US20070053068A1 - Imaging apparatus - Google Patents

Imaging apparatus Download PDF

Info

Publication number
US20070053068A1
US20070053068A1 US11/489,700 US48970006A US2007053068A1 US 20070053068 A1 US20070053068 A1 US 20070053068A1 US 48970006 A US48970006 A US 48970006A US 2007053068 A1 US2007053068 A1 US 2007053068A1
Authority
US
United States
Prior art keywords
zoom
image
operable
imaging device
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US11/489,700
Other versions
US7936383B2 (en
Inventor
Yasutoshi Yamamoto
Masaaki Nakayama
Shinobu Fusa
Kaoru Mokunaka
Shougo Sasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Assigned to MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD. reassignment MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FUSA, SHINOBU, MOKUNAKA, KAORU, NAKAYAMA, MASAAKI, SASAKI, SHOUGO, YAMAMOTO, YASUTOSHI
Publication of US20070053068A1 publication Critical patent/US20070053068A1/en
Assigned to PANASONIC CORPORATION reassignment PANASONIC CORPORATION CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.
Application granted granted Critical
Publication of US7936383B2 publication Critical patent/US7936383B2/en
Expired - Fee Related legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/69Control of means for changing angle of the field of view, e.g. optical zoom objectives or electronic zooming

Definitions

  • the present invention relates to an imaging apparatus capable of recording an image electronically, and in particular to the imaging apparatus having both an optical zoom function and an electronic zoom function.
  • the digital camera which electronically records an image has been widespread, replacing a film camera.
  • the digital camera has an optical zoom function and an electronic (digital) zoom function.
  • the optical zoom function a size of the image imaged on an imaging device such as a CCD (Charge Coupled Device) is optically varied by varying a lens position of an optical system.
  • CCD Charge Coupled Device
  • magnification of the image is varied by digitally processing an output signal of the imaging device.
  • the size of the image imaged on the CCD is changed by moving a zoom lens, which enlarges and reduces the image.
  • a recorded image is generated using all the pixels of the image on the CCD.
  • the electronic zoom a part region of the image imaged on the CCD is cut out, and processes such as complementation and averaging are applied to the image of the cutout region to generate the recorded image having desired magnification.
  • the zoom magnification is changed based on the size of the cutout region. An amount of optical information obtained by the CCD is not changed during the electronic zoom, and thus it is generally thought that image quality is degraded when the image is enlarged by the electronic zoom.
  • the optical zoom is utilized in region on a wide angle side of the optical zoom, and switched to the electronic zoom when the zoom lens reaches an end on a telephoto side (see JP-A-2000-231149).
  • large magnification is realized by combination of the optical zoom and the electronic zoom.
  • performance of the lens degrades more (shading, chromatic aberration, degradation of resolution, and the like) towards a peripheral portion of the lens.
  • the optical zoom is performed in the region on the wide angle side, and thus the recorded image is generated using all the pixels (whole region) of the image imaged on the imaging device. That is, the recorded image is generated using the image including the image formed by the region of the lens peripheral portion.
  • the image quality of the recorded image is degraded by the influence of the performance degradation (shading, chromatic aberration, and degradation of resolution) in the lens peripheral portion.
  • the invention is directed to the foregoing problem, and has an object to provide an imaging apparatus capable of providing an imaged image of which image quality degradation can be suppressed with no influence of lens performance degradation in the lens peripheral portion during the zoom action.
  • a first imaging apparatus of the invention includes an optical system operable to collect optical information from a subject, an imaging device operable to convert the optical information from the optical system into an electric signal to generate image data, an optical zoom section operable to move the optical system to enlarge and/or reduce an image imaged on the imaging device, an electronic zoom section operable to electronically enlarge and/or reduce the image data generated by the imaging device, and a controller operable to control the optical zoom section and the electronic zoom section.
  • the controller controls the zoom sections so as to actuate only the electronic zoom section when a total zoom magnification is not more than a predetermined value.
  • the controller may control the zoom sections so as to actuate only the optical zoom section when the total zoom magnification is more than the predetermined value.
  • the controller may control the electronic zoom section so as not to use magnification of the electronic zoom section in a predetermined range in the vicinity of 1.
  • a second imaging apparatus of the invention includes an optical system operable to collect optical information from a subject, an imaging device having a plurality of pixel lines and operable to convert the optical information from the optical system into an electric signal to generate image data, a display section operable to convert an image read from the imaging device into a through image to display the through image, an electronic zoom section operable to electronically-enlarge and/or reduce the image data generated by the imaging device, and a controller operable to switch a driving mode of the imaging device.
  • a plurality of modes are provided as the driving mode, the number of pixel lines of the image data outputted from the image device is different in each mode.
  • the controller changes the driving mode according to enlarging magnification and/or reducing magnification of the electronic zoom section.
  • the driving mode may include a first mode and a second mode.
  • the first mode an image signal only for the predetermined number of pixel lines of the imaging device may be outputted.
  • the second mode the image signal for the number of pixel lines larger than that of the first mode may be outputted.
  • the controller may set the drive mode at the first mode in an imaging mode in which the image generated by the imaging device is recorded with the number of pixels equal to that of the imaging device.
  • the controller may set the drive mode at the second mode in an imaging mode in which the image generated by the imaging device is recorded with the number of pixels less than that of the imaging device.
  • a third imaging apparatus of the invention includes an optical system operable to collect optical information from a subject, an imaging device operable to convert the optical information from the optical system into an electric signal to generate image data, a hand shake compensation section operable to compensate a position of the optical system according to hand shake, an image processor operable to process the image data generated by the imaging device to generate a recorded image to be recorded in a recording medium, and a controller operable to control the hand shake compensation section.
  • the controller changes a maximum value of a compensation amount of the hand shake compensation section according to a size of a region on the imaging device from which the image data to be processed by the image processor is generated.
  • a fourth imaging apparatus of the invention includes an optical system operable to collect optical information from a subject, an imaging device operable to convert the optical information from the optical system into an electric signal to generate image data, a zoom setting ring operable to set zoom magnification of the optical system, an optical system moving mechanism operable to move the optical system according to the setting on the zoom setting ring, an image processor operable to process the image data generated by the imaging device to generate a recorded image to be recorded in a recording medium, and a region switching section operable to switch a region on the imaging device from which the image data to be processed by the image processor is generated.
  • the optical system, the zoom setting ring, and the optical system moving mechanism may be arranged in a lens barrel which is detachably attached to a main body of the imaging apparatus.
  • a fifth imaging apparatus of the invention includes an optical system operable to collect optical information from a subject, an imaging device operable to convert the optical information from the optical system into an electric signal to generate image data, a zoom setting ring operable to set zoom magnification of the optical system, an optical system moving mechanism operable to move the optical system according to the setting on the zoom setting ring, an electronic zoom section operable to electronically enlarge and/or reduce the image data generated by the imaging device, and a controller operable to set enlarging magnification and/or reducing magnification of the electronic zoom section according to the zoom magnification set by the zoom setting ring.
  • the optical system, the zoom setting ring, and the optical system moving mechanism may be arranged in a lens barrel which is detachably attached to a main body of the imaging apparatus.
  • a region on the imaging device from which the image data to be processed by the electronic zoom section is generated may be variable according to the enlarging magnification and/or reducing magnification set by the controller.
  • the peripheral region of the imaging device cannot be used for generation of the recorded image.
  • the influence of the performance degradation in the lens peripheral portion can be eliminated, and the degradation of the image quality can be prevented.
  • FIG. 1 is a diagram showing an example configuration of an imaging apparatus according to the invention.
  • FIGS. 2A and 2B are diagrams for explaining a zoom action performed by an imaging apparatus in a first embodiment.
  • FIGS. 3A to 3 C are diagrams for explaining an electronic zoom action in the first embodiment.
