US20070141926A1 - Hydroentangled elastic nonwoven sheet - Google Patents

Hydroentangled elastic nonwoven sheet Download PDF

Info

Publication number
US20070141926A1
US20070141926A1 US11/638,977 US63897706A US2007141926A1 US 20070141926 A1 US20070141926 A1 US 20070141926A1 US 63897706 A US63897706 A US 63897706A US 2007141926 A1 US2007141926 A1 US 2007141926A1
Authority
US
United States
Prior art keywords
fabric
precursor
fibers
elastic
polyester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/638,977
Inventor
Thomas Benim
De-Sheng Tsai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EIDP Inc
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US11/638,977 priority Critical patent/US20070141926A1/en
Assigned to E. I. DU PONT DE NEMOURS AND COMPANY reassignment E. I. DU PONT DE NEMOURS AND COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TSAI, DE-SHENG, BENIM, THOMAS EDWARD
Publication of US20070141926A1 publication Critical patent/US20070141926A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06CFINISHING, DRESSING, TENTERING OR STRETCHING TEXTILE FABRICS
    • D06C3/00Stretching, tentering or spreading textile fabrics; Producing elasticity in textile fabrics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/04Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique
    • B29C55/06Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique parallel with the direction of feed
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/44Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
    • D04H1/46Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres
    • D04H1/48Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres in combination with at least one other method of consolidation
    • D04H1/49Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres in combination with at least one other method of consolidation entanglement by fluid jet in combination with another consolidation means
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/10Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between yarns or filaments made mechanically
    • D04H3/11Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between yarns or filaments made mechanically by fluid jet
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/10Scrim [e.g., open net or mesh, gauze, loose or open weave or knit, etc.]
    • Y10T442/102Woven scrim
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/10Scrim [e.g., open net or mesh, gauze, loose or open weave or knit, etc.]
    • Y10T442/184Nonwoven scrim
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/601Nonwoven fabric has an elastic quality
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/697Containing at least two chemically different strand or fiber materials

Definitions

  • This invention relates to the preparation of elastic nonwoven sheets from non-elastic hydroentangled sheets.
  • Elastic fabrics are usually made with rubber or some other elastomeric material incorporated into or attached to a precursor fabric.
  • the precursor fabrics can be traditional textiles or nonwoven fabrics.
  • Other methods of producing elastic nonwovens included imbedding or attaching elastomeric threads, strips, and films. These can be attached by adhesives, thermobonding, lamination, sewing, stitch bonding, etc. However, in all cases, the process is expensive.
  • thermoplastic bonded nonwoven fabrics such as spunbond and carded webs
  • thermo-mechanical methods describe passing a thermally bonded precursor web through an oven at an elevated temperature between the softening temperature and the melting point and applying a draw in the machine direction to transversely consolidate the web, whereby the majority of the fibers are extended and aligned predominantly in the direction of the draw.
  • the fixation of fibers in the longitudinally extended configuration creates a position memory at the thermally bonded points; therefore, the web exhibits recovery when stretched in the transverse direction.
  • these methods require precursor webs that have been subjected to thermo-mechanical bonding or calendering and the treatment temperature has to be lower than the melting point of the fibers. Otherwise, the web would be plasticized, stiff, brittle, and with virtually no elasticity, or worse would cause the web to break in the process.
  • the tensile strength of such a web totally relies on the thermal bonding and the heat and strain treatment aligns the majority of the fibers mostly in the direction of the draw, it causes serious loss of tearing strength in the resultant elastic fabric along the draw direction.
  • the invention is directed to a method for making an elastic fabric by providing a hydroentangled precursor fabric having at least 1% by weight of thermoplastic binder fibers that has lower melting temperature than that of the rest of base fibers; and while heating the precursor fabric to a temperature above the melting point of the binder fibers, drawing the precursor fabric in the machine direction at a ratio sufficient to reduce the width of the precursor by at least 20% and at a strain rate of 10 to 800% per minute, and then cooling the resultant to ambient temperature to set the resultant web.
  • the invention is directed to an elastic hydroentangled fabric made by the described method and having an extensibility of 100% to 500% in the cross direction and a 30-95% recovery under a 50% elongation, in the cross direction.
  • the FIGURE is a schematic illustration of an apparatus for performing one embodiment of the method of the invention.
  • One object of the present method is to provide a cost-effective thermo-mechanical process of creating an elastic spunlaced fabric without the use of true elastomeric fibers as base fibers.
  • the plasticized binder fibers can serve the bonding purpose in the contacting points and create the position memory for fibers fixed around the contacting points. Since the percentage of binder fibers is low, there is no significant stiffness caused by the high temperature process of this invention.
  • the use of spunlaced nonwoven precursor provides thicker, softer elastic fabrics with a more desirable tearing strength.
  • the precursor fabric is made of predominantly non-elastomeric base fibers such as (poly)ethyleneterephthalate (i.e., polyester), or polyamide staple fibers or a mix of above synthetic fibers with some percentage of non-thermoplastic fibers such as wood pulp, cotton, rayon, lyocell, etc. and then blended with at least about 1% binder fibers and preferably about 5% to 30% binder fibers.
  • the binder fibers are preferably made of thermoplastic fibers such as polypropylene, polyethylene, co-polyester, acrylic, polyamide, polyurethane, and polystryene.
  • the binder can be a bi-component fiber, such as sheath/core, side-by-side, etc.
  • the binder fibers can be bi-component staple fibers having a co-polyester sheath and polyester core or polyethylene sheath and either a polyester or compounded elastomer core.
  • the co-polyester composition can vary depending on the manufacturer of the fiber and the desired attributes, but is commonly composed of the copolymer of poly(ethylene terephthalate) and isophthalate. The percentage of binder fiber is by weight of the fabric.
  • binder fibers By incorporating binder fibers into the fiber web that is further processed into a spunlaced web and then activating these binder fibers in an in line dryer, we have made a fabric which can then be converted into an elastic web.
  • the cross over points of the binder fibers with themselves and/or the base fibers act similarly to the point bonds of a spunbonded fabric.
  • the present invention provides a process of preparing an elastic spunlaced (hydro-entangled), nonwoven web.
  • a precursor web of synthetic and/or wood pulp fibers blended with thermoplastic binder fibers is processed into a web by opening, carding or other suitable web forming processes followed by hydroentanglement (also referred to as spunlacing).
  • the spunlaced web is subjected to an elevated temperature sufficient to at least partially melt the binder fibers, but not the base fibers making up the fabric. This can be accomplished by a hot air treatment or any other suitable means for achieving the desired elevated temperature.
  • the spunlaced fabric is subjected to a drawing treatment in the machine direction at a drawing ratio sufficient to reduce the web width by more than 20% (preferably in the range of 55-75%) with a strain rate of from 10 to 800%/min.
  • the drawing ratio can be 5 to 50%, preferably 10 to 20%.
  • This step of drawing at an elevated temperature can be accomplished either in-line with the precursor web forming process or as a separate off-line process.
  • the method of heating the precursor web is not particularly limited as long as the heat transfer may be accomplished in as short a time as necessary to avoid damage of the web. Heating may be accomplished by radiation or convection. Radiation heating may be carried out by using infrared methods. Convection heating may be carried out by a suitable heating fluid, preferably a gas such as air.
  • an elastic spunlaced fabric 2 is prepared by providing a spunlaced precursor web 1 containing thermoplastic binder fibers, whereby the precursor web is supported by unwinding roll 10 .
  • Unwinding roll 10 is rotated around its longitudinal axis whereby the precursor web 1 leaves unwinding roll 10 at a speed A in the machine direction (MD) as indicated by the arrow.
  • the precursor web travels via S-wrap 15 into a heating means 20 , through the heating means and from the exit of the heating means via S-wrap 25 to the winding roll 30 .
  • S-wrap 25 and winding roll 30 are driven at a speed higher than the unwinding speed A of unwinding roll 10 and S-wrap 15 by a factor of (1+X %).
  • S-wrap 15 comprises rolls 151 and 152 .
  • S-wrap 25 comprises rolls 251 and 252 .
  • the factor (1+X %) determines the drawing ratio of the precursor web in the process of the present invention.
  • the precursor web is subjected to a drawing treatment in a machine direction at a drawing ratio sufficient to reduce the width by at least 20% and a strain rate within a range of 50 to 800%/min, at a temperature above the melting point of the binder fibers in order to create in the resultant fabric, elongation at break in the cross direction of greater than about 100% up to 500%.
  • a drawing treatment in a machine direction at a drawing ratio sufficient to reduce the width by at least 20% and a strain rate within a range of 50 to 800%/min, at a temperature above the melting point of the binder fibers in order to create in the resultant fabric, elongation at break in the cross direction of greater than about 100% up to 500%.
  • Commercially useful recovery of 15-80% with 50-200% extension can be achieved with the resultant elastic fabrics.
  • the machinery for carrying out the process of the invention is constructed for commercial capacity with an unwinder roll and a winding roll(s) installed in a distance of from 3 to 40 m, preferably about 20-30
  • the unwinder advantageously runs at commercial speed of more than 30 m/min and up to 300 m/min, preferably at least 100 m/min and up to 250 m/min, and a draw ratio of 1% to 30%, preferably 10-20%, is created by increasing the speed of the winding roll.
  • the strain rate is adjusted to 10 to 800%/min.
  • the draw ratio relates to the degree of width reduction of the precursor web and the strain rate relates to the speed of the treatment at a fixed draw ratio. It was found that when the speed is below the desired range, the web tends to overheat and to become stiff.
  • the precursor web is not sufficiently heated and either the web may break during the drawing treatment or the width reduction is not maintained after the web is released from the draw tension.
  • the S-wraps 15 and 25 also control the movement of the nonwoven web, as well as serving as the drawing means.
  • the elastic spunlaced web is characterized by a width reduction of 20-75% compared to the precursor web and a cross-direction extensibility of about 100% to 500%.
  • the draw ratio required to achieve a specific width reduction is very much dependent on the precursor web structure.
  • Obtaining a width reduction greater than 20% is important for achieving cross-direction elongation greater than 100% in the resultant fabric and the possibility for further making the fabric elastic.
  • the cross-direction elasticity of the elastic spunlaced web is characterized by 30-95% recovery under a 50% elongation, 25-75% recovery under a 100% elongation, or 15-75% recovery under a 150% elongation.
  • the resultant elastic spunlaced fabric has a thickness of 0.2 mm-3.5 mm and a basis weight of 20 to 300 g/m 2 .
  • the present invention further provides products containing the elastic nonwoven web of the present invention that greatly expands the scope of nonwoven substrates available for producing elastic nonwoven fabrics in a very cost effective manner.
  • the subject invention has applications in fields such as consumer goods; cleanrooms; medical face masks, hoods and gloves; substrates for composites and laminates and coatings such as for synthetic leather substrates.
  • the strain rate (%/t) is generally described as a piece of fabric being drawn and extended a certain (X) percentage in a period of time.
  • the extension percentage can be achieved by the speed ratio of winder or S-wrap ( 25 ) to unwind or S-wrap ( 25 ), and the time period of fabric run through can be calculated by dividing D over the average of unwind speed (A) and winder speed of [(1+X %) A].
  • the web elasticity is defined by measuring a 5-cm wide ⁇ 10-cm long strip along the longitudinal axis as follows: (stretched length ⁇ recovered length)/(stretched length ⁇ original length).
  • the melting point is the temperature where a thermoplastic fiber starts to become a liquid.
  • the strip tensile test is a measure of breaking strength and elongation or strain of a fabric when subjected to unidirectional stress. This testing was conducted on a constant rate of strain tester, Instron Model 1122. In the current examples, strips of fabric 2 inches (50 mm) wide and at least 5 inches (150 mm) long are cut in the machine direction and cross direction of the fabric. Ten specimens per sample were tested to compute an average value. This test is known in the art and generally conforms to the specifications of ASTM Method 5035-95. The results are expressed in pounds to break and percent of elongation before break. The term “elongation” means the increase in length of a specimen during a tensile test expressed as a percentage of the original length. The term “extensibility” used is the same as the elongation-at-break measured in the tensile test.
  • Tearing strength is measured by the tongue (single rip) procedure modified from the ASTM 5735 using a rectangular specimen of 2 ⁇ 2.5 inches (50 mm ⁇ 63.5 mm). Ten (10) specimens are tested per treatment and the results are expressed in pounds.
  • the basis weight of each specimen is computed from the average weight of 10 strip samples or 12 grab samples respectively.
  • Thickness is the average of 10 strip samples or 12 grab samples respectively.
  • the strip samples are measured using a TMI automated thickness tester, with a 2 inch diameter contact area and pressure of 14.7 g/cm 2 .
  • the grab samples were measured using an Ames thickness gauge with a 1-inch diameter contact area and pressure of 7.46 g/cm 2 .
  • the base fibers are polyester staple fibers, commercially available from DAK Americas identified as Dacron(R) Type 612W.
  • the binder fibers are sheath/core co-polyester/polyester staple fibers commercially available from FIT, Incorporated and identified as Type 201.
  • the melting point of the binder fibers is 110° C. (230° F.) and the precursor spunlaced fabrics contain 15% binder fibers.
  • Precursors A and E have a basis weight of 1.2 and 1.85 ounce per square yard, respectively.
  • the results of longitudinal draws at ambient temperatures are presented in Table 1 below.
  • TABLE 1 Draw Ratio Width Width Strain Rate Example (%) (in) Reduction (%) %/min
  • Precursor A 0 76 0 — 1 10 64 16 60 2 15 52 33 87 3 18 44 42 102 4 20 40
  • Precursor E 0 60 0 — 6 10 55 8 60 7 15 46 23 87 8 18 45 25 102 9 20 43 28 113 10 25 42 Broke web
  • Precursors C and D had a basis weight of 0.8 ounce per square yard (27 g/m 2 ). The results of longitudinal draw at elevated temperatures are presented in Table 2 below. TABLE 2 Draw Treatment Ratio Width Width Example Temperature (° F.) (%) (in) Reduction (%) Precursor C 77 0 75 0 11 230 10 33.5 55 12 230 18 17.5 77 13 330 9 34.5 54 14 330 12 25 67 15 330 15 19.5 74 Precursor D 77 0 75 0 16 230 6 52 31 17 230 8 44 41 18 230 10 34.5 54 19 230 18 19 75 20 330 8 42 44 21 330 10 33 56 22 330 14 22.5 70 23 330 16 19.5 74
  • the spunlaced precursors without binder fibers processed in the above conditions were able to achieve similar width reductions and enhancement of extensibility in the cross direction; however, no noticeable elastic recovery was found from 50-100% elongation. Further, in processing the precursors of A,B,C,D at an elevated temperature but below 230° F. (the melting point of binder fibers), the resultant fabrics showed only a minor degree of elasticity.
  • the longitudinal draw at elevated temperatures was able to reduce the width up to about 75% and a draw ratio of about 10% was shown sufficient to achieve a 50% width reduction.
  • the width reduction on the resultant example webs was found to be a function of draw and the temperature and the enhancement of the extensibility in the cross direction was also found to result from the draw and the temperature. Further, it was noticeable that the elasticity (recovery after elongation) increased with higher temperatures.
  • Precursor spunlaced fabrics as described above, but with basis weights of either 0.8 or 1.2 oz/yd 2 (27 or 40.7 g/m 2 ) were subjected to various draw ratios at various draw temperatures to achieve the desired width reduction of at least 50%.
  • the examples were then further tested for various elongation and stretch recovery properties. With the treatment of longitudinal draw at an elevated temperature of 330° F., the physical properties of the resultant webs were significantly changed and a commercially valuable elasticity was shown by the elongation of under 300%. The results are presented in Table 4, below. Resultant Treatment Draw Width Elongation at break Temperature B.W. Ratio Reduction B.W.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Nonwoven Fabrics (AREA)
  • Multicomponent Fibers (AREA)

Abstract

A method for making an elastic fabric with the steps of providing a hydroentangled precursor fabric having at least 1% by weight of binder fibers, heating the precursor fabric to a temperature above the melting point of the binder fibers and then drawing the precursor fabric in the machine direction at a ratio sufficient to reduce the width by more than 20% and at a strain rate of 10 to 800% per minute to produce an elastic fabric having a cross-directional extensibility of about 100% up to 500% and a 30-95% recovery under a 50% extension.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • This invention relates to the preparation of elastic nonwoven sheets from non-elastic hydroentangled sheets.
  • 2. Description of the Related Art
  • Elastic fabrics are usually made with rubber or some other elastomeric material incorporated into or attached to a precursor fabric. The precursor fabrics can be traditional textiles or nonwoven fabrics. Other methods of producing elastic nonwovens included imbedding or attaching elastomeric threads, strips, and films. These can be attached by adhesives, thermobonding, lamination, sewing, stitch bonding, etc. However, in all cases, the process is expensive.
  • U.S. Pat. No. 5,244,482 to Hassenboehler et al and EP 1538250 A1 to Tsai et al. on the other hand have shown that thermoplastic bonded nonwoven fabrics, such as spunbond and carded webs, can be processed using heat and strain to create a web with elastic properties. These thermo-mechanical methods describe passing a thermally bonded precursor web through an oven at an elevated temperature between the softening temperature and the melting point and applying a draw in the machine direction to transversely consolidate the web, whereby the majority of the fibers are extended and aligned predominantly in the direction of the draw. Upon cooling the web, the fixation of fibers in the longitudinally extended configuration creates a position memory at the thermally bonded points; therefore, the web exhibits recovery when stretched in the transverse direction. However, these methods require precursor webs that have been subjected to thermo-mechanical bonding or calendering and the treatment temperature has to be lower than the melting point of the fibers. Otherwise, the web would be plasticized, stiff, brittle, and with virtually no elasticity, or worse would cause the web to break in the process. Furthermore, since the tensile strength of such a web totally relies on the thermal bonding and the heat and strain treatment aligns the majority of the fibers mostly in the direction of the draw, it causes serious loss of tearing strength in the resultant elastic fabric along the draw direction.
  • For many applications, a, softer fabric with higher tearing strength is desired and can be obtained through the use of entangled fabrics. However, traditional spunlaced and needle punched fabrics do not gain elasticity by the heat-and-strain process described in the prior art, because the “bond points” are formed by entanglement, which provides only frictional and interlocking contact points that are not permanently altered by such a process.
  • SUMMARY OF THE INVENTION
  • The invention is directed to a method for making an elastic fabric by providing a hydroentangled precursor fabric having at least 1% by weight of thermoplastic binder fibers that has lower melting temperature than that of the rest of base fibers; and while heating the precursor fabric to a temperature above the melting point of the binder fibers, drawing the precursor fabric in the machine direction at a ratio sufficient to reduce the width of the precursor by at least 20% and at a strain rate of 10 to 800% per minute, and then cooling the resultant to ambient temperature to set the resultant web.
  • The invention is directed to an elastic hydroentangled fabric made by the described method and having an extensibility of 100% to 500% in the cross direction and a 30-95% recovery under a 50% elongation, in the cross direction.
  • BRIEF DESCRIPTION OF THE DRAWING
  • The FIGURE is a schematic illustration of an apparatus for performing one embodiment of the method of the invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • One object of the present method is to provide a cost-effective thermo-mechanical process of creating an elastic spunlaced fabric without the use of true elastomeric fibers as base fibers. By incorporating in non-elastomeric precursor web a low percentage of low melting point binder fibers, with or without being thermally bonded, and conducting a stretch process at temperature above the melting point of the binder fibers, the plasticized binder fibers can serve the bonding purpose in the contacting points and create the position memory for fibers fixed around the contacting points. Since the percentage of binder fibers is low, there is no significant stiffness caused by the high temperature process of this invention.
  • The use of spunlaced nonwoven precursor provides thicker, softer elastic fabrics with a more desirable tearing strength. The precursor fabric is made of predominantly non-elastomeric base fibers such as (poly)ethyleneterephthalate (i.e., polyester), or polyamide staple fibers or a mix of above synthetic fibers with some percentage of non-thermoplastic fibers such as wood pulp, cotton, rayon, lyocell, etc. and then blended with at least about 1% binder fibers and preferably about 5% to 30% binder fibers. The binder fibers are preferably made of thermoplastic fibers such as polypropylene, polyethylene, co-polyester, acrylic, polyamide, polyurethane, and polystryene. The binder can be a bi-component fiber, such as sheath/core, side-by-side, etc. For example, the binder fibers can be bi-component staple fibers having a co-polyester sheath and polyester core or polyethylene sheath and either a polyester or compounded elastomer core. The co-polyester composition can vary depending on the manufacturer of the fiber and the desired attributes, but is commonly composed of the copolymer of poly(ethylene terephthalate) and isophthalate. The percentage of binder fiber is by weight of the fabric. By incorporating binder fibers into the fiber web that is further processed into a spunlaced web and then activating these binder fibers in an in line dryer, we have made a fabric which can then be converted into an elastic web. The cross over points of the binder fibers with themselves and/or the base fibers act similarly to the point bonds of a spunbonded fabric.
  • The present invention provides a process of preparing an elastic spunlaced (hydro-entangled), nonwoven web. A precursor web of synthetic and/or wood pulp fibers blended with thermoplastic binder fibers is processed into a web by opening, carding or other suitable web forming processes followed by hydroentanglement (also referred to as spunlacing). The spunlaced web is subjected to an elevated temperature sufficient to at least partially melt the binder fibers, but not the base fibers making up the fabric. This can be accomplished by a hot air treatment or any other suitable means for achieving the desired elevated temperature. While subject to a temperature above the melting point of the binder fibers, the spunlaced fabric is subjected to a drawing treatment in the machine direction at a drawing ratio sufficient to reduce the web width by more than 20% (preferably in the range of 55-75%) with a strain rate of from 10 to 800%/min. The drawing ratio can be 5 to 50%, preferably 10 to 20%. This step of drawing at an elevated temperature can be accomplished either in-line with the precursor web forming process or as a separate off-line process. The method of heating the precursor web is not particularly limited as long as the heat transfer may be accomplished in as short a time as necessary to avoid damage of the web. Heating may be accomplished by radiation or convection. Radiation heating may be carried out by using infrared methods. Convection heating may be carried out by a suitable heating fluid, preferably a gas such as air.
  • The process of the invention can be further described with reference to the FIGURE. Accordingly, an elastic spunlaced fabric 2 is prepared by providing a spunlaced precursor web 1 containing thermoplastic binder fibers, whereby the precursor web is supported by unwinding roll 10. Unwinding roll 10 is rotated around its longitudinal axis whereby the precursor web 1 leaves unwinding roll 10 at a speed A in the machine direction (MD) as indicated by the arrow. The precursor web travels via S-wrap 15 into a heating means 20, through the heating means and from the exit of the heating means via S-wrap 25 to the winding roll 30. S-wrap 25 and winding roll 30 are driven at a speed higher than the unwinding speed A of unwinding roll 10 and S-wrap 15 by a factor of (1+X %). S-wrap 15 comprises rolls 151 and 152. S-wrap 25 comprises rolls 251 and 252. The factor (1+X %) determines the drawing ratio of the precursor web in the process of the present invention. According to the invention, the precursor web is subjected to a drawing treatment in a machine direction at a drawing ratio sufficient to reduce the width by at least 20% and a strain rate within a range of 50 to 800%/min, at a temperature above the melting point of the binder fibers in order to create in the resultant fabric, elongation at break in the cross direction of greater than about 100% up to 500%. Commercially useful recovery of 15-80% with 50-200% extension can be achieved with the resultant elastic fabrics. Preferably, the machinery for carrying out the process of the invention is constructed for commercial capacity with an unwinder roll and a winding roll(s) installed in a distance of from 3 to 40 m, preferably about 20-30 m, and a heating device installed between. The unwinder advantageously runs at commercial speed of more than 30 m/min and up to 300 m/min, preferably at least 100 m/min and up to 250 m/min, and a draw ratio of 1% to 30%, preferably 10-20%, is created by increasing the speed of the winding roll. The strain rate is adjusted to 10 to 800%/min. The draw ratio relates to the degree of width reduction of the precursor web and the strain rate relates to the speed of the treatment at a fixed draw ratio. It was found that when the speed is below the desired range, the web tends to overheat and to become stiff. On the other hand, if the speed is above the desired range, the precursor web is not sufficiently heated and either the web may break during the drawing treatment or the width reduction is not maintained after the web is released from the draw tension. The S-wraps 15 and 25 also control the movement of the nonwoven web, as well as serving as the drawing means.
  • The elastic spunlaced web is characterized by a width reduction of 20-75% compared to the precursor web and a cross-direction extensibility of about 100% to 500%. The draw ratio required to achieve a specific width reduction is very much dependent on the precursor web structure. Obtaining a width reduction greater than 20% is important for achieving cross-direction elongation greater than 100% in the resultant fabric and the possibility for further making the fabric elastic. Further, the cross-direction elasticity of the elastic spunlaced web is characterized by 30-95% recovery under a 50% elongation, 25-75% recovery under a 100% elongation, or 15-75% recovery under a 150% elongation. The resultant elastic spunlaced fabric has a thickness of 0.2 mm-3.5 mm and a basis weight of 20 to 300 g/m2.
  • The present invention further provides products containing the elastic nonwoven web of the present invention that greatly expands the scope of nonwoven substrates available for producing elastic nonwoven fabrics in a very cost effective manner. The subject invention has applications in fields such as consumer goods; cleanrooms; medical face masks, hoods and gloves; substrates for composites and laminates and coatings such as for synthetic leather substrates.
  • Glossary and Test Methods:
  • The strain rate (%/t) is generally described as a piece of fabric being drawn and extended a certain (X) percentage in a period of time. The extension percentage can be achieved by the speed ratio of winder or S-wrap (25) to unwind or S-wrap (25), and the time period of fabric run through can be calculated by dividing D over the average of unwind speed (A) and winder speed of [(1+X %) A]. Speed A is generally expressed in m/min as follows:
    X %/{D/[A+(1+X %)A]/2}=X %/{2D/[A+(1+X %)A]}={X %×[A+(1+X %)A]}/2D
  • The web elasticity is defined by measuring a 5-cm wide×10-cm long strip along the longitudinal axis as follows:
    (stretched length−recovered length)/(stretched length−original length).
  • The melting point is the temperature where a thermoplastic fiber starts to become a liquid.
  • The strip tensile test is a measure of breaking strength and elongation or strain of a fabric when subjected to unidirectional stress. This testing was conducted on a constant rate of strain tester, Instron Model 1122. In the current examples, strips of fabric 2 inches (50 mm) wide and at least 5 inches (150 mm) long are cut in the machine direction and cross direction of the fabric. Ten specimens per sample were tested to compute an average value. This test is known in the art and generally conforms to the specifications of ASTM Method 5035-95. The results are expressed in pounds to break and percent of elongation before break. The term “elongation” means the increase in length of a specimen during a tensile test expressed as a percentage of the original length. The term “extensibility” used is the same as the elongation-at-break measured in the tensile test.
  • Tearing strength is measured by the tongue (single rip) procedure modified from the ASTM 5735 using a rectangular specimen of 2×2.5 inches (50 mm×63.5 mm). Ten (10) specimens are tested per treatment and the results are expressed in pounds.
  • The basis weight of each specimen is computed from the average weight of 10 strip samples or 12 grab samples respectively.
  • Thickness is the average of 10 strip samples or 12 grab samples respectively. The strip samples are measured using a TMI automated thickness tester, with a 2 inch diameter contact area and pressure of 14.7 g/cm2. The grab samples were measured using an Ames thickness gauge with a 1-inch diameter contact area and pressure of 7.46 g/cm2.
  • EXAMPLES
  • In the following examples, the base fibers are polyester staple fibers, commercially available from DAK Americas identified as Dacron(R) Type 612W. The binder fibers are sheath/core co-polyester/polyester staple fibers commercially available from FIT, Incorporated and identified as Type 201. The melting point of the binder fibers is 110° C. (230° F.) and the precursor spunlaced fabrics contain 15% binder fibers.
  • Examples 1-10
  • Precursors A and E have a basis weight of 1.2 and 1.85 ounce per square yard, respectively. The results of longitudinal draws at ambient temperatures are presented in Table 1 below.
    TABLE 1
    Draw
    Ratio Width Width Strain Rate
    Example (%) (in) Reduction (%) %/min
    Precursor A 0 76 0
    1 10 64 16 60
    2 15 52 33 87
    3 18 44 42 102
    4 20 40 Broke web
    Precursor E 0 60 0
    6 10 55 8 60
    7 15 46 23 87
    8 18 45 25 102
    9 20 43 28 113
    10 25 42 Broke web
  • The longitudinal draw at ambient temperatures was varied and was found to reduce the width to some degree and enhance the extensibility of the resultant webs. At a width reduction of about 20%, an extensibility of more than 100% in the cross direction of the resultant webs was achieved, however, no significant elastic recovery was observed from 50-100% elongation.
  • Examples 11-23
  • Precursors C and D had a basis weight of 0.8 ounce per square yard (27 g/m2). The results of longitudinal draw at elevated temperatures are presented in Table 2 below.
    TABLE 2
    Draw
    Treatment Ratio Width Width
    Example Temperature (° F.) (%) (in) Reduction (%)
    Precursor C 77 0 75 0
    11 230 10 33.5 55
    12 230 18 17.5 77
    13 330 9 34.5 54
    14 330 12 25 67
    15 330 15 19.5 74
    Precursor D 77 0 75 0
    16 230 6 52 31
    17 230 8 44 41
    18 230 10 34.5 54
    19 230 18 19 75
    20 330 8 42 44
    21 330 10 33 56
    22 330 14 22.5 70
    23 330 16 19.5 74
  • In contrast to the results in Tables 1 and 2 above, the spunlaced precursors without binder fibers processed in the above conditions were able to achieve similar width reductions and enhancement of extensibility in the cross direction; however, no noticeable elastic recovery was found from 50-100% elongation. Further, in processing the precursors of A,B,C,D at an elevated temperature but below 230° F. (the melting point of binder fibers), the resultant fabrics showed only a minor degree of elasticity.
  • Examples 24-28
  • Precursor spunlaced fabrics as described above were subjected to a draw ratio of 14% at various draw temperatures and then tested for elongation and stretch recovery. The results are presented in Table 3, below.
    TABLE 3
    Draw Treatment Width Load at 1st Recovery %
    BW Ratio Temperature Reduction CD Elongation at break elongation (lbf) At 1st elongation
    opsy (%) (° F.) (%) % lbf 100% 150% 100% 150%
    Precursor A 1.2 0 77 0 64 56.4 N/A N/A N/A N/A
    24 14 230 65 282 10.32 1.300 3.035 50 34.5
    25 14 270 66 319 9.20 1.227 2.095 70.6 50
    26 14 310 67 317 7.24 1.290 1.960 74.8 59.4
    27 14 350 69 352 7.54 1.480 2.068 78 61.1
    28 14 400 73 394 4.85 1.156 1.500 77.3 67.8
  • The longitudinal draw at elevated temperatures was able to reduce the width up to about 75% and a draw ratio of about 10% was shown sufficient to achieve a 50% width reduction. The width reduction on the resultant example webs was found to be a function of draw and the temperature and the enhancement of the extensibility in the cross direction was also found to result from the draw and the temperature. Further, it was noticeable that the elasticity (recovery after elongation) increased with higher temperatures.
  • Examples 19-38
  • Precursor spunlaced fabrics as described above, but with basis weights of either 0.8 or 1.2 oz/yd2 (27 or 40.7 g/m2) were subjected to various draw ratios at various draw temperatures to achieve the desired width reduction of at least 50%. The examples were then further tested for various elongation and stretch recovery properties. With the treatment of longitudinal draw at an elevated temperature of 330° F., the physical properties of the resultant webs were significantly changed and a commercially valuable elasticity was shown by the elongation of under 300%. The results are presented in Table 4, below.
    Resultant
    Treatment Draw Width Elongation at break
    Temperature B.W. Ratio Reduction B.W. Thickness (%) Recovery at 1st CD elongation (%)
    Example (° F.) (opsy) % (%) (opsy) (mil) MD CD 50% 100% 150% 200% 300%
    Precursor A 1.2 0 0 1.2 18.6 24.3 NA
    29 230° F. 12 51 2.1 19.3 12.9 245.1 78.6 66.4 47.9 38.8
    30 230° F. 18 68 3.3 20.2 10.6 469.7 78 68 60.5 51.2 36.5
    31 330° F. 10 50 2.1 21.1 13.2 229.8 85.6 68.8 54.5
    32 330° F. 14 65 2.9 21.7 13.7 354.6 86.7 67.2 53.9 33.8 16.4
    33 330° F. 18 74 3.6 21.2 13.9 497.3 86.8 70.4 65.3 51.8 27.1
    Precursor B 1.2 0 0 1.2 18.6 23.6 63.0
    34 230° F. 12 52 2.2 19.3 13.8 263.9 82 45.2 25.7 18.6
    35 230° F. 21 71 3.5 20.8 9.5 484.0 81.6 59.6 52 35.8 19.7
    36 330° F. 10 51 2.2 22.0 13.4 240.8 88.4 50.4 28.5
    37 330° F. 14 66 3.2 22.1 11.5 353.8 88.8 76.8 63.2 44.2 17.5
    38 330° F. 18 75 3.6 21.5 13.0 519.0 87.8 74.4 63.5 52 21.2
    Precursor C 0.8 0 0 0.8 14.6 22.8 66.7
    39 230° F. 10 53 1.4 16.4 13.1 214.8 83 50.4 33.3
    40 230° F. 18 74 2.3 19.0 8.3 485.9 83.3 70.8 61.6 50.8 27.1
    41 330° F. 9 54 1.6 18.0 11.3 229.5 90.6 68.4 54.4 31.6
    42 330° F. 12 67 1.5 18.0 11.1 314.8 91.3 80 67.2 46
    43 330° F. 15 73 2.5 20.1 11.8 402.3 91.3 84 72.3 56.2 27.6
    Precursor D 0.8 0 0 0.8 13.4 17.7 61.4
    44 230° F. 10 49 1.4 15.1 12.6 205.0 84 53.2 27 19.6
    45 230° F. 18 72 2.1 17.0 6.9 454.2 83 67.6 63.2 52.6 25.8
    46 330° F. 10 54 1.7 18.9 11.1 287.0 91.3 67.2 49.1 22.4
    47 330° F. 14 70 2.2 18.8 11.5 395.5 90.7 79.2 67.7 56.2 26.3
    48 330° F. 16 74 2.4 18.7 11.3 423.5 89.7 80 73.1 56 33.3

Claims (18)

1. A method for making an elastic fabric comprising the steps of
(a) providing a hydroentangled nonwoven precursor fabric containing predominantly non-elastomeric base fibers and at least 1% by weight of thermoplastic binder fibers that have a lower melting point than the base fibers
(b) heating the precursor fabric to a temperature above the melting point of the binder fibers,
(c) drawing the precursor fabric in the machine direction at a ratio sufficient to reduce the width of the precursor by at least 20% and to achieve a cross-direction elongation of above 100% in the resultant elastic fabric.
(d) cooling the stretched web before releasing the tension to create fixed bond points on binder fibers.
2. The method of claim 1, wherein the processing speed is at least 30 meters per minute and preferably 100-300 meters per minute.
3. The method of claim 2, wherein the processing strain rate is 10-800% per minute.
4. The method of claim 1, wherein the drawing step comprises the use of two sets of S-wrap rolls.
5. The method of claim 1, wherein the heating step comprises heating the precursor fabric to a temperature above the melting point of some base fibers.
6. An elastic fabric composed of non-elastomeric fibers obtained by applying a draw in the machine direction at an elevated temperature to a precursor to reduce the width of the precursor and extend the length from the precursor by more than 20% and achieve in the elastic fabric an increase of extensibility in cross direction of more than 50% of the precursor.
7. An elastic nonwoven fabric made from an entangled precursor web containing non-elastomeric base fibers and less than 30% of non-elastic thermoplastic binder fibers that have a lower melting point than the base fibers, wherein the precursor web is drawn in the machine direction at an elevated temperature above the melting point of the binder fibers to reduce the width of the precursor by more than 20% and achieve in the elastic nonwoven fabric a cross-directional extensibility of 100% to 500% with a 30-95% recovery from a 50% elongation.
8. The elastic fabric of claim 7, having a 40-85% recovery under a 100% elongation.
9. The elastic fabric of claim 7, having a 15-75% recovery under a 150% elongation.
10. The elastic fabric of claim 7, comprising at least 1% by weight of binder fibers.
11. The elastic fabric of claim 7 in a form selected from the group consisting of apertured fabric, mesh fabric, and net fabric.
12. The elastic fabric of claim 7, comprising thermoplastic base fibers selected from the group consisting of polypropylene, polyethylene, polyester, acrylic, polystyrene polyamide and mixtures of thermoplastic fiber and non-thermoplastic fibers selected from the group consisting of wood pulp, cotton, rayon, and lyocell.
13. The elastic fabric of claim 7, comprising binder fibers selected from the group consisting of polypropylene, polyethylene, polyester, acrylic, polystyrene, polyamide, co-polyester, sheath/core co-polyester/polyester, sheath/core polyethylene/polyester, and sheath/core non-elastic polyolefin/elastomer.
14. The elastic fabric of claim 7, comprising a base fiber blend of thermoplastic and non thermoplastic fibers selected from the group consisting of cotton, wood, and synthetics.
15. The elastic fabric of claim 13, wherein the synthetic is an aramid.
16. The elastic fabric of claim 7, comprising thermoplastic base fibers of polyester and sheath/core binder fibers, wherein the core is polyester.
17. The elastic fabric of claim 16, wherein the sheath is a co-polyester.
18. The elastic fabric of claim 16, wherein the sheath is polyethylene.
US11/638,977 2005-12-15 2006-12-14 Hydroentangled elastic nonwoven sheet Abandoned US20070141926A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/638,977 US20070141926A1 (en) 2005-12-15 2006-12-14 Hydroentangled elastic nonwoven sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US75107005P 2005-12-15 2005-12-15
US11/638,977 US20070141926A1 (en) 2005-12-15 2006-12-14 Hydroentangled elastic nonwoven sheet

Publications (1)

Publication Number Publication Date
US20070141926A1 true US20070141926A1 (en) 2007-06-21

Family

ID=38050213

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/638,977 Abandoned US20070141926A1 (en) 2005-12-15 2006-12-14 Hydroentangled elastic nonwoven sheet

Country Status (5)

Country Link
US (1) US20070141926A1 (en)
EP (1) EP1974080A2 (en)
JP (1) JP2009520123A (en)
CN (1) CN101331258A (en)
WO (1) WO2007070624A2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015095749A1 (en) * 2013-12-20 2015-06-25 Kimberly-Clark Worldwide, Inc. Hydroentangled elastic filament-based, stretch-bonded composites and methods of making same
US20160281281A1 (en) * 2013-11-13 2016-09-29 Neenah Paper Inc. High Strength Hydroentangled Scrim Sheet and Methods of Producing the Same
EP3128057A1 (en) * 2015-08-03 2017-02-08 Sandler AG Stretchable nonwoven material, method of making a stretchable nonwoven fabric and use of the same
US20170348921A1 (en) * 2015-01-12 2017-12-07 Hp Pelzer Holding Gmbh 3-dimensional high-strength fiber composite component and method for producing same
CN110945172A (en) * 2017-05-15 2020-03-31 雅各布霍尔姆父子股份公司 Hydroentanglement airlaid process and industrial wipe product

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5244482A (en) * 1992-03-26 1993-09-14 The University Of Tennessee Research Corporation Post-treatment of nonwoven webs
US5582903A (en) * 1992-12-14 1996-12-10 Kimberly-Clark Corporation Stretchable meltblown fabric with barrier properties
US5997989A (en) * 1992-02-03 1999-12-07 Bba Nonwovens Simpsonville, Inc. Elastic nonwoven webs and method of making same
US6051177A (en) * 1996-03-11 2000-04-18 Ward; Gregory F. Thermo-mechanical modification of nonwoven webs
US20050124251A1 (en) * 2003-12-05 2005-06-09 De-Sheng Tsai Process for preparing an elastic nonwoven web
US20050130536A1 (en) * 2003-12-11 2005-06-16 Kimberly-Clark Worldwide, Inc. Disposable scrubbing product

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3016361B2 (en) * 1996-03-27 2000-03-06 ユニチカ株式会社 Unidirectional elastic nonwoven fabric and method for producing the same
US5770531A (en) * 1996-04-29 1998-06-23 Kimberly--Clark Worldwide, Inc. Mechanical and internal softening for nonwoven web

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5997989A (en) * 1992-02-03 1999-12-07 Bba Nonwovens Simpsonville, Inc. Elastic nonwoven webs and method of making same
US5244482A (en) * 1992-03-26 1993-09-14 The University Of Tennessee Research Corporation Post-treatment of nonwoven webs
US5582903A (en) * 1992-12-14 1996-12-10 Kimberly-Clark Corporation Stretchable meltblown fabric with barrier properties
US6051177A (en) * 1996-03-11 2000-04-18 Ward; Gregory F. Thermo-mechanical modification of nonwoven webs
US20050124251A1 (en) * 2003-12-05 2005-06-09 De-Sheng Tsai Process for preparing an elastic nonwoven web
US20050130536A1 (en) * 2003-12-11 2005-06-16 Kimberly-Clark Worldwide, Inc. Disposable scrubbing product

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160281281A1 (en) * 2013-11-13 2016-09-29 Neenah Paper Inc. High Strength Hydroentangled Scrim Sheet and Methods of Producing the Same
US10450681B2 (en) * 2013-11-13 2019-10-22 Neenah, Inc. High strength hydroentangled scrim sheet and methods of producing the same
WO2015095749A1 (en) * 2013-12-20 2015-06-25 Kimberly-Clark Worldwide, Inc. Hydroentangled elastic filament-based, stretch-bonded composites and methods of making same
US20170348921A1 (en) * 2015-01-12 2017-12-07 Hp Pelzer Holding Gmbh 3-dimensional high-strength fiber composite component and method for producing same
US10322551B2 (en) * 2015-01-12 2019-06-18 Adler Pelzer Holding Gmbh 3-Dimensional high-strength fiber composite component and method for producing same
EP3128057A1 (en) * 2015-08-03 2017-02-08 Sandler AG Stretchable nonwoven material, method of making a stretchable nonwoven fabric and use of the same
CN110945172A (en) * 2017-05-15 2020-03-31 雅各布霍尔姆父子股份公司 Hydroentanglement airlaid process and industrial wipe product

Also Published As

Publication number Publication date
EP1974080A2 (en) 2008-10-01
WO2007070624A2 (en) 2007-06-21
JP2009520123A (en) 2009-05-21
CN101331258A (en) 2008-12-24
WO2007070624A3 (en) 2007-08-16

Similar Documents

Publication Publication Date Title
US7409748B2 (en) Method of making high loft nonwoven
US5431991A (en) Process stable nonwoven fabric
US5240764A (en) Process for making spunlaced nonwoven fabrics
US20080268194A1 (en) Nonwoven bonding patterns producing fabrics with improved abrasion resistance and softness
WO1993015247A9 (en) Process stable nonwoven fabric
Sawhney et al. Advent of greige cotton non-wovens made using a hydro-entanglement process
US10767296B2 (en) Multi-denier hydraulically treated nonwoven fabrics and method of making the same
US20070141926A1 (en) Hydroentangled elastic nonwoven sheet
JP2019510889A (en) Nonwoven structure comprising metallocene catalyzed fibers
US6564436B2 (en) Method of forming an imaged compound textile fabric
Kayar Analysis of ultrasonic seam tensile properties of thermal bonded nonwoven fabrics
CA2024369C (en) Increased pile density composite elastic material
US7687415B2 (en) Elastic nonwoven composite
US6539596B1 (en) Nonwovens from polytrimethylene terephthalate based staple fibers
EP1360357B1 (en) Hydroentanglement of continuous polymer filaments
US20030129908A1 (en) Stretchable, cotton-surfaced, nonwoven, laminated fabric
JP6533025B1 (en) Method of manufacturing spunbonded nonwoven fabric and spunbonded nonwoven fabric
US10316445B2 (en) Extensible non-woven, method for producing an extensible non-woven and use of same
JP2001040564A (en) Flexible nonwoven fabric and its nonwoven fabric laminate
JP7145231B2 (en) Nonwoven fabrics, laminated nonwoven fabrics of said nonwoven fabrics, and composite sound absorbing materials using these as surface materials
JP7049842B2 (en) Laminated non-woven fabric sheet and its manufacturing method
JPH0978435A (en) Composite nonwoven fabric
WO1999025912A1 (en) Stretchable, cotton-surfaced, nonwoven, laminated fabric
JP2009249792A (en) Nonwoven fabric structure having different stretching characteristics in length and breadth and method for producing the same
JPH01148858A (en) Base cloth for tape

Legal Events

Date Code Title Description
AS Assignment

Owner name: E. I. DU PONT DE NEMOURS AND COMPANY, DELAWARE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BENIM, THOMAS EDWARD;TSAI, DE-SHENG;REEL/FRAME:018922/0094;SIGNING DATES FROM 20070130 TO 20070131

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION