US20070110592A1 - Integrated liquid cooling system - Google Patents

Integrated liquid cooling system Download PDF

Info

Publication number
US20070110592A1
US20070110592A1 US11/308,547 US30854706A US2007110592A1 US 20070110592 A1 US20070110592 A1 US 20070110592A1 US 30854706 A US30854706 A US 30854706A US 2007110592 A1 US2007110592 A1 US 2007110592A1
Authority
US
United States
Prior art keywords
heat
pump
cooling system
liquid cooling
casing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/308,547
Other languages
English (en)
Inventor
Tay-Jian Liu
Chao-Nien Tung
Chuen-Shu Hou
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Foxconn Technology Co Ltd
Original Assignee
Foxconn Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Foxconn Technology Co Ltd filed Critical Foxconn Technology Co Ltd
Assigned to FOXCONN TECHNOLOGY CO., LTD. reassignment FOXCONN TECHNOLOGY CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HOU, CHUEN-SHU, LIU, TAY-JIAN, TUNG, CHAO-NIEN
Publication of US20070110592A1 publication Critical patent/US20070110592A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D13/0606Canned motor pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D5/00Pumps with circumferential or transverse flow
    • F04D5/002Regenerative pumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/40Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs
    • H01L23/4006Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs with bolts or screws
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates generally to a liquid cooling system for dissipation of heat from heat-generating components, and more particularly to an integrated liquid cooling system suitable for removing heat from electronic components of computers.
  • a typical liquid cooling system generally comprises a heat-absorbing member, a heat-dissipating member and a pump. These individual components are connected together in series so as to form a heat transfer loop.
  • the heat-absorbing member is maintained in thermal contact with a heat-generating component (e.g., a CPU) for absorbing heat generated by the CPU.
  • the liquid cooling system employs a coolant circulating through the heat transfer loop so as to continuously bring the thermal energy absorbed by the heat-absorbing member to the heat-dissipating member where the heat is dissipated.
  • the pump is used to drive the coolant, after being cooled in the heat-dissipating member, back to the heat-absorbing member.
  • the heat-absorbing member, the heat-dissipating member and the pump are connected together generally by a plurality of connecting tubes so as to form the heat transfer loop.
  • the typical liquid cooling system has a big volume and occupies more room in a computer system, and is not adapted to a small room of a notebook PC.
  • the liquid cooling system has many connecting tubes with a plurality of connections, which is prone to lead to a leakage of the coolant so that the system has a low reliability and a high cost.
  • the heat-absorbing member, the heat-dissipating member and the pump are to be located at different locations when mounted to the computer system. In this situation, mounting of the liquid cooling system to the computer system or demounting of the liquid cooling system from the computer system is a burdensome and time-consuming work.
  • An integrated liquid cooling system in accordance with an embodiment of the present invention for removing heat from a heat-generating electronic component includes a base, a pump mounted in the base and a heat-dissipating member communicating with the pump and coupling with the base.
  • the pump includes a casing having a chamber. A rotor, a partition seat and a stator are in turn received in the chamber. A top cover is attached on the casing.
  • the casing comprises a bottom plate having a bottom surface. The bottom surface of the bottom plate contacts the heat-generating electronic component for absorbing heat generated by the electronic component.
  • the base, the pump and the heat-dissipating member are connected together in series to thereby form a heat transfer loop, without the necessity of using any connecting tube. Thus, these individual components of the liquid cooling system are assembled together without any connecting tubes.
  • the integrated liquid cooling system is compact in structure and has a low cost, high reliability and increased heat-dissipating effect.
  • FIG. 1 is an assembled, isometric view of a liquid cooling system in accordance with a preferred embodiment of the present invention
  • FIG. 2 is an exploded view of FIG. 1 , but shown from another aspect
  • FIG. 3 is an isometric view of a heat-dissipating member of the liquid cooling system of FIG. 2 ;
  • FIG. 4 is an exploded view of a pump of the liquid cooling system of FIG. 2 ;
  • FIG. 5 is a cross-sectional view of the pump of FIG. 2 ;
  • FIG. 6 is an exploded view of a pump of a liquid cooling system in accordance with a second embodiment of the present invention.
  • FIG. 7 is an assembled, cross-sectional view of the pump of FIG. 6 ;
  • FIG. 8 is an exploded view of a pump of a liquid cooling system in accordance with a third embodiment of the present invention.
  • FIG. 9 is an assembled, cross-sectional view of the pump of FIG. 8 ;
  • FIG. 10 is an isometric view of a rotor of the liquid cooling system of FIG. 8 ;
  • FIG. 11 is an isometric view of a rotor in accordance with an alternative embodiment of the present invention.
  • FIG. 12 is an exploded view of a pump and a base of a liquid cooling system in accordance with a fourth embodiment of the present invention.
  • FIG. 13 is an exploded view of a pump and a base of a liquid cooling system in accordance with a fifth embodiment of the present invention.
  • FIG. 14 is an assembled, cross-sectional view of the pump and the base of FIG. 13 .
  • FIG. 1 and FIG. 2 illustrate a liquid cooling system in accordance with a preferred embodiment of the present invention.
  • the liquid cooling system includes a base 10 , a pump 20 mounted in the base 10 , and a heat-dissipating member 30 communicating with the pump 20 and coupling with the base 10 .
  • the base 10 , the pump 20 and the heat-dissipating member 30 are connected together in series without any connecting tubes.
  • a heat transfer loop is formed by the base 10 , the pump 20 and the heat dissipating member 30 .
  • a coolant such as water is filled into the pump 20 and is circulated through the heat transfer loop under a drive of the pump 20 .
  • the base 10 is made from Polyethylene (PE) or Acrylonitrile Butadiene Styrene (ABS), and has a rectangular configuration.
  • the base 10 defines an opening 100 in a central portion thereof for receiving and securing the pump 20 therein.
  • the base 10 forms a pair of ears 12 extending from left and right sides thereof, wherein a pair of mounting holes 120 is defined in each ear 12 for receiving screws 40 with springs 42 therein.
  • Annular rings 44 are used to snap in recesses (not labeled) defined in lower portions of the screws 40 thereby to attach the screws 40 and the springs 42 to the base 10 before the liquid cooling system is mounted on a supporting member (not shown), for example, a printed circuit board on which a heat-generating electronic component is mounted.
  • a pair of rectangular slots 102 , 104 is symmetrically defined at two opposite sides of the base 10 beside the opening 100 .
  • a pair of rectangular channels 106 , 108 is respectively defined between the opening 100 and the slots 102 , 104 .
  • the channels 106 , 108 communicate the opening 100 with the slots 102 , 104 .
  • the pump 20 comprises a hollow casing 21 , a magnetic rotor 22 , a partition seat 23 , a stator 24 and a top cover 25 hermetically attached to a top end of the casing 21 .
  • the casing 21 is made of metal material with good heat conductivity, and defines a chamber 212 for in series receiving the rotor 22 , the partition seat 23 and the stator 24 therein.
  • the casing 21 comprises a bottom plate 214 having a blind hole 213 defined in a central portion thereof.
  • the bottom plate 214 serves as a heat-absorbing plate to contact with the heat-generating electronic component and absorb heat generated by the electronic component.
  • An annular step 216 is formed on a top of a ring of the casing 21 . The step 216 is declined inwardly.
  • An inlet 26 corresponding to the channel 106 of the base 10 and an outlet 27 corresponding to the channel 108 of the base 10 are formed at two opposite sides of an outer surface of the casing 21 , so that the coolant is capable of entering into casing 21 via the inlet 26 and escaping the casing 21 via the outlet 27 .
  • the magnetic rotor 22 is mounted in the chamber 212 of the casing 21 , and includes an annular impeller 220 having an inner surface and an outer surface, and a magnetic ring 222 securely abutting against the inner surface of the impeller 220 .
  • the impeller 220 forms a plurality of plate-shaped vanes 224 extending radially and outwardly from the outer surface thereof. When the rotor 22 rotates, the plate-shaped vanes 224 agitate the coolant in the chamber 212 of the casing 21 , for providing a pressure to the coolant and to thereby circulating the coolant in the liquid cooling system.
  • the partition seat 23 is mounted between the rotor 22 and the stator 24 for isolating the coolant from the stator 24 to prevent the coolant entering the stator 24 to short circuit of the stator 24 .
  • the partition seat 23 comprises a cylindrical body 231 having an inner space 230 , and an annular plate 233 extending outwardly from a top of the cylindrical body 231 .
  • An upper shaft 236 extends upwardly from a center of a bottom portion 232 of the cylindrical body 231 .
  • a lower shaft 238 extends downwardly from the center of the bottom portion 232 of the cylindrical body 231 , for engaging in the blind hole 213 of the bottom plate 214 of the casing 21 .
  • the bottom portion 232 contacts with the bottom plate 214 of the casing 21 .
  • An edge of the annular plate 233 hermetically contacts with the step 216 of the casing 21 .
  • the stator 24 is received in the space 230 of the partition seat 23 .
  • the stator 24 comprises a cylindrical center portion 241 having a center hole 243 defined therein, six generally T-shaped pole members 240 extending radially and outwardly from the center portion 241 .
  • the center hole 243 of the center portion 241 fittingly receives the upper shaft 236 of the partition seat 23 .
  • Each pole member 240 of the stator 24 is surrounded by a coil 242 .
  • a printed circuit board (not shown) is mounted on a top of the center portion 241 and electrically connects with the stator 24 .
  • the top cover 25 defines a center hole 250 therein, for providing passage of lead wires of the printed circuit board therethough. An edge of the top cover 25 hermetically contacts with the top of the casing 21 .
  • the heat-dissipating member 30 includes a plurality of metal fins 301 , a plurality of heat-dissipating channels 304 , and a pair of opposite fluid tanks 302 , 303 connected to ends of the heat-dissipating channels 304 .
  • the fluid tanks 302 , 303 have openings 3020 , 3030 corresponding to openings 1020 , 1040 of the slots 102 , 104 of the base 10 .
  • the pump 20 is mounted in the center opening 100 of the base 10 , wherein the inlet 26 and the outlet 27 are respectively received in the channels 106 , 108 , and a pair of blocks 110 , 112 surrounding around the inlet 26 and the outlet 27 is clamped in the channels 106 , 108 , for fixing the inlet 26 and the outlet 27 to the channels 106 , 108 .
  • the inlet 26 and the outlet 27 communicate with the slots 102 , 104 , respectively.
  • the heat-dissipating member 30 is mounted on the base 10 , wherein the openings 3020 , 3030 of the fluid tanks 302 , 303 are communicated with the openings 1020 , 1040 of the slots 102 , 104 , respectively, so that the fluid tanks 302 , 303 of the heat-dissipating member 30 are in fluid communication with the slots 102 , 104 of the base 10 .
  • the base 10 , the pump 20 and the heat-dissipating member 30 are connected together without any connecting tubes, and the pump 20 is in fluid communication with both of the base 10 and the heat-dissipating member 30 so as to drive the coolant to circulate through the chamber 212 of the pump 20 , the slots 102 , 104 of the base 10 and the fluid tanks 302 , 303 and the channels 304 of the heat-dissipating member 30 .
  • the combination of the base 10 , the pump 20 and the heat-dissipating member 30 is fixed to the printed circuit board such that the bottom plate 214 of the pump 20 intimately contacts with the electronic component on the printed circuit board.
  • the coils 242 of the stator 24 are powered firstly to drive the magnetic ring 222 to rotate.
  • the impeller 220 is driven to rotate with the magnetic ring 222 .
  • the impeller 220 thus rotates with the plate-shaped vanes 224 to circulate the coolant in the liquid cooling system.
  • heat generated by the electronic component is absorbed by the bottom plate 214 of the pump 20 and then is transferred to the coolant contained in the chamber 212 of the casing 21 of the pump 20 .
  • the rotatable impeller 220 quickly agitates the coolant via the plate-shaped vanes 224 thereof and increases the pressure of the coolant to circulate the coolant in the liquid cooling system.
  • the coolant absorbing the heat has a higher temperature and is driven out of the casing 21 of the pump 20 via the outlet 27 , and flows to the heat-dissipating member 30 via the slot 104 of the base 10 and the fluid tank 303 of the heat-dissipating member 30 . Thereafter, the coolant flows to the fluid tank 302 through the channels 304 where the heat is dissipated to ambient environment via the fins 301 . After releasing the heat, the coolant having a lower temperature is brought back to the chamber 212 of the pump 20 via the inlet 26 , thus continuously taking the heat away from the electronic component.
  • FIGS. 6-7 show a pump 20 in accordance with a second embodiment of the present invention.
  • the pump 20 of the second embodiment is similar with that of the preferred embodiment.
  • a lower shaft 238 ′ replaces the lower shaft 238 of the previous preferred embodiment.
  • the lower shaft 238 ′ has a longer length than that of the lower shaft 238 such that a gap 202 is thus defined between the bottom portion 232 of the cylindrical body 231 of the partition seat 23 and the bottom plate 214 of the casing 21 .
  • the coolant flows through the gap 202 , which is located adjacent to the central portion of the bottom plate 214 of the casing 21 of the pump 20 , whereby the heat absorbed by the bottom plate 214 from the electronic component can be more directly transferred to the coolant and effectively taken away by the coolant.
  • FIGS. 8-10 show a pump in accordance with a third embodiment of the present invention.
  • the pump of the third embodiment is similar with that of the second embodiment.
  • an agitator 223 is received in the chamber 212 of the casing 21 , for agitating the coolant of the chamber 212 .
  • the agitator 223 is formed on the magnetic ring 222 of the rotor 22 .
  • the agitator 223 comprises a plurality of agitating plates 225 extending radially and outwardly from a center of the rotor 22 .
  • the agitating plates 225 connect with the inner surface of the magnetic ring 222 .
  • a shape of the agitating plate 225 is linear (shown in FIGS. 8 and 10 ). Please refer to FIG. 11 , alternatively, the agitating plate 225 may have a curvilinear configuration.
  • FIG. 12 shows a pump 20 and a base 10 ′ in accordance with a fourth embodiment of the present invention.
  • a base 10 ′ replaces the base 10 of the aforementioned embodiments.
  • the base 10 ′ forms joint flanges 105 , 107 at a top of the slots 102 , 104 thereof, for hermetically engaging in the openings 3020 , 3030 of the fluid tanks 302 , 303 of the heat-dissipating member 30 .
  • FIG. 13 shows a pump 20 ′ and a base 10 ′ in accordance with a fifth embodiment of the present invention.
  • a pump 20 ′ replaces the pump 20 of the aforementioned embodiments and the base 10 ′ is the same as the base 10 ′ of the fourth embodiment.
  • Most parts of the pump 20 ′ of the fifth embodiment are the same as the aforementioned embodiments.
  • a main difference is that in the fifth embodiment the pump 20 ′ comprises a casing 21 ′ having a plate shaped configuration, while in the aforementioned embodiments the casing 21 has a cylindrical chamber.
  • the casing 21 ′ comprises a disk-like plate 214 ′ having atop surface and a bottom surface.
  • a protrusion portion 215 ′ extends upwardly from the top surface of the plate 214 ′, for extending into the base 10 ′ and hermetically engaging in the opening 100 of the base 10 ′.
  • the protrusion portion 215 ′ defines a blind hole 216 ′ in a central portion thereof, for receiving the lower shaft 238 of the partition seat 23 therein.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
US11/308,547 2005-11-17 2006-04-05 Integrated liquid cooling system Abandoned US20070110592A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNB2005101014943A CN100454528C (zh) 2005-11-17 2005-11-17 整合式液冷散热装置
CN200510101494.3 2005-11-17

Publications (1)

Publication Number Publication Date
US20070110592A1 true US20070110592A1 (en) 2007-05-17

Family

ID=38041001

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/308,547 Abandoned US20070110592A1 (en) 2005-11-17 2006-04-05 Integrated liquid cooling system

Country Status (2)

Country Link
US (1) US20070110592A1 (zh)
CN (1) CN100454528C (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070023167A1 (en) * 2005-07-29 2007-02-01 Tay-Jian Liu Integrated liquid cooling system for electronic components
US20120087088A1 (en) * 2008-08-05 2012-04-12 Pipeline Micro, Inc. Microscale heat transfer systems
US20130299139A1 (en) * 2009-12-15 2013-11-14 Stephen Mounioloux Radiator with integrated pump for actively cooling electronic devices
US20160095251A1 (en) * 2014-09-30 2016-03-31 Foxconn Technology Co., Ltd. Heat dissipation device and method for manufacturing the same
WO2018129289A1 (en) * 2017-01-06 2018-07-12 Raytheon Company Adaptable thin section liquid pump for electronics cooling systems or other systems
US20190187763A1 (en) * 2017-12-15 2019-06-20 Auras Technology Co., Ltd. Pump module
US10959353B2 (en) * 2018-10-24 2021-03-23 Nidec Corporation Cooling device
US20210307198A1 (en) * 2020-03-27 2021-09-30 Auras Technology Co., Ltd. Liquid cooling module and its liquid cooling head
CN113944608A (zh) * 2021-08-26 2022-01-18 刘振德 一种用于汽车工程的隔离式电动水泵

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI507118B (zh) 2013-03-01 2015-11-01 Hon Hai Prec Ind Co Ltd 散熱裝置及電子裝置
CN104023502B (zh) * 2013-03-01 2016-12-28 鸿富锦精密工业(深圳)有限公司 散热装置及电子装置
JP7238400B2 (ja) * 2018-12-28 2023-03-14 日本電産株式会社 冷却装置
CN110867424B (zh) * 2019-11-21 2022-02-18 上海交通大学 内置微转子强化纳米流体换热的微通道热沉系统
CN110838476B (zh) * 2019-11-21 2022-06-14 上海交通大学 内置微转子强化流动沸腾散热的微通道热沉系统

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US75684A (en) * 1868-03-17 Peter keffer
US3652193A (en) * 1969-11-06 1972-03-28 Jaroslav F Adamik Slush molding machine
US3757950A (en) * 1971-03-02 1973-09-11 Connors E Waste water treatment package plant having a modular ditch member
US5999404A (en) * 1998-10-14 1999-12-07 Sun Microsystems, Inc. Spray cooled module with removable spray cooled sub-module
US6019165A (en) * 1998-05-18 2000-02-01 Batchelder; John Samuel Heat exchange apparatus
US6029742A (en) * 1994-01-26 2000-02-29 Sun Microsystems, Inc. Heat exchanger for electronic equipment
US6313991B1 (en) * 2000-07-24 2001-11-06 General Motors Corporation Power electronics system with fully-integrated cooling
US6327145B1 (en) * 2000-09-01 2001-12-04 Intel Corporation Heat sink with integrated fluid circulation pump
US6408937B1 (en) * 2000-11-15 2002-06-25 Sanjay K. Roy Active cold plate/heat sink
US6457955B1 (en) * 2001-01-10 2002-10-01 Yen Sun Technology Corp. Composite heat dissipation fan
US6668911B2 (en) * 2002-05-08 2003-12-30 Itt Manufacturing Enterprises, Inc. Pump system for use in a heat exchange application
US6687126B2 (en) * 2001-04-30 2004-02-03 Hewlett-Packard Development Company, L.P. Cooling plate arrangement for electronic components
US20040105232A1 (en) * 2002-11-28 2004-06-03 Kabushiki Kaisha Toshiba Cooling fluid pump and electric apparatus, such as personal computer, provided with the pump
US6827131B1 (en) * 2003-07-21 2004-12-07 Neng Chao Chang Apparatus of water-cooled heat sink
US6839234B2 (en) * 2002-05-15 2005-01-04 Matsushita Electric Industrial Co., Ltd. Cooling device and an electronic apparatus including the same
US7002799B2 (en) * 2004-04-19 2006-02-21 Hewlett-Packard Development Company, L.P. External liquid loop heat exchanger for an electronic system
US7013959B2 (en) * 2003-10-28 2006-03-21 Hon Hai Precision Ind. Co., Ltd. Integrated liquid cooling system for electrical components

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6702002B2 (en) * 2002-06-03 2004-03-09 Chin-Wen Wang Hydronic pump type heat radiator
US6785134B2 (en) * 2003-01-06 2004-08-31 Intel Corporation Embedded liquid pump and microchannel cooling system
CN2657078Y (zh) * 2003-09-27 2004-11-17 鸿富锦精密工业(深圳)有限公司 水冷式散热装置
CN2684380Y (zh) * 2004-03-13 2005-03-09 林智忠 封闭式整体液冷散热器

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US75684A (en) * 1868-03-17 Peter keffer
US3652193A (en) * 1969-11-06 1972-03-28 Jaroslav F Adamik Slush molding machine
US3757950A (en) * 1971-03-02 1973-09-11 Connors E Waste water treatment package plant having a modular ditch member
US6029742A (en) * 1994-01-26 2000-02-29 Sun Microsystems, Inc. Heat exchanger for electronic equipment
US6019165A (en) * 1998-05-18 2000-02-01 Batchelder; John Samuel Heat exchange apparatus
US5999404A (en) * 1998-10-14 1999-12-07 Sun Microsystems, Inc. Spray cooled module with removable spray cooled sub-module
US6313991B1 (en) * 2000-07-24 2001-11-06 General Motors Corporation Power electronics system with fully-integrated cooling
US6327145B1 (en) * 2000-09-01 2001-12-04 Intel Corporation Heat sink with integrated fluid circulation pump
US6408937B1 (en) * 2000-11-15 2002-06-25 Sanjay K. Roy Active cold plate/heat sink
US6457955B1 (en) * 2001-01-10 2002-10-01 Yen Sun Technology Corp. Composite heat dissipation fan
US6687126B2 (en) * 2001-04-30 2004-02-03 Hewlett-Packard Development Company, L.P. Cooling plate arrangement for electronic components
US6668911B2 (en) * 2002-05-08 2003-12-30 Itt Manufacturing Enterprises, Inc. Pump system for use in a heat exchange application
US6839234B2 (en) * 2002-05-15 2005-01-04 Matsushita Electric Industrial Co., Ltd. Cooling device and an electronic apparatus including the same
US20040105232A1 (en) * 2002-11-28 2004-06-03 Kabushiki Kaisha Toshiba Cooling fluid pump and electric apparatus, such as personal computer, provided with the pump
US6827131B1 (en) * 2003-07-21 2004-12-07 Neng Chao Chang Apparatus of water-cooled heat sink
US7013959B2 (en) * 2003-10-28 2006-03-21 Hon Hai Precision Ind. Co., Ltd. Integrated liquid cooling system for electrical components
US7002799B2 (en) * 2004-04-19 2006-02-21 Hewlett-Packard Development Company, L.P. External liquid loop heat exchanger for an electronic system

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070023167A1 (en) * 2005-07-29 2007-02-01 Tay-Jian Liu Integrated liquid cooling system for electronic components
US7360583B2 (en) * 2005-07-29 2008-04-22 Foxconn Technology Co., Ltd. Integrated liquid cooling system for electronic components
US20120087088A1 (en) * 2008-08-05 2012-04-12 Pipeline Micro, Inc. Microscale heat transfer systems
US20130299139A1 (en) * 2009-12-15 2013-11-14 Stephen Mounioloux Radiator with integrated pump for actively cooling electronic devices
US9927181B2 (en) * 2009-12-15 2018-03-27 Rouchon Industries, Inc. Radiator with integrated pump for actively cooling electronic devices
US20160095251A1 (en) * 2014-09-30 2016-03-31 Foxconn Technology Co., Ltd. Heat dissipation device and method for manufacturing the same
WO2018129289A1 (en) * 2017-01-06 2018-07-12 Raytheon Company Adaptable thin section liquid pump for electronics cooling systems or other systems
US11118602B2 (en) 2017-01-06 2021-09-14 Raytheon Company Adaptable thin section liquid pump for electronics cooling systems or other systems
US20190187763A1 (en) * 2017-12-15 2019-06-20 Auras Technology Co., Ltd. Pump module
US10895262B2 (en) * 2017-12-15 2021-01-19 Auras Technology Co., Ltd. Pump module having two impellers in series and a multiple plate housing
US10959353B2 (en) * 2018-10-24 2021-03-23 Nidec Corporation Cooling device
US20210307198A1 (en) * 2020-03-27 2021-09-30 Auras Technology Co., Ltd. Liquid cooling module and its liquid cooling head
US11832418B2 (en) * 2020-03-27 2023-11-28 Auras Technology Co., Ltd. Liquid cooling module and its liquid cooling head
CN113944608A (zh) * 2021-08-26 2022-01-18 刘振德 一种用于汽车工程的隔离式电动水泵

Also Published As

Publication number Publication date
CN1967822A (zh) 2007-05-23
CN100454528C (zh) 2009-01-21

Similar Documents

Publication Publication Date Title
US7379301B2 (en) Integrated liquid cooling system
US20070110592A1 (en) Integrated liquid cooling system
US7694721B2 (en) Miniature liquid cooling device having an integral pump
US7729118B2 (en) Miniature liquid cooling device having an integral pump
US7753662B2 (en) Miniature liquid cooling device having an integral pump therein
US20070110559A1 (en) Integrated liquid cooling system
US7249625B2 (en) Water-cooling heat dissipation device
US7418996B2 (en) Integrated liquid cooling system for electronic components
US9807906B2 (en) Liquid-cooling device and system thereof
US6029742A (en) Heat exchanger for electronic equipment
US7273091B2 (en) Cooling apparatus for heat generating devices
US7472743B2 (en) Liquid cooling system suitable for removing heat from electronic components
US7487824B2 (en) Liquid cooling device
US20190021184A1 (en) Electronic device with integrated passive and active cooling
US6832646B1 (en) Cooler for electronic device
US20070034359A1 (en) Integrated liquid cooling system for electronic components
US20060185829A1 (en) Liquid-cooling heat dissipation apparatus
US20110100612A1 (en) Liquid cooling device
KR20070083157A (ko) 복합 방열 모듈
JP2006229142A (ja) 冷却装置および冷却装置を有する電子機器
JP2005229030A (ja) 液冷システムを備えた電子機器
US20050183848A1 (en) Coolant tray of liquid based cooling device
KR20050081815A (ko) 액냉 시스템을 구비한 전자 기기와 그 라디에이터 및 그제조 방법
KR20050081817A (ko) 액냉 시스템 및 그를 구비한 전자 기기
US7473075B2 (en) Liquid pump

Legal Events

Date Code Title Description
AS Assignment

Owner name: FOXCONN TECHNOLOGY CO., LTD.,TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LIU, TAY-JIAN;TUNG, CHAO-NIEN;HOU, CHUEN-SHU;REEL/FRAME:017426/0841

Effective date: 20060331

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION