US20070119040A1 - Methods and apparatus for securing components for manufacture - Google Patents

Methods and apparatus for securing components for manufacture Download PDF

Info

Publication number
US20070119040A1
US20070119040A1 US11/627,802 US62780207A US2007119040A1 US 20070119040 A1 US20070119040 A1 US 20070119040A1 US 62780207 A US62780207 A US 62780207A US 2007119040 A1 US2007119040 A1 US 2007119040A1
Authority
US
United States
Prior art keywords
component
clamping member
fixture
locator
blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/627,802
Inventor
Daniel Jones
Jacques Juneau
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Priority to US11/627,802 priority Critical patent/US20070119040A1/en
Assigned to GENERAL ELECTRIC COMPANY reassignment GENERAL ELECTRIC COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: JONES, DANIEL EDWARD, JUNEAU, JACQUES
Publication of US20070119040A1 publication Critical patent/US20070119040A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q3/00Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine
    • B23Q3/02Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine for mounting on a work-table, tool-slide, or analogous part
    • B23Q3/06Work-clamping means
    • B23Q3/062Work-clamping means adapted for holding workpieces having a special form or being made from a special material
    • B23Q3/063Work-clamping means adapted for holding workpieces having a special form or being made from a special material for holding turbine blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25BTOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
    • B25B5/00Clamps
    • B25B5/04Clamps with pivoted jaws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25BTOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
    • B25B5/00Clamps
    • B25B5/06Arrangements for positively actuating jaws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25BTOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
    • B25B5/00Clamps
    • B25B5/06Arrangements for positively actuating jaws
    • B25B5/061Arrangements for positively actuating jaws with fluid drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25BTOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
    • B25B5/00Clamps
    • B25B5/14Clamps for work of special profile
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S269/00Work holders
    • Y10S269/909Work holder for specific work
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining
    • Y10T29/49895Associating parts by use of aligning means [e.g., use of a drift pin or a "fixture"]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49998Work holding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/53Means to assemble or disassemble
    • Y10T29/53961Means to assemble or disassemble with work-holder for assembly

Definitions

  • This invention relates generally to manufacturing techniques, and more specifically to methods and apparatus for securing components for manufacture.
  • Accurate manufacturing of a component may be a significant factor in determining a manufacturing time of the component.
  • accurate manufacturing of the blade may be one of the most significant factors affecting an overall cost of fabrication of the gas turbine engine, as well as subsequent modifications, repairs, and inspections of the blade.
  • gas turbine engine blades include a tip shroud that typically requires an accurately machined radius along the tip and center section of the blade. The radius is established using a system of datums referenced about the profile of the blade. More specifically, to establish the datums, the blades must be rigidly held during manufacturing, such that the tip shroud is maintained in position without distorting the blade profile.
  • At least some known manufacturing processes encapsulate a cast gas turbine engine blade in a tin-bismuth matrix wherein datums from the cast blade are transferred to the matrix.
  • using such a matrix does not always produce accurate results that are reliable or easily repeatable.
  • using a matrix may require multiple fixtures, machines, and/or processes.
  • a matrix may decrease how rigidly the blade is held during manufacturing, which may result in a slower manufacturing time of the blade.
  • a method for securing a component within a tool for manufacture.
  • the tool includes a fixture, a component locator, and a clamping member.
  • the method includes fixedly coupling the component locator to the fixture, coupling the clamping member to the fixture, locating the component within the tool using the component locator such that the component is in positioned for manufacture with respect to the fixture, securing the component within the tool between the component locator and the clamping member such that the component locator, the clamping member, and the component are fixedly secured in position with respect to the fixture, and retaining the component in position with respect to the fixture using the component locator and the clamping member.
  • a tool including a fixture and a component locator fixedly coupled to the fixture.
  • the component locator includes at least one coolant guide for channeling coolant to the component during manufacturing of the component.
  • the tool further includes a clamping member coupled to the fixture. The component locator and the clamping member are configured to retain the component therebetween.
  • an apparatus for securing a component for manufacture.
  • the apparatus includes a fixture and a component locator fixedly coupled to the fixture.
  • the component locator is sized to receive at least a portion of the component therein to locate the component with respect to the fixture.
  • the apparatus further includes a clamping member rotatably coupled to the fixture. The component locator and the clamping member are configured to retain the component therebetween.
  • FIG. 1 is a perspective view of an exemplary gas turbine engine blade
  • FIG. 2 is a side view of a fixture assembly for securing a component, such as the gas turbine engine blade shown in FIG. 1 , in position during manufacture;
  • FIG. 3 is a perspective view of a dovetail clamp assembly portion of the fixture shown in FIG. 2 ;
  • FIG. 4 is a cross-sectional view of the fixture shown in FIG. 3 and taken along line 4 - 4 and in an unclamped position;
  • FIG. 5 is a cross-sectional view of the fixture shown in FIG. 4 and in a clamped position
  • FIG. 6 is a perspective view of a component locator used with the fixture shown in FIG. 2 .
  • the terms “manufacture” and “manufacturing” may include any manufacturing process.
  • manufacturing processes may include grinding, finishing, polishing, cutting, machining, inspecting, and/or casting.
  • the above examples are intended as exemplary only, and thus are not intended to limit in any way the definition and/or meaning of the terms “manufacture” and “manufacturing”.
  • the term “component” may include any object to which a manufacturing process is applied.
  • the invention is described herein in association with a gas turbine engine, and more specifically for use with a turbine blade for a gas turbine engine, it should be understood that the present invention may be applicable to any component and/or any manufacturing process. Accordingly, practice of the present invention is not limited to the manufacture of turbine blades or other components of gas turbine engines.
  • FIG. 1 is a perspective view of a turbine blade 10 that may be used with a gas turbine engine (not shown).
  • a plurality of turbine blades 10 form a high-pressure turbine rotor blade stage (not shown) of the gas turbine engine.
  • Each blade 10 includes a hollow airfoil 12 and an integral dovetail 14 that is used for mounting airfoil 12 to a rotor disk (not shown) in a known manner.
  • blades 10 may extend radially outwardly from a disk (not shown), such that a plurality of blades 10 form a blisk (not shown).
  • Each airfoil 12 includes a first contoured sidewall 16 and a second contoured sidewall 18 .
  • First sidewall 16 is convex and defines a suction side of airfoil 12
  • second sidewall 18 is concave and defines a pressure side of airfoil 12 .
  • Sidewalls 16 and 18 are joined at a leading edge 20 and at an axially-spaced trailing edge 22 of airfoil 12 . More specifically, airfoil trailing edge 22 is spaced chordwise and downstream from airfoil leading edge 20 .
  • First and second sidewalls 16 and 18 respectively, extend longitudinally or radially outward in span from a blade root 24 positioned adjacent dovetail 14 , to an airfoil tip 26 .
  • airfoil tip 26 includes a tip shroud 28 extending radially outward therefrom in a direction away from airfoil 12 .
  • Tip shroud 28 includes a bottom surface 30 .
  • FIG. 2 is a side view of a fixture assembly 50 for securing turbine blade 10 in position for manufacture.
  • Fixture assembly 50 includes a fixture 52 used for manufacturing processes, a dovetail clamp assembly 54 coupled to fixture 52 , and a tip shroud clamp assembly 56 coupled to fixture 52 .
  • Dovetail clamp assembly 54 and tip shroud clamp assembly 56 are coupled to fixture 52 using any suitable coupling means.
  • at least one of dovetail clamp assembly 54 and tip shroud clamp assembly 56 is coupled to fixture 52 using threaded bolts and threaded nuts.
  • at least one of dovetail clamp assembly 54 and tip shroud clamp assembly 56 are coupled to fixture 52 using threaded bolts and threaded openings in fixture 52 .
  • a cast turbine blade 10 Prior to undergoing a manufacturing process, a cast turbine blade 10 is vertically loaded into fixture assembly 50 .
  • Dovetail clamp assembly 54 aligns blade dovetail 14 (shown in FIG. 1 ) such that dovetail 14 is secured in a position with respect to fixture 52 that facilitates accurate manufacturing of blade 10 .
  • Tip shroud clamp assembly 56 locates the blade tip shroud such that tip shroud 28 is maintained in a position with respect to fixture 52 that facilitates accurate manufacturing of blade 10 . Accordingly, using dovetail clamp assembly 54 and tip shroud clamp assembly 56 , fixture assembly 50 facilitates locating, securing, and retaining blade 10 in a position with respect to fixture 52 to facilitate accurate manufacturing of blade 10 .
  • FIG. 3 is a perspective view of dovetail clamp assembly 54 .
  • Dovetail clamp assembly 54 includes a first clamping member 58 , a second clamping member 60 , and a biasing mechanism 62 .
  • FIG. 4 is a cross-sectional view of dovetail second clamping taken along line 4 - 4 of FIG. 3 and illustrating clamping member 60 in an unclamped position.
  • First clamping member 58 is fixedly coupled to dovetail clamp assembly 54 such that first clamping member 58 does not move with respect to fixture 52 . More specifically, first clamping member 58 is fixedly coupled to dovetail clamp assembly 54 using any suitable coupling means.
  • first clamping member 58 is coupled to dovetail clamp assembly 54 using threaded bolts and threaded nuts.
  • first clamping member 58 is coupled to dovetail clamp assembly 54 using threaded bolts and threaded holes in dovetail clamp assembly 54 .
  • Second clamping member 60 is rotatably coupled to fixture 52 such that second clamping member 60 rotates with respect to fixture 52 , about an axis of rotation 64 . More specifically, and as described in greater detail below, second clamping member 60 rotates about axis 64 between a ‘clamped’ position (shown in FIG. 5 ) and an ‘unclamped’ position (shown in FIG. 4 ). Second clamping member 60 is rotated between the ‘clamped’ and ‘unclamped’ positions using any suitable means. For example, in the exemplary embodiment shown in FIGS. 2-5 , second clamping member 60 is driven using hydraulic fluid supplied from a source external to fixture assembly 50 through a hydraulic fluid supply line 66 and a supply line fitting 67 . When second clamping member 60 is in the ‘clamped’ position, first clamping member 58 and second clamping member 60 fixedly secure dovetail 14 in a position that facilitates accurate manufacturing of blade 10 .
  • second clamping member 60 includes a pin 69 coupled thereto in any suitable manner.
  • Pin 69 is coupled to a second clamp biasing mechanism (not shown), which is coupled to dovetail clamp assembly 54 , or alternatively fixture 52 , in any suitable manner.
  • the second clamp biasing mechanism biases pin 69 to rotate about axis 64 in a direction away from first clamping member 58 .
  • Pin 69 and the second clamp biasing mechanism thereby facilitate biasing second clamping member 60 to rotate from the ‘clamped’ position to the ‘unclamped’ position.
  • second clamping member 60 does not include pin 69 and the second clamp biasing mechanism directly biases second clamping member 60 from the ‘clamped’ position to the ‘unclamped’ position.
  • the second clamp biasing mechanism is a spring.
  • second clamping member 60 also includes a semi-cylindrical opening 68 extending through second clamping member 60 along axis 64
  • dovetail clamp assembly 54 includes a semi-cylindrical projection 70 extending outwardly from a surface 72 of dovetail clamp assembly 54 and extending along a portion of axis 64
  • Semi-cylindrical projection 70 includes a stem portion 74 that extends from surface 72 , and a cylindrically-shaped portion 76 that extends from stem portion 74 . Cylindrically-shaped portion 76 is received within semi-cylindrical opening 68 such that second clamping member 60 is supported by semi-cylindrical projection 70 .
  • a diameter d 1 of cylindrically-shaped portion 76 is slightly smaller than a diameter d 2 of semi-cylindrical opening 68 such that second clamping member 60 is freely rotatable about semi-cylindrical projection 70 and axis 64 .
  • diameter d 1 is 0.2 inches smaller than diameter d 2 .
  • a bearing (not shown) is positioned between semi-cylindrical projection 70 and semi-cylindrical opening 68 to facilitate rotation of second clamping member 60 about semi-cylindrical projection 70 and axis 64 .
  • second clamping member 60 is illustrated and described herein as rotatably coupled to dovetail clamp assembly 54 in the exemplary manner, it will be understood that second clamping member 60 may be rotatably coupled to dovetail clamp assembly 54 in any suitable manner.
  • second clamping member 60 is fixedly coupled with a rod (not shown) that is rotatably coupled with dovetail clamp assembly 54 .
  • dovetail clamp assembly 54 includes a hydraulic cylinder 78 that includes an intake port 80 , an internal chamber (not shown), and a rod 82 .
  • Intake port 80 is in fluid communication with the internal chamber and is coupled in fluid communication with an intake port supply line 84 that is coupled in fluid communication with supply line fitting 67 .
  • Supply line fitting 67 is coupled in fluid communication with hydraulic fluid supply line 66 , which is coupled in fluid communication with a hydraulic fluid source external to fixture assembly 50 .
  • An internal chamber of hydraulic cylinder 78 includes a piston (not shown) that is slidable within the internal chamber of hydraulic cylinder 78 along a central axis 86 of hydraulic cylinder 78 .
  • Rod 82 is coupled to the piston and extends outwardly through a portion of the hydraulic cylinder internal chamber and through an opening 88 in hydraulic cylinder 78 to second clamping member 60 .
  • Opening 88 includes a sealing means (not shown) that extends circumferentially between rod 82 and opening 88 to facilitate sealing the internal chamber of hydraulic cylinder 78 .
  • Rod 82 is moveable within opening 88 along central axis 86 .
  • Biasing mechanism 62 is fixedly coupled to dovetail clamp assembly 54 using any suitable coupling means.
  • biasing mechanism 62 is coupled to dovetail clamp assembly 54 using threaded bolts and threaded nuts.
  • biasing mechanism 62 is coupled to dovetail clamp assembly 54 using threaded bolts and threaded holes in dovetail clamp assembly 54 .
  • At least a portion of dovetail 14 is received within a portion of biasing mechanism 62 .
  • at least a portion of dovetail 14 is received within a portion of first clamping member 58 .
  • Blade 10 loaded into fixture assembly 50 along an axis 89 Because blade 10 is loaded into fixture assembly 50 along axis 89 , rather than an axis 91 that is perpendicular to axis 89 , a small amount of travel of rod 82 along central axis 64 can be maintained.
  • dovetail 14 is received within dovetail clamp assembly 54 .
  • Biasing mechanism 62 deforms to allow a portion of dovetail 14 to be received within a portion of biasing mechanism 62 and a portion of first clamping member 58 .
  • biasing mechanism 62 biases dovetail 14 against first clamping member 58 thereby securing dovetail 14 against first clamping member 58 .
  • biasing mechanism 62 causes dovetail 14 to be frictionally coupled with first clamping member 58 such that dovetail 14 remains in position with respect to first clamping member 58 while under the bias of biasing mechanism 62 and prior to clamping with second clamping member 60 .
  • biasing mechanism 62 biases dovetail 14 in a position that facilitates accurate manufacturing of blade 10 and retains dovetail 14 in the position while second clamping member is in the ‘unclamped’ position.
  • second clamping member 60 is rotated to the ‘clamped’ position to fixedly secure dovetail 14 in position for manufacturing of blade 10 .
  • biasing mechanism 62 is herein described and illustrated in the exemplary manner, it will be understood that biasing mechanism 62 may be any other suitable shape and/or type of biasing mechanism that secures dovetail 14 against first clamping member 58 to thereby align dovetail 14 into a position facilitating accurate manufacturing of blade 10 and retain dovetail 14 in the position facilitating accurate manufacturing of blade 10 while second clamping member is in the ‘unclamped’ position.
  • biasing mechanism 62 is a spring.
  • biasing mechanism 62 is a helical spring.
  • biasing mechanism 62 is a plate spring.
  • biasing mechanism 62 is a leaf spring.
  • FIG. 5 is a cross-sectional view of dovetail second clamping member 60 in the ‘clamped’ position.
  • second clamping member 60 is rotated from the ‘unclamped’ position (shown in FIG. 4 ) to the ‘clamped’ position while dovetail 14 is secured against first clamping member 58 by biasing mechanism 62 .
  • the shape of a portion of second clamping member 60 is complimentary to the profile of dovetail 14 such that at least a portion of dovetail 14 is received within a portion of second clamping member 60 .
  • actuation of rod 82 causes second clamping member 60 to rotate from the ‘unclamped’ position to the ‘clamped’ position.
  • dovetail 14 When second clamping member 60 is in the ‘clamped’ position, dovetail 14 is frictionally coupled with first clamping member 58 and second clamping member 60 such that dovetail 14 remains in position with respect to first clamping member 58 , second clamping member 60 , and fixture 52 while second clamping member 60 is in the ‘clamped’ position.
  • the portions of second clamping member 60 and first clamping member 58 that are complimentarily shaped with respect to the profile of dovetail 14 are configured such that when dovetail 14 is received within second clamping member 60 and first clamping member 58 , dovetail 14 is fixedly secured between first clamping member 58 and second clamping member 60 in a position with respect to fixture 52 , thus facilitating accurate manufacturing of blade 10 .
  • first clamping member 58 and second clamping member 60 while second clamping member 60 is in the ‘clamped’ position is sufficient to maintain dovetail 14 in position to facilitate accurate manufacturing of blade 10 and without distorting the profile and/or features of blade 10 .
  • tip shroud clamp assembly 56 includes a component locator 90 , a clamping member 92 , herein referred to as third clamping member 92 , and a shroud work support lever 93 that is coupled to tip shroud clamp assembly 56 .
  • Shroud work support lever 93 facilitates supporting blade 10 during manufacturing of blade 10 .
  • Component locator 90 includes a coolant guide 94 that includes a plurality of grooves (not shown in FIG. 5 ) in a surface 96 of component locator 90 . Cooling guide 90 directs coolant from a coolant source (not shown) to blade 10 during manufacturing of blade 10 .
  • cooling guide 94 includes a plurality of passageways extending through a body 98 of component locator 90 . It will be understood that coolant guide 94 may be configured in any manner such that coolant guide 94 directs coolant to blade 10 during manufacturing of blade 10 .
  • Component locator 90 is fixedly coupled to tip shroud clamp assembly 56 such that component locator 90 does not move with respect to fixture 52 .
  • Component locator 90 is coupled to tip shroud clamp assembly 56 using any suitable coupling means.
  • component locator 90 is coupled to tip shroud clamp assembly 56 using threaded bolts and threaded nuts.
  • component locator 90 is coupled to tip shroud clamp assembly 56 using threaded bolts and threaded holes in tip shroud clamp assembly 56 .
  • a portion 116 (shown in FIG. 6 ) of component locator 90 is shaped complimentarily to the profile of tip shroud 28 of blade 10 such that at least a portion of tip shroud 28 of blade 10 is received within component locator 90 .
  • Third clamping member 92 is rotatably coupled to fixture 52 such that third clamping member 92 rotates with respect to fixture 52 and about an axis of rotation 100 and between a ‘clamped’ position (shown in FIG. 2 ) and an ‘unclamped’ position (not shown).
  • third clamping member 92 When third clamping member 92 is in the ‘clamped’ position, component locator 90 and third clamping member 92 fixedly secure the blade tip shroud in a position that facilitates accurate manufacturing of blade 10 during manufacturing of blade 10 .
  • third clamping member 92 includes a pin 101 coupled thereto in any suitable manner. Pin 101 engages with a third clamping member biasing mechanism (not shown), which is coupled to tip shroud clamp assembly 54 , or alternatively fixture 52 , in any suitable manner.
  • the third clamping member biasing mechanism biases pin 101 to rotate about axis 100 in a direction away from component locator 90 .
  • Pin 101 and the third clamping member biasing mechanism thereby facilitate biasing third clamping member 92 to rotate from the ‘clamped’ position to the ‘unclamped’ position.
  • third clamping member 92 does not include pin 101 and the third clamping member biasing mechanism directly biases third clamping member 92 from the ‘clamped’ position to the ‘unclamped’ position.
  • the third clamping member biasing mechanism is a spring.
  • third clamping member 92 is driven by any suitable means.
  • third clamping member 92 is driven by hydraulic fluid supplied from an external source to fixture assembly 50 through a hydraulic fluid supply line 102 and a supply line fitting 104 to a hydraulic cylinder 106 .
  • Tip shroud clamp assembly 56 includes a rod 108 coupled to a piston (not shown) in an internal chamber (not shown) of hydraulic cylinder 106 .
  • the operation of hydraulic cylinder 106 to actuate rotation of third clamping member 92 about axis 100 is substantially similar to the actuation of second clamping member 60 by hydraulic cylinder 78 .
  • rod 108 when pressure is applied to the hydraulic fluid within the internal chamber of hydraulic cylinder 106 , rod 108 causes third clamping member 92 to rotate about axis 100 from the ‘unclamped’ position to the ‘clamped’ position.
  • rod 108 When pressure is removed from the internal chamber of hydraulic cylinder 106 , rod 108 is biased away from third clamping member 92 and the third clamping member biasing mechanism biases pin 101 to rotate about axis 100 in a direction away from component locator 90 , thereby causing third clamping member 92 to rotate about axis 100 in a direction away from component locator 90 .
  • third clamping member 92 rotates about axis 100 from the ‘clamped’ position to the ‘unclamped’ position.
  • third clamping member 92 includes a semi-cylindrical opening 110 extending through third clamping member 92 along axis 100
  • tip shroud clamp assembly 56 includes a semi-cylindrical projection 112 extending outward from a surface 114 of tip shroud clamp assembly 56 and extending along a portion of axis 100
  • Semi-cylindrical projection 112 extends from surface 114 and is received within semi-cylindrical opening 110 such that third clamping member 92 is supported by semi-cylindrical projection 112 .
  • the diameter of semi-cylindrical projection 112 is slightly smaller than the diameter of semi-cylindrical opening 110 such that third clamping member 92 is free to rotate about semi-cylindrical projection 112 and axis 100 .
  • the diameter of semi-cylindrical projection 112 is 0 . 2 inches smaller than the diameter of semi-cylindrical opening 110 .
  • a bearing (not shown) is positioned between semi-cylindrical projection 112 and semi-cylindrical opening 110 to facilitate rotation of third clamping member 92 about semi-cylindrical projection 112 and axis 100 .
  • third clamping member 92 is illustrated and described herein as rotatably coupled to tip shroud clamp assembly 56 in the exemplary manner, it will be understood that third clamping member 92 may be rotatably coupled to tip shroud clamp assembly 56 in any suitable manner.
  • FIG. 6 is a perspective view of component locator 90 including coolant guide 94 and tip shroud portion 116 .
  • Tip shroud portion 116 is shaped with respect to the profile of blade tip shroud 28 such that when blade tip shroud 28 is secured against component locator 90 , tip shroud 28 is in a position with respect to fixture 52 to facilitate accurate manufacturing of blade 10 .
  • the shape of a portion (not shown) of third clamping member 92 is complimentary to the profile of the blade tip shroud 10 such that at least a portion of the blade tip shroud is received within a portion of third clamping member 92 .
  • Blade 10 loaded into fixture assembly 50 along an axis 89 Because blade 10 is loaded into fixture assembly 50 along axis 89 , rather than an axis 91 that is perpendicular to axis 89 , a small amount of travel of rod 108 along axis 100 can be maintained.
  • the blade tip shroud of blade 10 is received within tip shroud clamp assembly 56 , and dovetail clamp assembly 54 fixedly secures dovetail 14 in a position with respect to fixture 52 to facilitate accurate manufacturing of blade 10 .
  • component locator 90 locates tip shroud 28 in a position to facilitate accurate manufacture of blade 10 .
  • third clamping member 92 is rotated from the ‘unclamped’ position to the ‘clamped’ position to fixedly secure the blade tip shroud in position to facilitate accurate manufacturing of blade 10 .
  • second clamping member 60 is rotated to the ‘clamped’ position before third clamping member 92 .
  • third clamping member 92 is rotated to the ‘clamped’ position before second clamping member 60 .
  • third clamping member 92 and second clamping member 60 are rotated to the ‘clamped’ position substantially simultaneously.
  • third clamping member 92 rotates from the ‘unclamped’ position to the ‘clamped’ position.
  • tip shroud 28 is frictionally coupled with component locator 90 and third clamping member 92 such that tip shroud 28 of blade 10 will remain in position with respect to component locator 90 , third clamping member 92 , and fixture 52 during manufacturing.
  • the portions of component locator 90 and third clamping member 92 that are complimentarily shaped with respect to the profile of tip shroud 28 of blade 10 are received within the respective complimentarily shaped portions of component locator 90 and third clamping member 92 .
  • shroud work support lever 93 contacts bottom surface 30 (shown in FIG.
  • Shroud work support lever 93 facilitates fixedly securing tip shroud 28 in a position that facilitates accurate manufacturing of blade 10 by supporting bottom surface 30 . More specifically, shroud work support lever 93 facilitates preventing tip shroud 28 from flexing, and thereby distorting the profile and/or features of blade 10 , during manufacturing by supporting bottom surface 30 .
  • tip shroud 28 is manufactured using a creep feed grinder to machine a profile of tip shroud 28 . Because the tip shroud profile is machined using a grinding process, a lubris coolant is directed between a grinding surface (not shown) and a surface (not shown) of tip shroud 28 being ground. Coolant grooves 118 direct the flow of coolant to fixture assembly 50 to blade 10 between the grinding surface and the surface of tip shroud 28 being ground.
  • coolant guide 94 is shown and described herein as including coolant grooves 118 , it will be understood that coolant guide 94 may be configured in any manner, including for example function and structure, such that coolant guide 94 directs coolant to blade 10 between the grinding surface and the surface of tip shroud 28 being ground during manufacturing of blade 10 .
  • coolant guide 94 directs coolant to blade 10 between the grinding surface and the surface of tip shroud 28 being ground during manufacturing of blade 10 .
  • Fixture assembly 50 fixedly secures blade 10 in a position to facilitate accurate manufacturing of blade 10 during manufacture, without distorting the profile and/or features of blade 10 , and while providing coolant to the surface being manufactured.
  • fixture assembly 50 aligns blade 10 , including dovetail 14 and tip shroud 28 of blade 10 , in a position facilitating accurate manufacturing of blade 10 with minimal input from an operator.
  • the above-described tool is cost-effective and highly reliable for securing a component during manufacturing.
  • the tool permits a blade dovetail and a tip shroud to be secured during manufacturing. More specifically, the tool rigidly secures the blade dovetail and tip shroud in a position without distorting the profile and/or features of the blade.
  • the tool may also facilitate securing a blade dovetail and tip shroud during manufacturing without the use of multiple machines, fixtures, and/or processes. Because the blade may be self-oriented once coupled to the tool, the tool requires minimal input from an operator. As a result, the tool facilitates reducing manufacturing costs in a cost-effective and reliable manner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Jigs For Machine Tools (AREA)

Abstract

A method enables a component to be secured within a tool for manufacture. The tool includes a fixture, a component locator, and a clamping member. The method includes fixedly coupling the component locator to the fixture, coupling the clamping member to the fixture, locating the component within the tool using the component locator such that the component is positioned for manufacture with respect to the fixture, securing the component within the tool between the component locator and the clamping member such that the component locator, the clamping member, and the component are fixedly secured in position for manufacture with respect to the fixture, and retaining the component in position with respect to the fixture using the component locator and the clamping member.

Description

    BACKGROUND OF THE INVENTION
  • This invention relates generally to manufacturing techniques, and more specifically to methods and apparatus for securing components for manufacture.
  • Accurate manufacturing of a component may be a significant factor in determining a manufacturing time of the component. Specifically, when the component is a gas turbine engine blade, accurate manufacturing of the blade may be one of the most significant factors affecting an overall cost of fabrication of the gas turbine engine, as well as subsequent modifications, repairs, and inspections of the blade. For example, gas turbine engine blades include a tip shroud that typically requires an accurately machined radius along the tip and center section of the blade. The radius is established using a system of datums referenced about the profile of the blade. More specifically, to establish the datums, the blades must be rigidly held during manufacturing, such that the tip shroud is maintained in position without distorting the blade profile.
  • At least some known manufacturing processes encapsulate a cast gas turbine engine blade in a tin-bismuth matrix wherein datums from the cast blade are transferred to the matrix. However, using such a matrix does not always produce accurate results that are reliable or easily repeatable. In addition, using a matrix may require multiple fixtures, machines, and/or processes. Furthermore, a matrix may decrease how rigidly the blade is held during manufacturing, which may result in a slower manufacturing time of the blade.
  • BRIEF DESCRIPTION OF THE INVENTION
  • In one aspect, a method is provided for securing a component within a tool for manufacture. The tool includes a fixture, a component locator, and a clamping member. The method includes fixedly coupling the component locator to the fixture, coupling the clamping member to the fixture, locating the component within the tool using the component locator such that the component is in positioned for manufacture with respect to the fixture, securing the component within the tool between the component locator and the clamping member such that the component locator, the clamping member, and the component are fixedly secured in position with respect to the fixture, and retaining the component in position with respect to the fixture using the component locator and the clamping member.
  • In another aspect, a tool is provided including a fixture and a component locator fixedly coupled to the fixture. The component locator includes at least one coolant guide for channeling coolant to the component during manufacturing of the component. The tool further includes a clamping member coupled to the fixture. The component locator and the clamping member are configured to retain the component therebetween.
  • In yet another aspect, an apparatus is provided for securing a component for manufacture. The apparatus includes a fixture and a component locator fixedly coupled to the fixture. The component locator is sized to receive at least a portion of the component therein to locate the component with respect to the fixture. The apparatus further includes a clamping member rotatably coupled to the fixture. The component locator and the clamping member are configured to retain the component therebetween.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a perspective view of an exemplary gas turbine engine blade;
  • FIG. 2 is a side view of a fixture assembly for securing a component, such as the gas turbine engine blade shown in FIG. 1, in position during manufacture;
  • FIG. 3 is a perspective view of a dovetail clamp assembly portion of the fixture shown in FIG. 2;
  • FIG. 4 is a cross-sectional view of the fixture shown in FIG. 3 and taken along line 4-4 and in an unclamped position;
  • FIG. 5 is a cross-sectional view of the fixture shown in FIG. 4 and in a clamped position; and
  • FIG. 6 is a perspective view of a component locator used with the fixture shown in FIG. 2.
  • DETAILED DESCRIPTION OF THE INVENTION
  • As used herein, the terms “manufacture” and “manufacturing” may include any manufacturing process. For example, manufacturing processes may include grinding, finishing, polishing, cutting, machining, inspecting, and/or casting. The above examples are intended as exemplary only, and thus are not intended to limit in any way the definition and/or meaning of the terms “manufacture” and “manufacturing”. In addition, as used herein the term “component” may include any object to which a manufacturing process is applied. Furthermore, although the invention is described herein in association with a gas turbine engine, and more specifically for use with a turbine blade for a gas turbine engine, it should be understood that the present invention may be applicable to any component and/or any manufacturing process. Accordingly, practice of the present invention is not limited to the manufacture of turbine blades or other components of gas turbine engines.
  • FIG. 1 is a perspective view of a turbine blade 10 that may be used with a gas turbine engine (not shown). In one embodiment, a plurality of turbine blades 10 form a high-pressure turbine rotor blade stage (not shown) of the gas turbine engine. Each blade 10 includes a hollow airfoil 12 and an integral dovetail 14 that is used for mounting airfoil 12 to a rotor disk (not shown) in a known manner. Alternatively, blades 10 may extend radially outwardly from a disk (not shown), such that a plurality of blades 10 form a blisk (not shown).
  • Each airfoil 12 includes a first contoured sidewall 16 and a second contoured sidewall 18. First sidewall 16 is convex and defines a suction side of airfoil 12, and second sidewall 18 is concave and defines a pressure side of airfoil 12. Sidewalls 16 and 18 are joined at a leading edge 20 and at an axially-spaced trailing edge 22 of airfoil 12. More specifically, airfoil trailing edge 22 is spaced chordwise and downstream from airfoil leading edge 20. First and second sidewalls 16 and 18, respectively, extend longitudinally or radially outward in span from a blade root 24 positioned adjacent dovetail 14, to an airfoil tip 26. In one embodiment, airfoil tip 26 includes a tip shroud 28 extending radially outward therefrom in a direction away from airfoil 12. Tip shroud 28 includes a bottom surface 30.
  • FIG. 2 is a side view of a fixture assembly 50 for securing turbine blade 10 in position for manufacture. Fixture assembly 50 includes a fixture 52 used for manufacturing processes, a dovetail clamp assembly 54 coupled to fixture 52, and a tip shroud clamp assembly 56 coupled to fixture 52. Dovetail clamp assembly 54 and tip shroud clamp assembly 56 are coupled to fixture 52 using any suitable coupling means. For example, in one embodiment, at least one of dovetail clamp assembly 54 and tip shroud clamp assembly 56 is coupled to fixture 52 using threaded bolts and threaded nuts. In another embodiment, at least one of dovetail clamp assembly 54 and tip shroud clamp assembly 56 are coupled to fixture 52 using threaded bolts and threaded openings in fixture 52. Prior to undergoing a manufacturing process, a cast turbine blade 10 is vertically loaded into fixture assembly 50.
  • Dovetail clamp assembly 54 aligns blade dovetail 14 (shown in FIG. 1) such that dovetail 14 is secured in a position with respect to fixture 52 that facilitates accurate manufacturing of blade 10. Tip shroud clamp assembly 56 locates the blade tip shroud such that tip shroud 28 is maintained in a position with respect to fixture 52 that facilitates accurate manufacturing of blade 10. Accordingly, using dovetail clamp assembly 54 and tip shroud clamp assembly 56, fixture assembly 50 facilitates locating, securing, and retaining blade 10 in a position with respect to fixture 52 to facilitate accurate manufacturing of blade 10.
  • FIG. 3 is a perspective view of dovetail clamp assembly 54. Dovetail clamp assembly 54 includes a first clamping member 58, a second clamping member 60, and a biasing mechanism 62. FIG. 4 is a cross-sectional view of dovetail second clamping taken along line 4-4 of FIG. 3 and illustrating clamping member 60 in an unclamped position. First clamping member 58 is fixedly coupled to dovetail clamp assembly 54 such that first clamping member 58 does not move with respect to fixture 52. More specifically, first clamping member 58 is fixedly coupled to dovetail clamp assembly 54 using any suitable coupling means. For example, in one embodiment, first clamping member 58 is coupled to dovetail clamp assembly 54 using threaded bolts and threaded nuts. In another embodiment, first clamping member 58 is coupled to dovetail clamp assembly 54 using threaded bolts and threaded holes in dovetail clamp assembly 54.
  • Second clamping member 60 is rotatably coupled to fixture 52 such that second clamping member 60 rotates with respect to fixture 52, about an axis of rotation 64. More specifically, and as described in greater detail below, second clamping member 60 rotates about axis 64 between a ‘clamped’ position (shown in FIG. 5) and an ‘unclamped’ position (shown in FIG. 4). Second clamping member 60 is rotated between the ‘clamped’ and ‘unclamped’ positions using any suitable means. For example, in the exemplary embodiment shown in FIGS. 2-5, second clamping member 60 is driven using hydraulic fluid supplied from a source external to fixture assembly 50 through a hydraulic fluid supply line 66 and a supply line fitting 67. When second clamping member 60 is in the ‘clamped’ position, first clamping member 58 and second clamping member 60 fixedly secure dovetail 14 in a position that facilitates accurate manufacturing of blade 10.
  • In the exemplary embodiment, second clamping member 60 includes a pin 69 coupled thereto in any suitable manner. Pin 69 is coupled to a second clamp biasing mechanism (not shown), which is coupled to dovetail clamp assembly 54, or alternatively fixture 52, in any suitable manner. The second clamp biasing mechanism biases pin 69 to rotate about axis 64 in a direction away from first clamping member 58. Pin 69 and the second clamp biasing mechanism thereby facilitate biasing second clamping member 60 to rotate from the ‘clamped’ position to the ‘unclamped’ position. In an alternative embodiment, second clamping member 60 does not include pin 69 and the second clamp biasing mechanism directly biases second clamping member 60 from the ‘clamped’ position to the ‘unclamped’ position. In one embodiment, the second clamp biasing mechanism is a spring.
  • In the exemplary embodiment, second clamping member 60 also includes a semi-cylindrical opening 68 extending through second clamping member 60 along axis 64, and dovetail clamp assembly 54 includes a semi-cylindrical projection 70 extending outwardly from a surface 72 of dovetail clamp assembly 54 and extending along a portion of axis 64. Semi-cylindrical projection 70 includes a stem portion 74 that extends from surface 72, and a cylindrically-shaped portion 76 that extends from stem portion 74. Cylindrically-shaped portion 76 is received within semi-cylindrical opening 68 such that second clamping member 60 is supported by semi-cylindrical projection 70. A diameter d1 of cylindrically-shaped portion 76 is slightly smaller than a diameter d2 of semi-cylindrical opening 68 such that second clamping member 60 is freely rotatable about semi-cylindrical projection 70 and axis 64. In one embodiment, diameter d1 is 0.2 inches smaller than diameter d2. In an alternative embodiment (not shown), a bearing (not shown) is positioned between semi-cylindrical projection 70 and semi-cylindrical opening 68 to facilitate rotation of second clamping member 60 about semi-cylindrical projection 70 and axis 64. Although second clamping member 60 is illustrated and described herein as rotatably coupled to dovetail clamp assembly 54 in the exemplary manner, it will be understood that second clamping member 60 may be rotatably coupled to dovetail clamp assembly 54 in any suitable manner. For example, in an alternative embodiment (not shown), second clamping member 60 is fixedly coupled with a rod (not shown) that is rotatably coupled with dovetail clamp assembly 54.
  • As described above, in the exemplary embodiment described herein and shown in FIGS. 2-5, rotation of second clamping member 60 between the ‘clamped’ position and the ‘unclamped’ position is driven by hydraulic fluid. More specifically, dovetail clamp assembly 54 includes a hydraulic cylinder 78 that includes an intake port 80, an internal chamber (not shown), and a rod 82. Intake port 80 is in fluid communication with the internal chamber and is coupled in fluid communication with an intake port supply line 84 that is coupled in fluid communication with supply line fitting 67. Supply line fitting 67 is coupled in fluid communication with hydraulic fluid supply line 66, which is coupled in fluid communication with a hydraulic fluid source external to fixture assembly 50. An internal chamber of hydraulic cylinder 78 includes a piston (not shown) that is slidable within the internal chamber of hydraulic cylinder 78 along a central axis 86 of hydraulic cylinder 78. Rod 82 is coupled to the piston and extends outwardly through a portion of the hydraulic cylinder internal chamber and through an opening 88 in hydraulic cylinder 78 to second clamping member 60. Opening 88 includes a sealing means (not shown) that extends circumferentially between rod 82 and opening 88 to facilitate sealing the internal chamber of hydraulic cylinder 78. Rod 82 is moveable within opening 88 along central axis 86.
  • When pressure is applied to the hydraulic fluid within the internal chamber of hydraulic cylinder 78, the piston slides along central axis 86 in the direction of second clamping member 60, causing rod 82 to move through opening 88 along central axis 86 in the direction of second clamping member 60. When rod 82 has traveled a distance along central axis 86, rod 82 contacts second clamping member 60 and continuing travel of rod 82 along central axis 86 in the direction of second clamping member 60 causes second clamping member 60 to rotate about axis 64 from the ‘unclamped’ position to the ‘clamped’ position. When pressure is removed from the internal chamber of hydraulic cylinder 78, deformation of the sealing means for opening 88, caused by the movement of rod 82 within opening 88, biases rod 82 to move within opening 88 along central axis 86 and away from second clamping member 60. Furthermore, the second clamp biasing mechanism biases pin 69 to rotate about axis 64 in a direction away from first clamping member 58, thereby causing second clamping member 60 to rotate about axis 64 in a direction away from first clamping member 58. Accordingly, when pressure is removed from the hydraulic fluid within the internal chamber of hydraulic cylinder 78, second clamping member 60 rotates about axis 64 from the ‘clamped’ position to the ‘unclamped’ position.
  • Biasing mechanism 62 is fixedly coupled to dovetail clamp assembly 54 using any suitable coupling means. In one embodiment, biasing mechanism 62 is coupled to dovetail clamp assembly 54 using threaded bolts and threaded nuts. In another embodiment biasing mechanism 62 is coupled to dovetail clamp assembly 54 using threaded bolts and threaded holes in dovetail clamp assembly 54. At least a portion of dovetail 14 is received within a portion of biasing mechanism 62. Furthermore, at least a portion of dovetail 14 is received within a portion of first clamping member 58.
  • Blade 10 loaded into fixture assembly 50 along an axis 89. Because blade 10 is loaded into fixture assembly 50 along axis 89, rather than an axis 91 that is perpendicular to axis 89, a small amount of travel of rod 82 along central axis 64 can be maintained. When blade 10 is loaded into fixture assembly 50, dovetail 14 is received within dovetail clamp assembly 54. Biasing mechanism 62 deforms to allow a portion of dovetail 14 to be received within a portion of biasing mechanism 62 and a portion of first clamping member 58. After dovetail 14 is received within biasing mechanism 62 and first clamping member 58, biasing mechanism 62 biases dovetail 14 against first clamping member 58 thereby securing dovetail 14 against first clamping member 58. By securing dovetail 14 against first clamping member 58, biasing mechanism 62 causes dovetail 14 to be frictionally coupled with first clamping member 58 such that dovetail 14 remains in position with respect to first clamping member 58 while under the bias of biasing mechanism 62 and prior to clamping with second clamping member 60.
  • When secured against first clamping member 58, biasing mechanism 62 biases dovetail 14 in a position that facilitates accurate manufacturing of blade 10 and retains dovetail 14 in the position while second clamping member is in the ‘unclamped’ position. Once dovetail 14 is secured against first clamping member 58, second clamping member 60 is rotated to the ‘clamped’ position to fixedly secure dovetail 14 in position for manufacturing of blade 10.
  • Although biasing mechanism 62 is herein described and illustrated in the exemplary manner, it will be understood that biasing mechanism 62 may be any other suitable shape and/or type of biasing mechanism that secures dovetail 14 against first clamping member 58 to thereby align dovetail 14 into a position facilitating accurate manufacturing of blade 10 and retain dovetail 14 in the position facilitating accurate manufacturing of blade 10 while second clamping member is in the ‘unclamped’ position. In one embodiment, biasing mechanism 62 is a spring. For example, in one embodiment biasing mechanism 62 is a helical spring. In another embodiment, biasing mechanism 62 is a plate spring. In yet another embodiment, biasing mechanism 62 is a leaf spring.
  • FIG. 5 is a cross-sectional view of dovetail second clamping member 60 in the ‘clamped’ position. To facilitate accurate manufacturing of blade 10, second clamping member 60 is rotated from the ‘unclamped’ position (shown in FIG. 4) to the ‘clamped’ position while dovetail 14 is secured against first clamping member 58 by biasing mechanism 62. In one embodiment, the shape of a portion of second clamping member 60 is complimentary to the profile of dovetail 14 such that at least a portion of dovetail 14 is received within a portion of second clamping member 60. As described above, when pressure is applied to the internal chamber of hydraulic cylinder 78, actuation of rod 82 causes second clamping member 60 to rotate from the ‘unclamped’ position to the ‘clamped’ position.
  • When second clamping member 60 is in the ‘clamped’ position, dovetail 14 is frictionally coupled with first clamping member 58 and second clamping member 60 such that dovetail 14 remains in position with respect to first clamping member 58, second clamping member 60, and fixture 52 while second clamping member 60 is in the ‘clamped’ position. The portions of second clamping member 60 and first clamping member 58 that are complimentarily shaped with respect to the profile of dovetail 14 are configured such that when dovetail 14 is received within second clamping member 60 and first clamping member 58, dovetail 14 is fixedly secured between first clamping member 58 and second clamping member 60 in a position with respect to fixture 52, thus facilitating accurate manufacturing of blade 10. More specifically, the force applied to dovetail 14 by first clamping member 58 and second clamping member 60 while second clamping member 60 is in the ‘clamped’ position is sufficient to maintain dovetail 14 in position to facilitate accurate manufacturing of blade 10 and without distorting the profile and/or features of blade 10.
  • Referring again to FIG. 2, tip shroud clamp assembly 56 includes a component locator 90, a clamping member 92, herein referred to as third clamping member 92, and a shroud work support lever 93 that is coupled to tip shroud clamp assembly 56. Shroud work support lever 93 facilitates supporting blade 10 during manufacturing of blade 10. Component locator 90 includes a coolant guide 94 that includes a plurality of grooves (not shown in FIG. 5) in a surface 96 of component locator 90. Cooling guide 90 directs coolant from a coolant source (not shown) to blade 10 during manufacturing of blade 10. In an alternative embodiment, cooling guide 94 includes a plurality of passageways extending through a body 98 of component locator 90. It will be understood that coolant guide 94 may be configured in any manner such that coolant guide 94 directs coolant to blade 10 during manufacturing of blade 10.
  • Component locator 90 is fixedly coupled to tip shroud clamp assembly 56 such that component locator 90 does not move with respect to fixture 52. Component locator 90 is coupled to tip shroud clamp assembly 56 using any suitable coupling means. In one embodiment, component locator 90 is coupled to tip shroud clamp assembly 56 using threaded bolts and threaded nuts. In another embodiment component locator 90 is coupled to tip shroud clamp assembly 56 using threaded bolts and threaded holes in tip shroud clamp assembly 56. A portion 116 (shown in FIG. 6) of component locator 90 is shaped complimentarily to the profile of tip shroud 28 of blade 10 such that at least a portion of tip shroud 28 of blade 10 is received within component locator 90.
  • Third clamping member 92 is rotatably coupled to fixture 52 such that third clamping member 92 rotates with respect to fixture 52 and about an axis of rotation 100 and between a ‘clamped’ position (shown in FIG. 2) and an ‘unclamped’ position (not shown). When third clamping member 92 is in the ‘clamped’ position, component locator 90 and third clamping member 92 fixedly secure the blade tip shroud in a position that facilitates accurate manufacturing of blade 10 during manufacturing of blade 10. In the exemplary embodiment, third clamping member 92 includes a pin 101 coupled thereto in any suitable manner. Pin 101 engages with a third clamping member biasing mechanism (not shown), which is coupled to tip shroud clamp assembly 54, or alternatively fixture 52, in any suitable manner. The third clamping member biasing mechanism biases pin 101 to rotate about axis 100 in a direction away from component locator 90. Pin 101 and the third clamping member biasing mechanism thereby facilitate biasing third clamping member 92 to rotate from the ‘clamped’ position to the ‘unclamped’ position. In an alternative embodiment, third clamping member 92 does not include pin 101 and the third clamping member biasing mechanism directly biases third clamping member 92 from the ‘clamped’ position to the ‘unclamped’ position. In one embodiment, the third clamping member biasing mechanism is a spring.
  • Rotation of third clamping member 92 between the ‘clamped’ and ‘unclamped’ positions is driven by any suitable means. For example, in the exemplary embodiment shown in FIG. 5 and described herein, third clamping member 92 is driven by hydraulic fluid supplied from an external source to fixture assembly 50 through a hydraulic fluid supply line 102 and a supply line fitting 104 to a hydraulic cylinder 106. Tip shroud clamp assembly 56 includes a rod 108 coupled to a piston (not shown) in an internal chamber (not shown) of hydraulic cylinder 106. The operation of hydraulic cylinder 106 to actuate rotation of third clamping member 92 about axis 100 is substantially similar to the actuation of second clamping member 60 by hydraulic cylinder 78. More specifically, when pressure is applied to the hydraulic fluid within the internal chamber of hydraulic cylinder 106, rod 108 causes third clamping member 92 to rotate about axis 100 from the ‘unclamped’ position to the ‘clamped’ position. When pressure is removed from the internal chamber of hydraulic cylinder 106, rod 108 is biased away from third clamping member 92 and the third clamping member biasing mechanism biases pin 101 to rotate about axis 100 in a direction away from component locator 90, thereby causing third clamping member 92 to rotate about axis 100 in a direction away from component locator 90. Accordingly, when pressure is removed from the hydraulic fluid within the internal chamber of hydraulic cylinder 106, third clamping member 92 rotates about axis 100 from the ‘clamped’ position to the ‘unclamped’ position.
  • In the exemplary embodiment, third clamping member 92 includes a semi-cylindrical opening 110 extending through third clamping member 92 along axis 100, and tip shroud clamp assembly 56 includes a semi-cylindrical projection 112 extending outward from a surface 114 of tip shroud clamp assembly 56 and extending along a portion of axis 100. Semi-cylindrical projection 112 extends from surface 114 and is received within semi-cylindrical opening 110 such that third clamping member 92 is supported by semi-cylindrical projection 112. The diameter of semi-cylindrical projection 112 is slightly smaller than the diameter of semi-cylindrical opening 110 such that third clamping member 92 is free to rotate about semi-cylindrical projection 112 and axis 100. In one embodiment, the diameter of semi-cylindrical projection 112 is 0.2 inches smaller than the diameter of semi-cylindrical opening 110. In an alternative embodiment (not shown), a bearing (not shown) is positioned between semi-cylindrical projection 112 and semi-cylindrical opening 110 to facilitate rotation of third clamping member 92 about semi-cylindrical projection 112 and axis 100. Although third clamping member 92 is illustrated and described herein as rotatably coupled to tip shroud clamp assembly 56 in the exemplary manner, it will be understood that third clamping member 92 may be rotatably coupled to tip shroud clamp assembly 56 in any suitable manner.
  • FIG. 6 is a perspective view of component locator 90 including coolant guide 94 and tip shroud portion 116. Tip shroud portion 116 is shaped with respect to the profile of blade tip shroud 28 such that when blade tip shroud 28 is secured against component locator 90, tip shroud 28 is in a position with respect to fixture 52 to facilitate accurate manufacturing of blade 10. In one embodiment, the shape of a portion (not shown) of third clamping member 92 is complimentary to the profile of the blade tip shroud 10 such that at least a portion of the blade tip shroud is received within a portion of third clamping member 92.
  • Blade 10 loaded into fixture assembly 50 along an axis 89. Because blade 10 is loaded into fixture assembly 50 along axis 89, rather than an axis 91 that is perpendicular to axis 89, a small amount of travel of rod 108 along axis 100 can be maintained. When blade 10 is loaded into fixture assembly 50, the blade tip shroud of blade 10 is received within tip shroud clamp assembly 56, and dovetail clamp assembly 54 fixedly secures dovetail 14 in a position with respect to fixture 52 to facilitate accurate manufacturing of blade 10. As blade 10 is loaded into tip shroud clamp assembly 56, component locator 90 locates tip shroud 28 in a position to facilitate accurate manufacture of blade 10. After the blade tip shroud of blade 10 is located by component locator 90, third clamping member 92 is rotated from the ‘unclamped’ position to the ‘clamped’ position to fixedly secure the blade tip shroud in position to facilitate accurate manufacturing of blade 10. In one embodiment, second clamping member 60 is rotated to the ‘clamped’ position before third clamping member 92. In another embodiment, third clamping member 92 is rotated to the ‘clamped’ position before second clamping member 60. In yet another embodiment, third clamping member 92 and second clamping member 60 are rotated to the ‘clamped’ position substantially simultaneously.
  • As described above, actuation of rod 108 causes third clamping member 92 to rotate from the ‘unclamped’ position to the ‘clamped’ position. When third clamping member 92 is in the ‘clamped’ position, tip shroud 28 is frictionally coupled with component locator 90 and third clamping member 92 such that tip shroud 28 of blade 10 will remain in position with respect to component locator 90, third clamping member 92, and fixture 52 during manufacturing. The portions of component locator 90 and third clamping member 92 that are complimentarily shaped with respect to the profile of tip shroud 28 of blade 10 are received within the respective complimentarily shaped portions of component locator 90 and third clamping member 92. Furthermore, during manufacturing shroud work support lever 93 contacts bottom surface 30 (shown in FIG. 1) of tip shroud 28. Shroud work support lever 93 facilitates fixedly securing tip shroud 28 in a position that facilitates accurate manufacturing of blade 10 by supporting bottom surface 30. More specifically, shroud work support lever 93 facilitates preventing tip shroud 28 from flexing, and thereby distorting the profile and/or features of blade 10, during manufacturing by supporting bottom surface 30.
  • In one embodiment, tip shroud 28 is manufactured using a creep feed grinder to machine a profile of tip shroud 28. Because the tip shroud profile is machined using a grinding process, a lubris coolant is directed between a grinding surface (not shown) and a surface (not shown) of tip shroud 28 being ground. Coolant grooves 118 direct the flow of coolant to fixture assembly 50 to blade 10 between the grinding surface and the surface of tip shroud 28 being ground. Although coolant guide 94 is shown and described herein as including coolant grooves 118, it will be understood that coolant guide 94 may be configured in any manner, including for example function and structure, such that coolant guide 94 directs coolant to blade 10 between the grinding surface and the surface of tip shroud 28 being ground during manufacturing of blade 10. Once the grinding process is complete, pressure is removed, and third clamping member 92 rotates about axis 100 from the ‘clamped’ position to the ‘unclamped’ position.
  • Fixture assembly 50 fixedly secures blade 10 in a position to facilitate accurate manufacturing of blade 10 during manufacture, without distorting the profile and/or features of blade 10, and while providing coolant to the surface being manufactured. In addition, fixture assembly 50 aligns blade 10, including dovetail 14 and tip shroud 28 of blade 10, in a position facilitating accurate manufacturing of blade 10 with minimal input from an operator.
  • The above-described tool is cost-effective and highly reliable for securing a component during manufacturing. The tool permits a blade dovetail and a tip shroud to be secured during manufacturing. More specifically, the tool rigidly secures the blade dovetail and tip shroud in a position without distorting the profile and/or features of the blade. The tool may also facilitate securing a blade dovetail and tip shroud during manufacturing without the use of multiple machines, fixtures, and/or processes. Because the blade may be self-oriented once coupled to the tool, the tool requires minimal input from an operator. As a result, the tool facilitates reducing manufacturing costs in a cost-effective and reliable manner.
  • Exemplary embodiments of tool assemblies are described above in detail. The systems are not limited to the specific embodiments described herein, but rather, components of each assembly may be utilized independently and separately from other components described herein. Each tool assembly component can also be used in combination with other tool assembly components.
  • While the invention has been described in terms of various specific embodiments, those skilled in the art will recognize that the invention can be practiced with modification within the spirit and scope of the claims.

Claims (12)

1. A method for securing a component within a tool for manufacture, wherein the tool includes a fixture, a component locator, and a clamping member, said method comprising:
fixedly coupling the component locator to the fixture;
coupling the clamping member to the fixture;
locating the component within the tool using the component locator such that the component is positioned for manufacture with respect to the fixture;
securing the component within the tool between the component locator and the clamping member such that the component locator, the clamping member, and the component are fixedly secured in position with respect to the fixture; and
retaining the component in position with respect to the fixture using the component locator and the clamping member.
2. A method in accordance with claim 1 wherein the component locator includes a coolant guide, retaining the component in position with respect to the fixture comprises directing coolant to the component using the coolant guide.
3. A method in accordance with claim 1 wherein coupling the clamping member to the fixture comprises rotatably coupling the clamping member to the fixture such that the clamping member rotates with respect to the fixture about an axis of rotation.
4. A method in accordance with claim 1 wherein locating the component within the tool using the component locator comprises inserting at least a portion of the component within the component locator.
5. A method in accordance with claim 1 wherein securing the component within the tool between the component locator and the clamping member comprises rotating the clamping member from an unclamped position, wherein the clamping member does not contact the component, to a clamped position, wherein the component is frictionally coupled with the component locator and the clamping member.
6-13. (canceled)
14. An apparatus for securing a component for manufacture, said apparatus comprising:
a fixture;
a component locator fixedly coupled to said fixture, said component locator sized to receive at least a portion of the component therein to locate the component with respect to said fixture; and
a clamping member rotatably coupled to said fixture, said component locator and said clamping member configured to retain the component therebetween.
15. An apparatus in accordance with claim 14 wherein said component locator comprises at least one coolant guide configured to direct coolant to the component.
16. An apparatus in accordance with claim 15 wherein said at least one coolant guide comprises at least one groove extending across said component locator, said at least one groove configured to channel coolant to the component during manufacturing of the component.
17. An apparatus in accordance with claim 14 wherein said clamping member selectively rotatable with respect to said fixture about an axis of rotation.
19. An apparatus in accordance with claim 18 further comprising a hydraulic cylinder coupled to said fixture for controlling rotation of said clamping member.
20. An apparatus in accordance with claim 14 wherein said clamping member comprises a clamped position and an unclamped position, said clamped position configured to frictionally couple the component between said component locator and said clamping member.
US11/627,802 2002-09-24 2007-01-26 Methods and apparatus for securing components for manufacture Abandoned US20070119040A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/627,802 US20070119040A1 (en) 2002-09-24 2007-01-26 Methods and apparatus for securing components for manufacture

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/253,869 US7219408B2 (en) 2002-09-24 2002-09-24 Tool for securing a component
US11/627,802 US20070119040A1 (en) 2002-09-24 2007-01-26 Methods and apparatus for securing components for manufacture

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/253,869 Division US7219408B2 (en) 2002-09-24 2002-09-24 Tool for securing a component

Publications (1)

Publication Number Publication Date
US20070119040A1 true US20070119040A1 (en) 2007-05-31

Family

ID=31977811

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/253,869 Expired - Fee Related US7219408B2 (en) 2002-09-24 2002-09-24 Tool for securing a component
US11/627,802 Abandoned US20070119040A1 (en) 2002-09-24 2007-01-26 Methods and apparatus for securing components for manufacture

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/253,869 Expired - Fee Related US7219408B2 (en) 2002-09-24 2002-09-24 Tool for securing a component

Country Status (3)

Country Link
US (2) US7219408B2 (en)
EP (1) EP1403003B1 (en)
JP (1) JP4656828B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090211091A1 (en) * 2008-02-21 2009-08-27 Hlavaty Kirk D Non-metallic cover for a fixture
US11241749B2 (en) * 2016-11-25 2022-02-08 Mitsubishi Power, Ltd. Electrical discharge machining method and electrical discharge machining device

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7334331B2 (en) * 2003-12-18 2008-02-26 General Electric Company Methods and apparatus for machining components
US7966713B2 (en) * 2006-05-17 2011-06-28 The Boeing Company Tooling head mounted structural positioning
DE102007011729B4 (en) * 2007-03-10 2018-08-16 MTU Aero Engines AG Method and device for processing components of a gas turbine
KR101078551B1 (en) 2010-02-18 2011-11-01 두산중공업 주식회사 Jig in order to do clamp to dummy of bucket
GB201102799D0 (en) * 2011-02-18 2011-04-06 Rolls Royce Plc Apparatus for immobilising a component during a machining operation
CN102975061B (en) * 2012-10-08 2015-06-17 清华大学 Precision machining technological equipment and machining method for blade of aviation engine
CN103028962A (en) * 2012-11-30 2013-04-10 无锡透平叶片有限公司 Method for improving positioning accuracy of blade and blade root of tenon tooth
US20140339751A1 (en) * 2013-05-14 2014-11-20 Asti Global Optoelectronics (Suzhou) LTD Fixture for clamping workpiece
CN103846706B (en) * 2014-03-20 2016-04-20 西北工业大学 The special stretching device of a kind of blade parts milling
CN104190904A (en) * 2014-08-01 2014-12-10 南京赛达机械制造有限公司 Fixture special for steam turbine die forging blades
US10105804B2 (en) * 2014-10-15 2018-10-23 United Technologies Corporation Fixture system and method for securing an airfoil during material removal operations
CN105415020B (en) * 2016-01-22 2018-08-10 沈阳黎明航空发动机(集团)有限责任公司 A kind of dismountable blade fixture of positioning surface
US10814445B2 (en) 2016-05-09 2020-10-27 Raytheon Technologies Corporation Airfoil machining
US10415403B2 (en) * 2017-01-13 2019-09-17 Rolls-Royce North American Technologies Inc. Cooled blisk for gas turbine engine
CN114193186B (en) * 2021-12-17 2023-03-14 成都市鸿侠科技有限责任公司 Numerical control machining process and tool for split blade of aircraft engine

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3331166A (en) * 1964-11-27 1967-07-18 Brenning Albert Jig for grinding turbine blades of jet engines
US4026073A (en) * 1975-08-30 1977-05-31 Michael Weinig Kg Tool grinding machine
US4128929A (en) * 1977-03-15 1978-12-12 Demusis Ralph T Method of restoring worn turbine components
US4142332A (en) * 1977-10-03 1979-03-06 Clarke Edmond C Drill grinding fixture
US4455787A (en) * 1981-11-02 1984-06-26 United Technologies Corporation Engine fan case grinder
US4796877A (en) * 1988-03-07 1989-01-10 Crawford Fitting Company Workpiece holder and saw guide device
US5001868A (en) * 1989-03-01 1991-03-26 Werner Jankus Apparatus for grinding a point on a tungsten electrode
US5097634A (en) * 1989-12-08 1992-03-24 Hulme Jack R Tool grinder apparatus and method
US5191711A (en) * 1991-12-23 1993-03-09 Allied-Signal Inc. Compressor or turbine blade manufacture
US5494408A (en) * 1994-10-12 1996-02-27 General Electric Co. Bucket to wheel dovetail design for turbine rotors
US6065744A (en) * 1999-08-09 2000-05-23 Lawrence; Joseph W. Work holder precisely adjustable jaws
US6237907B1 (en) * 1999-08-09 2001-05-29 Joseph W. Lawrence Method and apparatus for machining a radius or diameter feature at non symmetrical locations on a workpiece
US6454636B1 (en) * 1999-06-22 2002-09-24 Hitachi Seiki Co., Ltd. Method and apparatus for supplying coolant in a grinding machine
US6821193B2 (en) * 2002-03-27 2004-11-23 Roger Kaye Material positioning and shaping system apparatus
US6830240B2 (en) * 2002-09-24 2004-12-14 General Electric Company Methods and apparatus for securing components for manufacture
US6844515B2 (en) * 2001-10-10 2005-01-18 Brett Wayne Byrnes Method and apparatus for turbine blade machining
US20060156535A1 (en) * 2005-01-19 2006-07-20 Browne Alan L Reconfigurable fixture device and methods of use

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4607460A (en) * 1985-04-18 1986-08-26 Hauni-Werke Korber & Co. Kg Grinding machine with a reciprocable column for work supporting devices
DE4129402A1 (en) * 1991-09-04 1993-03-11 Blohm Maschinenbau Gmbh COOLING DEVICE FOR A GRINDING MACHINE
US5288209A (en) * 1991-12-19 1994-02-22 General Electric Company Automatic adaptive sculptured machining
US6186867B1 (en) * 1996-04-30 2001-02-13 United Technologies Corporation Method for manufacturing precisely shaped parts
US6139412A (en) * 1996-04-30 2000-10-31 United Technologies Corporation Fixture for manufacturing precisely shaped parts
US6017263A (en) * 1996-04-30 2000-01-25 United Technologies Corporation Method for manufacturing precisely shaped parts
US6068541A (en) * 1997-12-22 2000-05-30 United Technologies Corporation Method for using a fixture enabling more accurate machining of a part
JP4287933B2 (en) * 1998-12-17 2009-07-01 ユナイテッド テクノロジーズ コーポレイション Blank member holding fixture and method of attaching blank member
US6231035B1 (en) * 1999-11-03 2001-05-15 General Electric Company Workpiece fixture
US6561048B2 (en) * 2001-01-09 2003-05-13 General Electric Company Water-flow testing apparatus
US6652369B2 (en) * 2001-12-13 2003-11-25 General Electric Company Fixture for clamping a gas turbine component and its use in shaping the gas turbine component
US6855033B2 (en) * 2001-12-13 2005-02-15 General Electric Company Fixture for clamping a gas turbine component blank and its use in shaping the gas turbine component blank

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3331166A (en) * 1964-11-27 1967-07-18 Brenning Albert Jig for grinding turbine blades of jet engines
US4026073A (en) * 1975-08-30 1977-05-31 Michael Weinig Kg Tool grinding machine
US4128929A (en) * 1977-03-15 1978-12-12 Demusis Ralph T Method of restoring worn turbine components
US4142332A (en) * 1977-10-03 1979-03-06 Clarke Edmond C Drill grinding fixture
US4455787A (en) * 1981-11-02 1984-06-26 United Technologies Corporation Engine fan case grinder
US4796877A (en) * 1988-03-07 1989-01-10 Crawford Fitting Company Workpiece holder and saw guide device
US5001868A (en) * 1989-03-01 1991-03-26 Werner Jankus Apparatus for grinding a point on a tungsten electrode
US5097634A (en) * 1989-12-08 1992-03-24 Hulme Jack R Tool grinder apparatus and method
US5191711A (en) * 1991-12-23 1993-03-09 Allied-Signal Inc. Compressor or turbine blade manufacture
US5544873A (en) * 1991-12-23 1996-08-13 Alliedsignal Inc. Apparatus to hold compressor or turbine blade during manufacture
US5494408A (en) * 1994-10-12 1996-02-27 General Electric Co. Bucket to wheel dovetail design for turbine rotors
US6454636B1 (en) * 1999-06-22 2002-09-24 Hitachi Seiki Co., Ltd. Method and apparatus for supplying coolant in a grinding machine
US6065744A (en) * 1999-08-09 2000-05-23 Lawrence; Joseph W. Work holder precisely adjustable jaws
US6237907B1 (en) * 1999-08-09 2001-05-29 Joseph W. Lawrence Method and apparatus for machining a radius or diameter feature at non symmetrical locations on a workpiece
US6844515B2 (en) * 2001-10-10 2005-01-18 Brett Wayne Byrnes Method and apparatus for turbine blade machining
US6821193B2 (en) * 2002-03-27 2004-11-23 Roger Kaye Material positioning and shaping system apparatus
US6830240B2 (en) * 2002-09-24 2004-12-14 General Electric Company Methods and apparatus for securing components for manufacture
US20060156535A1 (en) * 2005-01-19 2006-07-20 Browne Alan L Reconfigurable fixture device and methods of use

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090211091A1 (en) * 2008-02-21 2009-08-27 Hlavaty Kirk D Non-metallic cover for a fixture
US8151458B2 (en) * 2008-02-21 2012-04-10 United Technologies Corporation Non-metallic cover for a fixture
US20120096715A1 (en) * 2008-02-21 2012-04-26 Hlavaty Kirk D Non-metallic cover for a fixture
US8997351B2 (en) * 2008-02-21 2015-04-07 United Technologies Corporation Non-metallic cover for a fixture
US11241749B2 (en) * 2016-11-25 2022-02-08 Mitsubishi Power, Ltd. Electrical discharge machining method and electrical discharge machining device

Also Published As

Publication number Publication date
US7219408B2 (en) 2007-05-22
JP4656828B2 (en) 2011-03-23
EP1403003A2 (en) 2004-03-31
EP1403003B1 (en) 2013-11-06
EP1403003A3 (en) 2008-12-03
JP2004114293A (en) 2004-04-15
US20040055134A1 (en) 2004-03-25

Similar Documents

Publication Publication Date Title
US20070119040A1 (en) Methods and apparatus for securing components for manufacture
US6830240B2 (en) Methods and apparatus for securing components for manufacture
US6302625B1 (en) Method and apparatus for refurbishing a gas turbine airfoil
US6842995B2 (en) Methods and apparatus for aligning components for inspection
US7328496B2 (en) Apparatus for rebuilding gas turbine engine blades
US6287182B1 (en) Fixture for manufacturing precisely shaped parts
US7178255B1 (en) Methods and apparatus for manufacturing components
US7296331B2 (en) Apparatus and method for centering a workpiece on a machine tool
US20060059676A1 (en) Fixture having integrated datum locators
US20070158389A1 (en) Turbine element repair fixture
EP0708877B1 (en) Method for repairing a combustion chamber assembly
US20050268461A1 (en) Method and apparatus for securing turbine components for manufacture
US7752755B2 (en) Methods and apparatus for manufacturing components
EP1319473A1 (en) Fixture for clamping a gas turbine component and its use in shaping the gas turbine component
US7762534B2 (en) Method and apparatus for supporting turbine components for manufacture
US4927304A (en) Holder for rotary material removing tools
US7918024B2 (en) Methods and apparatus for manufacturing components
EP0708878B1 (en) Apparatus for repairing a combustion chamber assembly
CN113967857A (en) Machining method for deformation repair of turbine front sealing disc
US4730963A (en) Broaching machine for external broaching of rotor
US20070241215A1 (en) Methods and apparatus for fabricating components
CN117001531A (en) Integrated clamp and method for machining low-vortex blade sawtooth crown

Legal Events

Date Code Title Description
AS Assignment

Owner name: GENERAL ELECTRIC COMPANY, NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:JONES, DANIEL EDWARD;JUNEAU, JACQUES;REEL/FRAME:018813/0299

Effective date: 20020916

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION