US20070131583A1 - Fischer-Tropsch product condensing process for cold climates - Google Patents

Fischer-Tropsch product condensing process for cold climates Download PDF

Info

Publication number
US20070131583A1
US20070131583A1 US11/302,009 US30200905A US2007131583A1 US 20070131583 A1 US20070131583 A1 US 20070131583A1 US 30200905 A US30200905 A US 30200905A US 2007131583 A1 US2007131583 A1 US 2007131583A1
Authority
US
United States
Prior art keywords
scrubber
stream
ftr
light hydrocarbon
gasses
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/302,009
Inventor
Juan Inga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Syntroleum Corp
Original Assignee
Syntroleum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Syntroleum Corp filed Critical Syntroleum Corp
Priority to US11/302,009 priority Critical patent/US20070131583A1/en
Assigned to SYNTROLEUM CORPORATION reassignment SYNTROLEUM CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: INGA, JUAN
Publication of US20070131583A1 publication Critical patent/US20070131583A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen

Definitions

  • the invention relates to a process for condensing Fischer-Tropsch products produced in a plant located in a cold or arctic climate. More specifically, the invention relates to a process which utilizes a light oil stream to condense Fischer-Tropsch products.
  • Embodiments of the invention provide a process for condensing Fischer-Tropsch products including the steps of: (1) passing FTR gasses through a conduit located within a Ficher-Tropsh reactor wherein the conduit is situated substantially vertically within the reactor, has a first open end which is situated with the reactor headspace, and which directs the FTR gasses downward and out of the FTR; (2) feeding the FTR gasses into a first scrubber; (3) withdrawing a first overhead stream from the first scrubber; (4) feeding the first overhead stream into a second scrubber wherein the second scrubber is capable of separating two liquid phases; (5) recovery from the second scrubber an organic liquid phase comprising a light hydrocarbon oil; and (6) directing a portion of the light hydrocarbon oil to the first scrubber and recycling a portion of the light hydrocarbon oil back into the second scrubber.
  • the process further includes withdrawing a second overhead stream from the second scrubber.
  • the second overhead stream is fed into a third scrubber wherein the third scrubber is capable of separating two liquid phases; and a second light hydrocarbon oil stream is recovered from the third scrubber.
  • Alternative embodiments further include directing a least a portion of the second light hydrocarbon oil stream into either the first, second or third scrubber.
  • an aqueous liquid stream comprising FT-produced water is recovered from the third scrubber.
  • a portion of the second light hydrocarbon stream is further processed into a product stream.
  • Some embodiments of the invention include the additional step of recovering a heavier hydrocarbon stream from the first scrubber.
  • an aqueous liquid stream comprising FT-produced water may be recovered from the second scrubber.
  • the first overhead stream contains substantially no hydrocarbons having a carbon number greater than 18.
  • the heavier hydrocarbon stream contains substantially no hydrocarbons having a carbon number less than 16.
  • a third overhead stream is removed from the third scrubber and then fed into a synthesis gas generation system.
  • a second overhead stream is recovered from the second scrubber and the second overhead stream is cooled to a temperature greater than the freezing point of FT-produced water entrained in the second overhead 3 stream.
  • the process also includes the step of cooling the first light hydrocarbon oil stream to a temperature between 30 and 70° F. from the second scrubber prior to feeding into the first scrubber.
  • a portion of the first light hydrocarbon stream is further processed into a product stream.
  • Yet other embodiments of the invention provide a process for condensing Fischer-Tropsch products including the steps of: (1) passing FTR gasses through a conduit located within a Fischer-Tropsch reactor wherein the conduit is situated substantially vertically within the reactor, has a first open end which directs the FTR gasses downward and out of the FTR; (2) injecting a light hydrocarbon oil stream into the FTR gasses; (3) feed the FTR gasses into a flush drum; and (4) withdrawing a first overhead stream consisting essentially of hydrocarbons having a carbon number of less than 16 from the flush drum.
  • FIG. 1 is a schematic of a first embodiment of the process.
  • FIG. 2 is a graph comparing calculated hydrocarbon compositions in a typical FTR overhead and in the overhead of a first scrubber.
  • FIG. 3 is a schematic of a second embodiment of the process.
  • the product of a Fischer-Tropsch reactor (“FTR”) 1 passes through an internal conduit 2 .
  • Internal conduit 2 is positioned substantially vertically in the FTR 1 , has a first end opening located within the gas phase headspace of the FTR 1 , and connects to an exit tube 22 within a bottom portion of the FTR 1 .
  • exit tube 22 may be integrally molded with conduit 2 .
  • Exit tube 22 passes through the wall of FTR 1 so that the FTR gases exit FTR 1 at a level lower than the FTR 1 gas phase headspace.
  • the FTR gases exiting FTR 1 include both gaseous Fischer-Tropsch hydrocarbon products as well as unreacted synthesis gas and is generally at a temperature between about 350° F.
  • the FTR gases are fed into a first scrubber 16 which is washed with a light oil stream 15 .
  • Light oil stream 15 contains primarily C 10 to C 18 paraffins and is at a temperature between about 30° F. and about 70° F.
  • Heavier hydrocarbon products 21 in the FTR gases are condensed in first scrubber 16 and are removed from a bottom portion of first scrubber 16 .
  • the heavier hydrocarbons stream 21 contains primarily C 15+ paraffins.
  • An overhead stream 5 leaves the first scrubber 16 and is fed into a second scrubber 7 .
  • Second scrubber 7 is configured to permit the separation of two liquid phases within a bottom portion of the scrubber 7 .
  • Fischer-Tropsch produced water 10 exits the bottom of scrubber 7 and a light oil stream 11 is withdrawn from a side port 23 of scrubber 7 .
  • light oil stream 11 is cooled by a heat exchanger 6 .
  • light oil stream 11 is divided into three streams 13 , 14 , and 15 .
  • Light oil stream 13 may be used to wash a third scrubber 17
  • light oil stream 14 may be recycled to second scrubber 7
  • light oil stream 15 may be used to wash first scrubber 16 .
  • An overhead stream 20 is removed from scrubber 7 and optionally is cooled using an air cooler or other heat exchanger 4 .
  • Overhead stream 20 is fed into a third scrubber 17 .
  • Third scrubber 17 is also configured to permit the separation of two liquid phases in a bottom portion of third scrubber 17 .
  • a stream containing Fischer-Tropsch produced water may be removed from the bottom of third scrubber 17 .
  • a side stream containing light oil 9 also may be removed from third scrubber 17 .
  • An overhead stream 8 from third scrubber 17 contains primarily unreacted syngas.
  • An overhead stream 20 is removed from scrubber 7 and optionally is cooled using an air.
  • the product of a Fischer-Tropsch reactor passes through an internal conduit [ 2 ].
  • the internal conduit [ 2 ] is positioned substantially vertically in the FTR, has a first end opening located within the gas phase headspace of the FTR and connects to an exit tube [ 22 ] within a bottom portion of the FTR.
  • the exit tube [ 22 ] may be integrally molded with conduit [ 2 ].
  • Exit tube [ 22 ] passes through the wall of FTR so that the FTR gases exit FTR at a level lower than the FTR gas phase headspace.
  • the FTR gases exiting FTR include both gaseous Fischer-Tropsch hydrocarbon products as well as unreacted synthesis gas and is generally at a temperature between about 350° F. and 520°F.
  • the FTR gases [ 3 ] are feed into the first scrubber [ 16 ] which is washed with a light oil stream [ 15 ].
  • Light oil stream [ 15 ] is produced in the refinery section and has mainly C 9 to C 20 paraffins.
  • Stream [ 15 ] is supplied at a rate and temperature needed for separating the heavy hydrocarbons of stream [ 3 ] and maintaining them in a liquid phase, stream [ 21 ].
  • the overhead of the scrubber [ 16 ] enters a second scrubber [ 7 ] where it is washed again with another stream [ 14 ] from a refinery.
  • Stream [ 14 ] condenses the heavier components of stream [ 5 ] and is supplied at a rate and temperature sufficient for effective separation but not to precipitate any heavy hydrocarbon in stream [ 11 ].
  • This separator also condenses synthesized water [ 10 ].
  • the overhead of scrubber [ 7 ] enters a third scrubber [ 17 ] after being cooled and is washed with stream [ 13 ] that
  • Stream [ 13 ] and allows separating the heavier fraction of the hydrocarbon of stream [ 20 ] as well as water.
  • the oil collected from scrubbers [ 7 ] and [ 17 ] can be combined and sent to a fractionator column for further processing. It is envisioned that the streams coming from the refinery streams [ 13 , 14 and 15 ] could come from a fractionator or a sponge oil column (packed bed absorber).

Abstract

A process to optimize the condensation of Fischer-Tropsch products coming from the Fischer-Tropsch reactor in a vapour phase with the use of light oil and, therefore; reducing the possibility of coating the coolers and piping with waxy material.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • Not applicable.
  • FEDERALLY SPONSORED RESEARCH
  • Not applicable.
  • REFERENCE TO MICROFICHE APPENDIX
  • Not applicable.
  • FIELD OF THE INVENTION
  • The invention relates to a process for condensing Fischer-Tropsch products produced in a plant located in a cold or arctic climate. More specifically, the invention relates to a process which utilizes a light oil stream to condense Fischer-Tropsch products.
  • BACKGROUND OF THE INVENTION
  • Many natural gas reserves, including stranded natural gas sources, are located in cold or arctic climates. Particular considerations must be given to the operation of Fischer-Tropsch processes in such climates. Following synthesis in a Fischer-Tropsch reactor, the light hydrocarbon product stream exits the Fischer-Tropsch reactor as vapor and is condensed, generally through the use of heat exchangers, prior to further separation and/or upgrading. In cold climates, the condensed hydrocarbon product could potentially form a solid or semi-solid layer within piping or the post-synthesis heat exchangers. Formation of such layers may result in product loss as well as reduction in heat exchanger efficiency and is, therefore, undesirable and preferably is minimized or eliminated.
  • Moreover, in cold climates, e.g. sustained temperatures of less than about 60° F., even short lived process upsets which reduce or stop process flow could result in significant solid wax deposition in process equipment, and particularly in piping.
  • There remains a need, therefore, for a process to reduce or eliminate solid or semi-solid formation of Fischer-Tropsch products in process equipment and piping.
  • SUMMARY OF THE INVENTION
  • Embodiments of the invention provide a process for condensing Fischer-Tropsch products including the steps of: (1) passing FTR gasses through a conduit located within a Ficher-Tropsh reactor wherein the conduit is situated substantially vertically within the reactor, has a first open end which is situated with the reactor headspace, and which directs the FTR gasses downward and out of the FTR; (2) feeding the FTR gasses into a first scrubber; (3) withdrawing a first overhead stream from the first scrubber; (4) feeding the first overhead stream into a second scrubber wherein the second scrubber is capable of separating two liquid phases; (5) recovery from the second scrubber an organic liquid phase comprising a light hydrocarbon oil; and (6) directing a portion of the light hydrocarbon oil to the first scrubber and recycling a portion of the light hydrocarbon oil back into the second scrubber.
  • In some embodiments of the invention the process further includes withdrawing a second overhead stream from the second scrubber. In yet other embodiments, the second overhead stream is fed into a third scrubber wherein the third scrubber is capable of separating two liquid phases; and a second light hydrocarbon oil stream is recovered from the third scrubber. Alternative embodiments further include directing a least a portion of the second light hydrocarbon oil stream into either the first, second or third scrubber. In yet other embodiments of the invention, an aqueous liquid stream comprising FT-produced water is recovered from the third scrubber. In certain embodiments a portion of the second light hydrocarbon stream is further processed into a product stream.
  • Some embodiments of the invention include the additional step of recovering a heavier hydrocarbon stream from the first scrubber. Alternatively, an aqueous liquid stream comprising FT-produced water may be recovered from the second scrubber. In yet other embodiments of the invention, the first overhead stream contains substantially no hydrocarbons having a carbon number greater than 18. In yet other embodiments of the invention, the heavier hydrocarbon stream contains substantially no hydrocarbons having a carbon number less than 16.
  • In some embodiments of the invention wherein a third scrubber is used, a third overhead stream is removed from the third scrubber and then fed into a synthesis gas generation system. In other embodiments a second overhead stream is recovered from the second scrubber and the second overhead stream is cooled to a temperature greater than the freezing point of FT-produced water entrained in the second overhead 3 stream. In yet other embodiments, the process also includes the step of cooling the first light hydrocarbon oil stream to a temperature between 30 and 70° F. from the second scrubber prior to feeding into the first scrubber.
  • In some embodiments, a portion of the first light hydrocarbon stream is further processed into a product stream.
  • Yet other embodiments of the invention provide a process for condensing Fischer-Tropsch products including the steps of: (1) passing FTR gasses through a conduit located within a Fischer-Tropsch reactor wherein the conduit is situated substantially vertically within the reactor, has a first open end which directs the FTR gasses downward and out of the FTR; (2) injecting a light hydrocarbon oil stream into the FTR gasses; (3) feed the FTR gasses into a flush drum; and (4) withdrawing a first overhead stream consisting essentially of hydrocarbons having a carbon number of less than 16 from the flush drum.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic of a first embodiment of the process.
  • FIG. 2 is a graph comparing calculated hydrocarbon compositions in a typical FTR overhead and in the overhead of a first scrubber.
  • FIG. 3 is a schematic of a second embodiment of the process.
  • DESCRIPTION OF EMBODIMENTS OF THE INVENTION
  • Referring first to FIG. 1, the product of a Fischer-Tropsch reactor (“FTR”) 1 passes through an internal conduit 2. Internal conduit 2 is positioned substantially vertically in the FTR 1, has a first end opening located within the gas phase headspace of the FTR 1, and connects to an exit tube 22 within a bottom portion of the FTR 1. Alternatively, exit tube 22 may be integrally molded with conduit 2. Exit tube 22 passes through the wall of FTR 1 so that the FTR gases exit FTR 1 at a level lower than the FTR 1 gas phase headspace. The FTR gases exiting FTR 1 include both gaseous Fischer-Tropsch hydrocarbon products as well as unreacted synthesis gas and is generally at a temperature between about 350° F. and about 520° F. The FTR gases are fed into a first scrubber 16 which is washed with a light oil stream 15. Light oil stream 15 contains primarily C10 to C18 paraffins and is at a temperature between about 30° F. and about 70° F. Heavier hydrocarbon products 21 in the FTR gases are condensed in first scrubber 16 and are removed from a bottom portion of first scrubber 16. The heavier hydrocarbons stream 21 contains primarily C15+ paraffins.
  • An overhead stream 5 leaves the first scrubber 16 and is fed into a second scrubber 7. Second scrubber 7. Scrubber 7 is configured to permit the separation of two liquid phases within a bottom portion of the scrubber 7. Fischer-Tropsch produced water 10 exits the bottom of scrubber 7 and a light oil stream 11 is withdrawn from a side port 23 of scrubber 7. In some embodiments of the invention, light oil stream 11 is cooled by a heat exchanger 6. In some embodiments of the process, light oil stream 11 is divided into three streams 13, 14, and 15. Light oil stream 13 may be used to wash a third scrubber 17, light oil stream 14 may be recycled to second scrubber 7 and light oil stream 15 may be used to wash first scrubber 16.
  • An overhead stream 20 is removed from scrubber 7 and optionally is cooled using an air cooler or other heat exchanger 4. Overhead stream 20 is fed into a third scrubber 17. Third scrubber 17 is also configured to permit the separation of two liquid phases in a bottom portion of third scrubber 17. A stream containing Fischer-Tropsch produced water may be removed from the bottom of third scrubber 17. A side stream containing light oil 9 also may be removed from third scrubber 17. An overhead stream 8 from third scrubber 17 contains primarily unreacted syngas.
  • An overhead stream 20 is removed from scrubber 7 and optionally is cooled using an air.
  • Referring to FIG. 3, the product of a Fischer-Tropsch reactor (“FTR”) passes through an internal conduit [2]. The internal conduit [2] is positioned substantially vertically in the FTR, has a first end opening located within the gas phase headspace of the FTR and connects to an exit tube [22] within a bottom portion of the FTR. Alternatively, the exit tube [22] may be integrally molded with conduit [2]. Exit tube [22] passes through the wall of FTR so that the FTR gases exit FTR at a level lower than the FTR gas phase headspace. The FTR gases exiting FTR include both gaseous Fischer-Tropsch hydrocarbon products as well as unreacted synthesis gas and is generally at a temperature between about 350° F. and 520°F.
  • The FTR gases [3] are feed into the first scrubber [16] which is washed with a light oil stream [15]. Light oil stream [15] is produced in the refinery section and has mainly C9 to C20 paraffins. Stream [15] is supplied at a rate and temperature needed for separating the heavy hydrocarbons of stream [3] and maintaining them in a liquid phase, stream [21]. The overhead of the scrubber [16] enters a second scrubber [7] where it is washed again with another stream [14] from a refinery. Stream [14] condenses the heavier components of stream [5] and is supplied at a rate and temperature sufficient for effective separation but not to precipitate any heavy hydrocarbon in stream [11]. This separator also condenses synthesized water [10]. The overhead of scrubber [7] enters a third scrubber [17] after being cooled and is washed with stream [13] that comes from a refinery.
  • Stream [13] and allows separating the heavier fraction of the hydrocarbon of stream [20] as well as water. The oil collected from scrubbers [7] and [17] can be combined and sent to a fractionator column for further processing. It is envisioned that the streams coming from the refinery streams [13, 14 and 15] could come from a fractionator or a sponge oil column (packed bed absorber).
  • An optimization of this design considers the elimination of scrubber [7] and performs the entire stream treatment in only two steps.

Claims (15)

1. A process for condensing Fischer-Tropsch products comprising the steps of:
(a) passing FTR gasses through a conduit located within a Ficher-Tropsh reactor wherein the conduit is situated substantially vertically within the reactor, has a first open end which is situated with the reactor headspace, and which directs the FTR gasses downward and out of the FTR;
(b) feeding the FTR gasses into a first scrubber;
(c) withdrawing a first overhead stream from the first scrubber;
(d) feeding the first overhead stream into a second scrubber wherein the second scrubber is capable of separating two liquid phases;
(e) recovery from the second scrubber an organic liquid phase comprising a light hydrocarbon oil; and
(f) directing a portion of the light hydrocarbon oil to the first scrubber and recycling a portion of the light hydrocarbon oil back into the second scrubber.
2. The process of claim 1 further comprising the step of:
withdrawing a second overhead stream from the second scrubber.
3. The process of claim 2 further comprising the steps of:
feeding the second overhead stream into a third scrubber wherein the third scrubber is capable of separating two liquid phases; and
recovering from the third scrubber a second light hydrocarbon oil stream.
4. The process of claim 3 further comprising the steps of:
directing a least a portion of the second light hydrocarbon oil stream into either the first, second or third scrubber.
5. The process of claim 1 further comprising the steps of:
recovering a heavier hydrocarbon stream from the first scrubber.
6. The process of claim 1 further comprising the step of:
recovering an aqueous liquid stream comprising FT-produced water from the second scrubber.
7. The process of claim 3 further comprising the step of:
recovering an aqueous liquid stream comprising FT-produced water from the third scrubber.
8. The process of claim 1 wherein the first overhead stream contains substantially no hydrocarbons having a carbon number greater than 18.
9. The process of claim 5 wherein the heavier hydrocarbon stream contains substantially no hydrocarbons having a carbon number less than 16.
10. The process of claim 3 further comprising the steps of:
removing a third overhead stream from the third scrubber; and
feed the third overhead stream to a synthesis gas generation system.
11. The process of claim 2 wherein the second overhead stream is cooled to a temperature greater than the freezing point of FT-produced water entrained in the second overhead 3 stream.
12. The process of claim 1 further comprising the steps of:
cooling the first light hydrocarbon oil stream to a temperature between 30 and 70° F. from the second scrubber prior to feeding into the first scrubber.
13. The process of claim 1 wherein a portion of the first light hydrocarbon stream is further processed into a product stream.
14. The process of claim 3 wherein a portion of the second light hydrocarbon stream is further processed into a product stream.
15. A process for condensing Fischer-Tropsch products comprising the steps of
(a) passing FTR gasses through a conduit located within a Fischer-Tropsch reactor wherein the conduit is situated substantially vertically within the reactor, has a first open end which directs the FTR gasses downward and out of the FTR;
(b) injecting a light hydrocarbon oil stream into the FTR gasses;
(c) feed the FTR gasses into a flush drum; and
(d) withdrawing a first overhead stream consisting essentially of hydrocarbons having a carbon number of less than 16 from the flush drum.
US11/302,009 2005-12-13 2005-12-13 Fischer-Tropsch product condensing process for cold climates Abandoned US20070131583A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/302,009 US20070131583A1 (en) 2005-12-13 2005-12-13 Fischer-Tropsch product condensing process for cold climates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/302,009 US20070131583A1 (en) 2005-12-13 2005-12-13 Fischer-Tropsch product condensing process for cold climates

Publications (1)

Publication Number Publication Date
US20070131583A1 true US20070131583A1 (en) 2007-06-14

Family

ID=38138196

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/302,009 Abandoned US20070131583A1 (en) 2005-12-13 2005-12-13 Fischer-Tropsch product condensing process for cold climates

Country Status (1)

Country Link
US (1) US20070131583A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2479737A (en) * 2010-04-19 2011-10-26 Gtl F1 Ag Apparatus and Method for Conducting a Fischer-Tropsch Synthesis Reaction
US20130306299A1 (en) * 2011-01-31 2013-11-21 Japan Oil, Gas And Metals National Corporation Temperature control system
WO2016083946A3 (en) * 2014-11-26 2016-08-04 Sabic Global Technologies B.V. Systems and methods related to the separation of wax products from fischer-tropsch products
US20160231062A1 (en) * 2013-09-17 2016-08-11 Lg Chem, Ltd. Heat recovery device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6531515B2 (en) * 2001-02-20 2003-03-11 Chevron U.S.A. Inc. Hydrocarbon recovery in a fischer-tropsch process
US6958364B1 (en) * 2004-07-15 2005-10-25 Chevron U.S.A. Inc. Use of Fischer-Tropsch condensate as a lean oil for heavy ends recovery from Fischer-Tropsch tail gas

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6531515B2 (en) * 2001-02-20 2003-03-11 Chevron U.S.A. Inc. Hydrocarbon recovery in a fischer-tropsch process
US6958364B1 (en) * 2004-07-15 2005-10-25 Chevron U.S.A. Inc. Use of Fischer-Tropsch condensate as a lean oil for heavy ends recovery from Fischer-Tropsch tail gas

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2479737A (en) * 2010-04-19 2011-10-26 Gtl F1 Ag Apparatus and Method for Conducting a Fischer-Tropsch Synthesis Reaction
US20130158136A1 (en) * 2010-04-19 2013-06-20 Gtl.F1 Ag Apparatus and method for conducting a fischer-tropsch synthesis reaction
EP2561044B1 (en) 2010-04-19 2018-02-21 Gtl. F1 Ag Apparatus and method for conducting a fischer-tropsch synthesis reaction
US20130306299A1 (en) * 2011-01-31 2013-11-21 Japan Oil, Gas And Metals National Corporation Temperature control system
US20160231062A1 (en) * 2013-09-17 2016-08-11 Lg Chem, Ltd. Heat recovery device
US10105670B2 (en) * 2013-09-17 2018-10-23 Lg Chem, Ltd. Heat recovery device
WO2016083946A3 (en) * 2014-11-26 2016-08-04 Sabic Global Technologies B.V. Systems and methods related to the separation of wax products from fischer-tropsch products
CN107001944A (en) * 2014-11-26 2017-08-01 赛贝克环球科技公司 The system and method relevant with separating wax product from Fischer-Tropsch product

Similar Documents

Publication Publication Date Title
KR101574544B1 (en) Integrated olefin recovery process
US7749372B2 (en) Method for processing hydrocarbon pyrolysis effluent
US8524070B2 (en) Method for processing hydrocarbon pyrolysis effluent
US20090035207A1 (en) Method and device for separating a gas mixture
US6308532B1 (en) System and process for the recovery of propylene and ethylene from refinery offgases
HU207153B (en) Cryonenic separating method and system for yielding ethylene from hydrocarbon gas raw material containing methane, ethylene and ethane
CA2207983C (en) Method and device for treating natural gas containing water and condensible hydrocarbons
JPS6362675B2 (en)
US20070131583A1 (en) Fischer-Tropsch product condensing process for cold climates
US20080161616A1 (en) Oxygenate to olefin processing with product water utilization
AU2018300042B2 (en) Process and facility for producing propylene by combining propane hydrogenation and a steam cracking method with pre-separation steps in the two methods for partially removing hydrogen and methane
JP2012529622A (en) Hydrocarbon gas treatment
RU2697800C2 (en) Methods and apparatus for extracting ethylene from hydrocarbons
JPS60500381A (en) Apparatus and method for recovering light hydrocarbons from hydrogen-containing gas
EP3390329B1 (en) Process for improving propylene recovery from fcc recovery unit
TW201726899A (en) Systems and methods for recovering desired light hydrocarbons from refinery waste gas using a back-end turboexpander
BR112020023738B1 (en) METHOD FOR PRODUCING A PROPYLENE STREAM AND INSTALLATION FOR PRODUCING PROPYLENE
JP2013525722A (en) Hydrocarbon gas treatment
WO2015116793A1 (en) Lean oil absorption and stabilization
CN111886465B (en) Method and apparatus for separating synthesis gas by cryogenic distillation
RU2501779C1 (en) Method of separating ethylene of polymerisation purity from catalytic cracking gases
EP1368604A1 (en) Advanced heat integrated rectifier system
US20200181044A1 (en) Process and facility for producing propylene by combining propane dehydrogenation and a steam cracking method with propane recirculation into the steam cracking method
EP2561044B1 (en) Apparatus and method for conducting a fischer-tropsch synthesis reaction
JP2006307134A (en) METHOD FOR SEPARATING C2+ FRACTION FROM NOx-CONTAINING LIGHT GAS

Legal Events

Date Code Title Description
AS Assignment

Owner name: SYNTROLEUM CORPORATION, OKLAHOMA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:INGA, JUAN;REEL/FRAME:017642/0445

Effective date: 20060110

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION