US20070098494A1 - Hydraulic leveling selection circuit for a work machine - Google Patents

Hydraulic leveling selection circuit for a work machine Download PDF

Info

Publication number
US20070098494A1
US20070098494A1 US11/261,626 US26162605A US2007098494A1 US 20070098494 A1 US20070098494 A1 US 20070098494A1 US 26162605 A US26162605 A US 26162605A US 2007098494 A1 US2007098494 A1 US 2007098494A1
Authority
US
United States
Prior art keywords
hydraulic
support assembly
hydraulic cylinders
leveling control
work machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/261,626
Inventor
Riccardo Mares
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Caterpillar Paving Products Inc
Original Assignee
Caterpillar Paving Products Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Caterpillar Paving Products Inc filed Critical Caterpillar Paving Products Inc
Priority to US11/261,626 priority Critical patent/US20070098494A1/en
Assigned to CATERPILLAR PAVING PRODUCTS, INC. reassignment CATERPILLAR PAVING PRODUCTS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MARES, RICCARDO
Priority to EP06018424A priority patent/EP1780337A3/en
Publication of US20070098494A1 publication Critical patent/US20070098494A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C23/00Auxiliary devices or arrangements for constructing, repairing, reconditioning, or taking-up road or like surfaces
    • E01C23/06Devices or arrangements for working the finished surface; Devices for repairing or reconditioning the surface of damaged paving; Recycling in place or on the road
    • E01C23/08Devices or arrangements for working the finished surface; Devices for repairing or reconditioning the surface of damaged paving; Recycling in place or on the road for roughening or patterning; for removing the surface down to a predetermined depth high spots or material bonded to the surface, e.g. markings; for maintaining earth roads, clay courts or like surfaces by means of surface working tools, e.g. scarifiers, levelling blades
    • E01C23/085Devices or arrangements for working the finished surface; Devices for repairing or reconditioning the surface of damaged paving; Recycling in place or on the road for roughening or patterning; for removing the surface down to a predetermined depth high spots or material bonded to the surface, e.g. markings; for maintaining earth roads, clay courts or like surfaces by means of surface working tools, e.g. scarifiers, levelling blades using power-driven tools, e.g. vibratory tools
    • E01C23/088Rotary tools, e.g. milling drums

Definitions

  • the present disclosure relates to a work machine for the treatment of roadway surfaces, and more particularly to a cold planer for roadway surfacing operations.
  • Road milling machines also known as cold planers, may be configured to scarify, remove, mix, or reclaim material from the surface of bituminous, concrete, or asphalt roadways and other surfaces using a rotatable planing tool mounted on a frame.
  • the frame may be mounted on a plurality of tracks/wheels which support and horizontally transport the machine along the working surface.
  • cold planers may also include a plurality of lifting members positioned near the front and rear of the frame.
  • the lifting members may be adjusted between extended and retracted positions to control the depth and shape of cut by raising or lowering the frame and rotatable planing tool. Actuation of the lifting members may be controlled by a machine operator or other suitable control mechanism.
  • FIG. 1 One example of a leveling system for a cold planer is described in U.S. Pat. No. 6,769,836 to Lloyd (“Lloyd”).
  • Lloyd discloses an asphalt recycling machine.
  • the machine includes front and rear axles that are raised and lowered by hydraulic cylinders.
  • the front axle's hydraulic cylinders are hydraulically connected in parallel.
  • the rear axle's hydraulic cylinders are operated individually to control the height and tilt (slope) of the mainframe of the machine.
  • Individual control of the rear axle's hydraulic cylinders, together with the front axle's hydraulic cylinders connected hydraulically, in parallel form a three-point suspension, allowing the mainframe to ride over uneven surfaces.
  • stability is maintained as the rear wheels of the rear axle operate on a milled to grade surface.
  • the arrangement in Lloyd limits use of the machine to those job sites/situations in which such an arrangement is desired. For example, assigning individual control to the rear axle's hydraulic cylinders may be desirable in some instances because the rear axle's hydraulic cylinders run on the milled to grade surface and may be controlled and adjusted with better accuracy than the front axle's hydraulic cylinders that may run over uneven surfaces. However, assigning individual control to the front axle's hydraulic cylinders may be desirable in other situations, such as, for example, when milling/cutting irregularly shaped roadway surfaces or using high digging thicknesses that may cause high drum reaction that may create an upward force on the rear side of the machine. Because the machine in Lloyd only assigns individual control to the rear axle's hydraulic cylinders, it may not be used in jobs where assigning individual control on the front axle's hydraulic cylinders is desirable.
  • the disclosed system is directed towards overcoming one or more of the problems set forth above.
  • the present disclosure is directed to a support system for a work machine.
  • the support system may include a front support assembly configured to perform one of stabilization and leveling control, a rear support assembly configured to perform the other of stabilization and leveling control, and a hydraulic circuit configured to selectively switch leveling control between the front and rear support assemblies.
  • the present disclosure is directed to a method of switching leveling control for a work machine.
  • the method may include providing a front support assembly configured to perform one of stabilization and leveling control, providing a rear support assembly configured to perform the other of stabilization and leveling control, and selectively switching leveling control between the front and rear support assemblies.
  • the present disclosure may be directed to a work machine configured to perform work on a surface.
  • the work machine may include a frame having a front portion and a rear portion.
  • the work machine may also include a front support assembly including first and second hydraulic cylinders supporting the frame, with the front support assembly being configured to adjust the height of the front portion of the frame relative to the surface.
  • the work machine may further include a rear support assembly including third and fourth hydraulic cylinders supporting the frame, with the rear support assembly being configured to adjust the height of the rear portion of the frame relative to the surface.
  • the work machine may include a first valve device operatively connected between the first and second hydraulic cylinders, and a second valve device operatively connected between the third and fourth hydraulic cylinders. When one of the first and second valves is in an open position, the other of the first and second valves is in a closed position.
  • FIG. 1 provides a diagrammatic top view of a work machine according to an exemplary disclosed embodiment.
  • FIG. 2 provides a diagrammatic side view ofthe work machine of FIG. 1 .
  • FIG. 3 provides a schematic view of a hydraulic system according to an exemplary disclosed embodiment.
  • FIG. 4 provides another schematic view of the hydraulic system of FIG. 3 .
  • FIG. 5 provides a schematic view of a hydraulic system according to another exemplary disclosed embodiment.
  • Work machines may be configured to perform work operations at job sites. Examples of work machines may include on and off highway vehicles, construction equipment, and earth-moving equipment.
  • One particular type of work machine is a road milling machine or cold planer 10 , as illustrated in FIG. 1 .
  • Cold planer 10 may be configured to scarify, remove, mix, or reclaim material from the surface of bituminous, concrete, or asphalt roadways and other surfaces.
  • Elements of cold planer 10 may include a frame 12 , a tool 14 , and front and rear support assemblies 22 a and 22 b.
  • Front and rear support assemblies 22 a and 22 b may be configured to support frame 12 on work surfaces.
  • Front support assembly 22 a may include right and left front support assemblies 23 a and 23 b .
  • rear support assembly 22 b may include right and left rear support assemblies 23 c and 23 d .
  • right front support assembly 23 a may include a traction device 24 a and a column 26 a . Traction devices 24 b - 24 d and columns 26 b - 26 d may be included in the remaining support assemblies.
  • Traction devices 24 a - 24 d may perform the function of transporting the cold planer 10 across work surfaces. Traction devices 24 a - 24 d may include tracks, wheels, and/or other known traction devices suitable for use on mobile work machines. At least one traction device may be powered by a drive assembly (not shown) for forward and rearward movement of cold planer 10 .
  • a drive assembly may include an internal combustion engine or a hydraulic motor. It is further contemplated that traction devices 24 a - 24 d may be attached to frame 12 by columns 26 a - 26 d.
  • columns 26 a - 26 d may be selectively raised and lowered to cause upward, downward, and tilting movement of frame 12 .
  • columns 26 a - 26 d may include solid unitary elements that may be driven towards and away from frame 12 of cold planer 10 to raise and lower frame 12 with respect to roadway surface 16 .
  • columns 26 a - 26 d may include telescoping portions (not shown), such as, for example, overlapping cylindrical segments adapted to slide inward (retract) or outward (extend) with respect to each other. The inward and outward sliding of the overlapping cylindrical segments may raise and lower frame 12 , and their movement may be actuated by pressurized hydraulic fluid that may be selectively supplied by the machine operator (pilot) and/or by an automated control mechanism.
  • Frame 12 may include one or more structural load carrying members adapted to support and/or protect components of cold planer 10 .
  • Elements of frame 12 may include, for example, housings, beams, and panels.
  • tool 14 may be supported on or within frame 12 .
  • Tool 14 may include a rotatable planing tool, such as, for example, a rotatable drum 18 or cylinder.
  • Drum 18 may include a plurality of replaceable bits (not shown) mounted thereon and may be lowered to engage a roadway surface 16 . Upon engagement, the bits may cut and remove material from roadway surface 16 .
  • the removed material may enter conveyor 20 which may transfer the removed material into a dump truck (not shown) for transport off-site.
  • the height of drum 18 relative to the roadway surface 16 may determine the shape and depth of cut made in the roadway surface 16 and may affect the amount of material being removed. Thus, in order to control the shape and depth of cut, drum 18 may be adjusted such that it may vertically move away from, towards, and into roadway surface 16 .
  • Hydraulic system 28 may cause movement of columns 26 a - 26 d using the pressurized hydraulic fluid.
  • Hydraulic system 28 may include a hydraulic circuit 30 for selectively supplying the pressurized hydraulic fluid to different areas of hydraulic system 28 , and hydraulic cylinders 32 a - 32 d to convert the hydraulic pressure into mechanical motion for actuating columns 26 a - 26 d.
  • Hydraulic circuit 30 may include an assembly of components configured to regulate and control the flow of pressurized hydraulic fluid through hydraulic system 28 .
  • hydraulic circuit 30 may include a valve manifold 34 , cylinder valves 36 a - 36 d , and two-way valves 38 a and 38 b . Exemplary sub-components of hydraulic circuit 30 will be discussed below, but it should be understood that hydraulic circuit 30 is not limited to these specific configurations.
  • Valve manifold 34 may be configured to selectively direct pressurized hydraulic fluid from apertures 40 a - 40 f into the other parts of hydraulic circuit 30 .
  • Valve manifold 34 may include flow conduits 42 a - 42 h , selector valves 44 a - 44 c , a low pressure line 48 , and a two-way valve 50 . It should be understood that valve manifold 34 may include less, more, or different elements from those specified, and the structure of valve manifold 34 may depend on a host of factors, including, for example, the environment of the job site.
  • valve manifold 34 may be replaced by a plurality of valves, such as selector valves 44 a - 44 c , that may be electrically actuated to perform substantially similar functions as those performed by valve manifold 34 .
  • Each of apertures 40 a - 40 f may be configured to permit pressurized hydraulic fluid to enter into and exit from valve manifold 34 .
  • Flow conduits 42 c and 42 d operatively associated with right front support assembly 23 a , may be selectively placed into fluid communication with apertures 40 c - 40 f .
  • Flow conduits 42 a and 42 b operatively associated with left front support assembly 23 b , may be selectively placed into fluid communication with apertures 40 a and 40 b .
  • Flow conduits 42 f and 42 e operatively associated with right rear support assembly 23 c , may be selectively placed into fluid communication with apertures 40 e and 40 f .
  • Flow conduits 42 g and 42 h operatively associated with left rear support assembly 23 d , may be selectively placed in fluid communication with apertures 40 c and 40 d or 40 a and 40 b .
  • Flow conduits 42 a , 42 c , 42 e , and 42 g may carry input flow from a fluid source (not shown) into support assemblies 22 a and 22 b if colder planer 10 is to be raised, and/or they may carry output flow from support assemblies 22 a and 22 b to a tank (not shown) if cold planer 10 is to be lowered.
  • input flows from the fluid source may pass through flow conduits 42 b , 42 d , 42 f , and 42 h , thus allowing these flow conduits to function as pilot lines to actuate cylinder valves 36 a - 36 d.
  • Fluid communication between apertures 40 a - 40 f and flow conduits 42 a - 42 h may be determined by selector valves 44 a - 44 c .
  • Selector valves 44 a - 44 c may each be configured to shift between a first position ( FIG. 3 ) and a second position ( FIG. 4 ). In the first position, selector valve 44 a may direct the fluid flow from apertures 40 a and 40 b towards flow conduits 42 a and 42 b . In the second position, selector valve 44 a may direct the fluid flow from apertures 40 a and 40 b towards flow conduits 42 g and 42 h . Similarly, selector valves 44 b and 44 c may also selectively direct the fluid flow.
  • Each of selector valves 44 a - 44 c may be biased by a spring 46 a - 46 c towards the first position. Actuation of selector valves 44 a - 44 c against the spring bias from the first position to the second position may be initiated by pressurized hydraulic fluid from low pressure line 48 . Additionally or alternatively, it is also contemplated that selector valves 44 a - 44 c may be actuated manually or by solenoid actuation upon recognition of an electrical signal.
  • Low pressure line 48 may direct a low pressure hydraulic fluid flow into valve manifold 34 of hydraulic circuit 30 from a tank and pump assembly (not shown). When low pressure line 48 and selector valves 44 a - 44 c are placed into fluid communication, the low pressure hydraulic fluid flow may physically push each of selector valves 44 a - 44 c into second position. Fluid communication between low pressure line 48 and selector valves 44 a - 44 c may occur upon actuation of two-way valve 50 , which may include, for example, a solenoid valve or a two-way pilot valve.
  • Cylinder valves 36 a - 36 d may be operatively connected to flow conduits 42 a - 42 h of valve manifold 34 , and may control the fluid flow entering hydraulic cylinders 32 a - 32 d .
  • cylinder valves 36 a - 36 d may include counterbalance valves, each counterbalance valve having at least a check valve 52 a - 52 d and a spring-biased pressure relief valve 54 a - 54 d .
  • Check valves 52 a - 52 d and pressure relief valves 54 a - 54 d may be configured to selectively prevent flow, restrict flow, and allow flow to enter into and exit from hydraulic cylinders 32 a - 32 d .
  • check valves 52 a - 52 d and pressure relief valves 54 a - 54 d may be configured to provide braking to hydraulic cylinders 32 a - 32 d to slow down and/or smooth out their movements. It is also contemplated that cylinder valves 36 a - 36 d may include double acting counterbalance valves for embodiments that may include double-acting, rather than single-acting, hydraulic cylinders.
  • Hydraulic cylinders 32 a - 32 d may each include a housing 56 a - 56 d and a piston 58 a - 58 d slidably mounted therein.
  • Each of housings 32 a - 32 d may include a hollow bored interior, and each piston 58 a - 58 d may include a piston plug 60 a - 60 d configured to fit closely within the bore and a piston shaft 62 a - 62 d operatively connected to plugs 60 a - 60 d and columns 26 a - 26 d .
  • Pistons 58 a - 58 d may divide their respective cylinder housings 56 a - 56 d into upper chambers 64 a - 64 d and lower chambers 66 a - 66 d .
  • Upper chambers 64 a - 64 d may include outlets 69 a - 69 d that may direct the pressurized hydraulic fluid out of upper chambers 64 a - 64 d and into a tank (not shown) or the atmosphere.
  • Lower chambers 66 a - 66 d may include apertures 68 a - 68 d to allow the pressurized hydraulic fluid passing through cylinder valves 36 a - 36 d to enter lower chambers 66 a - 66 d when extension of hydraulic cylinders 32 a - 32 d may be desired, and also to allow the pressurized hydraulic fluid within lower chambers 66 a - 66 d to escape back towards cylinder valves 36 a - 36 d when retraction of hydraulic cylinders 32 a - 32 d may be desired. It should be understood that extension and retraction of hydraulic cylinders 32 a - 32 d may directly result in the raising and lowering of columns 26 a - 26 d.
  • pressurized hydraulic fluid supplied from a fluid supply may enter flow conduit 42 c from aperture 40 f .
  • pressurized hydraulic fluid supplied from a fluid supply (not shown) may enter flow conduit 42 c from aperture 40 f .
  • check valve 52 a may create a force on pressure relief valve 54 a that may drive pressure relief valve 54 a towards the open position (towards the left) allowing flow to travel through flow conduit 42 c into aperture 68 a of lower chamber 66 a of hydraulic cylinder 32 a .
  • piston 58 a may be driven upwards to an extended position. Any pressurized hydraulic fluid in upper chamber 64 a may be forced out through outlet 69 a by upward motion of piston 58 a . If retraction of hydraulic cylinder 32 a may be desired, the flow of pressurized hydraulic fluid entering flow conduit 42 c from aperture 40 f may cease.
  • Pressurized hydraulic fluid may be supplied from a source (not shown) through inlet 40 e into flow conduit 42 d , wherein flow conduit 42 d may act as a pilot line by driving pressure relief valve 54 a towards the open position (left) allowing pressurized hydraulic fluid within lower chamber 66 a to exit out through flow conduit 42 c and aperture 40 f as the force of gravity on cold planer 10 drives piston 58 a in a downward direction.
  • hydraulic cylinder 32 may include a double-acting hydraulic cylinder that may retract and extend in ways known to those skilled in the art. While only the operation of hydraulic cylinder 32 a has been described in detail, it should be understood that hydraulic cylinders 32 b - 32 d may be operated in a similar manner.
  • Cylinder valves 36 a and 36 b may be selectively placed into fluid communication by two-way valve 38 a , and a similar relationship may exist between cylinder valves 36 c and 36 d and two-way valve 38 b .
  • two-way valve 38 a is shown in a closed state while two-way valve 38 b is shown in an open state.
  • hydraulic cylinders 32 a and 32 b may be individually controlled, while hydraulic cylinders 32 c and 32 d may move in unison.
  • two-way valve 38 a is shown in an open state, while two-way valve 38 b is shown in a closed state.
  • hydraulic cylinders 32 a and 32 b may move unitarily, while hydraulic cylinders 32 c and 32 d may move independent of one another.
  • two-way valves 38 a and 38 b may include solenoid valves that may be actuated to move into open and closed positions, wherein if one valve is in open position the other will be in closed position.
  • two-way valves 38 a and 38 b and any other of the valves described above, may include manually adjustable valves.
  • Controller may 70 include hardware and software elements adapted to selectively direct the desired amount of flow to hydraulic cylinders 32 a - 32 d to simulate the function of one or more of the replaced valve devices.
  • controller 70 may control valve assemblies 72 a - 72 d .
  • Valve assemblies 72 a - 72 d may include, for example, independent metering valve (“IMV”) assemblies. Each IMV assembly may receive pressurized hydraulic fluid from a hydraulic pump (not shown) and may be in fluid communication with at least one of hydraulic cylinders 32 a - 32 d .
  • IMV independent metering valve
  • An IMV assembly may typically include four independently controllable valves, with one pair of the valves being coupled with a head end (upper chamber) of a hydraulic cylinder and the other pair of controllable valves being coupled with a rod end (lower chamber) of that hydraulic cylinder. Each pair of controllable valves in the IMV assembly may allow flow both to and from its corresponding hydraulic cylinder.
  • the controllable valves may be electronically controlled using controller 70 , depending upon various input signals received from one or more sensors 74 a - 74 d.
  • controller 70 may monitor position sensors 74 a and 74 b associated with hydraulic cylinders 32 a and 32 b , and using readings from position sensors 74 a and 74 b as a reference, the controller may supply equal amounts of flow to hydraulic cylinders 32 a and 32 b to simulate the opening of two-way valve 38 a .
  • the controller may assign leveling control to hydraulic cylinders 32 c and 32 d .
  • the controller may simulate the opening of two-way valve 38 b by supplying equal amounts of flow to hydraulic cylinders 32 c and 32 d .
  • the controller may assign leveling control to hydraulic cylinders 32 a and 32 b.
  • the disclosed hydraulic system 28 may be used to provide leveling control for work machines.
  • An exemplary disclosed work machine may include, for example, a cold planer 10 .
  • Hydraulic system 28 may provide the benefit of allowing a machine operator to switch leveling control from a front support assembly 22 a to a rear support assembly 22 b , and vice versa.
  • Front and rear support assemblies 22 a and 22 b may include columns 26 a - 26 d that may be raised and lowered by their respective hydraulic cylinders 32 a - 32 d .
  • columns 26 a and 26 b may act as front columns
  • columns 26 c and 26 d may act as rear columns.
  • each of two-way valves 38 a and 38 b , two-way valve 50 , and selector valves 44 a - 44 c may be in a first position.
  • selector valves 44 a - 44 c may direct the fluid flow from apertures 40 a and 40 b towards hydraulic cylinder 32 b , and may also direct the fluid flow from apertures 40 e and 40 f towards hydraulic cylinder 32 a .
  • two-way valve 38 a may prevent fluid communication between flow conduits 42 a and 42 c .
  • front columns 26 a and 26 b may be independently driven by fluid flow from apertures 40 e and 40 f , and 40 a and 40 b , respectively.
  • selector valve 44 c may direct the fluid flow from apertures 40 c and 40 d towards hydraulic cylinder 32 d .
  • two-way valve 38 b may permit fluid communication between flow conduits 42 g and 42 e , and thus, hydraulic cylinder 32 c associated with rear column 26 c may be driven by the same fluid flow driving rear column 26 d . Accordingly, rear columns 26 c and 26 d may move together unitarily or in unison.
  • Independently operated front columns 26 a and 26 b may perform leveling by being extended and retracted to control the depth and shape of cut.
  • the front end of frame 12 may raise or lower accordingly.
  • the front end of frame 12 may tilt and/or raise or lower accordingly.
  • operatively connected/linked rear columns 26 c and 26 d may provide for a three point machine configuration, with front telescoping columns 26 a and 26 b being two points, and rear telescoping columns 26 c and 26 d acting together as a third point.
  • the three point machine configuration may provide cold planer 10 with the stability associated with using triangularly arranged support points, may provide both lifting, lowering, and tilting of frame 12 , and may reduce stress in frame 12 as it passes over uneven roadway surface 16 .
  • Switching leveling control from front columns 26 a and 26 b to rear columns 26 c and 26 d may be accomplished by signaling or actuating each of two-way valves 38 a and 38 b , into a rear leveling control state corresponding to FIG. 4 .
  • two-way valve 50 may allow low pressure fluid to flow through low pressure line 48 to actuate selector valves 44 a - 44 c into a second position.
  • selector valves 44 a - 44 c may direct the fluid flow from inlet ports 40 a and 40 b , and 40 e and 40 f , towards hydraulic cylinders 32 c and 32 d , respectively.
  • Two-way valve 38 b may block or prevent fluid communication between fluid conduits 42 e and 42 g , thus allowing rear columns 26 c and 26 d to move independently of one another.
  • Selector valve 44 c may direct the fluid flow from apertures 40 c and 40 d towards hydraulic cylinder 32 a associated with front column 26 a .
  • Two-way valve 38 a may permit fluid communication between fluid conduits 42 a and 42 c , thus linking the fluid flows driving columns 26 a and 26 b . Accordingly, independently operated rear columns 26 c and 26 d may perform leveling, while operatively connected/linked front columns 26 a and 26 b may provide for the stable three point machine configuration.
  • the ability to switch leveling control between front and rear support assemblies 22 a and 22 b may be advantageous for several reasons. For example, setting leveling control on rear columns 26 c and 26 d of rear support assembly 22 b may allow for a more precise cut in certain situations because traction devices 24 c and 24 d associated with rear columns 26 c and 26 d may run on a relatively flat (milled) roadway surface 16 . Also, when cold planer 10 mills a small road thickness at high velocity, rear columns 26 c and 26 d and/or traction devices 24 c and 24 d may be less affected by roadway surface 16 unevenness than front columns 26 a and 26 b and/or traction devices 24 a and 24 b .
  • giving leveling control to front columns 26 a and 26 b of front support assembly 22 a may be desirable in other situations. Examples of such situations may include, milling/cutting irregularly shaped roadway surfaces 16 , or using high digging thicknesses that may cause high drum reaction that may create an upward force on the rear side of cold planer 10 . This force may cause leveling control on rear columns 26 c and 26 d to become imprecise and/or ineffective.
  • the ability to switch leveling control between front support assembly 22 a and rear support assembly 22 b may be advantageous, by allowing the machine operator/controller to selectively determine where to assign leveling control based on roadway surface 16 conditions. The result may be an improvement in the flexibility of cold planer 10 because it may be used successfully in a wider variety of situations and job sites.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Operation Control Of Excavators (AREA)
  • Lifting Devices For Agricultural Implements (AREA)
  • Road Repair (AREA)

Abstract

A support system for a work machine is provided that includes a front support assembly configured to perform one of stabilization and leveling control, a rear support assembly configured to perform the other of stabilization and leveling control, and a hydraulic circuit configured to selectively switch leveling control between the front and rear support assemblies.

Description

    TECHNICAL FIELD
  • The present disclosure relates to a work machine for the treatment of roadway surfaces, and more particularly to a cold planer for roadway surfacing operations.
  • BACKGROUND
  • Road milling machines, also known as cold planers, may be configured to scarify, remove, mix, or reclaim material from the surface of bituminous, concrete, or asphalt roadways and other surfaces using a rotatable planing tool mounted on a frame. The frame may be mounted on a plurality of tracks/wheels which support and horizontally transport the machine along the working surface.
  • Typically, cold planers may also include a plurality of lifting members positioned near the front and rear of the frame. The lifting members may be adjusted between extended and retracted positions to control the depth and shape of cut by raising or lowering the frame and rotatable planing tool. Actuation of the lifting members may be controlled by a machine operator or other suitable control mechanism.
  • One example of a leveling system for a cold planer is described in U.S. Pat. No. 6,769,836 to Lloyd (“Lloyd”). Lloyd discloses an asphalt recycling machine. The machine includes front and rear axles that are raised and lowered by hydraulic cylinders. In order to stabilize the machine, the front axle's hydraulic cylinders are hydraulically connected in parallel. The rear axle's hydraulic cylinders are operated individually to control the height and tilt (slope) of the mainframe of the machine. Individual control of the rear axle's hydraulic cylinders, together with the front axle's hydraulic cylinders connected hydraulically, in parallel, form a three-point suspension, allowing the mainframe to ride over uneven surfaces. Also, stability is maintained as the rear wheels of the rear axle operate on a milled to grade surface.
  • The arrangement in Lloyd, wherein the front axle's hydraulic cylinders are connected while the rear axle's hydraulic cylinders are individually controlled, limits use of the machine to those job sites/situations in which such an arrangement is desired. For example, assigning individual control to the rear axle's hydraulic cylinders may be desirable in some instances because the rear axle's hydraulic cylinders run on the milled to grade surface and may be controlled and adjusted with better accuracy than the front axle's hydraulic cylinders that may run over uneven surfaces. However, assigning individual control to the front axle's hydraulic cylinders may be desirable in other situations, such as, for example, when milling/cutting irregularly shaped roadway surfaces or using high digging thicknesses that may cause high drum reaction that may create an upward force on the rear side of the machine. Because the machine in Lloyd only assigns individual control to the rear axle's hydraulic cylinders, it may not be used in jobs where assigning individual control on the front axle's hydraulic cylinders is desirable.
  • The disclosed system is directed towards overcoming one or more of the problems set forth above.
  • SUMMARY OF THE INVENTION
  • In one aspect, the present disclosure is directed to a support system for a work machine. The support system may include a front support assembly configured to perform one of stabilization and leveling control, a rear support assembly configured to perform the other of stabilization and leveling control, and a hydraulic circuit configured to selectively switch leveling control between the front and rear support assemblies.
  • In another aspect, the present disclosure is directed to a method of switching leveling control for a work machine. The method may include providing a front support assembly configured to perform one of stabilization and leveling control, providing a rear support assembly configured to perform the other of stabilization and leveling control, and selectively switching leveling control between the front and rear support assemblies.
  • In yet another aspect, the present disclosure may be directed to a work machine configured to perform work on a surface. The work machine may include a frame having a front portion and a rear portion. The work machine may also include a front support assembly including first and second hydraulic cylinders supporting the frame, with the front support assembly being configured to adjust the height of the front portion of the frame relative to the surface. The work machine may further include a rear support assembly including third and fourth hydraulic cylinders supporting the frame, with the rear support assembly being configured to adjust the height of the rear portion of the frame relative to the surface. Additionally, the work machine may include a first valve device operatively connected between the first and second hydraulic cylinders, and a second valve device operatively connected between the third and fourth hydraulic cylinders. When one of the first and second valves is in an open position, the other of the first and second valves is in a closed position.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 provides a diagrammatic top view of a work machine according to an exemplary disclosed embodiment.
  • FIG. 2 provides a diagrammatic side view ofthe work machine of FIG. 1.
  • FIG. 3 provides a schematic view of a hydraulic system according to an exemplary disclosed embodiment.
  • FIG. 4 provides another schematic view of the hydraulic system of FIG. 3.
  • FIG. 5 provides a schematic view of a hydraulic system according to another exemplary disclosed embodiment.
  • DETAILED DESCRIPTIONS
  • Work machines may be configured to perform work operations at job sites. Examples of work machines may include on and off highway vehicles, construction equipment, and earth-moving equipment. One particular type of work machine is a road milling machine or cold planer 10, as illustrated in FIG. 1. Cold planer 10 may be configured to scarify, remove, mix, or reclaim material from the surface of bituminous, concrete, or asphalt roadways and other surfaces. Elements of cold planer 10 may include a frame 12, a tool 14, and front and rear support assemblies 22 a and 22 b.
  • Front and rear support assemblies 22 a and 22 b may be configured to support frame 12 on work surfaces. Front support assembly 22 a may include right and left front support assemblies 23 a and 23 b. Similarly, rear support assembly 22 b may include right and left rear support assemblies 23 c and 23 d. Furthermore, right front support assembly 23 a may include a traction device 24 a and a column 26 a. Traction devices 24 b-24 d and columns 26 b-26 d may be included in the remaining support assemblies.
  • Traction devices 24 a-24 d may perform the function of transporting the cold planer 10 across work surfaces. Traction devices 24 a-24 d may include tracks, wheels, and/or other known traction devices suitable for use on mobile work machines. At least one traction device may be powered by a drive assembly (not shown) for forward and rearward movement of cold planer 10. An example of a drive assembly may include an internal combustion engine or a hydraulic motor. It is further contemplated that traction devices 24 a-24 d may be attached to frame 12 by columns 26 a-26 d.
  • Columns 26 a-26 d may be selectively raised and lowered to cause upward, downward, and tilting movement of frame 12. In one embodiment, columns 26 a-26 d may include solid unitary elements that may be driven towards and away from frame 12 of cold planer 10 to raise and lower frame 12 with respect to roadway surface 16. In another embodiment, columns 26 a-26 d may include telescoping portions (not shown), such as, for example, overlapping cylindrical segments adapted to slide inward (retract) or outward (extend) with respect to each other. The inward and outward sliding of the overlapping cylindrical segments may raise and lower frame 12, and their movement may be actuated by pressurized hydraulic fluid that may be selectively supplied by the machine operator (pilot) and/or by an automated control mechanism.
  • Frame 12 may include one or more structural load carrying members adapted to support and/or protect components of cold planer 10. Elements of frame 12 may include, for example, housings, beams, and panels. Furthermore, tool 14 may be supported on or within frame 12.
  • Tool 14, shown in the side view depicted in FIG. 2, may include a rotatable planing tool, such as, for example, a rotatable drum 18 or cylinder. Drum 18 may include a plurality of replaceable bits (not shown) mounted thereon and may be lowered to engage a roadway surface 16. Upon engagement, the bits may cut and remove material from roadway surface 16. The removed material may enter conveyor 20 which may transfer the removed material into a dump truck (not shown) for transport off-site. The height of drum 18 relative to the roadway surface 16 may determine the shape and depth of cut made in the roadway surface 16 and may affect the amount of material being removed. Thus, in order to control the shape and depth of cut, drum 18 may be adjusted such that it may vertically move away from, towards, and into roadway surface 16.
  • An exemplary disclosed embodiment of a hydraulic system 28, configured to direct pressurized hydraulic fluid, is shown in FIG. 3. Hydraulic system 28 may cause movement of columns 26 a-26 d using the pressurized hydraulic fluid. Hydraulic system 28 may include a hydraulic circuit 30 for selectively supplying the pressurized hydraulic fluid to different areas of hydraulic system 28, and hydraulic cylinders 32 a-32 d to convert the hydraulic pressure into mechanical motion for actuating columns 26 a-26 d.
  • Hydraulic circuit 30 may include an assembly of components configured to regulate and control the flow of pressurized hydraulic fluid through hydraulic system 28. In one embodiment, hydraulic circuit 30 may include a valve manifold 34, cylinder valves 36 a-36 d, and two- way valves 38 a and 38 b. Exemplary sub-components of hydraulic circuit 30 will be discussed below, but it should be understood that hydraulic circuit 30 is not limited to these specific configurations.
  • Valve manifold 34 may be configured to selectively direct pressurized hydraulic fluid from apertures 40 a-40 f into the other parts of hydraulic circuit 30. Valve manifold 34 may include flow conduits 42 a-42 h, selector valves 44 a-44 c, a low pressure line 48, and a two-way valve 50. It should be understood that valve manifold 34 may include less, more, or different elements from those specified, and the structure of valve manifold 34 may depend on a host of factors, including, for example, the environment of the job site. Also, it should be understood that valve manifold 34 may be replaced by a plurality of valves, such as selector valves 44 a-44 c, that may be electrically actuated to perform substantially similar functions as those performed by valve manifold 34.
  • Each of apertures 40 a-40 f may be configured to permit pressurized hydraulic fluid to enter into and exit from valve manifold 34. Flow conduits 42 c and 42 d, operatively associated with right front support assembly 23 a, may be selectively placed into fluid communication with apertures 40 c-40 f. Flow conduits 42 a and 42 b, operatively associated with left front support assembly 23 b, may be selectively placed into fluid communication with apertures 40 a and 40 b. Flow conduits 42 f and 42 e, operatively associated with right rear support assembly 23 c, may be selectively placed into fluid communication with apertures 40 e and 40 f. Flow conduits 42 g and 42 h, operatively associated with left rear support assembly 23 d, may be selectively placed in fluid communication with apertures 40 c and 40 d or 40 a and 40 b. Flow conduits 42 a, 42 c, 42 e, and 42 g may carry input flow from a fluid source (not shown) into support assemblies 22 a and 22 b if colder planer 10 is to be raised, and/or they may carry output flow from support assemblies 22 a and 22 b to a tank (not shown) if cold planer 10 is to be lowered. Additionally, input flows from the fluid source (not shown) may pass through flow conduits 42 b, 42 d, 42 f, and 42 h, thus allowing these flow conduits to function as pilot lines to actuate cylinder valves 36 a-36 d.
  • Fluid communication between apertures 40 a-40 f and flow conduits 42 a-42 h may be determined by selector valves 44 a-44 c. Selector valves 44 a-44 c may each be configured to shift between a first position (FIG. 3) and a second position (FIG. 4). In the first position, selector valve 44 a may direct the fluid flow from apertures 40 a and 40 b towards flow conduits 42 a and 42 b. In the second position, selector valve 44 a may direct the fluid flow from apertures 40 a and 40 b towards flow conduits 42 g and 42 h. Similarly, selector valves 44 b and 44 c may also selectively direct the fluid flow. Each of selector valves 44 a-44 c may be biased by a spring 46 a-46 c towards the first position. Actuation of selector valves 44 a-44 c against the spring bias from the first position to the second position may be initiated by pressurized hydraulic fluid from low pressure line 48. Additionally or alternatively, it is also contemplated that selector valves 44 a-44 c may be actuated manually or by solenoid actuation upon recognition of an electrical signal.
  • Low pressure line 48 may direct a low pressure hydraulic fluid flow into valve manifold 34 of hydraulic circuit 30 from a tank and pump assembly (not shown). When low pressure line 48 and selector valves 44 a-44 c are placed into fluid communication, the low pressure hydraulic fluid flow may physically push each of selector valves 44 a-44 c into second position. Fluid communication between low pressure line 48 and selector valves 44 a-44 c may occur upon actuation of two-way valve 50, which may include, for example, a solenoid valve or a two-way pilot valve.
  • Cylinder valves 36 a-36 d may be operatively connected to flow conduits 42 a-42 h of valve manifold 34, and may control the fluid flow entering hydraulic cylinders 32 a-32 d. In one embodiment, cylinder valves 36 a-36 d may include counterbalance valves, each counterbalance valve having at least a check valve 52 a-52 d and a spring-biased pressure relief valve 54 a-54 d. Check valves 52 a-52 d and pressure relief valves 54 a-54 d may be configured to selectively prevent flow, restrict flow, and allow flow to enter into and exit from hydraulic cylinders 32 a-32 d. Thus, check valves 52 a-52 d and pressure relief valves 54 a-54 d may be configured to provide braking to hydraulic cylinders 32 a-32 d to slow down and/or smooth out their movements. It is also contemplated that cylinder valves 36 a-36 d may include double acting counterbalance valves for embodiments that may include double-acting, rather than single-acting, hydraulic cylinders.
  • Hydraulic cylinders 32 a-32 d may each include a housing 56 a-56 d and a piston 58 a-58 d slidably mounted therein. Each of housings 32 a-32 d may include a hollow bored interior, and each piston 58 a-58 d may include a piston plug 60 a-60 d configured to fit closely within the bore and a piston shaft 62 a-62 d operatively connected to plugs 60 a-60 d and columns 26 a-26 d. Pistons 58 a-58 d may divide their respective cylinder housings 56 a-56 d into upper chambers 64 a-64 d and lower chambers 66 a-66 d. Upper chambers 64 a-64 d may include outlets 69 a-69 d that may direct the pressurized hydraulic fluid out of upper chambers 64 a-64 d and into a tank (not shown) or the atmosphere. Lower chambers 66 a-66 d may include apertures 68 a-68 d to allow the pressurized hydraulic fluid passing through cylinder valves 36 a-36 d to enter lower chambers 66 a-66 d when extension of hydraulic cylinders 32 a-32 d may be desired, and also to allow the pressurized hydraulic fluid within lower chambers 66 a-66 d to escape back towards cylinder valves 36 a-36 d when retraction of hydraulic cylinders 32 a-32 d may be desired. It should be understood that extension and retraction of hydraulic cylinders 32 a-32 d may directly result in the raising and lowering of columns 26 a-26 d.
  • The operation of hydraulic cylinder 32 a will now be described in more detail. In the state shown in FIG. 3, if extension of hydraulic cylinder 32 a may be desired, pressurized hydraulic fluid supplied from a fluid supply (not shown) may enter flow conduit 42 c from aperture 40 f. As the pressurized hydraulic fluid travels through flow conduit 42, it may pass through check valve 52 a, which may create a force on pressure relief valve 54 a that may drive pressure relief valve 54 a towards the open position (towards the left) allowing flow to travel through flow conduit 42 c into aperture 68 a of lower chamber 66 a of hydraulic cylinder 32 a. As the pressurized hydraulic fluid builds within lower chamber 66 a, piston 58 a may be driven upwards to an extended position. Any pressurized hydraulic fluid in upper chamber 64 a may be forced out through outlet 69 a by upward motion of piston 58 a. If retraction of hydraulic cylinder 32 a may be desired, the flow of pressurized hydraulic fluid entering flow conduit 42 c from aperture 40 f may cease. Pressurized hydraulic fluid may be supplied from a source (not shown) through inlet 40 e into flow conduit 42 d, wherein flow conduit 42 d may act as a pilot line by driving pressure relief valve 54 a towards the open position (left) allowing pressurized hydraulic fluid within lower chamber 66 a to exit out through flow conduit 42 c and aperture 40 f as the force of gravity on cold planer 10 drives piston 58 a in a downward direction. Additionally or alternatively, hydraulic cylinder 32 may include a double-acting hydraulic cylinder that may retract and extend in ways known to those skilled in the art. While only the operation of hydraulic cylinder 32 a has been described in detail, it should be understood that hydraulic cylinders 32 b-32 d may be operated in a similar manner.
  • Cylinder valves 36 a and 36 b may be selectively placed into fluid communication by two-way valve 38 a, and a similar relationship may exist between cylinder valves 36 c and 36 d and two-way valve 38 b. In FIG. 3, two-way valve 38 a is shown in a closed state while two-way valve 38 b is shown in an open state. In this condition of hydraulic circuit 30, hydraulic cylinders 32 a and 32 b may be individually controlled, while hydraulic cylinders 32 c and 32 d may move in unison. In FIG. 4, two-way valve 38 a is shown in an open state, while two-way valve 38 b is shown in a closed state. In this condition of hydraulic circuit 30, hydraulic cylinders 32 a and 32 b may move unitarily, while hydraulic cylinders 32 c and 32 d may move independent of one another. In one embodiment, two- way valves 38 a and 38 b may include solenoid valves that may be actuated to move into open and closed positions, wherein if one valve is in open position the other will be in closed position. Additionally, two- way valves 38 a and 38 b, and any other of the valves described above, may include manually adjustable valves.
  • As shown in FIG. 5, it is further contemplated that one or more of the previously described valve devices may be replaced by an electronic controller 70. Controller may 70 include hardware and software elements adapted to selectively direct the desired amount of flow to hydraulic cylinders 32 a-32 d to simulate the function of one or more of the replaced valve devices. In one embodiment, controller 70 may control valve assemblies 72 a-72 d. Valve assemblies 72 a-72 d may include, for example, independent metering valve (“IMV”) assemblies. Each IMV assembly may receive pressurized hydraulic fluid from a hydraulic pump (not shown) and may be in fluid communication with at least one of hydraulic cylinders 32 a-32 d. An IMV assembly may typically include four independently controllable valves, with one pair of the valves being coupled with a head end (upper chamber) of a hydraulic cylinder and the other pair of controllable valves being coupled with a rod end (lower chamber) of that hydraulic cylinder. Each pair of controllable valves in the IMV assembly may allow flow both to and from its corresponding hydraulic cylinder. The controllable valves may be electronically controlled using controller 70, depending upon various input signals received from one or more sensors 74 a-74 d.
  • In operation, controller 70 may monitor position sensors 74 a and 74 b associated with hydraulic cylinders 32 a and 32 b, and using readings from position sensors 74 a and 74 b as a reference, the controller may supply equal amounts of flow to hydraulic cylinders 32 a and 32 b to simulate the opening of two-way valve 38 a. By simulating the opening of two-way valve 38 a, the controller may assign leveling control to hydraulic cylinders 32 c and 32 d. Similarly, the controller may simulate the opening of two-way valve 38 b by supplying equal amounts of flow to hydraulic cylinders 32 c and 32 d. By simulating the opening of two-way valve 38 b, the controller may assign leveling control to hydraulic cylinders 32 a and 32 b.
  • INDUSTRIAL APPLICABILITY
  • The disclosed hydraulic system 28 may be used to provide leveling control for work machines. An exemplary disclosed work machine may include, for example, a cold planer 10.
  • Hydraulic system 28 may provide the benefit of allowing a machine operator to switch leveling control from a front support assembly 22 a to a rear support assembly 22 b, and vice versa. Front and rear support assemblies 22 a and 22 b may include columns 26 a-26 d that may be raised and lowered by their respective hydraulic cylinders 32 a-32 d. In one embodiment, columns 26 a and 26 b may act as front columns, and columns 26 c and 26 d may act as rear columns. In a front leveling control state shown in FIG. 3, each of two- way valves 38 a and 38 b, two-way valve 50, and selector valves 44 a-44 c may be in a first position. In this first position, selector valves 44 a-44 c may direct the fluid flow from apertures 40 a and 40 b towards hydraulic cylinder 32 b, and may also direct the fluid flow from apertures 40 e and 40 f towards hydraulic cylinder 32 a. Additionally, two-way valve 38 a may prevent fluid communication between flow conduits 42 a and 42 c. Thus, front columns 26 a and 26 b may be independently driven by fluid flow from apertures 40 e and 40 f, and 40 a and 40 b, respectively.
  • Also in the first position, selector valve 44 c may direct the fluid flow from apertures 40 c and 40 d towards hydraulic cylinder 32 d. In addition, two-way valve 38 b may permit fluid communication between flow conduits 42 g and 42 e, and thus, hydraulic cylinder 32 c associated with rear column 26 c may be driven by the same fluid flow driving rear column 26 d. Accordingly, rear columns 26 c and 26 d may move together unitarily or in unison.
  • Independently operated front columns 26 a and 26 b may perform leveling by being extended and retracted to control the depth and shape of cut. When equal fluid flow drives both of front columns 26 a and 26 b, then the front end of frame 12 may raise or lower accordingly. On the other hand, when greater fluid flow drives one of front columns 26 a and 26 b, then the front end of frame 12 may tilt and/or raise or lower accordingly. At the rear end of frame 12, operatively connected/linked rear columns 26 c and 26 d may provide for a three point machine configuration, with front telescoping columns 26 a and 26 b being two points, and rear telescoping columns 26 c and 26 d acting together as a third point. The three point machine configuration may provide cold planer 10 with the stability associated with using triangularly arranged support points, may provide both lifting, lowering, and tilting of frame 12, and may reduce stress in frame 12 as it passes over uneven roadway surface 16.
  • Switching leveling control from front columns 26 a and 26 b to rear columns 26 c and 26 d may be accomplished by signaling or actuating each of two- way valves 38 a and 38 b, into a rear leveling control state corresponding to FIG. 4. In this position, two-way valve 50 may allow low pressure fluid to flow through low pressure line 48 to actuate selector valves 44 a-44 c into a second position. In this second position, selector valves 44 a-44 c may direct the fluid flow from inlet ports 40 a and 40 b, and 40 e and 40 f, towards hydraulic cylinders 32 c and 32 d, respectively. Two-way valve 38 b may block or prevent fluid communication between fluid conduits 42 e and 42 g, thus allowing rear columns 26 c and 26 d to move independently of one another. Selector valve 44 c may direct the fluid flow from apertures 40 c and 40 d towards hydraulic cylinder 32 a associated with front column 26 a. Two-way valve 38 a may permit fluid communication between fluid conduits 42 a and 42 c, thus linking the fluid flows driving columns 26 a and 26 b. Accordingly, independently operated rear columns 26 c and 26 d may perform leveling, while operatively connected/linked front columns 26 a and 26 b may provide for the stable three point machine configuration.
  • The ability to switch leveling control between front and rear support assemblies 22 a and 22 b, may be advantageous for several reasons. For example, setting leveling control on rear columns 26 c and 26 d of rear support assembly 22 b may allow for a more precise cut in certain situations because traction devices 24 c and 24 d associated with rear columns 26 c and 26 d may run on a relatively flat (milled) roadway surface 16. Also, when cold planer 10 mills a small road thickness at high velocity, rear columns 26 c and 26 d and/or traction devices 24 c and 24 d may be less affected by roadway surface 16 unevenness than front columns 26 a and 26 b and/or traction devices 24 a and 24 b. However, giving leveling control to front columns 26 a and 26 b of front support assembly 22 a may be desirable in other situations. Examples of such situations may include, milling/cutting irregularly shaped roadway surfaces 16, or using high digging thicknesses that may cause high drum reaction that may create an upward force on the rear side of cold planer 10. This force may cause leveling control on rear columns 26 c and 26 d to become imprecise and/or ineffective. For at least these reasons, the ability to switch leveling control between front support assembly 22 a and rear support assembly 22 b may be advantageous, by allowing the machine operator/controller to selectively determine where to assign leveling control based on roadway surface 16 conditions. The result may be an improvement in the flexibility of cold planer 10 because it may be used successfully in a wider variety of situations and job sites.
  • It will be apparent to those skilled in the art that various modifications and variations can be made in the disclosed protection system without departing from the scope of the disclosure. Additionally, other embodiments of the disclosed system will be apparent to those skilled in the art from consideration of the specification. It is intended that the specification and examples be considered as exemplary only, with a true scope of the disclosure being indicated by the following claims and their equivalents.

Claims (21)

1. A support system for a work machine, comprising:
a front support assembly configured to perform one of stabilization and leveling control;
a rear support assembly configured to perform the other of stabilization and leveling control; and
a hydraulic circuit configured to selectively switch leveling control between the front and rear support assemblies.
2. The system of claim 1, wherein:
the front support assembly further includes first and second hydraulic cylinders; and
the rear support assembly further includes third and fourth hydraulic cylinders.
3. The system of claim 2, wherein the first and second hydraulic cylinders are operatively connected by a front valve device and the third and fourth hydraulic cylinders are operatively connected by a rear valve device.
4. The system of claim 3, wherein when the front valve device is in an open position, the first and second hydraulic cylinders are hydraulically connected, and the third and fourth hydraulic cylinders perform leveling control.
5. The system of claim 3, wherein when the rear valve device is in an open position, the third and fourth hydraulic cylinders are hydraulically connected, and the first and second hydraulic cylinders perform leveling control.
6. The system of claim 1, wherein the hydraulic circuit supplies a first hydraulic flow to the support assembly that performs stabilization.
7. The system of claim 1, wherein the hydraulic circuit supplies first and second hydraulic flows to the support assembly that performs leveling control.
8. The system of claim 1, wherein the hydraulic circuit includes an electronic controller configured to direct first and second hydraulic flows to the support assembly that performs leveling control.
9. A method of switching leveling control for a work machine, comprising:
providing a front support assembly configured to perform one of stabilization and leveling control;
providing a rear support assembly configured to perform the other of stabilization and leveling control; and
selectively switching leveling control between the front and rear support assemblies.
10. The method of claim 9, wherein selectively switching leveling control further includes:
opening a first valve to assign leveling control to the rear support assembly; and
closing the first valve to assign leveling control to the front support assembly.
11. The method of claim 10, wherein opening the first valve permits a low pressure flow to actuate one or more selector valves to permit entry of first and second hydraulic flows into the rear support assembly.
12. The method of claim 10, wherein closing the first valve permits the entrance of first and second hydraulic flows into the front support assembly.
13. A work machine configured to perform work on a surface, comprising:
a frame having a front portion and a rear portion;
a front support assembly including first and second hydraulic cylinders supporting the frame, configured to adjust the height of the front portion of the frame relative to the surface;
a rear support assembly including third and fourth hydraulic cylinders supporting the frame, configured to adjust the height of the rear portion of the frame relative to the surface;
a first valve device operatively connected between the first and second hydraulic cylinders; and
a second valve device operatively connected between the third and fourth hydraulic cylinders;
wherein when one of the first and second valves in is an open position, the other of the first and second valves is in a closed position.
14. The work machine of claim 13, further including a hydraulic circuit configured to selectively supply hydraulic flow to the front and rear support assemblies.
15. The work machine of claim 14, wherein the hydraulic circuit supplies a first hydraulic flow to the support assembly that has the open valve device.
16. The work machine of claim 14, wherein the hydraulic circuit supplies first and second hydraulic flows to the support assembly that has the closed valve device.
17. The work machine of claim 13, wherein when the first valve device is in an open position, the first and second hydraulic cylinders fluidly communicate to form a vertex of a three point machine configuration.
18. The work machine of claim 17, wherein when the first valve device is in the open position, the third and fourth hydraulic cylinders form two vertices of the three point machine configuration.
19. The work machine of claim 13 wherein when the second valve device is in an open position, the third and fourth hydraulic cylinders fluidly communicate to form a vertex of a three point machine configuration.
20. The work machine of claim 19, wherein when the second valve device is in the open position, the first and second hydraulic cylinders form two vertices of the three point machine configuration.
21. The work machine of claim 13, wherein the work machine is a cold planer.
US11/261,626 2005-10-31 2005-10-31 Hydraulic leveling selection circuit for a work machine Abandoned US20070098494A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/261,626 US20070098494A1 (en) 2005-10-31 2005-10-31 Hydraulic leveling selection circuit for a work machine
EP06018424A EP1780337A3 (en) 2005-10-31 2006-09-04 Hydraulic leveling selection circuit for a work machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/261,626 US20070098494A1 (en) 2005-10-31 2005-10-31 Hydraulic leveling selection circuit for a work machine

Publications (1)

Publication Number Publication Date
US20070098494A1 true US20070098494A1 (en) 2007-05-03

Family

ID=37709390

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/261,626 Abandoned US20070098494A1 (en) 2005-10-31 2005-10-31 Hydraulic leveling selection circuit for a work machine

Country Status (2)

Country Link
US (1) US20070098494A1 (en)
EP (1) EP1780337A3 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013059626A1 (en) * 2011-10-21 2013-04-25 Youngers Stephen A Hydraulic fluid actuated equipment leveling apparatus
US20140110990A1 (en) * 2012-10-19 2014-04-24 Wirtgen Gmbh Self-Propelled Building Machine
US20170100981A1 (en) * 2015-10-13 2017-04-13 Caterpillar Paving Products Inc. System and method for controlling stability of milling machines
US9625080B1 (en) 2014-06-23 2017-04-18 Stephen A. Youngers Assembly for hydraulic fluid actuated machine leveling
US9663335B2 (en) 2014-08-27 2017-05-30 Caterpillar Inc. Hydraulic winch control system and method
WO2020086597A1 (en) 2018-10-23 2020-04-30 Caterpillar Paving Products Inc. Road milling machine with frame inclination control and method for such a control
WO2020086585A1 (en) 2018-10-23 2020-04-30 Caterpillar Paving Products Inc. Ride control systems and methods for rotary cutting machines
US10975535B2 (en) 2019-04-30 2021-04-13 Caterpillar Paving Products Inc. Construction machine with control system configured to calculate various outputs
US11193246B2 (en) 2019-02-14 2021-12-07 Caterpillar Paving Products Inc. Construction machine ride control systems and methods using elevation cylinder control
US11255059B2 (en) 2020-01-28 2022-02-22 Caterpillar Paving Products Inc. Milling machine having a non-contact leg-height measurement system
DE102022103548A1 (en) 2021-02-16 2022-08-18 Caterpillar Paving Products Inc. FOUR LEG CONSTRUCTION MACHINE WITH A TILT STABILITY SYSTEM WITH LOCK VALVES
DE102022103198A1 (en) 2021-02-16 2022-08-18 Caterpillar Paving Products Inc. Four-leg construction machine with a tilt stability system with pressure relief valves
US11566387B2 (en) 2020-03-12 2023-01-31 Caterpillar Paving Products Inc. Relative velocity based actuator velocity calibration system
US11578737B2 (en) 2020-03-12 2023-02-14 Caterpillar Paving Products Inc. Distance based actuator velocity calibration system
US11629735B2 (en) * 2020-01-28 2023-04-18 Caterpillar Paving Products Inc. Milling machine having a fluid flow based height measurement system
US11692563B2 (en) * 2020-01-28 2023-07-04 Caterpillar Paving Products Inc. Milling machine having a valve current based height measurement system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8973688B2 (en) * 2011-12-20 2015-03-10 Caterpillar Paving Products Inc. Suspension system and control method for track-propelled machines
CN110329029A (en) * 2019-08-15 2019-10-15 徐州徐工筑路机械有限公司 A kind of body gesture controlled system with self-regulation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4222581A (en) * 1978-04-07 1980-09-16 Rigging International Apparatus and method for moving a large object
US5094441A (en) * 1988-06-02 1992-03-10 Sebileau Vincent M Device to turn over sheets of paper one by one as they come out of an automatic page-output slot
US5240243A (en) * 1990-02-28 1993-08-31 Hewlett-Packard Company Hanging bin for uniformly stacking cut sheets at the output of a plotter
US5695256A (en) * 1995-07-04 1997-12-09 Ohkita Engineering Co., Ltd. Road excavator with a rotary cutter

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2309014A (en) * 1996-01-13 1997-07-16 New Holland Nv Utility vehicle suspension having controllably fixed or oscillating axles
DE10112082B4 (en) * 2001-03-12 2009-05-07 Carl Freudenberg Kg Hydropneumatic level-controlled axle suspension on vehicles, in particular for full-suspension vehicles
US6769836B2 (en) * 2002-04-11 2004-08-03 Enviro-Pave, Inc. Hot-in-place asphalt recycling machine and process

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4222581A (en) * 1978-04-07 1980-09-16 Rigging International Apparatus and method for moving a large object
US5094441A (en) * 1988-06-02 1992-03-10 Sebileau Vincent M Device to turn over sheets of paper one by one as they come out of an automatic page-output slot
US5240243A (en) * 1990-02-28 1993-08-31 Hewlett-Packard Company Hanging bin for uniformly stacking cut sheets at the output of a plotter
US5695256A (en) * 1995-07-04 1997-12-09 Ohkita Engineering Co., Ltd. Road excavator with a rotary cutter

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013059626A1 (en) * 2011-10-21 2013-04-25 Youngers Stephen A Hydraulic fluid actuated equipment leveling apparatus
US8777177B2 (en) 2011-10-21 2014-07-15 Stephen A. Youngers Hydraulic fluid actuated equipment leveling assembly
US20140110990A1 (en) * 2012-10-19 2014-04-24 Wirtgen Gmbh Self-Propelled Building Machine
US8998344B2 (en) * 2012-10-19 2015-04-07 Wirtgen Gmbh Self-propelled building machine
US9670630B2 (en) 2012-10-19 2017-06-06 Wirtgen Gmbh Self-propelled building machine
US9625080B1 (en) 2014-06-23 2017-04-18 Stephen A. Youngers Assembly for hydraulic fluid actuated machine leveling
US9663335B2 (en) 2014-08-27 2017-05-30 Caterpillar Inc. Hydraulic winch control system and method
US20170100981A1 (en) * 2015-10-13 2017-04-13 Caterpillar Paving Products Inc. System and method for controlling stability of milling machines
US9956842B2 (en) * 2015-10-13 2018-05-01 Caterpillar Paving Products Inc. System and method for controlling stability of milling machines
WO2020086585A1 (en) 2018-10-23 2020-04-30 Caterpillar Paving Products Inc. Ride control systems and methods for rotary cutting machines
WO2020086597A1 (en) 2018-10-23 2020-04-30 Caterpillar Paving Products Inc. Road milling machine with frame inclination control and method for such a control
DE112019005295T5 (en) 2018-10-23 2021-07-29 Caterpillar Paving Products Inc. ROAD MILLING MACHINE WITH FRAME INCLINATION CONTROL AND PROCEDURE FOR SUCH CONTROL
US11679639B2 (en) 2018-10-23 2023-06-20 Caterpillar Paving Products Inc. Systems and methods for controlling ground inclination of rotary cutting machines
US11193246B2 (en) 2019-02-14 2021-12-07 Caterpillar Paving Products Inc. Construction machine ride control systems and methods using elevation cylinder control
US10975535B2 (en) 2019-04-30 2021-04-13 Caterpillar Paving Products Inc. Construction machine with control system configured to calculate various outputs
US11255059B2 (en) 2020-01-28 2022-02-22 Caterpillar Paving Products Inc. Milling machine having a non-contact leg-height measurement system
US11629735B2 (en) * 2020-01-28 2023-04-18 Caterpillar Paving Products Inc. Milling machine having a fluid flow based height measurement system
US11692563B2 (en) * 2020-01-28 2023-07-04 Caterpillar Paving Products Inc. Milling machine having a valve current based height measurement system
US11566387B2 (en) 2020-03-12 2023-01-31 Caterpillar Paving Products Inc. Relative velocity based actuator velocity calibration system
US11578737B2 (en) 2020-03-12 2023-02-14 Caterpillar Paving Products Inc. Distance based actuator velocity calibration system
DE102022103548A1 (en) 2021-02-16 2022-08-18 Caterpillar Paving Products Inc. FOUR LEG CONSTRUCTION MACHINE WITH A TILT STABILITY SYSTEM WITH LOCK VALVES
DE102022103198A1 (en) 2021-02-16 2022-08-18 Caterpillar Paving Products Inc. Four-leg construction machine with a tilt stability system with pressure relief valves

Also Published As

Publication number Publication date
EP1780337A3 (en) 2008-12-03
EP1780337A2 (en) 2007-05-02

Similar Documents

Publication Publication Date Title
US20070098494A1 (en) Hydraulic leveling selection circuit for a work machine
US10279642B2 (en) Automotive construction machine, as well as lifting column for a construction machine
US7686537B2 (en) Road grader/spreader
US8002360B2 (en) Adjustable planer system
US9050725B2 (en) Tool control system based on anticipated terrain
GB1563407A (en) Roadway construction machines
US8973688B2 (en) Suspension system and control method for track-propelled machines
US3414327A (en) Apparatus and methods for cutting concrete surfaces
US20200122538A1 (en) Ride control systems and methods for rotary cutting machines
US20200263366A1 (en) Construction machine ride control systems and methods using elevation cylinder control
US20130087067A1 (en) Regulating device, railway wheel device, working machine as well as a method for driving of a rubber wheeled working machine along a railway track
CN102713083A (en) Variable wheelbase motor grader
CN102650115A (en) Road making machine with a material deflector
EP2122069B1 (en) Ground-working machine
US11473250B2 (en) Placer spreader with adjustable strike off
US11460052B2 (en) Hydraulic oscillation mitigation system for working machine
US3610341A (en) Motor-grader control system
US2805847A (en) Accessory impact mechanism for tractors
US5799738A (en) Doweling hole drilling machine
CN117858993A (en) Control of hydraulic system of construction machine
WO1990009485A1 (en) Fluid control system for roadway grooving apparatus
US9194101B2 (en) Method and apparatus for earth moving and surface grading
US20220186447A1 (en) Milling Machine with Adjustable Rotor Enclosure
US10858799B2 (en) Tool stabilizer system
DE10117583B4 (en) pavers

Legal Events

Date Code Title Description
AS Assignment

Owner name: CATERPILLAR PAVING PRODUCTS, INC., MINNESOTA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MARES, RICCARDO;REEL/FRAME:017166/0649

Effective date: 20051019

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION