、該耐熱性捲縮糸からなる嵩高性および伸縮性を有する繊維製品に関する。特に、溶鉱炉での高熱作業、板金工作時の溶接作業もしくは農作業などの種々の労働作業、自動車産業もしくは電気製品産業などにおける製品の塗装工程、または精密機械産業、航空機産業もしくは情報機器産業などにおける製造工程、さらにはスポーツ、手術などいろいろな場面で、身体や手を保護するために必要な作業服や手袋に関する。
The present invention relates to a heat-resistant crimped yarn made of a heat-resistant and high-performance fiber such as an aramid fiber and a method for producing the same. More specifically, the heat-resistant crimped yarn has not only excellent heat resistance, flame retardancy, and high strength characteristics, but also has good stretch elongation and stretch elasticity and excellent appearance, and is less likely to generate fluff and dust. Further, the present invention relates to a method for producing the heat-resistant crimped yarn, characterized by performing high-temperature high-pressure steam or high-temperature high-pressure water treatment or dry heat treatment.
Moreover, this invention relates to the textiles which have the bulkiness and stretchability which consist of this heat resistant crimped yarn. In particular, high-temperature work in the blast furnace, various labor work such as welding work or farming work in sheet metal work, product painting process in the automobile industry or electrical products industry, or manufacturing in the precision machinery industry, aircraft industry or information equipment industry, etc. It relates to work clothes and gloves necessary to protect the body and hands in various scenes such as processes, sports, and surgery.

ナイロンやポリエステル繊維等の汎用熱可塑性合成繊維は約250℃前後で溶融するのに対して、アラミド繊維、全芳香族ポリエステル繊維またはポリパラフェニレンベンゾビスオキサゾール繊維等の耐熱高機能繊維は約250℃前後では溶融せず、その分解温度が約500℃前後と高温である。また、前記非耐熱性の汎用繊維であるナイロンやポリエステル繊維の限界酸素指数は約20前後であり、空気中でよく燃焼するのに対して、上記のような耐熱高機能繊維の限界酸素指数は約25以上であって、空気中では熱源である炎を近づけることによって燃焼するが、炎を遠ざけると燃焼を続けることができない。このように、耐熱高機能繊維は耐熱性および難燃性に優れた素材である。それゆえに、例えば耐熱高機能繊維であるアラミド繊維は炎や高熱に曝される危険の大きい場面での衣料製品、例えば消防服、自動車レース用のレーシングスーツ、製鉄用作業服または溶接用作業服などに好んで用いられている。中でも、耐熱性とともに高強度特性をも併せ持ったパラ系アラミド繊維は、引裂き強さと耐熱性を要するスポーツ衣料や作業服、ロープ、タイヤコードなどに利用されており、また刃物によって切れにくいことから作業用手袋などにも利用されている。一方、メタ系アラミド繊維は、耐熱性とともに耐候性・耐薬品性にも優れており、消防服や断熱フィルター、耐熱収塵フィルター、電気絶縁材料などに用いられている。   General-purpose thermoplastic synthetic fibers such as nylon and polyester fibers melt at about 250 ° C, whereas heat-resistant and high-performance fibers such as aramid fibers, wholly aromatic polyester fibers, or polyparaphenylene benzobisoxazole fibers are about 250 ° C. It does not melt before and after, and its decomposition temperature is as high as about 500 ° C. Moreover, the critical oxygen index of the non-heat-resistant general-purpose fiber nylon or polyester fiber is about 20 and burns well in the air, whereas the critical oxygen index of the heat-resistant high-performance fiber as described above is Although it is about 25 or more and burns in the air by bringing the flame that is a heat source closer, combustion cannot be continued if the flame is moved away. Thus, the heat-resistant and high-performance fiber is a material excellent in heat resistance and flame retardancy. Therefore, for example, aramid fiber, which is a heat-resistant and high-performance fiber, is a clothing product in a scene where there is a high risk of being exposed to flames or high heat, such as fire fighting clothes, racing suits for automobile racing, work clothes for iron making, welding work clothes, etc. It is used favorably. In particular, para-aramid fibers that have both heat resistance and high strength properties are used for sports clothing, work clothes, ropes, tire cords, etc. that require tear strength and heat resistance, and are difficult to cut with a knife. It is also used for gloves. On the other hand, meta-aramid fibers are excellent in heat resistance, weather resistance, and chemical resistance, and are used in fire clothes, heat insulating filters, heat-resistant dust filters, electrical insulating materials, and the like.

従来、これら耐熱高機能繊維を用いて衣料製品などの繊維製品を製造する際には、捲縮のないフィラメント糸や紡績糸などの形態で該繊維が利用されているにすぎなかった。しかし、フィラメント糸や紡績糸などの捲縮のない糸条を布地に加工し、消防服、レーシングスーツまたは作業服等の衣料製品を製造しても、糸条が十分な伸縮性を有していないため該衣料製品の伸縮性は劣っていた。その結果、該衣料製品を着用した場合に、着心地が悪く、また活動しにくいという難点があった。   Conventionally, when manufacturing textile products such as clothing products using these heat-resistant and high-performance fibers, the fibers have only been used in the form of filament yarns and spun yarns without crimps. However, even if filaments and spun yarns are processed into non-crimped yarns to produce clothing products such as fire clothes, racing suits or work clothes, the yarns have sufficient elasticity. Therefore, the stretchability of the clothing product was inferior. As a result, when the garment product is worn, there is a drawback that it is not comfortable to wear and is difficult to act.

特に、精密部品を取り扱う航空機産業、情報機器産業または精密機械産業で使用される作業手袋においては、従来の非捲縮糸条からなる作業手袋では、着用時の作業性が悪いので作業効率の低下につながっていた。また、医療分野においては、例えばエイズなど血液感染するおそれのある疾患を有する患者の手術に際し、該患者の血液が付着しないように医師はゴム手袋またはエラストマー手袋(以下、「ゴム手袋等」という)を装着する。また、例えば、救急隊員は不特定のけが人や病人に接するため、感染症の罹患が未確認である患者の血液や体液から自分自身を保護するため、ゴム手袋等を使用する。しかし、ゴム手袋等はメス等の手術器で簡単に破れるために、該患者の血液が付着したメスや注射針等から医師や救急隊員などの医療従事者を十分に保護することができない。そこで、機械的強度が大きい上記耐熱高機能繊維を織編した手袋を、ゴム手袋等の内側に装着することが考えられるが、上記したように耐熱高機能繊維からなる従来の手袋は伸縮性に劣るため、医師や救急隊員などの医療従事者の作業効率を低下させる。そのため、ゴム手袋等の内側にはめて使用できるような薄手で作業性を損なわない伸縮性と切れにくさを備えた手袋が求められている。   In particular, in work gloves used in the aircraft industry, information equipment industry, or precision machinery industry that handle precision parts, conventional work gloves made of non-crimp yarns have poor workability when worn, resulting in reduced work efficiency. It was connected to. In the medical field, for example, doctors use rubber gloves or elastomer gloves (hereinafter referred to as “rubber gloves”) to prevent blood from the patient from adhering during surgery of a patient who has a blood infection such as AIDS. Wear. In addition, for example, ambulance crew members contact unspecified injured persons and sick persons, and rubber gloves are used to protect themselves from the blood and body fluids of patients who have not been confirmed to be infected. However, since rubber gloves and the like are easily broken by a surgical instrument such as a scalpel, medical personnel such as doctors and ambulance workers cannot be sufficiently protected from the scalpel or injection needle to which the patient's blood has adhered. Therefore, it is conceivable to wear a glove woven and knitted with the above heat-resistant and high-performance fiber having a high mechanical strength inside a rubber glove, etc. Because it is inferior, it reduces the work efficiency of medical personnel such as doctors and ambulance crews. Therefore, there is a demand for a glove that is thin and can be used inside rubber gloves, etc., and has stretchability and resistance to cutting.

さらに、従来、紡績糸は一般に38mm前後又は51mm前後の短繊維を紡いで糸条となしており、ゆえに糸条表面に短繊維端がはみ出して毛羽状となっている。耐熱性高機能繊維からなる紡績糸から作られた作業服や手袋などは、使用時の摩擦によって毛羽が脱落するので、例えば空気中の埃を除去した環境下にあるクリーンルームや、塗装面へ付着した埃が製品の商品価値を低下させる塗装工場での作業服や手袋としては問題があり、毛羽や埃の発生しにくい作業服や手袋などの耐熱性高機能繊維からなる繊維製品が求められていた。   Further, conventionally, a spun yarn is generally formed by spinning short fibers of about 38 mm or about 51 mm into yarns, and therefore, the ends of the short fibers protrude from the surface of the yarn and become fluffy. Work clothes and gloves made from spun yarn made of heat-resistant high-performance fibers lose their fluff due to friction during use.For example, they adhere to clean rooms and paint surfaces that are free of dust in the air. There is a problem as work clothes and gloves in paint factories where the product dust reduces the product value of products, and textile products made of heat-resistant high-performance fibers such as work clothes and gloves that do not easily generate fuzz and dust are required. It was.

上記のように、非捲縮糸条を用いた耐熱高機能繊維からなる繊維製品の活動性または作業性の悪さおよび毛羽や埃の発生を改善すべく、耐熱高機能繊維が本来有する耐熱性および難燃性などの優れた性質を失うことなく、良好な伸縮伸長率および伸縮弾性率と優れた外観とを有し、毛羽や埃の発生しにくい耐熱性捲縮糸が熱望されていた。   As described above, in order to improve the activity or workability of fiber products made of heat-resistant and high-performance fibers using non-crimped yarns and to improve the generation of fluff and dust, There has been a strong demand for heat-resistant crimped yarns that have a good stretch elongation rate, a stretch elastic modulus and an excellent appearance without losing excellent properties such as flame retardancy, and are less likely to generate fluff and dust.

かかる市場の要求に鑑みて、耐熱性捲縮糸または耐熱高機能繊維に捲縮を付与する方法についての研究、提案が多数なされている(特開昭48−19818、特開昭53−114923、特開平3−27117)。具体的には、ナイロンまたはポリエステル繊維など一般の熱可塑性合成繊維の捲縮付与方法を応用した方法が挙げられる。例えば、パラ系アラミド繊維などの高弾性率繊維に低弾性率繊維を混合して押込み法により捲縮を付与する方法(特開平1−192839)、アラミド繊維をその分解開始温度以上、分解温度未満(メタ系アラミド繊維の場合390℃以上460℃未満)に加熱した非接触ヒーターを用い仮撚り捲縮加工した後、弛緩熱処理するという仮撚り法により製造された捲縮糸(特開平6−280120)などが公知である。
しかし、公知方法のいずれにおいても、良好な伸縮伸長率および伸縮弾性率を有する高品質の捲縮糸の製造;加熱による強度の低下、色調の変化、毛羽立ちもしくは糸切れ等の糸条の品質劣化の防止;工程管理の容易性、設備の簡易性、優れた生産性、低コスト等の実用化可能性の観点からすれば、克服すべき技術的課題のすべてが揃って解決されているわけではなく、従って構成繊維の物性の劣化などがなく伸縮伸長率等に優れた品質の耐熱性捲縮糸も未だ市場化されていないのが現状である。
In view of such market demands, many studies and proposals have been made on methods for imparting crimps to heat-resistant crimped yarns or heat-resistant high-performance fibers (Japanese Patent Laid-Open Nos. 48-19818, 53-114923, JP-A-3-27117). Specifically, a method applying a crimping method for a general thermoplastic synthetic fiber such as nylon or polyester fiber can be used. For example, a method in which a low elastic modulus fiber such as para-aramid fiber is mixed with a low elastic fiber and crimped by an indentation method (Japanese Patent Laid-Open No. 1-192839). A crimped yarn produced by a false twisting method in which false heat treatment is performed using a non-contact heater heated to 390 ° C. or more and less than 460 ° C. in the case of a meta-aramid fiber (Japanese Patent Laid-Open No. 6-280120). Etc.) are known.
However, in any of the known methods, production of high-quality crimped yarn having a good stretch elongation rate and elastic modulus; deterioration of the strength due to heating, change in color tone, yarn quality degradation such as fluffing or yarn breakage From the viewpoint of ease of process management, simplicity of equipment, excellent productivity, low cost, etc., all technical issues to be overcome are not solved. Therefore, the present situation is that a heat-resistant crimped yarn having a quality that does not deteriorate the physical properties of the constituent fibers and has an excellent stretch / elongation rate has not been commercialized yet.

本発明は、上記従来技術の問題点に鑑みて、製造時の加熱処理による耐熱高機能繊維糸の品質劣化を極力押さえ、耐熱高機能繊維が本来有する耐熱性または難燃性などの優れた性質を失うことなく、良好な伸縮伸長率および伸縮弾性率と優れた外観とを有し、毛羽や埃の発生しにくい耐熱性捲縮糸を提供することを目的とする。
また、本発明は、生産性、設備、コストなどの点で実用的な耐熱性捲縮糸の製造方法を提供することを目的とする。
さらに、本発明は、(a)伸縮性、耐熱性、機械的強度および外観に優れ、(b)手などの身体によくフィットして作業性がよく、(c)毛羽や埃の発生しにくく、(d)工程管理が容易で、生産性に優れており、低コストであるなど工業的製造上の利点を有する繊維製品、特に手袋を提供することを目的とする。
In view of the above-mentioned problems of the prior art, the present invention suppresses the deterioration of the quality of the heat-resistant and high-performance fiber yarn by heat treatment during production as much as possible, and has excellent properties such as heat resistance or flame retardancy inherent to the heat-resistant and high-performance fiber. An object of the present invention is to provide a heat-resistant crimped yarn that has a good stretch elongation rate, a stretch elastic modulus, and an excellent appearance without losing fragility, and is less likely to generate fuzz and dust.
Another object of the present invention is to provide a practical method for producing heat-resistant crimped yarn in terms of productivity, equipment, cost, and the like.
Further, the present invention is (a) excellent in stretchability, heat resistance, mechanical strength and appearance, (b) fits well to the body such as the hand and has good workability, and (c) hardly generates fluff and dust. (D) An object of the present invention is to provide a textile product, particularly a glove, which has industrial manufacturing advantages such as easy process control, excellent productivity, and low cost.

本発明者らは、上記目的を達成すべく鋭意検討した結果、特定の伸縮伸長率、伸縮弾性率および強度を有し、加熱による品質劣化のない捲縮糸の形態で耐熱高機能繊維を利用すれば、フィラメント糸や紡績糸などの非捲縮糸条の形態で利用した場合に比して、繊維製品の作業性または活動性を格段に向上させることができ、また使用時に摩擦などを受けても毛羽や埃が発生しにくいなど上記従来の問題点を一挙に解決できることを知見した。
また、耐熱性捲縮糸の製造方法についても検討を加えた結果、耐熱高機能繊維糸条に先ず第1の撚りを加え、高温高圧水蒸気もしくは高温高圧水処理または乾熱処理により熱セットし撚りを固定し、次いで、第1の撚りとは逆方向の第2の撚りを与えて解撚させることにより、上述のような優れた耐熱性捲縮糸を製造できるということも知見した。
さらに、耐熱高機能繊維のフィラメント糸はすべり易いため、例えば手袋に織編するなど機械織編を用いて繊維製品を製造するのに度々苦難を伴う。しかし、本発明に係る耐熱性捲縮糸を用いれば、かかる問題を解決できることを知見した。さらに、本発明に係る手袋などの耐熱性捲縮糸からなる嵩高で伸縮性のある繊維製品は、毛羽や埃が発生しにくいという利点を有することも知見した。すなわち、紡績糸は上述したように糸条表面に短繊維端がはみ出し毛羽状となっており、したがって耐熱高機能繊維の紡績糸からなる繊維製品は使用時の摩擦によって毛羽が脱落しやすいのに対し、本発明に係る耐熱性捲縮糸は長繊維から構成されているため糸条表面に毛羽が無く、したがってこれによって作られた作業服などの繊維製品は使用時の摩擦等を受けても単繊維の切断端である毛羽が発生しにくく、また単繊維毛羽の脱落がないのである。
したがって、精密機械産業、航空機産業または情報機器産業において、例えば、飛行機またはコンピューター等に用いる電子部品を取り扱う作業の際に、例えば作業手袋が使用時間の経過と共に劣化し繊維がちぎれてクリーンであるべき空間に飛散して埃が発生するような状況は避けなければならないことから、毛羽や埃が発生しにくいという利点を有す本発明の繊維製品、特に手袋は上記産業において有用であるといえる。また、アルミ建材、家庭電化製品または自動車などの製造時の塗装工程において、塗装面に毛羽や埃が付着すると製品の商品価値が低下することから、毛羽や埃が発生しにくい本発明の繊維製品、特に手袋はこれらの産業においても有用である。
本発明者らは、さらに検討を加え、本発明を完成した。
As a result of intensive studies to achieve the above object, the present inventors have used heat-resistant and high-performance fibers in the form of crimped yarns having a specific stretch elongation rate, stretch elastic modulus and strength, and without quality deterioration due to heating. As a result, the workability or activity of the textile product can be significantly improved as compared with the case of using in the form of non-crimped yarn such as filament yarn or spun yarn, and it is subject to friction during use. However, it has been found that the above-mentioned conventional problems, such as less generation of fluff and dust, can be solved at once.
In addition, as a result of examining the manufacturing method of heat-resistant crimped yarn, the first twist is first added to the heat-resistant and high-performance fiber yarn, and then heat-set by high-temperature high-pressure steam or high-temperature high-pressure water treatment or dry heat treatment and twisted. It was also found that the excellent heat-resistant crimped yarn as described above can be produced by fixing and then applying a second twist in the direction opposite to the first twist and then untwisting.
Furthermore, since the filament yarn of heat-resistant and high-performance fiber is easy to slip, it is often difficult to manufacture a textile product using machine knitting such as knitting and knitting in gloves. However, it has been found that this problem can be solved by using the heat-resistant crimped yarn according to the present invention. Furthermore, it has also been found that a bulky and stretchable fiber product made of heat-resistant crimped yarn such as a glove according to the present invention has an advantage that fluff and dust hardly occur. That is, as described above, the spun yarn has a fluff-like shape with the end of the short fiber protruding from the surface of the yarn. Therefore, the fluff of the spun yarn of the heat-resistant and high-performance fiber is likely to fall off due to friction during use. On the other hand, since the heat-resistant crimped yarn according to the present invention is composed of long fibers, there is no fluff on the surface of the yarn, and therefore the fiber products such as work clothes made thereby may be subjected to friction during use. The fluff that is the cut end of the single fiber is less likely to occur, and the single fiber fluff does not fall off.
Therefore, in the precision machinery industry, aircraft industry, or information equipment industry, for example, when handling electronic parts used in airplanes or computers, work gloves should deteriorate with the passage of time of use and fibers should be torn and clean. Since it is necessary to avoid a situation in which dust is generated by scattering in the space, it can be said that the textile product of the present invention, particularly a glove, which has the advantage of being less likely to generate fluff and dust, is useful in the above industry. In addition, in the coating process when manufacturing aluminum building materials, home appliances, automobiles, etc., if fluff or dust adheres to the painted surface, the product value of the product decreases, so the fiber product of the present invention that is less likely to generate fluff or dust. In particular, gloves are also useful in these industries.
The inventors further studied and completed the present invention.

すなわち、本発明は、
(1)単糸繊度が0.02〜1texである耐熱高機能繊維からなり、伸縮伸長率が6%以上、伸縮弾性率が40%以上、強度が0.15〜3.5N/texであることを特徴とする加熱による品質劣化のない耐熱性捲縮糸、
(2)耐熱高機能繊維がパラ系アラミド繊維、全芳香族ポリエステル繊維またはポリパラフェニレンベンゾビスオキサゾール繊維であり、強度が0.5〜3.5N/texであることを特徴とする前記(1)に記載の耐熱性捲縮糸、
(3)パラ系アラミド繊維が、ポリパラフェニレンテレフタルアミド繊維である前記(2)に記載の耐熱性捲縮糸、
(4)耐熱高機能繊維がメタ系アラミド繊維であり、伸縮伸長率が50〜300%であることを特徴とする前記(1)に記載の耐熱性捲縮糸、
(5)メタ系アラミド繊維がポリメタフェニレンイソフタルアミド繊維である前記(4)に記載の耐熱性捲縮糸、
(6)前記(1)〜(5)に記載の耐熱性捲縮糸を繊維部分の50%以上含む嵩高で伸縮性のある繊維製品、
(7)手袋である前記(6)に記載の嵩高で伸縮性のある繊維製品、
(8)精密機械産業、航空機産業、情報機器産業、自動車産業、電気製品産業、医療手術または衛生分野で使用される前記(7)に記載の手袋、
(9)消防服、自動車レース用のレーシングスーツ、または製鉄用、溶接用もしくは溶接用作業服である前記(6)に記載の嵩高で伸縮性のある繊維製品、
(10)耐熱高機能繊維糸条に撚りを加えた後、高温高圧水蒸気または高温高圧水処理により熱セットを行い、次いで前記撚りの解撚を行うことを特徴とする耐熱性捲縮糸の製造方法、
(11)耐熱性高機能繊維糸条に加えられる撚りが下記式で表わされる撚り係数K5,000〜11,000を有すること、高温高圧水蒸気または高温高圧水処理が130〜250℃の温度下で行われることを特徴とする前記(10)に記載の耐熱性捲縮糸の製造方法、
K=t×D1/2〔但し、tは撚り数(回/m)を表し、Dは繊度(tex)を表す。〕
(12)耐熱高機能繊維がパラ系アラミド繊維、メタ系アラミド繊維、全芳香族ポリエステル繊維およびポリパラフェニレンベンゾビスオキサゾール繊維からなる群から選ばれる繊維であることを特徴とする前記(10)または(11)に記載の耐熱性捲縮糸の製造方法、
(13)パラ系アラミド繊維が、ポリパラフェニレンテレフタルアミド繊維である前記(12)に記載の耐熱性捲縮糸の製造方法、
(14)耐熱性捲縮糸が6%以上の伸縮伸長率および40%以上の伸縮弾性率を有することを特徴とする前記(10)〜(13)に記載の耐熱性捲縮糸の製造方法、
(15)前記(12)に記載の製造方法により得られる耐熱性捲縮糸からなる嵩高、伸縮性繊維製品、
(16)耐熱高機能繊維糸条に撚りを加えた後、耐熱高機能繊維の分解開始温度以下の温度での乾熱処理により熱セットを行い、次いで前記撚りの解撚を行うことを特徴とする耐熱性捲縮糸の製造方法、
(17)耐熱性高機能繊維糸条に、下記式で表わされる撚り係数K5,000〜11,000の撚りを加え、140〜390℃の温度下での乾熱処理により熱セットを行い、次いで前記撚りの解撚を行うことを特徴とする前記(16)に記載の耐熱性捲縮糸の製造方法、
K=t×D1/2〔但し、tは撚り数(回/m)を表し、Dは繊度(tex)を表す。〕
(18)耐熱性高機能繊維糸条に撚りを加えた後、乾熱処理により熱セットを行い、次いで前記撚りの解撚をする工程を連続的に行うことを特徴とする前記(16)又は(17)に記載の耐熱性捲縮糸の製造方法、
(19)乾熱処理が200〜330℃の温度下で行われることを特徴とする前記(16)〜(18)のいずれかに記載の耐熱性捲縮糸の製造方法、
(20)耐熱高機能繊維がパラ系アラミド繊維、メタ系アラミド繊維、全芳香族ポリエステル繊維及びポリパラフェニレンベンゾビスオキサゾール繊維からなるグループから選ばれた繊維であることを特徴とする前記(16)〜(19)のいずれか1に記載の耐熱性捲縮糸の製造方法、
(21)パラ系アラミド繊維がポリパラフェニレンテレフタルアミド繊維である前記(16)〜(20)のいずれか1に記載の耐熱性捲縮糸の製造方法、
(22)耐熱性捲縮糸の伸縮伸長率が6%以上で伸縮弾性率が40%以上であることを特徴とする前記(16)〜(21)のいずれか1に記載の耐熱性捲縮糸の製造方法、
(23)前記(16)〜(22)のいずか1に記載の方法によって得られる耐熱性捲縮糸からなる嵩高、伸縮性繊維製品、
(24)耐熱高機能繊維糸条で編み地を作成し、この編地を乾熱処理または高温高圧水蒸気もしくは高温高圧水処理し、次いで該編み地を解編することを特徴とする耐熱性捲縮糸の製造方法、
(25)耐熱高機能繊維糸条で編み地を作成し、130〜250℃の高温高圧水蒸気または高温高圧水を用いて2〜100分間処理し、次いで該編み地を解編することを特徴とする前記(24)に記載の耐熱性捲縮糸の製造方法、
(26)耐熱高機能繊維糸条で編み地を作成し、140〜390℃の温度下で乾熱処理し、次いで該編み地を解編することを特徴とする前記(24)に記載の耐熱性捲縮糸の製造方法、
(27)耐熱性捲縮糸が6.5%以上の捲縮伸長率を有することを特徴とする前記(25)または(26)に記載の耐熱性捲縮糸の製造方法、
(28)耐熱高機能繊維捲縮糸を含む糸条で織編されていることを特徴とする手袋、
(29)前記(28)記載の捲縮糸の伸縮伸長率が6%〜30%で伸縮弾性率が40〜100%であることを特徴とする前記(28)記載の手袋、
(30)耐熱高機能繊維がパラ系アラミド繊維、メタ系アラミド繊維、全芳香族ポリエステル繊維及びポリパラフェニレンベンゾビスオキサゾール繊維からなる群から選ばれた繊維であることを特徴とする前記(28)又は(29)に記載の手袋、
(31)パラ系アラミド繊維がポリパラフェニレンテレフタルアミド繊維である前記(30)に記載の手袋、
(32)耐熱高機能繊維捲縮糸が、耐熱高機能繊維糸条に撚りを加えた後、乾熱処理又は高温高圧水蒸気もしくは高温高圧水処理により熱セットを行い、次いで前記撚りの解撚を行うことを特徴とする製造方法によって製造された耐熱高機能繊維捲縮糸であることを特徴とする前記(28)〜(31)のいずれかに記載の手袋、および、
(33)手袋が精密機械産業、航空機産業、情報機器産業、医療手術又は衛生分野で使用される前記(28)〜(32)のいずれかに記載の手袋、
に関する。
That is, the present invention
(1) It consists of a heat-resistant high-performance fiber having a single yarn fineness of 0.02 to 1 tex, a stretch elongation rate of 6% or more, a stretch elastic modulus of 40% or more, and a strength of 0.15 to 3.5 N / tex. Heat-resistant crimped yarn without quality deterioration due to heating,
(2) The heat-resistant and high-performance fiber is a para-aramid fiber, wholly aromatic polyester fiber, or polyparaphenylene benzobisoxazole fiber, and has a strength of 0.5 to 3.5 N / tex (1) ) Heat-resistant crimped yarn,
(3) The heat-resistant crimped yarn according to (2), wherein the para-aramid fiber is a polyparaphenylene terephthalamide fiber,
(4) The heat-resistant highly functional fiber is a meta-aramid fiber, and the stretch elongation rate is 50 to 300%, the heat-resistant crimped yarn according to (1),
(5) The heat-resistant crimped yarn according to (4), wherein the meta-aramid fiber is polymetaphenylene isophthalamide fiber,
(6) A bulky and elastic fiber product containing 50% or more of the heat-resistant crimped yarn according to (1) to (5) above,
(7) The bulky and stretchable fiber product according to (6), which is a glove,
(8) The glove according to (7) used in the precision machine industry, aircraft industry, information equipment industry, automobile industry, electrical product industry, medical surgery or hygiene field,
(9) A bulky and stretchable textile product according to (6), which is a fire fighting suit, a racing suit for automobile racing, or a work suit for iron making, welding or welding,
(10) Manufacture of heat-resistant crimped yarn, characterized in that after heat-resistant high-performance fiber yarn is twisted, heat setting is performed by high-temperature high-pressure steam or high-temperature high-pressure water treatment, and then the twist is untwisted. Method,
(11) The twist applied to the heat-resistant high-performance fiber yarn has a twist coefficient K5,000 to 11,000 represented by the following formula, and high-temperature high-pressure steam or high-temperature high-pressure water treatment is performed at a temperature of 130 to 250 ° C. The method for producing a heat-resistant crimped yarn according to (10), which is performed,
K = t × D 1/2 [where t represents the number of twists (times / m) and D represents the fineness (tex). ]
(12) The heat-resistant and high-performance fiber is a fiber selected from the group consisting of a para-aramid fiber, a meta-aramid fiber, a wholly aromatic polyester fiber, and a polyparaphenylene benzobisoxazole fiber (10) or (11) The method for producing the heat-resistant crimped yarn according to
(13) The method for producing a heat-resistant crimped yarn according to (12), wherein the para-aramid fiber is a polyparaphenylene terephthalamide fiber,
(14) The method for producing a heat-resistant crimped yarn according to the above (10) to (13), wherein the heat-resistant crimped yarn has a stretch elongation rate of 6% or more and a stretch elastic modulus of 40% or more. ,
(15) Bulky, stretchable fiber product made of heat-resistant crimped yarn obtained by the production method according to (12),
(16) The heat-resistant high-performance fiber yarn is twisted, then heat-set by dry heat treatment at a temperature equal to or lower than the decomposition start temperature of the heat-resistant high-performance fiber, and then the twist is untwisted. Production method of heat-resistant crimped yarn,
(17) A heat-resistant high-performance fiber yarn is twisted with a twist coefficient K5,000 to 11,000 represented by the following formula, and heat-set by dry heat treatment at a temperature of 140 to 390 ° C. The method for producing a heat-resistant crimped yarn according to (16), wherein the twist is untwisted,
K = t × D 1/2 [where t represents the number of twists (times / m) and D represents the fineness (tex). ]
(18) The method according to (16) or (16), wherein after twisting the heat-resistant high-performance fiber yarn, heat setting is performed by dry heat treatment, and then the step of untwisting the twist is continuously performed. 17) The method for producing a heat-resistant crimped yarn according to 17),
(19) The method for producing a heat-resistant crimped yarn according to any one of (16) to (18), wherein the dry heat treatment is performed at a temperature of 200 to 330 ° C.
(20) The heat-resistant and high-performance fiber is a fiber selected from the group consisting of para-aramid fiber, meta-aramid fiber, wholly aromatic polyester fiber, and polyparaphenylene benzobisoxazole fiber (16) A process for producing a heat-resistant crimped yarn according to any one of to (19),
(21) The method for producing a heat-resistant crimped yarn according to any one of (16) to (20), wherein the para-aramid fiber is a polyparaphenylene terephthalamide fiber,
(22) The heat-resistant crimp according to any one of (16) to (21), wherein the heat-resistant crimped yarn has an expansion / contraction elongation ratio of 6% or more and an expansion / contraction elastic modulus of 40% or more. A method for producing yarn,
(23) A bulky, stretchable fiber product comprising a heat-resistant crimped yarn obtained by the method according to any one of (16) to (22),
(24) A heat-resistant crimp characterized by producing a knitted fabric with heat-resistant and high-performance fiber yarns, subjecting the knitted fabric to dry heat treatment or high-temperature high-pressure steam or high-temperature high-pressure water treatment, and then knitting the knitted fabric A method for producing yarn,
(25) A knitted fabric is prepared with heat-resistant and high-performance fiber yarns, treated with high-temperature high-pressure steam or high-temperature high-pressure water at 130 to 250 ° C. for 2 to 100 minutes, and then the knitted fabric is knitted. The method for producing a heat-resistant crimped yarn according to (24),
(26) The heat resistance according to (24) above, wherein a knitted fabric is prepared with heat-resistant and high-performance fiber yarns, subjected to dry heat treatment at a temperature of 140 to 390 ° C., and then the knitted fabric is knitted. Production method of crimped yarn,
(27) The method for producing a heat-resistant crimped yarn according to (25) or (26) above, wherein the heat-resistant crimped yarn has a crimp elongation of 6.5% or more,
(28) A glove characterized by being woven and knitted with a yarn including heat-resistant and high-performance fiber crimped yarn,
(29) The glove according to (28), wherein the crimped yarn according to (28) has a stretch elongation of 6% to 30% and a stretch elastic modulus of 40 to 100%,
(30) The above-mentioned (28), wherein the heat-resistant and high-performance fiber is a fiber selected from the group consisting of para-aramid fiber, meta-aramid fiber, wholly aromatic polyester fiber, and polyparaphenylenebenzobisoxazole fiber. Or the glove according to (29),
(31) The glove according to (30), wherein the para-aramid fiber is a polyparaphenylene terephthalamide fiber,
(32) After the heat-resistant high-performance fiber crimped yarn twists the heat-resistant high-performance fiber yarn, heat setting is performed by dry heat treatment or high-temperature high-pressure steam or high-temperature high-pressure water treatment, and then the twist is untwisted. The glove according to any one of (28) to (31), wherein the glove is a heat-resistant and highly functional fiber crimped yarn manufactured by a manufacturing method characterized by
(33) The glove according to any one of (28) to (32), wherein the glove is used in the precision machinery industry, aircraft industry, information equipment industry, medical surgery or hygiene field,
About.

本発明にかかる耐熱性捲縮糸は、耐熱高機能繊維が本来有する耐熱性または難燃性などの優れた性質とともに、従来のフィラメント糸や紡績糸では得られなかった良好な伸縮伸長率および伸縮弾性率と優れた外観とを有する。また、製造時の加熱処理による、例えば、強度の低下、色調の変化、毛羽立ちまたは糸切れなどの品質劣化が実質的に見られない。
したがって、本発明にかかる耐熱性捲縮糸を用いれば、繊維製品に耐熱性や難燃性のみならず伸縮性を与えることができ、例えば繊維製品が手袋や作業服などの衣類製品の場合は手などの身体によくフィットし、該繊維製品を装着したときの作業性や活動性が格段に向上するとともに、装着感にも優れている。
また、本発明に係る耐熱性捲縮糸は毛羽や埃を発生しにくい。したがって、精密機械産業、航空機産業もしくは情報機器産業におけるクリーンルームでの組立て作業、またはアルミ建材、家庭電化製品もしくは自動車などの製造時の塗装作業において、有用な繊維製品、特に作業服や手袋を提供できる。
また、本発明にかかる耐熱性捲縮糸の製造方法は、高温高圧水蒸気処理または乾熱処理により熱セットを行うことを特徴とする。ここで、高温高圧水蒸気処理は、耐圧密閉容器など慣用設備を利用して所定の温度を短時間維持するだけで熱セットすることができる。また、乾熱処理は、通常常圧下で行うことができ、連続工程も可能になる。したがって、ともに生産設備、工程管理、コスト、生産性において有利な製造方法である。また、熱セットを耐熱高機能繊維の分解開始温度より低い温度で行うので、加熱時の糸条の劣化を極力避けることができる。
The heat-resistant crimped yarn according to the present invention has excellent properties such as heat resistance and flame retardancy inherent to heat-resistant and high-performance fibers, as well as good stretch elongation and stretch that could not be obtained with conventional filament yarns and spun yarns. Has elastic modulus and excellent appearance. In addition, quality deterioration such as, for example, a decrease in strength, a change in color tone, fluffing or thread breakage due to heat treatment during production is not substantially observed.
Therefore, if the heat-resistant crimped yarn according to the present invention is used, the textile product can be given not only heat resistance and flame retardancy but also stretchability. For example, when the textile product is a clothing product such as a glove or work clothes. It fits well in the body such as hands, and the workability and activity when the textile product is worn are remarkably improved, and the wearing feeling is also excellent.
Further, the heat-resistant crimped yarn according to the present invention hardly generates fluff and dust. Therefore, it is possible to provide useful textile products, especially work clothes and gloves, in assembly work in clean rooms in the precision machinery industry, aircraft industry or information equipment industry, or in painting work when manufacturing aluminum building materials, home appliances or automobiles, etc. .
Moreover, the method for producing a heat-resistant crimped yarn according to the present invention is characterized in that heat setting is performed by high-temperature high-pressure steam treatment or dry heat treatment. Here, the high-temperature and high-pressure steam treatment can be heat-set only by maintaining a predetermined temperature for a short time using conventional equipment such as a pressure-resistant airtight container. Further, the dry heat treatment can be usually performed under normal pressure, and a continuous process is also possible. Therefore, both are production methods advantageous in terms of production equipment, process management, cost, and productivity. Moreover, since the heat setting is performed at a temperature lower than the decomposition start temperature of the heat-resistant and high-performance fiber, the deterioration of the yarn during heating can be avoided as much as possible.

本発明は、単糸繊度が0.02〜1texである耐熱高機能繊維からなり、約6%程度以上の伸縮伸長率、約40%程度以上の伸縮弾性率、約0.15〜3.5N/tex程度の強度を有し、加熱による品質劣化のない耐熱性捲縮糸を提供する。
本発明にかかる耐熱高機能繊維としては、限界酸素指数が約25以上の難燃性と示差走査熱量測定法による熱分解温度が約400℃以上の耐熱性とを有する繊維が好ましい。その例としては、アラミド繊維、全芳香族ポリエステル繊維(例えば株式会社クラレ製、商品名ベクトラン)、ポリパラフェニレンベンゾビスオキサゾール繊維(例えば東洋紡株式会社製、商品名ザイロン)、ポリベンズイミダゾール繊維、ポリアミドイミド繊維(例えばローヌプーラン社製、商品名ケルメル)、ポリイミド繊維などが挙げられる。アラミド繊維にはメタ系アラミド繊維とパラ系アラミド繊維がある。メタ系アラミド繊維としては、例えば、ポリメタフェニレンイソフタルアミド繊維(デュポン社製、商品名ノーメックス)などのメタ系全芳香族ポリアミド繊維が挙げられる。パラ系アラミド繊維としては、例えば、ポリパラフェニレンテレフタルアミド繊維(東レ・デュポン株式会社製、商品名ケブラー)およびコポリパラフェニレン−3,4’−ジフェニルエーテルテレフタルアミド繊維(帝人株式会社製、商品名テクノーラ)などのパラ系全芳香族ポリアミド繊維が挙げられる。
本発明にかかる耐熱性捲縮糸は、上記耐熱高機能繊維の1種類からなっていてもよいし、任意の2種以上の上記耐熱高機能繊維からなっていてもよい。また、ポリエステル、ナイロン、ポリビニルアルコール系繊維など他の自体公知の繊維との混繊、交撚などによる複合糸としても使用することができる。
The present invention comprises a heat-resistant and high-performance fiber having a single yarn fineness of 0.02 to 1 tex, a stretch elongation of about 6% or more, a stretch elastic modulus of about 40% or more, about 0.15 to 3.5 N. A heat-resistant crimped yarn having a strength of about / tex and free from quality deterioration due to heating is provided.
As the heat-resistant and high-performance fiber according to the present invention, a fiber having flame retardancy having a critical oxygen index of about 25 or more and heat resistance having a thermal decomposition temperature of about 400 ° C. or more by differential scanning calorimetry is preferable. Examples include aramid fibers, wholly aromatic polyester fibers (for example, Kuraray Co., Ltd., trade name Vectran), polyparaphenylene benzobisoxazole fibers (for example, Toyobo Co., Ltd., trade name Zylon), polybenzimidazole fibers, polyamides. Examples thereof include imide fibers (for example, product name Kermel manufactured by Rhône-Poulenc), polyimide fibers and the like. Aramid fibers include meta-aramid fibers and para-aramid fibers. Examples of meta-aramid fibers include meta-type wholly aromatic polyamide fibers such as polymetaphenylene isophthalamide fiber (manufactured by DuPont, trade name Nomex). Examples of the para-aramid fiber include polyparaphenylene terephthalamide fiber (trade name Kevlar manufactured by Toray DuPont Co., Ltd.) and copolyparaphenylene-3,4'-diphenyl ether terephthalamide fiber (trade name Technora manufactured by Teijin Limited). And para-type wholly aromatic polyamide fibers.
The heat-resistant crimped yarn according to the present invention may be composed of one kind of the above-mentioned heat-resistant and high-performance fiber, or may be composed of any two or more kinds of the above-mentioned heat-resistant and highly-functional fiber. Further, it can also be used as a composite yarn by blending with other known fibers such as polyester, nylon, polyvinyl alcohol fiber, and twisting.

本発明で用いられる耐熱性高機能繊維の単糸繊度は、約0.02〜1tex程度、好ましくは約0.05〜0.6tex程度、さらに好ましくは約0.08〜0.5tex程度であることが、本発明に係る耐熱性捲縮糸の柔軟性および耐熱性捲縮糸の製造のしやすさの面から好適である。
本発明で用いられる耐熱性高機能繊維糸条のトータル繊度は、撚糸や編み地の加工ができる太さであれば制限はないが、耐熱性捲縮糸の製造工程における撚糸や編み地の工程を鑑みれば、約5〜5000tex程度が好ましい。
なお、上記繊度はJIS L 0101(1999)に規定されるtex(テックス)で表している。例えば、1texは1000mの長さの繊維が1gの質量であることを示し、10texは1000mの長さの繊維が10gの質量であることを示す。texで表される数値が大きいほど繊維の太さが太いことになる。
The single yarn fineness of the heat-resistant high-performance fiber used in the present invention is about 0.02 to 1 tex, preferably about 0.05 to 0.6 tex, and more preferably about 0.08 to 0.5 tex. From the viewpoints of flexibility of the heat-resistant crimped yarn according to the present invention and ease of manufacture of the heat-resistant crimped yarn.
The total fineness of the heat-resistant and high-performance fiber yarn used in the present invention is not limited as long as it can be processed into twisted yarn and knitted fabric, but the process of twisted yarn and knitted fabric in the manufacturing process of heat-resistant crimped yarn In view of the above, about 5 to 5000 tex is preferable.
The fineness is represented by tex defined in JIS L 0101 (1999). For example, 1 tex indicates that a fiber having a length of 1000 m has a mass of 1 g, and 10 tex indicates that a fiber having a length of 1000 m has a mass of 10 g. The greater the numerical value represented by tex, the thicker the fiber.

本発明にかかる耐熱性捲縮糸のうち、耐熱高機能繊維がパラ系アラミド繊維、全芳香族ポリエステル繊維またはポリパラフェニレンベンゾビスオキサゾール繊維である場合は、該捲縮糸の伸縮伸長率が、好ましくは約6%程度以上、より好ましくは約10〜50%程度、さらに好ましくは約15〜40%程度であり、また、該捲縮糸の伸縮弾性率が約40%程度以上、好ましくは約50〜100%程度、より好ましくは約60〜100%程度であり、さらに、該捲縮糸の強度が約0.15〜3.5N/tex程度、好ましくは約0.5〜3.5N/tex程度であることが、本発明における好適な態様である。   Of the heat-resistant crimped yarn according to the present invention, when the heat-resistant and high-performance fiber is a para-aramid fiber, a wholly aromatic polyester fiber or a polyparaphenylenebenzobisoxazole fiber, the stretch / elongation rate of the crimped yarn is: Preferably, it is about 6% or more, more preferably about 10-50%, more preferably about 15-40%, and the stretch elastic modulus of the crimped yarn is about 40% or more, preferably about About 50 to 100%, more preferably about 60 to 100%, and the strength of the crimped yarn is about 0.15 to 3.5 N / tex, preferably about 0.5 to 3.5 N / tex. It is a preferable aspect in the present invention that it is about tex.

本発明にかかる耐熱性捲縮糸のうち、耐熱高機能繊維がメタ系アラミド繊維である場合は、該捲縮糸の伸縮伸長率が約6%程度以上、好ましくは約50以上、より好ましくは約50〜300%程度、さらに好ましくは約70〜300%程度であり、また、該捲縮糸の伸縮弾性率が約40%程度以上、好ましくは約50〜100%程度、より好ましくは約70〜100%程度であり、さらに、該捲縮糸の強度が約0.15〜1.0N/tex程度であることが、本発明における好適な態様である。   Among the heat-resistant crimped yarns according to the present invention, when the heat-resistant highly functional fiber is a meta-aramid fiber, the stretch / elongation rate of the crimped yarn is about 6% or more, preferably about 50 or more, more preferably About 50-300%, more preferably about 70-300%, and the elastic modulus of the crimped yarn is about 40% or more, preferably about 50-100%, more preferably about 70. The strength of the crimped yarn is about 0.15 to 1.0 N / tex, which is a preferable aspect of the present invention.

本発明にかかる耐熱性捲縮糸は、加熱による品質劣化が実質的にないのが特長である。加熱による品質劣化としては、加熱処理による耐熱性捲縮糸の物性の低下または外観の悪化が挙げられ、より具体的には、例えば、加熱処理による耐熱性捲縮糸の強度の低下、色調の変化、糸切れまたは毛羽立ちなどが挙げられる。例えば、強度の低下がないことの目安として、加熱処理後の糸条の強度保持率が30%以上、好ましくは40%以上、より好ましくは50%以上であることが好適である。なお、強度保持率は下記式から算出できる。
〔数1〕
強度保持率(%)={耐熱性捲縮糸の強度(N/tex)/処理前の耐熱高機能繊維糸の強度(N/tex)}×100
また、耐熱高機能繊維の種類によって異なるので一概には言えないが、例えばメタ系アラミド繊維の場合は、加熱処理後の糸条の色調変化がないことの目安として、加熱処理後の糸条の明度が加熱前の糸条の明度の約80%程度、好ましくは85%程度を保っていることが好適である。
The heat-resistant crimped yarn according to the present invention is characterized by substantially no quality deterioration due to heating. Examples of the quality deterioration due to heating include a decrease in physical properties or deterioration in appearance of heat-resistant crimped yarn due to heat treatment, and more specifically, for example, a decrease in strength of heat-resistant crimped yarn due to heat treatment, Changes, thread breakage or fluffing. For example, as a measure of the absence of a decrease in strength, it is suitable that the strength retention of the yarn after the heat treatment is 30% or more, preferably 40% or more, more preferably 50% or more. The strength retention rate can be calculated from the following formula.
[Equation 1]
Strength retention (%) = {Strength of heat-resistant crimped yarn (N / tex) / Strength of heat-resistant high-performance fiber yarn before treatment (N / tex)} × 100
In addition, since it varies depending on the type of heat-resistant and high-performance fiber, it cannot be said unconditionally, for example, in the case of meta-aramid fiber, as a guideline that there is no color tone change of the yarn after heat treatment, It is preferable that the lightness is about 80%, preferably about 85% of the lightness of the yarn before heating.

本発明は、上記耐熱性捲縮糸からなる嵩高で伸縮性のある繊維製品を提供する。該繊維製品は、上記耐熱性捲縮糸のみからなっていてもよいし、それ以外の繊維糸条との混織または混編物であってもよい。但し、繊維製品が前記混織または混編物である場合は、繊維成分の約5%程度以上、好ましくは約25%程度以上、より好ましくは約50%程度以上が本発明にかかる耐熱性捲縮糸であることが好ましい。耐熱性捲縮糸以外の繊維糸条としては、特に限定されず自体公知のものを用いてよい。
本発明にかかる繊維製品としては特に限定されず、例えば、上記耐熱性捲縮糸を含む糸条で織編された布帛、該布帛を用いた例えば耐熱安全グローブなどの手袋、消防服、自動車レース用のレーシングスーツ、製鉄用、溶接用もしくは塗装用作業服などの炎や高熱に曝される危険の大きい場面での衣料製品、耐熱収塵フィルターなどの耐熱資材、ロープまたはタイヤコードなどが挙げられる。
上記繊維製品は自体公知の方法にしたがって容易に製造できる。例えば、手袋は、市販のコンピューター手袋編機SFGやSTJ(株式会社島精機製作所製)が便宜に採用される。
上記繊維製品を使用する際は、上記繊維製品を単独で用いてもよいし、他の耐熱性または難燃性等を有する製品と組み合わせて用いてもよい。また、自体公知の処理を行ってもよい。例えば、本発明にかかる手袋は、そのまま種々の作業に使用されてもよいし、手袋の一部、特に手のひら側の外面または手袋の外面全面などに樹脂を塗布してもよい。そのための樹脂としては、例えば塩化ビニル樹脂、ラテックス、ウレタン樹脂、天然ゴムまたは合成ゴム等が挙げられ、樹脂の塗布によって手袋の強度がより強くなるとともに物をつかんだとき滑りにくくなる。樹脂塗布は自体公知の手段に従って行われてよい。また、該本発明にかかる手袋の上にさらにゴム手袋やエラストマー手袋をはめてもよい。
The present invention provides a bulky and stretchable fiber product comprising the above heat-resistant crimped yarn. The fiber product may be composed of only the above heat-resistant crimped yarn, or may be a mixed woven or knitted fabric with other fiber yarns. However, when the fiber product is the above-mentioned mixed woven or knitted fabric, about 5% or more, preferably about 25% or more, more preferably about 50% or more of the fiber component is the heat-resistant crimp according to the present invention. A yarn is preferred. The fiber yarns other than the heat-resistant crimped yarn are not particularly limited, and those known per se may be used.
The fiber product according to the present invention is not particularly limited. For example, a fabric woven and knitted with a yarn containing the heat-resistant crimped yarn, a glove such as a heat-resistant safety glove using the fabric, a fire fighting suit, and an automobile race. Such as racing suits, iron making, clothing for welding or painting, clothing products in high-risk situations exposed to high heat, heat-resistant materials such as heat-resistant dust filters, ropes or tire cords .
The fiber product can be easily produced according to a method known per se. For example, a commercially available computer glove knitting machine SFG or STJ (manufactured by Shima Seiki Co., Ltd.) is employed for convenience.
When using the fiber product, the fiber product may be used alone or in combination with other products having heat resistance or flame retardancy. In addition, a process known per se may be performed. For example, the glove according to the present invention may be used for various operations as it is, or a resin may be applied to a part of the glove, particularly the outer surface of the palm side or the entire outer surface of the glove. Examples of the resin for this purpose include vinyl chloride resin, latex, urethane resin, natural rubber or synthetic rubber, and the strength of the gloves is increased by application of the resin, and it becomes difficult to slip when grasping an object. The resin coating may be performed according to a method known per se. Further, rubber gloves or elastomer gloves may be further put on the gloves according to the present invention.

本発明は、また、生産性、設備またはコストなどの点で実用的な耐熱性捲縮糸の製造方法を提供する。
該方法は、例えばアラミド繊維等の耐熱高機能繊維からなる糸条に撚りを加え、高温高圧水蒸気処理もしくは高温高圧水処理(以下、単に「高温高圧水蒸気処理」という)または乾熱処理を行った後、前記撚りを解撚させることを特徴とする。耐熱高機能繊維からなる糸条は、例えば自体公知の方法によって作られる紡績糸またはフィラメント糸であってよい。なかでも、毛羽や埃が発生しにくいフィラメント糸が好ましい。
より具体的には、通常は、耐熱高機能繊維からなる糸条等に先ず第1(SまたはZのいずれか)の撚りを加え、所望によりこれをアルミニウムなどでできた耐熱性ボビンに巻き上げ、特定温度範囲に加熱して熱セットし撚りを固定する。次いで、第1の撚りとは逆方向の第2の撚り(ZまたはS)を与えて解撚させることにより耐熱性捲縮糸を製造するものである。
本発明にかかる方法によれば、第1の撚りをかけることによって糸条を構成する単糸は螺旋状の複雑な形態を取り、その形状が加熱作用によって固定される。しかるに次工程の解撚によって、単糸は第1の撚りを与えられた時の形状を記憶したまま、撚りによる拘束から解き放たれる。その結果として単糸それぞれが、記憶している形状に基づいた各々の配置を取ろうとして捲縮糸の形態になる。
The present invention also provides a method for producing a heat-resistant crimped yarn that is practical in terms of productivity, equipment or cost.
The method includes, for example, twisting a yarn made of heat-resistant and high-performance fiber such as aramid fiber, and performing high-temperature / high-pressure steam treatment or high-temperature / high-pressure water treatment (hereinafter simply referred to as “high-temperature / high-pressure steam treatment”) or dry heat treatment. The twist is untwisted. The yarn made of heat-resistant and high-performance fiber may be, for example, a spun yarn or a filament yarn produced by a method known per se. Among these, a filament yarn that is less likely to generate fluff and dust is preferable.
More specifically, usually, a first (either S or Z) twist is first added to a yarn or the like made of heat-resistant and high-performance fibers, and if desired, this is wound on a heat-resistant bobbin made of aluminum or the like, Heat to a specific temperature range and heat set to fix the twist. Next, a heat-resistant crimped yarn is produced by applying a second twist (Z or S) opposite to the first twist and untwisting.
According to the method of the present invention, the single yarn constituting the yarn by applying the first twist takes a complicated spiral shape, and the shape is fixed by the heating action. However, by untwisting in the next step, the single yarn is released from the restraint by twisting while keeping the shape when the first twist is given. As a result, each single yarn takes the form of a crimped yarn in an attempt to take the respective arrangement based on the stored shape.

本発明にかかる耐熱性捲縮糸の製造方法においては、上述したように、熱セットにおける手段の相違により、高温高圧水蒸気処理による製造方法と、乾熱処理による製造方法とがある。
高温高圧水蒸気処理による場合は、加熱ムラが少ないという利点がある。すなわち、極端に加熱されて品質劣化を招く繊維糸条部分や、加熱が少なすぎて熱セットが充分に行われない繊維糸条部分が発生しにくい。
一方、乾熱処理による場合には、(a)熱処理のための高温高圧水蒸気や高温高圧水(以下、単に「高温高圧水蒸気」という)を用いないため、大気圧下で撚り固定ができ、ゆえに耐高圧熱処理器が不要であり、(b)製造工程としては、バッチ式のみならず、例えば高温処理領域を通過させるような連続工程をとることができ、該高温処理領域にホットエア、流動床が採用できるなどの利点がある。
In the manufacturing method of the heat-resistant crimped yarn according to the present invention, as described above, there are a manufacturing method by high-temperature and high-pressure steam treatment and a manufacturing method by dry heat treatment depending on the means in the heat setting.
In the case of high-temperature and high-pressure steam treatment, there is an advantage that heating unevenness is small. That is, it is difficult to generate a fiber yarn portion that is extremely heated to cause quality deterioration or a fiber yarn portion that is not sufficiently heated and is not sufficiently heat set.
On the other hand, in the case of dry heat treatment, (a) high-temperature high-pressure steam or high-temperature high-pressure water (hereinafter simply referred to as “high-temperature high-pressure steam”) for heat treatment is not used, so that it can be twisted and fixed under atmospheric pressure. A high-pressure heat treatment device is not required. (B) The manufacturing process can be not only a batch type but also a continuous process such as passing through a high-temperature treatment area, and hot air and fluidized bed are adopted in the high-temperature treatment area. There are advantages such as being able to.

以下、高温高圧水蒸気処理による製造方法について詳述する。
該製造方法においては、まず耐熱性高機能繊維からなる糸条に第1の撚りを加える。該糸条は、フィラメント糸であってもよいし、紡績糸であってもよい。なかでも、毛羽や埃が発生しにくいフィラメント糸が好ましい。
第1の撚りは、次式;K=t×D1/2〔但し、tは撚り数(回/m)を表し、Dは繊度(tex)を表す。〕で表される撚り係数Kの値が約5,000〜11,000程度であることが好ましい。より好ましくは約6,000〜9,000程度である。糸条に加えられる撚りは、糸を適度に捲縮させるとともに、撚りをかけすぎることにより繊維の切断を防ぐため、上記範囲が好ましい。
なお、上記撚り係数(K)は、糸条の太さに関係なく撚りの程度を表わす指標であり、撚り係数が大きいほど撚りの程度は高い。
Hereinafter, the manufacturing method by a high temperature / high pressure steam process is explained in full detail.
In the production method, first, a first twist is added to a yarn made of heat-resistant high-performance fiber. The yarn may be a filament yarn or a spun yarn. Among these, a filament yarn that is less likely to generate fluff and dust is preferable.
The first twist is the following formula: K = t × D 1/2 [where t represents the number of twists (times / m) and D represents the fineness (tex). It is preferable that the value of the twist coefficient K represented by the formula is about 5,000 to 11,000. More preferably, it is about 6,000 to 9,000. The twist applied to the yarn is preferably in the above range in order to appropriately crimp the yarn and prevent the fiber from being cut by excessively twisting the yarn.
The twist coefficient (K) is an index representing the degree of twist regardless of the thickness of the yarn, and the greater the twist coefficient, the higher the degree of twist.

上記第1の撚りを加える撚糸工程では、例えば、リング撚糸機、ダブルツイスターまたはイタリー式撚糸機など自体公知の撚糸機を用いてよい。
得られた撚糸はボビンに巻き上げるのが好ましい。ただし、撚糸時にボビンに巻き上げた場合は巻き返しの必要はない。ここで、ボビンとは通常糸条を捲きつけるための芯体ことであり、自体公知のものを用いてよいが、例えばアルミニウムなどの耐熱性素材からなるものが好ましい。また、次の熱セット工程において、高温高圧水蒸気が通りやすいように、耐熱性ボビンには全面に小孔を設けることが好ましい。
このとき撚糸をボビンに巻きあげてできた糸条チーズまたは糸条コーンの巻厚は約15mm以上が好ましく、また巻密度は約0.4〜1.0g/cm程度、好ましくは約0.5〜0.9g/cm程度、より好ましくは約0.6〜0.9g/cm程度であるのが好適である。
In the twisting process for adding the first twist, a known twisting machine such as a ring twisting machine, a double twister, or an Italy type twisting machine may be used.
The obtained twisted yarn is preferably wound up on a bobbin. However, there is no need for rewinding when the bobbin is wound up during twisting. Here, the bobbin is usually a core body for winding the yarn, and a per se known one may be used, but one made of a heat resistant material such as aluminum is preferable. In the next heat setting step, it is preferable to provide small holes on the entire surface of the heat-resistant bobbin so that high-temperature and high-pressure steam can easily pass.
At this time, the winding thickness of the yarn cheese or yarn cone formed by winding the twisted yarn around the bobbin is preferably about 15 mm or more, and the winding density is about 0.4 to 1.0 g / cm 3 , preferably about 0.00. It is suitable to be about 5 to 0.9 g / cm 3 , more preferably about 0.6 to 0.9 g / cm 3 .

ついで、特定温度範囲の高温高圧水蒸気により上記第1の撚りを固定する高温高圧水蒸気処理を行う。
該高温高圧水蒸気処理は自体公知の技術に従い、例えば内部に高温高圧水蒸気を供給できる高温高圧密閉容器を用いて行われる。該高温高圧密閉容器は自体公知のものを用いてよく、例えば、高温高圧水蒸気を供給する蒸気配管および排水バルブと処理終了時放圧のための排気バルブが接続され、また、先の工程で得られる撚り糸の巻かれたボビンを搬入するための開口部と、密閉状に開閉可能な蓋が取り付けられている構造を有するもの等が挙げられる。
高温高圧水蒸気処理の温度条件としては約130〜250℃程度が適しており、好ましくは約130〜220℃程度、より好ましくは約140〜220℃程度、さらに好ましくは約150〜200℃程度である。実用に適する捲縮を与え、一方で繊維の劣化を防ぐため、上記温度範囲が好ましい。
前記処理時の圧力については、高温高圧水蒸気として飽和水蒸気を用いる場合は上記温度条件から物理化学的に一義的に決まるものであり、下限温度130℃における飽和水蒸気圧の値は2.70×10Pa、また上限温度250℃における飽和水蒸気圧の値は38.97×10Paに相当するので、従って本発明にとって約130℃〜250℃程度の温度、約2.70〜39.0×10Pa程度の圧力で高温高圧水蒸気処理を行うのが好ましい。ただし、本発明においては、常に飽和水蒸気で処理しなければならないというわけではなく、水蒸気の圧力は、約2.7〜39.0×10Pa程度であればよい。ただし、その温度での飽和水蒸気圧以上の圧力にできないことは当然である。中でも、高温高圧水蒸気処理は、約130℃〜220℃程度の温度、約2.7〜23.2×10Pa程度の圧力で行うのが好ましく、約140℃〜220℃程度の温度、約3.5〜23.2×10Pa程度の圧力で行うのがより好ましく、約150℃〜200℃程度の温度、約4.8〜15.6×10Pa程度の圧力で行うのがさらに好ましい。
高温高圧水蒸気の代わりに高温高圧水を使用してもよい。この場合の水の温度は約130〜250℃程度、好ましくは約130〜220℃程度、より好ましくは約140〜220℃程度、さらに好ましくは約150〜200℃程度、圧力は約2.70〜39.0×10Pa程度、好ましくは約2.7〜23.2×10Pa程度、より好ましくは約3.5〜23.2×10Pa程度、さらに好ましくは約4.8〜15.6×10Pa程度である。高温高圧水処理の場合には、上記および下記における高温高圧水蒸気および水蒸気を、高温高圧水および水と読み換えるものとする。
Next, high-temperature and high-pressure steam treatment is performed to fix the first twist with high-temperature and high-pressure steam in a specific temperature range.
The high-temperature and high-pressure steam treatment is performed according to a technique known per se, for example, using a high-temperature and high-pressure sealed container capable of supplying high-temperature and high-pressure steam therein. The high-temperature and high-pressure sealed container may be a well-known container. For example, a steam pipe and a drain valve for supplying high-temperature and high-pressure steam are connected to an exhaust valve for releasing pressure at the end of processing. And the like having a structure in which an opening for carrying a bobbin wound with a twisted yarn and a lid that can be opened and closed in a sealed state are attached.
About 130 to 250 ° C is suitable as the temperature condition for the high-temperature and high-pressure steam treatment, preferably about 130 to 220 ° C, more preferably about 140 to 220 ° C, and further preferably about 150 to 200 ° C. . The above temperature range is preferred in order to provide crimps suitable for practical use, while preventing fiber degradation.
The pressure during the treatment is uniquely determined physicochemically from the above temperature condition when saturated steam is used as the high-temperature and high-pressure steam, and the value of the saturated steam pressure at the minimum temperature of 130 ° C. is 2.70 × 10. The value of the saturated water vapor pressure at 5 Pa and the upper limit temperature of 250 ° C. corresponds to 38.97 × 10 5 Pa. Therefore, for the present invention, a temperature of about 130 ° C. to 250 ° C., about 2.70 to 39.0 × It is preferable to perform the high-temperature and high-pressure steam treatment at a pressure of about 10 5 Pa. However, in the present invention, it is not always necessary to treat with saturated steam, and the pressure of the steam may be about 2.7 to 39.0 × 10 5 Pa. However, it is natural that the pressure cannot be higher than the saturated water vapor pressure at that temperature. Among them, high-temperature high-pressure steam treatment, about 130 ° C. to 220 ° C. temperature of about is preferably carried out at a pressure of about 2.7 to 23.2 × 10 5 Pa, about 140 ° C. to 220 ° C. a temperature of about about More preferably, it is performed at a pressure of about 3.5 to 23.2 × 10 5 Pa, preferably at a temperature of about 150 ° C. to 200 ° C., and at a pressure of about 4.8 to 15.6 × 10 5 Pa. Further preferred.
High temperature high pressure water may be used instead of high temperature high pressure steam. In this case, the temperature of the water is about 130 to 250 ° C., preferably about 130 to 220 ° C., more preferably about 140 to 220 ° C., more preferably about 150 to 200 ° C., and the pressure is about 2.70 to About 39.0 × 10 5 Pa, preferably about 2.7 to 23.2 × 10 5 Pa, more preferably about 3.5 to 23.2 × 10 5 Pa, and still more preferably about 4.8 to It is about 15.6 × 10 5 Pa. In the case of high-temperature high-pressure water treatment, the high-temperature high-pressure water vapor and water vapor described above and below are read as high-temperature high-pressure water and water.

高温高圧水蒸気処理に要する時間は、高温高圧水蒸気処理を行う際のボビンに巻かれた糸条の巻き量などによって異なるので一概にはいえず、上記所定温度を数分程度保持できれば十分であるが、約2〜100分程度が好ましい。より好ましくは約3〜60分程度の範囲である。ボビンに巻かれた糸条のうち表面の糸条と内部の糸条をより均一に熱セットし、一方で繊維の劣化を防止するためには、上記範囲が好ましい。ボビンに巻かれた糸条は高温高圧水蒸気処理後、冷風などにより強制冷却してもよいが、室温による自然冷却が好ましい。   The time required for the high-temperature and high-pressure steam treatment varies depending on the amount of yarn wound around the bobbin when performing the high-temperature and high-pressure steam treatment, so it cannot be said unconditionally, but it is sufficient if the predetermined temperature can be maintained for several minutes. About 2 to 100 minutes are preferable. More preferably, it is in the range of about 3 to 60 minutes. The above range is preferable in order to more uniformly heat set the surface yarns and the internal yarns among the yarns wound around the bobbin, while preventing deterioration of the fibers. The yarn wound around the bobbin may be forcibly cooled with cold air after high-temperature and high-pressure steam treatment, but natural cooling at room temperature is preferred.

高温高圧水蒸気処理後、撚り糸に第1の撚りとは逆方向に第2の撚りを与えて、撚り糸を解撚することで本発明にかかる耐熱性捲縮糸が製造できる。解撚時も施撚時と同じように自体公知の撚糸機を用いてもよい。   After the high-temperature and high-pressure steam treatment, the heat-resistant crimped yarn according to the present invention can be produced by applying a second twist to the twisted yarn in the direction opposite to the first twist and untwisting the twisted yarn. A known twisting machine may be used at the time of untwisting as well as at the time of twisting.

つぎに、乾熱処理による製造方法について詳述する。
乾熱処理による製造方法としては、バッチ式製造方法または仮撚り加工方法が挙げられ、本発明においてはいずれを用いてもよい。なお、これら製造方法においては熱セットのために高温高圧水蒸気や高温高圧水を使わない。つまり、高温高圧水蒸気や高温高圧水を用いない加熱処理を乾熱処理と称する。
バッチ式製造方法または仮撚り加工方法のいずれの製造方法においても、所望によりさらに弛緩熱処理を行ってもよい。弛緩熱処理としては、例えば得られた捲縮糸をある程度伸長させながら加熱する方法などが挙げられる。弛緩熱処理を行うことにより、糸の嵩高性を損なうことなく、トルクを減少させることができるという利点がある。
Next, a manufacturing method by dry heat treatment will be described in detail.
Examples of the production method by dry heat treatment include a batch production method and a false twisting method, and any of them may be used in the present invention. In these production methods, high-temperature high-pressure steam or high-temperature high-pressure water is not used for heat setting. That is, heat treatment that does not use high-temperature high-pressure steam or high-temperature high-pressure water is referred to as dry heat treatment.
In any of the batch-type manufacturing method and false twisting method, relaxation heat treatment may be further performed as desired. Examples of the relaxation heat treatment include a method in which the obtained crimped yarn is heated while being stretched to some extent. By performing the relaxation heat treatment, there is an advantage that the torque can be reduced without impairing the bulkiness of the yarn.

以下に乾熱処理によるバッチ式製造方法について述べる。
該製造方法においては、まず耐熱性高機能繊維からなる糸条に第1の撚りを加える。該糸条は、フィラメント糸であってもよいし、紡績糸であってもよい。なかでも、上述のように毛羽や埃が発生しにくいフィラメント糸が好ましい。第1の撚りは、糸を適度に捲縮させるとともに撚りをかけすぎることにより繊維の切断を防ぐため、撚り係数Kの値が約5,000〜11,000程度、好ましくは約6,000〜9,000程度であるのが好適である。
上記第1の撚りを加える撚糸工程では、例えば、リング撚糸機、ダブルツイスターまたはイタリー式撚糸機など自体公知の撚糸機を用いてよい。
得られた撚糸はボビンに巻き上げるのが好ましい。ただし、撚糸時にボビンに巻き上げた場合は巻き返しの必要はない。ボビンは自体公知のものを用いてよいが、例えばアルミニウムなどの耐熱性素材からなるものが好ましい。
The batch type manufacturing method by dry heat treatment is described below.
In the production method, first, a first twist is added to a yarn made of heat-resistant high-performance fiber. The yarn may be a filament yarn or a spun yarn. Of these, filament yarns that are less likely to generate fluff and dust as described above are preferred. In the first twist, the value of the twist coefficient K is about 5,000 to 11,000, preferably about 6,000 to prevent the fiber from being cut by appropriately crimping the yarn and applying too much twist. It is preferably about 9,000.
In the twisting process for adding the first twist, a known twisting machine such as a ring twisting machine, a double twister, or an Italy type twisting machine may be used.
The obtained twisted yarn is preferably wound up on a bobbin. However, there is no need for rewinding when the bobbin is wound up during twisting. A bobbin known per se may be used, but a bobbin made of a heat resistant material such as aluminum is preferable.

ついで、特定温度範囲に加熱して、上記第1の撚りを熱セットし固定する乾熱処理を行う。
加熱処理の温度条件は、原料繊維の分解開始温度未満であればよく、好ましくは約140〜390℃程度、より好ましくは約170〜350℃程度、最も好ましくは約200〜330℃程度である。得られる耐熱性捲縮糸の捲縮の程度を実用に適したものとし、一方で糸条の劣化を避けるためには、上記範囲が好ましい。このように、本発明の乾熱処理においては、原料繊維の分解開始温度以上の高温処理を施す必要がないので、例えば、強度の低下、色調の変化、毛羽立ちまたは糸切れ等の加熱による糸条の劣化が実質的に発生しない。具体的には、例えば、強度の低下がないことの目安として、加熱処理後の糸条の強度保持率が30%以上、好ましくは40%以上、より好ましくは50%以上であることが好適である。強度保持率は上記数式より容易に算出される。また、耐熱高機能繊維の種類によって異なるので一概には言えないが、例えばメタ系アラミド繊維の場合は、加熱処理後の糸条の色調変化がないことの目安として、加熱処理後の糸条の明度が加熱前の糸条の明度の約80%程度、好ましくは85%程度を保っていることが好適である。
加熱処理のためのヒーターは、接触ヒーターでも、非接触ヒーターでもよく、また加熱はホットエア方式または流動床方式など自体公知の手段によって行われてよい。
バッチ式における加熱時間は、繊維の種類、糸条の太さまたは加熱温度などにより異なるため一概には言えないが、通常は約2〜100分程度が望ましい。より好ましくは約10〜100分程度、さらに好ましくは約20〜40分程度の範囲である。ボビンに巻かれた糸条のうち表面の糸条と内部の糸条をより均一に熱セットし、一方で繊維の劣化を防止するためには、上記範囲が好ましい。
乾熱処理は、加圧下、減圧下、常圧下のいずれで行われてもよいが、常圧下で行われるのが好ましい。
Subsequently, a dry heat treatment is performed in which the first twist is heat set and fixed by heating to a specific temperature range.
The temperature condition of the heat treatment may be less than the decomposition start temperature of the raw fiber, and is preferably about 140 to 390 ° C, more preferably about 170 to 350 ° C, and most preferably about 200 to 330 ° C. In order to make the degree of crimping of the heat-resistant crimped yarn obtained suitable for practical use, while avoiding deterioration of the yarn, the above range is preferable. Thus, in the dry heat treatment of the present invention, it is not necessary to perform a high-temperature treatment higher than the decomposition start temperature of the raw material fibers. Degradation does not occur substantially. Specifically, for example, as an indication that there is no decrease in strength, it is preferable that the strength retention of the yarn after the heat treatment is 30% or more, preferably 40% or more, more preferably 50% or more. is there. The strength retention is easily calculated from the above formula. In addition, since it varies depending on the type of heat-resistant and high-performance fiber, it cannot be said unconditionally, for example, in the case of meta-aramid fiber, as a guideline that there is no change in the color tone of the yarn after heat treatment, It is preferable that the lightness is about 80%, preferably about 85% of the lightness of the yarn before heating.
The heater for the heat treatment may be a contact heater or a non-contact heater, and the heating may be performed by means known per se such as a hot air system or a fluidized bed system.
The heating time in the batch method varies depending on the type of fiber, the thickness of the yarn, the heating temperature, and the like. More preferably, it is about 10 to 100 minutes, and more preferably about 20 to 40 minutes. The above range is preferable in order to more uniformly heat set the surface yarns and the internal yarns among the yarns wound around the bobbin, while preventing deterioration of the fibers.
The dry heat treatment may be performed under pressure, reduced pressure, or normal pressure, but is preferably performed under normal pressure.

次いで、乾熱処理後、撚り糸に第1の撚りとは逆方向に第2の撚りを与えて、撚り糸を解撚することにより、本発明にかかる耐熱性捲縮糸を製造することができる。加熱処理後は冷風などにより強制冷却してもよいが、空気冷却に任せるのが好ましい。解撚時も施撚時と同じように自体公知の撚糸機を用いてもよい。   Next, after the dry heat treatment, the heat-resistant crimped yarn according to the present invention can be produced by applying a second twist to the twisted yarn in the direction opposite to the first twist and untwisting the twisted yarn. After the heat treatment, forced cooling may be performed with cold air or the like, but it is preferable to leave it to air cooling. A known twisting machine may be used at the time of untwisting as well as at the time of twisting.

次ぎに、仮撚り加工方法を用いた製造方法について述べる。
仮撚り加工方法においては、送り出しローラによって供給糸条チーズ(巻き芯であるボビンに巻き上げられた糸)から引き出された糸は、巻き取りローラを経て巻き取りボビンに巻き上げられる。送り出しローラと巻き取りローラの間には、仮撚りスピンドルが設置されている。糸を仮撚りスピンドルのピンに巻いてつかみ、スピンドルを回転させると送り出しローラと仮撚りスピンドルの間の糸は、例えばS撚りが加えられ、これをヒーターで熱セットし、仮撚り装置と巻き取りローラの間では前記と反対の例えばZの撚りが加えられることによって解撚されて捲縮糸となる。仮撚り装置と巻き取りローラーの間は冷却ゾーンであり、空気冷却に任せるのが好ましい。仮撚りを与える方法には上述の仮撚りスピンドルのほか、糸を高速回転する円筒の内壁や円盤の外周あるいは高速走行するベルトの表面と接触させ、摩擦によって仮撚りを与える方法などが用いられる。
Next, a manufacturing method using the false twisting method will be described.
In the false twisting method, the yarn drawn from the supply yarn cheese (the yarn wound on the bobbin that is the winding core) by the feeding roller is wound on the winding bobbin via the winding roller. A false twist spindle is installed between the feed roller and the take-up roller. When the yarn is wound around the pin of the false twisting spindle and the spindle is rotated, the yarn between the feeding roller and the false twisting spindle is added with, for example, S twist, and this is heat-set with a heater, and wound with the false twisting device. The rollers are untwisted by applying, for example, a Z twist opposite to that described above to form a crimped yarn. A space between the false twisting device and the take-up roller is a cooling zone, which is preferably left to air cooling. In addition to the above-described false twist spindle, a method of imparting false twist by bringing the yarn into contact with the inner wall of a cylinder that rotates at high speed, the outer periphery of a disk, or the surface of a belt that travels at high speed is used.

該仮撚り方法において、耐熱性高機能繊維からなる糸条は、フィラメント糸であってもよいし紡績糸であってもよいが、毛羽等が発生しにくいフィラメントが好ましい。
仮撚りスピンドルによる撚りは、糸を適度に捲縮させるとともに撚りをかけすぎることにより繊維の切断を防ぐため、撚り係数Kの値が約5,000〜11,000程度、好ましくは約6,000〜9,000程度が好適である。
本方法において、上記加撚は、例えばスピンドル法、ニップベルト法等のいずれを用いてもよく、特に限定されるものではない。スピンドル法で撚りを加える場合には、1本ピンでもよいが、2本ピン以上、好ましくは4本ピンのスピナを用いることが本発明における好適な態様である。すなわち、スピンドル法で通常使用される1本ピンのスピナを使用して撚りを加える際には、耐熱性高機能繊維からなる糸条をピンに1回巻きつける必要があるが、摩擦によって切れやすい耐熱高機能繊維からなる糸条は加燃の際に糸切れすることもあり得る。しかしながら、2本以上のピン、特に上2本と下2本の位置をずらして設置した4本ピンのスピナを使用し、ピンとピンの間をジグザグ状に糸を通して、糸が上部中心部から入り、下部中心部から出るようにすれば、より効率よく撚りを加えることが可能となる。この場合、糸条はピンとピンの間で屈曲されるので摩擦抵抗で撚りが付与される。
In the false twisting method, the yarn composed of the heat-resistant high-performance fiber may be a filament yarn or a spun yarn, but a filament that hardly generates fluff or the like is preferable.
The twisting by the false twisting spindle appropriately crimps the yarn and prevents the fiber from being cut by excessively twisting, so that the value of the twisting factor K is about 5,000 to 11,000, preferably about 6,000. About -9,000 is suitable.
In this method, the twisting may be carried out by any method such as a spindle method or a nip belt method, and is not particularly limited. When twisting is applied by the spindle method, a single pin may be used, but a spinner having two pins or more, preferably four pins is a preferred embodiment in the present invention. That is, when adding a twist using a single-pin spinner that is usually used in the spindle method, it is necessary to wind a thread made of heat-resistant high-performance fiber once around the pin, but it is easily cut by friction. Threads composed of heat-resistant and high-performance fibers may break during combustion. However, using two or more pins, especially a four-pin spinner with the upper and lower two positions shifted, the thread passes between the pins in a zigzag shape, and the thread enters from the upper center. If it is made to come out from a lower center part, it will become possible to add twist more efficiently. In this case, since the yarn is bent between the pins, the twist is given by the frictional resistance.

熱セットのための加熱温度は、バッチ式製造方法と同一である。一方、本製造方法はバッチ式製造方法に比べ熱処理効果が高いので、加熱時間は糸条の太さにもよるが、約0.5〜300秒程度、好ましくは約1〜120秒程度である。
加熱処理のためのヒーターは、バッチ式製造方法と同様、接触ヒーターでも非接触ヒーターでもよく、また加熱はホットエア方式または流動床方式など自体公知の手段によって行われてよい。なお、ヒーターとして接触ヒーターを用いてもタール状のミストが溜まりにくく、一般的にミストが溜まり易いアラミド繊維であっても安定して加工することができ、接糸面の頻繁な清掃は不要である。
上記仮撚り加工は、バッチ式製造方法と同様、加圧下、減圧下、常圧下のいずれで行われてもよいが、常圧下で行われるのが好ましい。
The heating temperature for the heat setting is the same as in the batch manufacturing method. On the other hand, since this production method has a higher heat treatment effect than the batch production method, the heating time is about 0.5 to 300 seconds, preferably about 1 to 120 seconds, depending on the thickness of the yarn. .
The heater for the heat treatment may be a contact heater or a non-contact heater as in the batch type production method, and the heating may be performed by means known per se such as a hot air system or a fluidized bed system. Even if a contact heater is used as the heater, tar-like mist is difficult to accumulate, and even aramid fibers that are generally prone to mist accumulation can be processed stably, and frequent cleaning of the yarn contact surface is not necessary. is there.
The false twisting may be performed under pressure, under reduced pressure, or under normal pressure as in the batch production method, but is preferably performed under normal pressure.

本発明に係る耐熱性捲縮糸は、上記の方法以外にも以下のような方法で製造することができる。すなわち、耐熱高機能繊維糸条で編み地を作成し、この編み地を熱セット処理した後、編み地を解編(編み地をほどくこと)して耐熱性捲縮糸を得る方法である。熱セット処理としては、上記高温高圧水蒸気処理または乾熱処理を用いてよく、その条件などは上記に従ってよい。中でも高温高圧水蒸気処理を用いるほうが好ましい。
この場合編み地を作成するときの糸条の撚りは糸条を拘束するので少ない方が良く、撚係数は0〜500が望ましく、0に近いほうがより望ましい。
The heat-resistant crimped yarn according to the present invention can be produced by the following method in addition to the above method. That is, this is a method in which a knitted fabric is created with heat-resistant and high-performance fiber yarns, the knitted fabric is heat set, and then the knitted fabric is knitted (unwoven) to obtain a heat-resistant crimped yarn. As the heat setting treatment, the high-temperature high-pressure steam treatment or the dry heat treatment may be used, and the conditions thereof may follow the above. Of these, it is preferable to use high-temperature and high-pressure steam treatment.
In this case, the twist of the yarn at the time of creating the knitted fabric is better because it restrains the yarn, and the twist coefficient is preferably 0 to 500, and more preferably close to 0.

以下、本発明を実施例に基づき具体的に説明する。
各物性等の評価方法は次の方法に依拠した。
限界酸素指数:JIS K 7201:1999 酸素指数法による高分子材料の燃焼試験方法により測定した。
熱分解点:JIS K 7120:1987 プラスチックスの熱重量測定方法により測定した。
伸縮性:JIS L 1013:1999 化学繊維フィラメント糸試験方法8.11.A法により伸縮伸長率および伸縮弾性率を測定した。
繊度:JIS L 1013:1999 化学繊維フィラメント糸試験方法8.3により正量繊度を測定した。
引張強さ:JIS L 1013:1999 化学繊維フィラメント糸試験方法8.5.1に準じて測定した。但し、単繊維の乱れを無くし糸条を構成する単繊維それぞれに応力がかかるように測定前に撚り係数K=1000の撚りを加えて測定した。
スナール指数:JIS L 1095:1999 一般紡績糸試験方法9.17.2 B法に準じて測定した。
Hereinafter, the present invention will be specifically described based on examples.
The evaluation method of each physical property was based on the following method.
Limiting oxygen index: JIS K 7201: 1999 Measured by a combustion test method for polymer materials by the oxygen index method.
Thermal decomposition point: JIS K 7120: 1987 Measured by the thermogravimetric method of plastics.
Elasticity: JIS L 1013: 1999 Chemical fiber filament yarn test method 8.11. The stretch elongation rate and the stretch elastic modulus were measured by the A method.
Fineness: JIS L 1013: 1999 Chemical fiber filament yarn test method 8.3 was used to measure the fineness fineness.
Tensile strength: Measured according to JIS L 1013: 1999 Chemical fiber filament yarn test method 8.5.1. However, the measurement was performed by adding a twist of a twist coefficient K = 1000 before the measurement so that the single fibers constituting the yarn were stressed without any disturbance of the single fibers.
Snart index: measured according to JIS L 1095: 1999 general spun yarn test method 9.17.2 B method.

〔実施例1〕
限界酸素指数29、熱分解点537℃、引張強さ2.03N/tex、引張弾性率49.9N/tex、繊度0.167texの単糸が1000本束となった繊度167texの東レ・デュポン株式会社製ポリパラフェニレンテレフタルアミド繊維フィラメント糸条(商品名ケブラー)を使用して、該糸条にリング撚糸機(株式会社柿木製作所製 複合撚糸機タイプKCT)で撚り係数K=6308相当の第1の撚りを加えた後、180℃の飽和水蒸気による熱処理を30分行った。次いで、上記撚糸機により第1とは逆方向に第2の撚りを与えて撚り数が0になるまで解撚し、本発明にかかる捲縮糸を得た。この捲縮糸の物性を測定した。
[Example 1]
Toray DuPont Co., Ltd. with a fineness of 167 tex consisting of 1,000 single yarns with a limiting oxygen index of 29, a thermal decomposition point of 537 ° C., a tensile strength of 2.03 N / tex, a tensile modulus of 49.9 N / tex, and a fineness of 0.167 tex Using a company-made polyparaphenylene terephthalamide fiber filament yarn (trade name Kevlar), a ring twisting machine (composite twisting machine type KCT manufactured by Kashiwagi Seisakusho Co., Ltd.) is used for the yarn. Then, heat treatment with saturated steam at 180 ° C. was performed for 30 minutes. Next, a second twist was applied in the direction opposite to the first direction by the twisting machine to untwist until the number of twists was 0, whereby a crimped yarn according to the present invention was obtained. The physical properties of the crimped yarn were measured.

〔実施例2、3および比較例1、2〕
糸条に加える第1の撚りの撚り係数が表1に示した値であること以外は、実施例1と同じ糸種を用いて同じ方法で飽和水蒸気による熱処理および加撚、解撚を行った。その結果、得られた捲縮糸の物性を測定した。
なお、実施例2および3における撚り係数の値は本発明における好ましい範囲に入っており、一方比較例1および2における撚り係数の値は本発明における好ましい範囲よりも低い値を選択した。
[Examples 2 and 3 and Comparative Examples 1 and 2]
Except that the twist coefficient of the first twist added to the yarn is the value shown in Table 1, heat treatment, twisting and untwisting with saturated steam were performed in the same manner using the same yarn type as in Example 1. . As a result, the physical properties of the obtained crimped yarn were measured.
In addition, the value of the twist coefficient in Examples 2 and 3 was in the preferable range in the present invention, while the value of the twist coefficient in Comparative Examples 1 and 2 was selected to be lower than the preferable range in the present invention.

〔実施例4〕
繊度が22.2texであるほかは実施例1と同じ素材の糸条を用いて、該糸条に撚り係数K=5277相当の第1の撚りを加え、180℃の飽和水蒸気による熱処理を30分行い、次いで解撚して本発明に係る捲縮糸を得た。同じくその物性を測定した。
上記実施例1〜4および比較例1、2の結果をまとめて表1に示す。また、飽和水蒸気による熱処理前の撚り係数と、捲縮糸の代表的特性である伸縮伸長率との関係を図1に示す。同表および同図より、実施例1〜4による捲縮糸条は捲縮糸として十分な伸縮伸長率を有するが、比較例1、2は処理前の撚りの程度が低く伸縮伸長率が劣っていて実用に適さないことが分かる。
Example 4
A yarn of the same material as in Example 1 except that the fineness is 22.2 tex, a first twist corresponding to a twist coefficient K = 5277 is added to the yarn, and heat treatment with saturated steam at 180 ° C. is performed for 30 minutes. And then untwisted to obtain a crimped yarn according to the present invention. The physical properties were also measured.
The results of Examples 1 to 4 and Comparative Examples 1 and 2 are summarized in Table 1. FIG. 1 shows the relationship between the twist coefficient before heat treatment with saturated steam and the stretch / elongation rate, which is a typical characteristic of crimped yarn. From the table and the figure, the crimped yarns according to Examples 1 to 4 have a sufficient stretch elongation rate as a crimped yarn, but Comparative Examples 1 and 2 have a low degree of twist before treatment and a poor stretch elongation rate. It is understood that it is not suitable for practical use.

Figure 0004171480
Figure 0004171480

〔実施例5〜7および比較例3〕
糸条に加える第1の撚りの撚り係数がK=8258であること、飽和水蒸気処理の時間が表2に示したように7.5〜60分間であること以外は、実施例1と全く同様にして、本発明に係る耐熱性捲縮糸を得た。
また比較例3として、実施例5〜7と同じ糸を用い同じ撚りをかけて、前記飽和水蒸気処理を行わず室温で1日放置後解撚して得た糸条についても物性を測定した。その結果をまとめて表2に示す。また処理時間と伸縮伸長率との関係を図2に示す。実施例5〜7および実施例2ならびに比較例3から分かることは、処理時間7.5分以上では伸縮伸長率にたいして変化がないことであり、本発明に係る耐熱性捲縮糸を得るための加熱時間は短時間で十分であることである。
[Examples 5 to 7 and Comparative Example 3]
Except that the twist coefficient of the first twist added to the yarn is K = 8258 and the time of the saturated steam treatment is 7.5 to 60 minutes as shown in Table 2, it is exactly the same as Example 1. Thus, a heat-resistant crimped yarn according to the present invention was obtained.
Further, as Comparative Example 3, the same yarns as in Examples 5 to 7 were used, the same twist was applied, and the physical properties of the yarns obtained by untwisting after standing at room temperature for 1 day without performing the saturated steam treatment were also measured. The results are summarized in Table 2. Moreover, the relationship between processing time and expansion / contraction elongation is shown in FIG. It can be seen from Examples 5 to 7 and Example 2 and Comparative Example 3 that there is no change in the stretch / elongation rate when the treatment time is 7.5 minutes or more, and the heat-resistant crimped yarn according to the present invention is obtained. A short heating time is sufficient.

Figure 0004171480
Figure 0004171480

〔実施例8〜10および比較例3、4〕
糸条に加える第1の撚りの撚り係数がK=8258であること、飽和水蒸気処理時の水蒸気温度が表3に示したように130〜200℃であること以外は、実施例1と全く同様にして、本発明に係る耐熱性捲縮糸を得た。
比較例4では飽和水蒸気処理時の水蒸気温度が120℃の温度であること以外は、上述と全く同様にして捲縮糸を得た。結果を実施例2、比較例3とともに表3に示す。処理温度と伸縮伸長率との関係を図3に示す。これより実用的な捲縮糸の製造には、飽和水蒸気処理の温度条件が130℃以上であることが好ましいことが分かる。
[Examples 8 to 10 and Comparative Examples 3 and 4]
Except that the twist coefficient of the first twist added to the yarn is K = 8258 and that the steam temperature during the saturated steam treatment is 130 to 200 ° C. as shown in Table 3, it is exactly the same as in Example 1. Thus, a heat-resistant crimped yarn according to the present invention was obtained.
In Comparative Example 4, a crimped yarn was obtained in exactly the same manner as described above except that the steam temperature during the saturated steam treatment was 120 ° C. The results are shown in Table 3 together with Example 2 and Comparative Example 3. FIG. 3 shows the relationship between the processing temperature and the expansion / contraction rate. From this, it can be seen that the temperature condition of the saturated steam treatment is preferably 130 ° C. or more for the production of a practical crimped yarn.

Figure 0004171480
Figure 0004171480

〔実施例11〜14、比較例5,6〕
実施例1と同じ糸条を用い、表4で示した撚り係数の撚りをリング撚糸機で加え、該撚り糸を熱風乾燥機に入れて表4に示した条件で乾熱処理を行った。次いで、上記撚糸機により第1とは逆方向に第2の撚りを与えて撚り数が0になるまで解撚し、本発明に係る耐熱性捲縮糸を得た。
比較例5では、乾熱処理時の温度が130℃であったこと以外は、実施例11と同様に行った。
また、比較例6では、撚り係数K=4846の撚りを加えたこと以外は、実施例12と同様に行った。
その結果を表4に示す。処理温度と伸縮伸長率との関係を図3に示す。試験した範囲では、高温高圧水蒸気を用いた製造方法及び乾熱処理を用いた製造方法ともに、熱処理の温度が高いほど得られる捲縮糸の伸縮伸長率は高い。また、上記の条件では、高温高圧水蒸気処理を用いたほうが乾熱処理を用いたよりも、伸縮伸長率の高い捲縮糸が得られた。
また、比較例5は、乾熱処理時の温度が130℃と低いので、得られた捲縮糸の伸縮伸長率がやや低かった。したがって、乾熱処理時の温度は140℃以上が好ましいことがわかった。一方、比較例6では、第1の撚りの撚り数が少なかったので、同じく得られた捲縮糸の伸縮伸長率がやや低かった。したがって、第1の撚りは、撚り係数が5,000以上であることが好ましいことがわかった。
[Examples 11 to 14, Comparative Examples 5 and 6]
Using the same yarn as in Example 1, the twist coefficient shown in Table 4 was added by a ring twister, and the twisted yarn was put in a hot air dryer and subjected to a dry heat treatment under the conditions shown in Table 4. Next, the second twist was applied in the direction opposite to the first direction by the twisting machine and untwisted until the number of twists became 0 to obtain a heat-resistant crimped yarn according to the present invention.
In Comparative Example 5, the same procedure as in Example 11 was performed except that the temperature during the dry heat treatment was 130 ° C.
In Comparative Example 6, the same procedure as in Example 12 was performed except that a twist with a twist coefficient K = 4846 was added.
The results are shown in Table 4. FIG. 3 shows the relationship between the processing temperature and the expansion / contraction rate. In the tested range, the stretch elongation rate of the crimped yarn obtained is higher as the heat treatment temperature is higher in both the production method using high-temperature and high-pressure steam and the production method using dry heat treatment. Also, under the above conditions, a crimped yarn having a higher stretch / elongation rate was obtained by using the high-temperature and high-pressure steam treatment than by using the dry heat treatment.
Moreover, since the temperature at the time of dry heat processing was as low as 130 degreeC in the comparative example 5, the expansion / contraction elongation rate of the obtained crimped yarn was a little low. Therefore, it was found that the temperature during the dry heat treatment is preferably 140 ° C. or higher. On the other hand, in Comparative Example 6, since the number of twists of the first twist was small, the stretch elongation rate of the similarly obtained crimped yarn was slightly low. Therefore, it was found that the first twist preferably has a twist coefficient of 5,000 or more.

Figure 0004171480
Figure 0004171480

〔実施例15〕
繊度が22.2texであるほかは実施例1と同じ素材の糸条に、イタリー式撚糸機で1850回/m(撚り係数K=8775)の撚りを加え、糸重量500gをアルミニウム製のつば付ボビンに巻き取った。撚り方向S、Z夫々が同数のチーズを作成した。これを飽和水蒸気処理用の密閉容器に入れ、180℃で30分飽和水蒸気処理を行った。冷却後、イタリー式撚糸機で撚り数が0となるまで逆撚りをかけて本発明に係る耐熱性捲縮糸を得た。
得られた捲縮糸の伸縮伸長率は17.1%であった。この捲縮糸は若干のトルクが残っているので、S、Z異なる残留トルクの捲縮糸条を引き揃えてトルクを打ち消し、合計88texの糸条をSFG−10Gシームレスグローブ編み機(島精機株式会社製)に供給し、本発明に係る作業用手袋を編み上げた。得られた作業用手袋の切れにくさ(Cut protection performance)をASTM F1790−97に従って測定したところ、6.8Nであった。
一方、比較として、上記本発明に係る耐熱性捲縮糸の代わりに、市販のウーリーポリエステルフィラメント糸16.5tex(単糸数48フィラメント 東レ株式会社製)を6本引き揃えて合計99texとなっている糸条を用いて、上記と全く同様にして手袋を編み上げ、上記と全く同様にして切れにくさを測定したところ3.5Nであった。このように、本発明に係る手袋は、切れにくさにおいて優れていることがわかった。
得られた作業用手袋は捲縮糸から構成されているので、ケブラー紡績糸から作られている手袋と比べて毛羽が発生しにくく、また薄くて伸縮性に富んでいるので細かな部品を扱いやすい特徴をもつ。したがって、この手袋は例えば電子部品のハンダ付け作業やクリーンルームでの組立て作業時、またはアルミ建材、家庭電化製品もしくは自動車などの塗装工程時の安全確保、やけどや鋭利な部品による怪我の防止などに有効である。
Example 15
Except for the fineness of 22.2 tex, 1850 times / m (twisting coefficient K = 8775) was added to the yarn of the same material as in Example 1 by an Italian twisting machine, and the weight of the yarn was 500g with an aluminum collar. I wound it on a bobbin. Twisting directions S and Z each produced the same number of cheeses. This was put into an airtight container for saturated steam treatment, and saturated steam treatment was performed at 180 ° C. for 30 minutes. After cooling, the heat-resistant crimped yarn according to the present invention was obtained by applying reverse twist until the number of twists was 0 with an Italy-type twisting machine.
The stretched stretch rate of the obtained crimped yarn was 17.1%. Since this crimped yarn still has a slight torque, the crimped yarns with different residual torques of S and Z are aligned to cancel the torque, and a total of 88 tex yarns are processed into an SFG-10G seamless glove knitting machine (Shimae Seiki Co., Ltd.). The work gloves according to the present invention were knitted. The cut protection performance of the obtained working gloves was measured according to ASTM F1790-97 to be 6.8N.
On the other hand, as a comparison, instead of the heat-resistant crimped yarn according to the present invention, six commercially available Woolley polyester filament yarns 16.5 tex (48 filaments manufactured by Toray Industries, Inc.) are aligned to make a total of 99 tex. Using a yarn, a glove was knitted in exactly the same manner as described above, and the tear resistance was measured in the same manner as above and found to be 3.5N. Thus, it has been found that the glove according to the present invention is excellent in resistance to cutting.
The resulting work gloves are made of crimped yarn, so they are less prone to fluff than gloves made from Kevlar spun yarn, and are thin and highly elastic, so they handle fine parts. It has easy characteristics. Therefore, this glove is effective for ensuring safety during soldering of electronic parts, assembly in a clean room, or during the painting process of aluminum building materials, home appliances, automobiles, etc., and to prevent injury from burns and sharp parts. It is.

〔実施例16〕
実施例15と同じ糸条、同じ撚り条件の撚り糸500gをアルミボビンに巻き上げ、これを180℃の高温高圧水中で10分間処理した後、冷却・脱水・乾燥を行い、ついで実施例15と同じようにイタリー式撚糸機でより数が0となるまで逆撚りをかけて本発明に係る耐熱性捲縮糸を得た。得られた捲縮糸条の伸縮伸長率は18%であった。また、撚りのセットムラがなく、均一性に優れたものであった。
Example 16
500 g of the same yarn as in Example 15 and the same twist condition are wound on an aluminum bobbin, treated in high-temperature and high-pressure water at 180 ° C. for 10 minutes, cooled, dehydrated and dried, and then the same as in Example 15. A heat-resistant crimped yarn according to the present invention was obtained by applying reverse twist until the number became 0 with an Italy type twisting machine. The stretched stretch rate of the obtained crimped yarn was 18%. Moreover, there was no twist set unevenness and it was excellent in uniformity.

〔実施例17〕
実施例15と同じ糸条、同じ撚り条件の撚り糸500gをアルミボビンに巻き上げ、これを250℃の熱風乾燥器で30分間処理した後、自然冷却し、実施例15と同じようにイタリー式撚糸機でより数が0となるまで逆撚りをかけて捲縮糸条を得た。得られた糸条の伸縮伸長率は12%であったが、ボビンの巻き層内部への熱の伝達が十分でなく撚りセットムラ部分がありその部分の伸縮伸長率が低く、捲縮ムラが甚だしくて捲縮糸としては実用に耐えなかった。
しかしながら、ボビンの捲き厚を半分にして上記問題点を解決した。このように、乾熱処理ではボビンの糸層が厚いとき熱処理ムラによる捲縮ムラが発生しやすいので、乾熱処理を用いて本発明に係る捲縮糸の製造する際にはボビンの巻厚はあまり厚くしないほうが好ましい。
Example 17
500 g of the same yarn as in Example 15 and the same twisting condition are wound on an aluminum bobbin, treated with a hot air drier at 250 ° C. for 30 minutes, and then naturally cooled. The twisted yarn was obtained by reverse twisting until the number became zero. The resulting yarn had an expansion / contraction rate of 12%, but the heat transfer into the bobbin winding layer was not sufficient, and there was a twist set uneven portion, and the expansion / contraction elongation rate of that portion was low, and the crimp unevenness was It was heavy and could not withstand practical use as a crimped yarn.
However, the above problem was solved by halving the bobbin thickness. Thus, in dry heat treatment, when the bobbin yarn layer is thick, crimp unevenness due to heat treatment unevenness is likely to occur. Therefore, when manufacturing the crimped yarn according to the present invention using dry heat treatment, the bobbin winding thickness is not much. It is preferable not to increase the thickness.

〔実施例18〕
長さ10mの加熱ゾーンと長さ5mの空冷ゾーンの間に仮撚り装置を設け、両ゾーンを通過するヤーンに撚り数1760回/m(撚り係数K=8258)の撚りをかけ、加熱ゾーンで撚り固定を行い空冷ゾーンで撚りを解撚するいわゆる仮撚り方式により連続的に本発明に係る耐熱性捲縮糸を得た。原糸として、繊度が22texであるほかは実施例1と同じ素材の糸条であるパラ系アラミド繊維ケブラー22Texを用いた。加熱ゾーンは300℃に加熱し、糸条の送り込み速度は10m/分であった。得られた耐熱性捲縮糸の物性は、伸縮伸長率が12.5%、伸縮弾性率が82.6%、捲縮糸繊度が22.9tex、強度が0.96N/texであった。
Example 18
A false twisting device is provided between the heating zone having a length of 10 m and the air-cooling zone having a length of 5 m, and the yarn passing through both zones is twisted at 1760 times / m (twisting coefficient K = 8258). The heat-resistant crimped yarn according to the present invention was continuously obtained by a so-called false twisting method in which the twist was fixed and the twist was untwisted in the air cooling zone. Para-aramid fiber Kevlar 22Tex, which is a yarn of the same material as in Example 1, except that the fineness is 22 tex was used as the raw yarn. The heating zone was heated to 300 ° C., and the yarn feeding speed was 10 m / min. The physical properties of the heat-resistant crimped yarn obtained were 12.5% stretch elongation, 82.6% stretch elastic modulus, 22.9 tex crimped fineness, and 0.96 N / tex strength.

〔実施例19〕
実施例18で得られたパラ系アラミド繊維ケブラーの捲縮糸は若干のトルクが残っているので、S、Z異なる残留トルクの捲縮糸条を引き揃えてトルクを打ち消し、島精機の13ゲージシームレスグローブ編機へ供給し、薄手のグローブを得た。このグローブは、紡績糸で作ったグローブと異なり、次の利点がある。
1)伸縮性があって手によくフィットし、手の動きを阻害しないので作業性がよい。
2)毛羽がでにくいのでクリーンルームなどの埃の許されない環境での作業に適する。
Example 19
Since the crimped yarn of the para-aramid fiber Kevlar obtained in Example 18 still has a slight torque, the crimped yarns having different residual torques of S and Z are aligned to cancel the torque, and Shima Seiki's 13 gauge It was supplied to a seamless glove knitting machine to obtain a thin glove. Unlike gloves made from spun yarn, this glove has the following advantages.
1) Good workability because it is stretchable and fits well in the hand and does not impede hand movement.
2) It is suitable for work in an environment where dust is not allowed, such as a clean room, because it is difficult to fluff.

〔実施例20〕
実施例1と同じポリパラフェニレンテレフタルアミド繊維(東レ・デュポン株式会社製、商品名:ケブラー)のフィラメント糸条にリング撚糸機を用いて撚り数640t/m(撚り係数8270)の撚りを加え、アルミニウムからできているボビンに巻き取って高温高圧水蒸気処理を行った後、リング撚糸機で撚り数が0になるまで解撚し、本発明にかかる耐熱性捲縮糸を得た。高温高圧水蒸気処理温度は200℃、処理時間は15分間であった。
Example 20
A twist of 640 t / m (twisting factor 8270) was added to the filament yarn of the same polyparaphenylene terephthalamide fiber (made by Toray DuPont Co., Ltd., trade name: Kevlar) as in Example 1 using a ring twisting machine, After being wound on a bobbin made of aluminum and subjected to a high-temperature and high-pressure steam treatment, it was untwisted with a ring twisting machine until the number of twists was 0, to obtain a heat-resistant crimped yarn according to the present invention. The high-temperature and high-pressure steam treatment temperature was 200 ° C., and the treatment time was 15 minutes.

〔実施例21〜24〕
ポリパラフェニレンテレフタルアミド繊維の代わりに、実施例21ではポリパラフェニレンテレフタルアミド繊維〔高弾性タイプ〕(東レ・デュポン株式会社製、商品名:ケプラー49)を、実施例22ではコポリパラフェニレン−3,4’−オキシジフェニレンテレフタルアミド繊維(帝人株式会社製、商品名:テクノーラ)を、実施例23では全芳香族ポリエステル繊維(株式会社クラレ製、商品名:ベクトラン)を、実施例24ではポリベンゾビスオキサゾール繊維(東洋紡株式会社製、商品名:ザイロン)を用いた以外は、実施例20と同様にして本発明にかかる耐熱性捲縮糸を得た。ただし、表5に示すように、フィラメント糸に加えられる撚りは、実施例20とは異なる撚り数に変えた。
[Examples 21 to 24]
Instead of polyparaphenylene terephthalamide fiber, in Example 21, polyparaphenylene terephthalamide fiber [highly elastic type] (trade name: Kepler 49, manufactured by Toray DuPont Co., Ltd.) was used. In Example 22, copolyparaphenylene-3 was used. , 4'-oxydiphenylene terephthalamide fiber (manufactured by Teijin Ltd., trade name: Technora), in Example 23, fully aromatic polyester fiber (manufactured by Kuraray Co., Ltd., trade name: Vectran), and in Example 24, poly A heat-resistant crimped yarn according to the present invention was obtained in the same manner as in Example 20 except that benzobisoxazole fiber (trade name: Zylon, manufactured by Toyobo Co., Ltd.) was used. However, as shown in Table 5, the twist applied to the filament yarn was changed to a different twist number from that in Example 20.

〔実施例25〕
実施例20より細い繊度(22.2tex)の糸条を用い、フィラメント糸に加えられる撚りの単位長さ当たりの撚り数を1600t/mと多くし(表5参照)、そのためリング撚糸機の代わりに撚り数が多い場合の撚糸に適したダブルツイスターを用いて加撚、解撚した以外は、実施例20と同様にして、本発明にかかる耐熱性捲縮糸を得た。
Example 25
Using a yarn with a fineness (22.2 tex) finer than Example 20, the number of twists per unit length of twist added to the filament yarn was increased to 1600 t / m (see Table 5), so instead of a ring twister A heat-resistant crimped yarn according to the present invention was obtained in the same manner as in Example 20 except that twisting and untwisting were performed using a double twister suitable for twisted yarn with a large number of twists.

〔実施例26〕
ポリパラフェニレンテレフタルアミド繊維の代わりに、繊度が22.2texのポリメタフェニレンイソフタルアミド繊維(デュポン社製、商品名:ノーメックス)からなる糸条を用いた以外は、実施例25と同様にして、本発明にかかる耐熱性捲縮糸を得た。
Example 26
Instead of the polyparaphenylene terephthalamide fiber, except that a yarn composed of a polymetaphenylene isophthalamide fiber having a fineness of 22.2 tex (manufactured by DuPont, trade name: Nomex) was used in the same manner as in Example 25, A heat-resistant crimped yarn according to the present invention was obtained.

実施例20〜26で得られた耐熱性捲縮糸の物性を表5に示す。なお、表5中の引張強度、引張弾性率、熱分解点、限界酸素指数、原糸繊度は、捲縮糸に加工する前のフィラメント糸条の物性を示す。
その結果、試験したいずれの繊維を用いても捲縮の程度を示す伸縮伸長率は8.5%以上であった。特にパラ系アラミド繊維であるポリパラフェニレンテレフタルアミド繊維およびコポリパラフェニレン−3,4’−オキシジフェニレンテレフタルアミド繊維、メタ系アラミド繊維であるポリメタフェニレンイソフタルアミド繊維、全芳香族ポリエステル繊維は高い伸縮伸長率を示した。中でもメタ系アラミド繊維であるポリメタフェニレンイソフタルアミド繊維の伸縮伸長率は、104.6%であり、一般に使用される汎用繊維のポリエステル捲縮糸の伸縮伸長率と遜色のない高い捲縮特性であった。
Table 5 shows the physical properties of the heat-resistant crimped yarns obtained in Examples 20 to 26. In Table 5, the tensile strength, tensile modulus, thermal decomposition point, critical oxygen index, and raw yarn fineness indicate the physical properties of the filament yarn before being processed into a crimped yarn.
As a result, the expansion / contraction elongation ratio indicating the degree of crimping was 8.5% or more regardless of which fiber was tested. In particular, polyparaphenylene terephthalamide fiber and copolyparaphenylene-3,4'-oxydiphenylene terephthalamide fiber, which are para-aramid fibers, polymetaphenylene isophthalamide fiber, which is meta-aramid fiber, and wholly aromatic polyester fibers are high. The expansion / contraction elongation was shown. Among them, the stretch elongation rate of poly-metaphenylene isophthalamide fiber, which is a meta-aramid fiber, is 104.6%, and the stretch elongation rate of polyester crimped yarn, a commonly used general-purpose fiber, is comparable to that of high-quality crimps. there were.

Figure 0004171480
Figure 0004171480

〔実施例27〕
ポリパラフェニレンテレフタルアミド繊維(東レ・デュポン株式会社製、商品名:ケブラー)からなる22.2texフィラメント糸条1本を総数150本の編み針が直径91mmの円周状に配列された丸編み機に供給し、編み組織天竺の筒状の編み地を作成した。これを200℃の飽和水蒸気で15分間処理した。ついで編み地を自然放冷した後、編み地の一端から編み糸をほどいた。ほどかれた糸条は編み形状が記憶された捲縮糸である。該捲縮糸の伸縮伸長率は35%、伸縮弾性率は56%であった。
Example 27
Supply a 22.2 tex filament yarn made of polyparaphenylene terephthalamide fiber (manufactured by Toray DuPont Co., Ltd., trade name: Kevlar) to a circular knitting machine in which a total of 150 knitting needles are arranged in a circular shape with a diameter of 91 mm Then, a tubular knitted fabric of a knitted tissue sheet was created. This was treated with saturated steam at 200 ° C. for 15 minutes. Next, the knitted fabric was allowed to cool naturally, and then the yarn was unwound from one end of the knitted fabric. The unwound yarn is a crimped yarn in which the knitting shape is stored. The crimped yarn had a stretch elongation rate of 35% and a stretch elastic modulus of 56%.

〔実施例28〕
ポリメタフェニレンイソフタルアミド繊維(デュポン社製、商品名:ノーメックス)からなるフィラメント糸を用い、実施例27と同様にして編み組織天竺の筒状の編み地を作成した。該編み地を200℃において0.5分間熱風乾燥機で加熱した。ついで編み地を自然放冷した後、編み地の一端から編み糸をほどいて、捲縮糸を製造した。得られた捲縮糸の引っ張り強度および明度を測定した。なお、引っ張り強度は、つかみ間隔200mm、引っ張り速度200mm/分の定速引っ張り試験器で測定した。明度は、スガ試験器株式会社製SMカラーコンピュータで測定した。
Example 28
Using a filament yarn made of polymetaphenylene isophthalamide fiber (manufactured by DuPont, trade name: Nomex), a tubular knitted fabric of a knitted textured tentacle was prepared in the same manner as in Example 27. The knitted fabric was heated with a hot air dryer at 200 ° C. for 0.5 minutes. Next, after naturally cooling the knitted fabric, the knitted yarn was unwound from one end of the knitted fabric to produce a crimped yarn. The tensile strength and brightness of the crimped yarn obtained were measured. The tensile strength was measured with a constant-speed tensile tester having a holding interval of 200 mm and a pulling speed of 200 mm / min. The brightness was measured with an SM color computer manufactured by Suga Test Instruments Co., Ltd.

〔実施例29、30または比較例7、8〕
表6に示した温度で加熱処理した以外は、実施例28と全く同様に行った。なお、実施例29または30は、本発明の好ましい温度範囲内で加熱処理し、比較例7または8は本発明の好ましい温度範囲よりも高い温度で加熱処理した。
その結果を表6に示す。また、乾熱処理時の温度と引っ張り強度の関係を図4に、乾熱処理時の温度と明度の関係を図5に示す。図4から明らかなように、350〜400℃にかけて引っ張り強度の低下がみられた。また、図5から明らかなように、350〜400℃にかけて明度が低下し、白色であったメタ系アラミド繊維が茶褐色に変色した。
[Examples 29 and 30 or Comparative Examples 7 and 8]
The procedure was the same as in Example 28 except that the heat treatment was performed at the temperature shown in Table 6. In addition, Example 29 or 30 was heat-treated within a preferable temperature range of the present invention, and Comparative Example 7 or 8 was heat-treated at a temperature higher than the preferable temperature range of the present invention.
The results are shown in Table 6. FIG. 4 shows the relationship between the temperature and the tensile strength during the dry heat treatment, and FIG. 5 shows the relationship between the temperature and the lightness during the dry heat treatment. As apparent from FIG. 4, the tensile strength decreased from 350 to 400 ° C. Further, as apparent from FIG. 5, the brightness decreased from 350 to 400 ° C., and the white meta-aramid fiber turned brown.

Figure 0004171480
Figure 0004171480

飽和水蒸気処理前の撚り係数と、捲縮糸の代表的特性である伸縮伸長率との関係を示す。The relationship between the twist coefficient before a saturated steam process and the expansion-contraction rate which is the typical characteristic of a crimped yarn is shown. 処理時間と伸縮伸長率との関係を示す。The relationship between processing time and expansion / contraction elongation is shown. 処理温度と伸縮伸長率との関係を示す。The relationship between processing temperature and expansion-contraction elongation rate is shown. 乾熱処理時の温度と引っ張り強度の関係を示す。The relationship between the temperature at the time of dry heat treatment and the tensile strength is shown. 乾熱処理時の温度と明度の関係を示す。The relationship between temperature and lightness during dry heat treatment is shown.

Claims (5)

単糸繊度が0.02〜1texである、パラ系アラミド繊維、全芳香族ポリエステル繊維およびポリパラフェニレンベンゾビスオキサゾール繊維から選択される耐熱高機能繊維からなり、該耐熱高機能繊維に撚りを加えた後、高温高圧水蒸気または高温高圧水処理により2〜100分間熱セットを行い、次いで前記撚りの解撚を行うことにより得られる、伸縮伸長率が6%以上、伸縮弾性率が40%以上、強度が0.15〜3.5N/texであり、かつ下記式により計算される高温高圧水蒸気または高温高圧水処理後の糸条の強度保持率が30%以上であることを特徴とする加熱による品質劣化のない耐熱性捲縮糸。
強度保持率(%)={耐熱性捲縮糸の強度(N/tex)/処理前の耐熱高機能繊維糸の強度(N/tex)}×100
Single yarn fineness of 0.02~1Tex, para-aramid fibers, a refractory high performance fiber is selected from wholly aromatic polyester fiber and polyparaphenylene benzobisoxazole fiber, a twisted said heat-resistant high-performance fiber added After that, heat treatment is performed for 2 to 100 minutes by high-temperature and high-pressure steam or high-temperature and high-pressure water treatment, and then obtained by untwisting the twist, the stretch elongation is 6% or more, the stretch elastic modulus is 40% or more, Due to heating, the strength is 0.15 to 3.5 N / tex, and the strength retention of the yarn after high-temperature high-pressure steam or high-temperature high-pressure water treatment calculated by the following formula is 30% or more Heat-resistant crimped yarn without quality deterioration.
Strength retention (%) = {Strength of heat-resistant crimped yarn (N / tex) / Strength of heat-resistant high-performance fiber yarn before treatment (N / tex)} × 100
強度が0.5〜3.5N/texであることを特徴とする請求項1に記載の耐熱性捲縮糸。   The heat-resistant crimped yarn according to claim 1, wherein the strength is 0.5 to 3.5 N / tex. パラ系アラミド繊維が、ポリパラフェニレンテレフタルアミド繊維である請求項1または2に記載の耐熱性捲縮糸。 The heat-resistant crimped yarn according to claim 1 or 2, wherein the para-based aramid fiber is a polyparaphenylene terephthalamide fiber. 請求項1〜3のいずれかに記載の耐熱性捲縮糸を繊維部分の50%以上含む嵩高で伸縮性のある繊維製品。   A bulky and elastic fiber product comprising 50% or more of the fiber portion of the heat-resistant crimped yarn according to any one of claims 1 to 3. 精密機械産業、航空機産業、情報機器産業、自動車産業、電気製品産業、医療手術もしくは衛生分野で使用される手袋、消防服、自動車レース用のレーシングスーツ、または製鉄用、溶接用もしくは塗装用作業服である請求項4に記載の嵩高で伸縮性のある繊維製品。   Precision machinery industry, aircraft industry, information equipment industry, automobile industry, electrical appliance industry, gloves used in medical surgery or hygiene, fire suit, racing suit for automobile racing, or work clothes for iron making, welding or painting The bulky and stretchable fiber product according to claim 4.
JP2005195841A 1999-12-20 2005-07-05 Heat resistant crimped yarn Expired - Lifetime JP4171480B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005195841A JP4171480B2 (en) 1999-12-20 2005-07-05 Heat resistant crimped yarn

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP36182599 1999-12-20
JP2005195841A JP4171480B2 (en) 1999-12-20 2005-07-05 Heat resistant crimped yarn

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000386035A Division JP4025012B2 (en) 1999-12-20 2000-12-19 Heat resistant crimped yarn

Publications (2)

Publication Number Publication Date
JP2005307429A JP2005307429A (en) 2005-11-04
JP4171480B2 true JP4171480B2 (en) 2008-10-22

Family

ID=35436513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005195841A Expired - Lifetime JP4171480B2 (en) 1999-12-20 2005-07-05 Heat resistant crimped yarn

Country Status (1)

Country Link
JP (1) JP4171480B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4898633B2 (en) * 2007-01-10 2012-03-21 有限会社西村織布工場 Elastic cloth, cover cloth for toothed belt
JP5391645B2 (en) * 2008-10-22 2014-01-15 横浜ゴム株式会社 Spiral hose manufacturing method
JP6158602B2 (en) 2013-06-11 2017-07-05 帝人株式会社 Elastic flame retardant fabric and textile products
CN113029721B (en) * 2021-03-12 2022-07-12 莱州市电子仪器有限公司 Fiber combustion sample preparation machine

Also Published As

Publication number Publication date
JP2005307429A (en) 2005-11-04

Similar Documents

Publication Publication Date Title
US8789394B2 (en) Resin-coated glove
KR100580343B1 (en) Heat-resistant crimped yarn
JP2012207328A (en) Protective fabric excellent in contact cool feeling and cut resistance
JP4171480B2 (en) Heat resistant crimped yarn
JP2010537071A (en) Spun staple yarns made from blends of rigid rod fibers and fibers derived from diaminodiphenylsulfone, fabrics and garments made therefrom, and methods for making them
JP2013204202A (en) Composite yarn and woven or knitted fabric including the same
JP4025012B2 (en) Heat resistant crimped yarn
JP7105025B2 (en) Double covering yarn and fabric using same
JP2018066072A (en) Cut-resistant glove
JP2004011052A (en) Covered yarn and fiber product comprising the same
JP6038461B2 (en) Gloves and method of manufacturing gloves
JP4251808B2 (en) Protective clothing
JP3963007B2 (en) Coated yarn and knitted fabric using the same
RU2264485C2 (en) Method for manufacture of thermally stable coiled thread
JP2004011060A (en) Protective glove
AU2004220710B2 (en) Heat-resistant crimped yarn
JP4115238B2 (en) Method for producing para-aramid crimped yarn
RU2263167C2 (en) Thermally stable coiled thread and method for manufacturing the same
JP7503884B2 (en) Fiber Structures
JP2003013331A (en) Method for producing para-oriented aramid crimped yarn
JP2005054294A (en) Bulky interlaced yarn
JP2001271210A (en) Glove
JP2023143196A (en) Composite yarn and manufacturing method thereof
JP3935748B2 (en) Method for producing crimped yarn
JP2003336132A (en) High-functional crimped yarn and fabric

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080729

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080808

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4171480

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term