  • FIGS. 4A and 4B are diagrams for explaining an optical zoom action in the first embodiment.
  • FIG. 5 is a flowchart of the zoom action performed by the imaging apparatus in the first embodiment.
  • FIGS. 6A and 6B are diagrams for explaining a zoom action performed by an imaging apparatus in a second embodiment.
  • FIG. 7 is a flowchart of the zoom action performed by the imaging apparatus in the second embodiment.
  • FIGS. 8A and 8B are diagrams for explaining a zoom action performed by an imaging apparatus in a third embodiment.
  • FIG. 9 is a flowchart of the zoom action performed by the imaging apparatus in the third embodiment.
  • FIG. 10 is a diagram for explaining a problem in a draft drive mode of a CCD.
  • FIG. 11 is a diagram explaining a CCD output signal during a high-resolution mode in a fourth embodiment.
  • FIGS. 12A and 12B are diagrams for explaining a method of setting a correction lens drive range in a fifth embodiment.
  • FIG. 13 is a diagram showing a configuration of an imaging apparatus in a sixth embodiment.
  • FIG. 14A is a diagram explaining two imaging modes of the imaging apparatus in the sixth embodiment.
  • FIG. 14B is a diagram explaining the two imaging modes in the sixth embodiment.
  • FIG. 15 is a diagram showing a configuration of an imaging apparatus in a seventh embodiment.
  • FIGS. 16A and 16B are diagrams for explaining a zoom action performed by an imaging apparatus in the seventh embodiment.
  • the below-mentioned imaging apparatus is an apparatus which converts optical image information into an electric signal to record the electric signal electronically to the recording medium.
  • Examples of such an imaging apparatus include a digital still camera.
  • FIG. 1 is a view showing a configuration example of an imaging apparatus according to the invention.
  • An imaging apparatus 10 includes an optical system 11 , a CCD 13 which is an imaging device, an AD converter 15 for converting an analog signal from the CCD 13 into a digital signal, and a control circuit 17 for controlling the whole processes of the imaging apparatus including a process of an image signal from the AD converter 15 .
  • the optical system 11 includes four lenses 11 a to 11 d.
  • the lens 11 b is a zoom lens
  • the lens 11 c is a lens provided for compensating hand shake.
  • the optical system 11 is arranged in a lens barrel.
  • the imaging apparatus 10 further includes an optical zoom controller 19 for driving the zoom lens 11 b, a hand shake compensation controller 21 for driving the hand shake compensation lens 11 c, and a CCD driver 23 for driving the CCD 13 .
  • the optical zoom controller 19 includes an electromechanical mechanism which conveys the zoom lens 11 b in an optical axis direction.
  • the hand shake compensation controller 21 includes an electromechanical mechanism which moves the hand shake compensation lens 11 c in a direction perpendicular to the optical axis direction.
  • the imaging apparatus 10 also includes an operation unit 25 through which a user performs various operations, a buffer memory 27 which stores image data tentatively for image processing, and a liquid crystal display (LCD) device 29 for displaying directly a through-image which is an image being shot by the CCD 13 or a still image which has been shot by the CCD 13 .
  • the operation unit 25 includes a zoom lever 25 a for operating zoom magnification and a mode select switch 25 b.
  • the control circuit 17 includes a pre-processor 31 , a resolution adjustment section 33 , a pixel-number converter 35 , an image compression section 37 , a display controller 39 , a memory interface 40 , and a controller 41 .
  • the control circuit 17 can be formed by a semiconductor integrated circuit.
  • the pre-processor 31 receives an image signal from the AD converter 15 to perform pre-processing, such as white balance correction, gamma correction, and blemish correction.
  • the resolution adjustment section 33 converts the pre-processed RGB signal to a YC signal, and then performs a process of adjusting resolutions such as aperture correction.
  • the pixel-number converter 35 performs signal processing for changing the number of pixels of the image signal.
  • the pixel-number converter 35 electronically enlarges and reduces the image by pixel interpolation and pixel skipping, realizing the electronic zoom function.
  • the image compression section 37 compresses an image in JPEG method.
  • the image compression method is not limited to JPEG.
  • the image compressed by the image compression section 37 is finally stored in a recording medium 50 .
  • the display controller 37 controls image display on the LCD device 29 .
  • the recording medium 50 includes a hard disk drive or a semiconductor memory device using a flash memory, such as SD card (registered trademark) and CompactFlash (registered trademark).
  • the pre-processor 31 , the resolution adjustment section 33 , the pixel-number converter 35 , the image compression section 37 , and the display controller 39 access the buffer memory 27 through the memory interface 40 to appropriately read data before each process and write data after each process.
  • the controller 41 controls, for image signal processing, the pre-processor 31 , the resolution adjustment section 33 , the pixel-number converter 35 , the image compression section 37 , and the display controller 39 .
  • the controller 41 further controls the optical zoom controller 19 and the hand shake compensation controller 21 to control the action of the optical system, and controls the CCD driver 23 to control an output signal of the CCD 13 .
  • the zoom action of the imaging apparatus 10 will be described below. Then, particularly the zoom action in a pixel-number conversion mode will be described in detail.
  • the pixel-number conversion mode shall mean a operation mode to record an image to the recording medium 50 with smaller number of pixels than that of the CCD 13 .
  • the CCD 13 has the number of pixels of eight million
  • the image of three million pixels is recorded in the recording medium.
  • an image data size becomes small, and thus the large number of images can be recorded in the recording medium. Therefore, this mode is useful for a user who does not demand the high-quality image.
  • the imaging apparatus 10 has optical zoom and electronic zoom for the zoom function.
  • the optical zoom is achieved by moving the zoom lens 11 b in, the optical axis direction to enlarge and reduce the image size imaged on the CCD 13 .
  • the electronic zoom is achieved by applying image processing by the pixel-number converter 35 , such as pixel interpolation and pixel skipping, to the image obtained by the CCD 13 , thereby enlarging and reducing the image size.
  • the imaging apparatus 10 activates the electronic zoom in a region of a zoom magnification on a wide angle side (low zoom magnification), and the optical zoom in a region of zoom magnification on a telescopic side (high zoom magnification).
  • optical zoom stop shall mean a state in which the zoom lens 11 b is not moved in changing the zoom magnification. Accordingly, even in the state of the optical zoom action, the zoom lens 11 c remains to be stopped unless a user changes the zoom magnification.
  • Electronic zoom actuation shall mean that the pixel-number converter 35 is actuated, and electronic zoom stop shall mean that the pixel-number converter 35 is stopped.
  • the pixel-number converter 35 performs neither the enlargement nor reduction of the image, and thus the electronic zoom magnification becomes x 1 .
  • the pixel-number converter 35 operates even if a user does not change the zoom magnification.
  • the zoom action of the imaging apparatus 10 will be described in detail with reference to FIGS. 3 and 4 .
  • the zoom action is described under the following conditions.
  • the CCD 13 has the number of pixels of eight million.
  • the pixel-number conversion mode is a mode in which the image is recorded with the number of pixels of three million in the recording medium 50 .
  • the zoom magnification is changed from the wide angle side toward the telescopic side.
  • an image X indicates the image imaged on the CCD 13
  • an image Y indicates the image (recorded image) recorded in the recording medium 50 .
  • the process (variable power) to reduce the original image X electrically to be of 0.62 times size, even in the state in which the zoom action is not actuated.
  • the reducing process is performed by the pixel-number converter 35 .
  • the state shown in FIG. 3A corresponds to that at a point P 0 of FIGS. 2A and 2B .
  • the image of a region R which is a part of the image X obtained by CCD 13 is cut out.
  • the pixel-number conversion process of converting the image into the three-million-pixel image is applied to the cutout image of the region R.
  • the cutting process of the image may be performed prior to any one of the processes performed by the pre-processor 31 , the resolution adjustment section 33 , the pixel-number converter 35 , the image compression section 37 , and the display controller 39 .
  • the whole pixel region on the CCD 13 is not used, but only a part of the region including the central portion of the CCD 13 is used.
  • the electronic zoom magnification is determined according to the size of the cutout region (namely, usage region of CCD) R, and it is increased by decreasing the size of the cutout region R.
  • FIG. 3B is a diagram showing a state when the electronic zoom magnification is between 0.62 and 1, that is, a state at a point P 2 of FIGS. 2A and 2B .
  • FIG. 3C is a diagram showing a state when the electronic zoom magnification reaches the maximum value (x 1 ), i.e., a state at a point P 1 of FIGS. 2A and 2B .
  • the size of the cutout region R of FIG. 3B is smaller than that of the whole of image X.
  • a pixel-number conversion rate of FIG. 3B is larger than that of FIG. 3A , in converting the image into the three-million-pixel image Y. Accordingly, when compared with the case of FIG. 3A , the further enlarged image Y is obtained in the case of FIG. 3B .
  • the size of the cutout region R becomes the minimum.
  • the image of the region R in the image X on the CCD has size equal to that of the recorded image Y. That is, the pixel-number conversion rate becomes 1.
  • the optical zoom action will be described with reference to FIGS. 4A to 4 C.
  • the zoom is switched from the electronic zoom to the optical zoom. That is, after the electronic zoom magnification becomes the maximum (x 1 ) (see FIGS. 3C and 4A ), when the zoom magnification is increased further with the zoom lever 25 a, the optical zoom is actuated.
  • the zoom magnification is increased by moving the zoom lens 11 b, which enlarges image size of a subject A imaged on the CCD 13 .
  • the image of the region R is cut out from the whole of image X on the CCD 13 , and the cutout image is set to the recorded image. In this case, the pixel conversion process is not performed.
  • the image of the region R is electronically cut out from the image X on the CCD 13 to produce the recorded image Y.
  • FIG. 5 is a flowchart showing the zoom action of the imaging apparatus 10 .
  • the total zoom magnification shall mean a value defined by the product of the optical zoom magnification and the electronic zoom magnification.
  • the total zoom magnification is simply referred to as “zoom magnification.”
  • the zoom magnification is lower than 1, the electronic zoom is actuated and the optical zoom is stopped (S 12 ).
  • the zoom magnification is not lower than 1, the optical zoom is actuated and the electronic zoom is stopped (S 13 ). The above steps are repeated until a user performs a zoom stop operation (S 14 ).
  • the electronic zoom in the zoom action of the pixel-number conversion mode, the electronic zoom is activated when the zoom magnification is low.
  • the recorded image Y is generated based on a part of region of the image X, which includes a center part of the image X imaged on the CCD. Therefore, when the zoom magnification is low, the region of the peripheral portion of the image X which includes the image imaged by the lens peripheral portion, is not used. Accordingly the affect of the performance degradation caused in the lens peripheral portion can be eliminated in the recorded image Y, and the degradation of the image quality can be prevented in the recorded image Y.
  • the electronic zoom is actuated on the wide angle side, and it is switched to the optical zoom at the end point of the electronic zoom, i.e., in the point at which the electronic zoom magnification reaches 1.
  • the electronic zoom does not exert so good performance near the magnification of 1. Therefore, in a second embodiment, the zoom function performed by the electronic zoom is not used in the region near the magnification of 1.
  • the zoom action of the second embodiment will specifically be described with reference to FIGS. 6A and 6B .
  • the predetermined value ⁇ 1 is set at a value close to 1 (for example, 0.8).
  • the electronic zoom magnification and the optical zoom magnification are set at 1, respectively.
  • the relationship of ⁇ 1 ⁇ 2 1 holds in FIGS. 6A and 6B .
  • the zoom action of the second embodiment will be described below with reference to a flowchart of FIG. 7 .
  • the zoom magnification is lower than ⁇ 1
  • the electronic zoom is actuated and the optical zoom is stopped (S 34 ).
  • the zoom magnification is not lower than ⁇ 1
  • the optical zoom When the zoom magnification is lower than 1, the optical zoom is actuated while the electronic zoom is actuated at fixed magnification ( ⁇ 1 ) (S 33 ). When the zoom magnification is not lower than 1, the optical zoom is actuated and the electronic zoom is stopped (S 35 ). The above steps are repeated until a user performs the zoom stop operation (S 36 ).
  • magnification region ( ⁇ 1 to 1 power) which provides no good performance is avoided in the electronic zoom.
  • the good zoom image is obtained in the whole region of the zoom magnification.
  • the present embodiment describes an example in that, in addition to the above embodiment, the electronic zoom actuation region is enlarged, and a range in which both the electronic zoom and the optical zoom are used is enlarged.
  • the zoom action of the third embodiment will specifically be described with reference to FIGS. 8A and 8B .
  • the optical zoom is stopped when the zoom magnification is lower than a predetermined value ⁇ , and is actuated when the zoom magnification is not lower than ⁇ .
  • the electronic zoom is stopped when the electronic zoom magnification reaches 1 (at point P 2 ).
  • FIG. 9 is a flowchart showing the zoom action of the third embodiment.
  • the electronic zoom is actuated and the optical zoom is stopped (S 52 ).
  • the zoom magnification is not lower than ⁇
  • the electronic zoom is actuated along with the optical zoom (S 54 ).
  • the optical zoom is actuated and the electronic zoom is stopped (S 55 ). The above steps are repeated until a user performs the zoom stop operation (S 56 ).
  • the imaging apparatus 10 includes the LCD device 29 (see FIG. 1 ).
  • the LCD device 29 displays a through image which is an image (moving image) is inputted to the CCD 13 and outputted directly from the CCD 13 , a shot still image, setting information, and the like.
  • a user determines picture composition of the subject by viewing the through image displayed on the LCD device 29 .
  • the CCD 13 has a “draft drive mode” which outputs signals having number of lines obtained by skipping some lines in all lines, and a “high-resolution mode” which outputs a signal having the number of lines larger than that of the draft drive mode.
  • the pixel number of the LCD device 29 is smaller compared to that of the CCD 13 or the recorded image. Therefore, during the through image display, usually the CCD 13 is driven in the draft drive mode to output the image signals for the number of lines only necessary for the display of the LCD device 29 .
  • the region R is cut out from the image X imaged on the CCD 13 to generate the recorded image Y. Therefore, it is necessary to display the image corresponding to the recorded image Y as the through image on the LCD device 29 .
  • the CCD 13 is driven in the draft drive mode during the through image display, and thus the CCD 13 outputs an image Z 1 having the number of lines (for example, 3264 H ⁇ 204V) only necessary for the display of the LCD device 29 as shown in FIG. 10 . Therefore, in this state, when a region R 1 corresponding to the region R is cut out from the image Z 1 , the size (for example, 2048 H ⁇ 128V) of the cutout image Z 2 becomes smaller than the image size (for example, 720 H ⁇ 240V) necessary for an image for display S of the LCD device 29 . As a result, the quality of the image displayed on the LCD device 29 is degraded.
  • the driving mode of the CCD 13 is changed from the draft drive mode to the high-resolution mode when the electronic zoom is actuated to generate the process of cutting out the image.
  • the CCD 13 outputs the image having the size larger than that of the draft drive mode. For example, as shown in FIG. 11 , in the high-resolution mode, the CCD 13 outputs the CCD output image Z 1 having the number of lines (408V) which is twice the number of line (204V) of the draft drive mode.
  • the size (2048 H by 260V) of the cutout image Z 2 becomes larger than the image size (720 H by 240V) necessary for the display image S, preventing the degradation of the image display on the LCD device 29 .
  • the size of the CCD output image Z 1 in the high-resolution mode is determined according to the size of the cutout region R.
  • the CCD 13 In a mode for recording the image imaged by the CCD 13 in the recording medium 50 with the same number of pixels as that of the CCD 13 , the CCD 13 is driven in the draft drive mode, and the driving mode may be changed to the high-resolution mode when a user selects the pixel-number conversion mode.
  • the imaging apparatus 10 has means for compensating hand shake including the hand shake compensation lens 11 c and the hand shake compensation controller 21 (see FIG. 1 ).
  • the hand shake compensation lens 11 c is moved relatively to the CCD 13 according to a direction and amount of the hand shake to suppress the image distortion caused by the hand shake.
  • FIGS. 12A and 12B are a diagram showing a positional relationship between the CCD 13 and an imaging region Q which is formed in the same plane as imaging plane of the CCD 13 by the optical system 11 .
  • the imaging region Q moves as the hand shake compensation lens 11 c moves as shown in FIGS. 12A and 12B .
  • the moving range of the hand shake compensation lens 11 c is set such that the imaging region Q includes the whole imaging region of the CCD 13 . Therefore, when the imaging region of the CCD 13 is large, a moving range D 1 of the imaging region Q becomes small.
  • the region R in the image X imaged on the CCD 13 is cut out to generate the recorded image Y. That is, the whole region in the CCD 13 is not required during the electronic zoom action, but only the cutout region R is required. Therefore, in the electronic zoom action, it is necessary that the hand shake compensation lens 11 c cover at least the region R of the CCD 13 . For this reason, a maximum moving distance D 2 of the imaging region Q as shown in FIG. 12B becomes larger than a distance D 1 in the case where the cutout process is not performed as shown in FIG. 12A . As a result, a maximum moving distance of the hand shake compensation lens 11 c can also be increased. That is, when the cutout process is performed in the electronic zoom action, the maximum value of the moving distance of the hand shake compensation lens 11 c can be set larger.
  • a setting value of the maximum moving distance of the hand shake compensation lens 11 c is set at a setting value corresponding to a value according to the cutout region R.
  • FIG. 13 shows another configuration of an imaging apparatus according to the invention.
  • An imaging apparatus of the sixth embodiment has the same configuration of the apparatus 10 shown in FIG. 1 , including an optical zoom control mechanism 19 b and a zoom setting ring 25 c instead of the optical zoom controller 19 and the zoom lever 25 a shown in FIG. 1 , respectively.
  • the lens barrel of the sixth embodiment can be detachably attached to a main body of the imaging apparatus.
  • the optical zoom control mechanism 19 b is a mechanical mechanism which can move the zoom lens 11 b in the optical axis direction, and is provided inside the lens barrel.
  • the zoom setting ring 25 c is a ring-shape mechanism which is rotatably mounted around the lens barrel.
  • the optical zoom control mechanism 19 b moves the zoom lens 11 b in the optical axis direction in conjunction with the mechanical rotation of the zoom setting ring 25 c by a user's manual operation.
  • the zoom action of the imaging apparatus 10 b having the above structure will be described below.
  • the imaging apparatus 10 b of the sixth embodiment has two imaging modes (modes 1 and 2 ) for the zoom, and the two modes can be changed by a mode select switch 25 b.
  • the two modes will be described with reference to FIG. 14A .
  • the whole of image X on the CCD 13 is reduced at a predetermined pixel-number conversion rate to generate the recorded image Y.
  • the predetermined pixel-number conversion rate is determined based on a ratio of the number of pixels of the CCD 13 and the number of pixels of the recorded image. For example, when the number of pixels of the CCD 13 is eight million while that of the recorded image is three million, the pixel-number conversion rate becomes 0.62.
  • the zoom function is mainly realized by the optical zoom. That is, the size of the image imaged on the CCD 13 is varied by moving the zoom lens 11 b in conjunction with the user's operation of the zoom setting ring 25 c , realizing the zoom function.
  • Mode 2 is a mode in which only a region R is used. That is, the region R which is a part of the image X on the CCD 13 is cut out. The recorded image Y is generated from the cutout image. In this case, the pixel-number conversion rate becomes 1.
  • the zoom function is realized by varying the size of the image imaged on the CCD 13 by the optical zoom.
  • Mode 1 the recorded image is generated using all pixels in the whole region of the CCD 13 .
  • Mode 2 the recorded image is generated using the pixels of the region R which is a part of the pixels on the CCD 13 and includes the central portion of the CCD 13 .
  • Mode 1 differs from Mode 2 in the region on the CCD 13 which is used to generate the recorded image.
  • a user can select the two modes with the mode select switch 25 b .
  • the controller 41 outputs a control signal to the CCD driver 23 so as to change the size of the region on the CCD 13 which is used to generate the recorded image.
  • the central portion of the CCD 13 is used in Mode 2 , and thus the optical zoom region is shifted toward the telescopic side in Mode 2 , compared to Mode 1 , as shown in FIG. 14B .
  • the further wide angle image can be shot by switching the mode from Mode 2 to Mode 1 at the end of the wide angle side in Mode 2 .
  • FIG. 15 shows still another configuration of an imaging apparatus according to the invention.
  • An imaging apparatus of the present embodiment has the same configuration of the imaging apparatus 10 b shown in FIG. 13 , and further outputs positional information on the zoom lens 11 b from the optical zoom control mechanism 19 b to the controller 41 .
  • both the electronic zoom and the optical zoom are actuated at the wide angle side, and only the optical zoom is actuated at the other position.
  • the position of the zoom lens 11 b is determined.
  • the electronic zoom is stopped when the position of the zoom lens 11 b is determined to be more than a predetermined value (P 2 ), while the electronic zoom is actuated when the position of the zoom lens 11 b is determined not to be more than the predetermined value (P 2 ).
  • the electronic zoom is actuated when the optical zoom magnification is in a range from 1 to 2.
  • the size of the region R is linearly changed in conjunction with the optical zoom magnification as follows.
  • the whole region of the CCD 13 is used when the optical zoom magnification is 1, while the used region R becomes minimum when the optical zoom magnification is 2.
  • the imaging can be performed using the central portion of the CCD 13 , so that image quality degradation caused by the performance degradation at the lens peripheral portion can be prevented.
  • the electronic zoom can automatically be switched between the actuation and the stop, using the imaging apparatus of which zoom magnification can be set by the setting ring mounted to the lens barrel.
  • the invention can be applied to the imaging apparatus such as a digital still camera having zoom functions of both electronic zoom and optical zoom.

Abstract

An imaging apparatus has an optical zoom function, with which the image imaged on the imaging device (CCD) is enlarged and reduced by moving an optical system, and an electronic zoom function, with which the image data generated by the imaging device is electronically enlarged and reduced. In an imaging mode (pixel-number conversion mode) in which the image generated by the imaging device is recorded with the number of pixels lower than that of the imaging device, the imaging apparatus performs control so that only the electronic zoom is actuated when a total zoom magnification is not more than a predetermined value.

Description

    BACKGROUND OF THE INVENTION
  • 1. Technical Field of the Invention
  • The present invention relates to an imaging apparatus capable of recording an image electronically, and in particular to the imaging apparatus having both an optical zoom function and an electronic zoom function.
  • 2. Related Art
  • Recently, a digital camera which electronically records an image has been widespread, replacing a film camera. Usually the digital camera has an optical zoom function and an electronic (digital) zoom function. In the optical zoom function, a size of the image imaged on an imaging device such as a CCD (Charge Coupled Device) is optically varied by varying a lens position of an optical system. In the electronic zoom function, magnification of the image is varied by digitally processing an output signal of the imaging device.
  • In the optical zoom, the size of the image imaged on the CCD is changed by moving a zoom lens, which enlarges and reduces the image. In this case, a recorded image is generated using all the pixels of the image on the CCD. On the other hand, in the electronic zoom, a part region of the image imaged on the CCD is cut out, and processes such as complementation and averaging are applied to the image of the cutout region to generate the recorded image having desired magnification. In this case, the zoom magnification is changed based on the size of the cutout region. An amount of optical information obtained by the CCD is not changed during the electronic zoom, and thus it is generally thought that image quality is degraded when the image is enlarged by the electronic zoom.
  • In the conventional digital camera, the optical zoom is utilized in region on a wide angle side of the optical zoom, and switched to the electronic zoom when the zoom lens reaches an end on a telephoto side (see JP-A-2000-231149). Thus, large magnification is realized by combination of the optical zoom and the electronic zoom.
  • Generally, performance of the lens degrades more (shading, chromatic aberration, degradation of resolution, and the like) towards a peripheral portion of the lens. In the conventional zoom method, the optical zoom is performed in the region on the wide angle side, and thus the recorded image is generated using all the pixels (whole region) of the image imaged on the imaging device. That is, the recorded image is generated using the image including the image formed by the region of the lens peripheral portion. As a result, there is a problem that the image quality of the recorded image is degraded by the influence of the performance degradation (shading, chromatic aberration, and degradation of resolution) in the lens peripheral portion.
  • The invention is directed to the foregoing problem, and has an object to provide an imaging apparatus capable of providing an imaged image of which image quality degradation can be suppressed with no influence of lens performance degradation in the lens peripheral portion during the zoom action.
  • SUMMARY OF THE INVENTION
  • (1) A first imaging apparatus of the invention includes an optical system operable to collect optical information from a subject, an imaging device operable to convert the optical information from the optical system into an electric signal to generate image data, an optical zoom section operable to move the optical system to enlarge and/or reduce an image imaged on the imaging device, an electronic zoom section operable to electronically enlarge and/or reduce the image data generated by the imaging device, and a controller operable to control the optical zoom section and the electronic zoom section. In an imaging mode in which the image generated by the imaging device is recorded with the number of pixels lower than that of the imaging device, the controller controls the zoom sections so as to actuate only the electronic zoom section when a total zoom magnification is not more than a predetermined value.
  • The controller may control the zoom sections so as to actuate only the optical zoom section when the total zoom magnification is more than the predetermined value.
  • Alternatively, the controller may control the electronic zoom section so as not to use magnification of the electronic zoom section in a predetermined range in the vicinity of 1.
  • Alternatively, the controller may control the zoom sections so as to actuate both the optical zoom section and the electronic zoom section when the total zoom magnification is more than the predetermined value. (2) A second imaging apparatus of the invention includes an optical system operable to collect optical information from a subject, an imaging device having a plurality of pixel lines and operable to convert the optical information from the optical system into an electric signal to generate image data, a display section operable to convert an image read from the imaging device into a through image to display the through image, an electronic zoom section operable to electronically-enlarge and/or reduce the image data generated by the imaging device, and a controller operable to switch a driving mode of the imaging device. A plurality of modes are provided as the driving mode, the number of pixel lines of the image data outputted from the image device is different in each mode. In an imaging mode in which the image generated by the imaging device is recorded with the number of pixels lower than that of the imaging device, the controller changes the driving mode according to enlarging magnification and/or reducing magnification of the electronic zoom section.
  • Alternatively, the driving mode may include a first mode and a second mode. In the first mode, an image signal only for the predetermined number of pixel lines of the imaging device may be outputted. In the second mode, the image signal for the number of pixel lines larger than that of the first mode may be outputted. The controller may set the drive mode at the first mode in an imaging mode in which the image generated by the imaging device is recorded with the number of pixels equal to that of the imaging device. The controller may set the drive mode at the second mode in an imaging mode in which the image generated by the imaging device is recorded with the number of pixels less than that of the imaging device.
  • (3) A third imaging apparatus of the invention includes an optical system operable to collect optical information from a subject, an imaging device operable to convert the optical information from the optical system into an electric signal to generate image data, a hand shake compensation section operable to compensate a position of the optical system according to hand shake, an image processor operable to process the image data generated by the imaging device to generate a recorded image to be recorded in a recording medium, and a controller operable to control the hand shake compensation section. The controller changes a maximum value of a compensation amount of the hand shake compensation section according to a size of a region on the imaging device from which the image data to be processed by the image processor is generated.
  • (4) A fourth imaging apparatus of the invention includes an optical system operable to collect optical information from a subject, an imaging device operable to convert the optical information from the optical system into an electric signal to generate image data, a zoom setting ring operable to set zoom magnification of the optical system, an optical system moving mechanism operable to move the optical system according to the setting on the zoom setting ring, an image processor operable to process the image data generated by the imaging device to generate a recorded image to be recorded in a recording medium, and a region switching section operable to switch a region on the imaging device from which the image data to be processed by the image processor is generated.
  • The optical system, the zoom setting ring, and the optical system moving mechanism may be arranged in a lens barrel which is detachably attached to a main body of the imaging apparatus.
  • (5) A fifth imaging apparatus of the invention includes an optical system operable to collect optical information from a subject, an imaging device operable to convert the optical information from the optical system into an electric signal to generate image data, a zoom setting ring operable to set zoom magnification of the optical system, an optical system moving mechanism operable to move the optical system according to the setting on the zoom setting ring, an electronic zoom section operable to electronically enlarge and/or reduce the image data generated by the imaging device, and a controller operable to set enlarging magnification and/or reducing magnification of the electronic zoom section according to the zoom magnification set by the zoom setting ring.
  • The optical system, the zoom setting ring, and the optical system moving mechanism may be arranged in a lens barrel which is detachably attached to a main body of the imaging apparatus.
  • A region on the imaging device from which the image data to be processed by the electronic zoom section is generated may be variable according to the enlarging magnification and/or reducing magnification set by the controller.
  • According to the invention, in the zoom action on the wide angle side, only the electronic zoom is actuated and thus the peripheral region of the imaging device cannot be used for generation of the recorded image. As a result, in the recorded image, the influence of the performance degradation in the lens peripheral portion can be eliminated, and the degradation of the image quality can be prevented.
  • BRIEF DESCRIPTION OF DRAWINGS
  • FIG. 1 is a diagram showing an example configuration of an imaging apparatus according to the invention.
  • FIGS. 2A and 2B are diagrams for explaining a zoom action performed by an imaging apparatus in a first embodiment.
  • FIGS. 3A to 3C are diagrams for explaining an electronic zoom action in the first embodiment.
  • FIGS. 4A and 4B are diagrams for explaining an optical zoom action in the first embodiment.
  • FIG. 5 is a flowchart of the zoom action performed by the imaging apparatus in the first embodiment.
  • FIGS. 6A and 6B are diagrams for explaining a zoom action performed by an imaging apparatus in a second embodiment.
  • FIG. 7 is a flowchart of the zoom action performed by the imaging apparatus in the second embodiment.
  • FIGS. 8A and 8B are diagrams for explaining a zoom action performed by an imaging apparatus in a third embodiment.
  • FIG. 9 is a flowchart of the zoom action performed by the imaging apparatus in the third embodiment.
  • FIG. 10 is a diagram for explaining a problem in a draft drive mode of a CCD.
  • FIG. 11 is a diagram explaining a CCD output signal during a high-resolution mode in a fourth embodiment.
  • FIGS. 12A and 12B are diagrams for explaining a method of setting a correction lens drive range in a fifth embodiment.
  • FIG. 13 is a diagram showing a configuration of an imaging apparatus in a sixth embodiment.
  • FIG. 14A is a diagram explaining two imaging modes of the imaging apparatus in the sixth embodiment.
  • FIG. 14B is a diagram explaining the two imaging modes in the sixth embodiment.
  • FIG. 15 is a diagram showing a configuration of an imaging apparatus in a seventh embodiment.
  • FIGS. 16A and 16B are diagrams for explaining a zoom action performed by an imaging apparatus in the seventh embodiment.
  • DETAIL DESCRIPTION OF PREFERRED EMBODIMENTS
  • Preferred embodiments of the invention are described below with reference to the accompanying drawings. The below-mentioned imaging apparatus is an apparatus which converts optical image information into an electric signal to record the electric signal electronically to the recording medium. Examples of such an imaging apparatus include a digital still camera.
  • First Embodiment
  • FIG. 1 is a view showing a configuration example of an imaging apparatus according to the invention. An imaging apparatus 10 includes an optical system 11, a CCD 13 which is an imaging device, an AD converter 15 for converting an analog signal from the CCD 13 into a digital signal, and a control circuit 17 for controlling the whole processes of the imaging apparatus including a process of an image signal from the AD converter 15.
  • The optical system 11 includes four lenses 11 a to 11 d. The lens 11 b is a zoom lens, and the lens 11 c is a lens provided for compensating hand shake. The optical system 11 is arranged in a lens barrel.
  • The imaging apparatus 10 further includes an optical zoom controller 19 for driving the zoom lens 11 b, a hand shake compensation controller 21 for driving the hand shake compensation lens 11 c, and a CCD driver 23 for driving the CCD 13. The optical zoom controller 19 includes an electromechanical mechanism which conveys the zoom lens 11 b in an optical axis direction. The hand shake compensation controller 21 includes an electromechanical mechanism which moves the hand shake compensation lens 11 c in a direction perpendicular to the optical axis direction. These controllers 19 and 21 control positions of the lenses 11 b and 11 c according to a command from the control circuit 17 respectively.
  • The imaging apparatus 10 also includes an operation unit 25 through which a user performs various operations, a buffer memory 27 which stores image data tentatively for image processing, and a liquid crystal display (LCD) device 29 for displaying directly a through-image which is an image being shot by the CCD 13 or a still image which has been shot by the CCD 13. The operation unit 25 includes a zoom lever 25 a for operating zoom magnification and a mode select switch 25 b.
  • The control circuit 17 includes a pre-processor 31, a resolution adjustment section 33, a pixel-number converter 35, an image compression section 37, a display controller 39, a memory interface 40, and a controller 41. The control circuit 17 can be formed by a semiconductor integrated circuit.
  • The pre-processor 31 receives an image signal from the AD converter 15 to perform pre-processing, such as white balance correction, gamma correction, and blemish correction. The resolution adjustment section 33 converts the pre-processed RGB signal to a YC signal, and then performs a process of adjusting resolutions such as aperture correction.
  • The pixel-number converter 35 performs signal processing for changing the number of pixels of the image signal. The pixel-number converter 35 electronically enlarges and reduces the image by pixel interpolation and pixel skipping, realizing the electronic zoom function.
  • The image compression section 37 compresses an image in JPEG method. The image compression method is not limited to JPEG. The image compressed by the image compression section 37 is finally stored in a recording medium 50. The display controller 37 controls image display on the LCD device 29. The recording medium 50 includes a hard disk drive or a semiconductor memory device using a flash memory, such as SD card (registered trademark) and CompactFlash (registered trademark).
  • The pre-processor 31, the resolution adjustment section 33, the pixel-number converter 35, the image compression section 37, and the display controller 39 access the buffer memory 27 through the memory interface 40 to appropriately read data before each process and write data after each process.
  • The controller 41 controls, for image signal processing, the pre-processor 31, the resolution adjustment section 33, the pixel-number converter 35, the image compression section 37, and the display controller 39. The controller 41 further controls the optical zoom controller 19 and the hand shake compensation controller 21 to control the action of the optical system, and controls the CCD driver 23 to control an output signal of the CCD 13.
  • The zoom action of the imaging apparatus 10 will be described below. Then, particularly the zoom action in a pixel-number conversion mode will be described in detail. As used herein, the pixel-number conversion mode shall mean a operation mode to record an image to the recording medium 50 with smaller number of pixels than that of the CCD 13. For example, in the pixel-number conversion mode, when the CCD 13 has the number of pixels of eight million, the image of three million pixels is recorded in the recording medium. In the pixel-number conversion mode, an image data size becomes small, and thus the large number of images can be recorded in the recording medium. Therefore, this mode is useful for a user who does not demand the high-quality image.
  • The imaging apparatus 10 has optical zoom and electronic zoom for the zoom function. The optical zoom is achieved by moving the zoom lens 11 b in, the optical axis direction to enlarge and reduce the image size imaged on the CCD 13. The electronic zoom is achieved by applying image processing by the pixel-number converter 35, such as pixel interpolation and pixel skipping, to the image obtained by the CCD 13, thereby enlarging and reducing the image size.
  • Particularly, as shown in FIGS. 2A and 2B, the imaging apparatus 10 activates the electronic zoom in a region of a zoom magnification on a wide angle side (low zoom magnification), and the optical zoom in a region of zoom magnification on a telescopic side (high zoom magnification).
  • In the present specification, “optical zoom actuation” shall mean a state in which the zoom lens 11 b is moved in changing the zoom magnification (=optical zoom magnification×electronic zoom magnification), and “optical zoom stop” shall mean a state in which the zoom lens 11 b is not moved in changing the zoom magnification. Accordingly, even in the state of the optical zoom action, the zoom lens 11 c remains to be stopped unless a user changes the zoom magnification.
  • Electronic zoom actuation shall mean that the pixel-number converter 35 is actuated, and electronic zoom stop shall mean that the pixel-number converter 35 is stopped. In the electronic zoom stop, the pixel-number converter 35 performs neither the enlargement nor reduction of the image, and thus the electronic zoom magnification becomes x1. In the state of the electronic zoom actuation, the pixel-number converter 35 operates even if a user does not change the zoom magnification.
  • Then, the zoom action of the imaging apparatus 10 will be described in detail with reference to FIGS. 3 and 4. In the following description, the zoom action is described under the following conditions. The CCD 13 has the number of pixels of eight million. The pixel-number conversion mode is a mode in which the image is recorded with the number of pixels of three million in the recording medium 50. The zoom magnification is changed from the wide angle side toward the telescopic side. In FIGS. 3 and 4, an image X indicates the image imaged on the CCD 13, and an image Y indicates the image (recorded image) recorded in the recording medium 50.
  • First the electronic zoom action will be described with reference to FIGS. 3A to 3C.
  • When neither the optical zoom nor the electronic zoom is actuated, the three-million-pixel image Y is generated from the eight-million-pixel image X on the CCD 13 as shown in FIG. 3A. That is, in the case of FIG. 3A, the image Y is obtained by electronically enlarging the whole of image X imaged on the CCD 13, 0.62 times (=√{square root over ( )} (3,000,000/8,000,000)). Thus, in the pixel-number conversion mode, the process (variable power) to reduce the original image X electrically to be of 0.62 times size, even in the state in which the zoom action is not actuated. The reducing process is performed by the pixel-number converter 35. The state shown in FIG. 3A corresponds to that at a point P0 of FIGS. 2A and 2B.
  • In the electronic zoom, as shown in FIGS. 3B and 3C, when the zoom magnification is increased from the state of FIG. 3A, the image of a region R which is a part of the image X obtained by CCD 13 is cut out. The pixel-number conversion process of converting the image into the three-million-pixel image is applied to the cutout image of the region R. The cutting process of the image may be performed prior to any one of the processes performed by the pre-processor 31, the resolution adjustment section 33, the pixel-number converter 35, the image compression section 37, and the display controller 39.
  • Thus, in the electronic zoom, the whole pixel region on the CCD 13 is not used, but only a part of the region including the central portion of the CCD 13 is used. The electronic zoom magnification is determined according to the size of the cutout region (namely, usage region of CCD) R, and it is increased by decreasing the size of the cutout region R.
  • FIG. 3B is a diagram showing a state when the electronic zoom magnification is between 0.62 and 1, that is, a state at a point P2 of FIGS. 2A and 2B. FIG. 3C is a diagram showing a state when the electronic zoom magnification reaches the maximum value (x1), i.e., a state at a point P1 of FIGS. 2A and 2B. The size of the cutout region R of FIG. 3B is smaller than that of the whole of image X. Thus, a pixel-number conversion rate of FIG. 3B is larger than that of FIG. 3A, in converting the image into the three-million-pixel image Y. Accordingly, when compared with the case of FIG. 3A, the further enlarged image Y is obtained in the case of FIG. 3B.
  • As shown in FIG. 3C, when the electronic zoom magnification becomes the maximum (x1), the size of the cutout region R becomes the minimum. In this time, the image of the region R in the image X on the CCD has size equal to that of the recorded image Y. That is, the pixel-number conversion rate becomes 1.
  • Then, the optical zoom action will be described with reference to FIGS. 4A to 4C. As shown in FIGS. 2A and 2B, in the first embodiment, when the electronic zoom reaches the limit thereof, the zoom is switched from the electronic zoom to the optical zoom. That is, after the electronic zoom magnification becomes the maximum (x1) (see FIGS. 3C and 4A), when the zoom magnification is increased further with the zoom lever 25 a, the optical zoom is actuated.
  • In the optical zoom, the zoom magnification is increased by moving the zoom lens 11 b, which enlarges image size of a subject A imaged on the CCD 13. The image of the region R is cut out from the whole of image X on the CCD 13, and the cutout image is set to the recorded image. In this case, the pixel conversion process is not performed. Thus, in the optical zoom, while the size of the image imaged on the CCD 13 is optically changed, the image of the region R (size of the minimum cutout region) is electronically cut out from the image X on the CCD 13 to produce the recorded image Y.
  • FIG. 5 is a flowchart showing the zoom action of the imaging apparatus 10. When a user operates the zoom lever 25 a to start the zoom action, it is determined whether the total zoom magnification is lower than 1 at that time (S11). It is noted that the total zoom magnification shall mean a value defined by the product of the optical zoom magnification and the electronic zoom magnification. Hereinafter the total zoom magnification is simply referred to as “zoom magnification.” When the zoom magnification is lower than 1, the electronic zoom is actuated and the optical zoom is stopped (S12). On the other hand, when the zoom magnification is not lower than 1, the optical zoom is actuated and the electronic zoom is stopped (S13). The above steps are repeated until a user performs a zoom stop operation (S14).
  • As described above, according to the first embodiment, in the zoom action of the pixel-number conversion mode, the electronic zoom is activated when the zoom magnification is low. In the electronic zoom, the recorded image Y is generated based on a part of region of the image X, which includes a center part of the image X imaged on the CCD. Therefore, when the zoom magnification is low, the region of the peripheral portion of the image X which includes the image imaged by the lens peripheral portion, is not used. Accordingly the affect of the performance degradation caused in the lens peripheral portion can be eliminated in the recorded image Y, and the degradation of the image quality can be prevented in the recorded image Y.
  • Second Embodiment
  • In the zoom action of the first embodiment, as shown in FIGS. 2A and 2B, the electronic zoom is actuated on the wide angle side, and it is switched to the optical zoom at the end point of the electronic zoom, i.e., in the point at which the electronic zoom magnification reaches 1. However, the electronic zoom does not exert so good performance near the magnification of 1. Therefore, in a second embodiment, the zoom function performed by the electronic zoom is not used in the region near the magnification of 1. The zoom action of the second embodiment will specifically be described with reference to FIGS. 6A and 6B.
  • In FIGS. 6A and 6B, when the zoom magnification (=optical zoom magnification×electronic zoom magnification) is lower than a predetermined value α1, only the electronic zoom is actuated. On the other hand, when the zoom magnification is not lower than 1, only the optical zoom is actuated. When the zoom magnification is located between α1 and 1 (between the point P1 and the point P2), the electronic zoom and the optical zoom are actuated with the electronic zoom magnification fixed to α1.
  • The predetermined value α1 is set at a value close to 1 (for example, 0.8). When the zoom magnification reaches 1, the electronic zoom magnification and the optical zoom magnification are set at 1, respectively. The relationship of α1×α2=1 holds in FIGS. 6A and 6B.
  • The zoom action of the second embodiment will be described below with reference to a flowchart of FIG. 7. When a user operates the zoom lever 25 a to start the zoom action, it is determined whether or not the zoom magnification (=optical zoom magnification×electronic zoom magnification) at that time is lower than α1 (S31). When the zoom magnification is lower than α1, the electronic zoom is actuated and the optical zoom is stopped (S34). On the other hand, when the zoom magnification is not lower than α1, it is further determined whether the zoom magnification is lower than 1 (S32). When the zoom magnification is lower than 1, the optical zoom is actuated while the electronic zoom is actuated at fixed magnification (α1) (S33). When the zoom magnification is not lower than 1, the optical zoom is actuated and the electronic zoom is stopped (S35). The above steps are repeated until a user performs the zoom stop operation (S36).
  • According to the method of the second embodiment, use of the magnification region (α1 to 1 power) which provides no good performance is avoided in the electronic zoom. Thus the good zoom image is obtained in the whole region of the zoom magnification.
  • Third Embodiment
  • The present embodiment describes an example in that, in addition to the above embodiment, the electronic zoom actuation region is enlarged, and a range in which both the electronic zoom and the optical zoom are used is enlarged.
  • The zoom action of the third embodiment will specifically be described with reference to FIGS. 8A and 8B. In FIGS. 8A and 8B, the electronic zoom is actuated from a region having low zoom magnification (=optical zoom magnification×electronic zoom magnification) to a region having high zoom magnification. The optical zoom is stopped when the zoom magnification is lower than a predetermined value β, and is actuated when the zoom magnification is not lower than β. The electronic zoom is stopped when the electronic zoom magnification reaches 1 (at point P2).
  • FIG. 9 is a flowchart showing the zoom action of the third embodiment. When a user operates the zoom lever 25 a to start the zoom action, it is determined whether the zoom magnification (=optical zoom magnification×electronic zoom magnification) at that time is lower than β (S51). When the zoom magnification is lower than β, the electronic zoom is actuated and the optical zoom is stopped (S52). On the other hand, when the zoom magnification is not lower than β, it is further determined whether the zoom magnification is lower than γ (S53). When the zoom magnification is lower than γ, the electronic zoom is actuated along with the optical zoom (S54). When the zoom magnification is not lower than γ, the optical zoom is actuated and the electronic zoom is stopped (S55). The above steps are repeated until a user performs the zoom stop operation (S56).
  • Thus, initially using only the electronic zoom on the wide angle side (low zoom magnification side) can prevent the image quality degradation caused by the performance degradation of the lens peripheral portion. Additionally, the region where both the electronic zoom and the optical zoom are used is provided, a changing point between the electronic zoom and the optical zoom becomes unclear, which improves the usability for a user in the zoom operation.
  • Fourth Embodiment
  • In the above embodiments, the imaging apparatus 10 includes the LCD device 29 (see FIG. 1). The LCD device 29 displays a through image which is an image (moving image) is inputted to the CCD 13 and outputted directly from the CCD 13, a shot still image, setting information, and the like. A user determines picture composition of the subject by viewing the through image displayed on the LCD device 29.
  • Usually the CCD 13 has a “draft drive mode” which outputs signals having number of lines obtained by skipping some lines in all lines, and a “high-resolution mode” which outputs a signal having the number of lines larger than that of the draft drive mode.
  • The pixel number of the LCD device 29 is smaller compared to that of the CCD 13 or the recorded image. Therefore, during the through image display, usually the CCD 13 is driven in the draft drive mode to output the image signals for the number of lines only necessary for the display of the LCD device 29.
  • On the other hand, when a user performs the zoom operation to actuate the electronic zoom during the through image display, the region R is cut out from the image X imaged on the CCD 13 to generate the recorded image Y. Therefore, it is necessary to display the image corresponding to the recorded image Y as the through image on the LCD device 29.
  • However, the CCD 13 is driven in the draft drive mode during the through image display, and thus the CCD 13 outputs an image Z1 having the number of lines (for example, 3264 H×204V) only necessary for the display of the LCD device 29 as shown in FIG. 10. Therefore, in this state, when a region R1 corresponding to the region R is cut out from the image Z1, the size (for example, 2048 H×128V) of the cutout image Z2 becomes smaller than the image size (for example, 720 H×240V) necessary for an image for display S of the LCD device 29. As a result, the quality of the image displayed on the LCD device 29 is degraded.
  • In this invention, the driving mode of the CCD 13 is changed from the draft drive mode to the high-resolution mode when the electronic zoom is actuated to generate the process of cutting out the image. In the high-resolution mode, the CCD 13 outputs the image having the size larger than that of the draft drive mode. For example, as shown in FIG. 11, in the high-resolution mode, the CCD 13 outputs the CCD output image Z1 having the number of lines (408V) which is twice the number of line (204V) of the draft drive mode. In this case, even if the region R1 is cut out from the image Z1, the size (2048 H by 260V) of the cutout image Z2 becomes larger than the image size (720 H by 240V) necessary for the display image S, preventing the degradation of the image display on the LCD device 29.
  • The size of the CCD output image Z1 in the high-resolution mode is determined according to the size of the cutout region R.
  • In a mode for recording the image imaged by the CCD 13 in the recording medium 50 with the same number of pixels as that of the CCD 13, the CCD 13 is driven in the draft drive mode, and the driving mode may be changed to the high-resolution mode when a user selects the pixel-number conversion mode.
  • Fifth Embodiment
  • In the above embodiments, the imaging apparatus 10 has means for compensating hand shake including the hand shake compensation lens 11 c and the hand shake compensation controller 21 (see FIG. 1).
  • The hand shake compensation lens 11 c is moved relatively to the CCD 13 according to a direction and amount of the hand shake to suppress the image distortion caused by the hand shake.
  • FIGS. 12A and 12B are a diagram showing a positional relationship between the CCD 13 and an imaging region Q which is formed in the same plane as imaging plane of the CCD 13 by the optical system 11. The imaging region Q moves as the hand shake compensation lens 11 c moves as shown in FIGS. 12A and 12B.
  • As shown in FIG. 12A, usually the moving range of the hand shake compensation lens 11 c is set such that the imaging region Q includes the whole imaging region of the CCD 13. Therefore, when the imaging region of the CCD 13 is large, a moving range D1 of the imaging region Q becomes small.
  • As shown in the above embodiments, during the electronic zoom action, the region R in the image X imaged on the CCD 13 is cut out to generate the recorded image Y. That is, the whole region in the CCD 13 is not required during the electronic zoom action, but only the cutout region R is required. Therefore, in the electronic zoom action, it is necessary that the hand shake compensation lens 11 c cover at least the region R of the CCD 13. For this reason, a maximum moving distance D2 of the imaging region Q as shown in FIG. 12B becomes larger than a distance D1 in the case where the cutout process is not performed as shown in FIG. 12A. As a result, a maximum moving distance of the hand shake compensation lens 11 c can also be increased. That is, when the cutout process is performed in the electronic zoom action, the maximum value of the moving distance of the hand shake compensation lens 11 c can be set larger.
  • Therefore, in a fifth embodiment, when the cutout process occurs in the electronic zoom action, a setting value of the maximum moving distance of the hand shake compensation lens 11 c is set at a setting value corresponding to a value according to the cutout region R. Thus, in the electronic zoom action, when the cutout process occurs, the hand shake compensation range can be enlarged. As a result, the hand shake can be compensated more strongly and the image quality degradation caused by the hand shake can be effectively reduced.
  • Sixth Embodiment
  • FIG. 13 shows another configuration of an imaging apparatus according to the invention. An imaging apparatus of the sixth embodiment has the same configuration of the apparatus 10 shown in FIG. 1, including an optical zoom control mechanism 19 b and a zoom setting ring 25 c instead of the optical zoom controller 19 and the zoom lever 25 a shown in FIG. 1, respectively. The lens barrel of the sixth embodiment can be detachably attached to a main body of the imaging apparatus.
  • The optical zoom control mechanism 19 b is a mechanical mechanism which can move the zoom lens 11 b in the optical axis direction, and is provided inside the lens barrel. The zoom setting ring 25 c is a ring-shape mechanism which is rotatably mounted around the lens barrel. The optical zoom control mechanism 19 b moves the zoom lens 11 b in the optical axis direction in conjunction with the mechanical rotation of the zoom setting ring 25 c by a user's manual operation.
  • The zoom action of the imaging apparatus 10 b having the above structure will be described below. The imaging apparatus 10 b of the sixth embodiment has two imaging modes (modes 1 and 2) for the zoom, and the two modes can be changed by a mode select switch 25 b. The two modes will be described with reference to FIG. 14A.
  • <Mode 1>
  • The whole of image X on the CCD 13 is reduced at a predetermined pixel-number conversion rate to generate the recorded image Y. The predetermined pixel-number conversion rate is determined based on a ratio of the number of pixels of the CCD 13 and the number of pixels of the recorded image. For example, when the number of pixels of the CCD 13 is eight million while that of the recorded image is three million, the pixel-number conversion rate becomes 0.62. The zoom function is mainly realized by the optical zoom. That is, the size of the image imaged on the CCD 13 is varied by moving the zoom lens 11 b in conjunction with the user's operation of the zoom setting ring 25 c, realizing the zoom function.
  • <Mode 2>
  • Mode 2 is a mode in which only a region R is used. That is, the region R which is a part of the image X on the CCD 13 is cut out. The recorded image Y is generated from the cutout image. In this case, the pixel-number conversion rate becomes 1. The zoom function is realized by varying the size of the image imaged on the CCD 13 by the optical zoom.
  • In Mode 1, the recorded image is generated using all pixels in the whole region of the CCD 13. On the other hand, in Mode 2, the recorded image is generated using the pixels of the region R which is a part of the pixels on the CCD 13 and includes the central portion of the CCD 13. Thus, Mode 1 differs from Mode 2 in the region on the CCD 13 which is used to generate the recorded image. A user can select the two modes with the mode select switch 25 b. When the modes are switched with the mode select switch 25 b, the controller 41 outputs a control signal to the CCD driver 23 so as to change the size of the region on the CCD 13 which is used to generate the recorded image.
  • According to the sixth embodiment, the central portion of the CCD 13 is used in Mode 2, and thus the optical zoom region is shifted toward the telescopic side in Mode 2, compared to Mode 1, as shown in FIG. 14B. The further wide angle image can be shot by switching the mode from Mode 2 to Mode 1 at the end of the wide angle side in Mode 2.
  • Seventh Embodiment
  • FIG. 15 shows still another configuration of an imaging apparatus according to the invention. An imaging apparatus of the present embodiment has the same configuration of the imaging apparatus 10 b shown in FIG. 13, and further outputs positional information on the zoom lens 11 b from the optical zoom control mechanism 19 b to the controller 41.
  • The zoom action of the imaging apparatus 10 c will be described below with reference to FIGS. 16A and 16B. In the present embodiment, both the electronic zoom and the optical zoom are actuated at the wide angle side, and only the optical zoom is actuated at the other position.
  • Specifically, the position of the zoom lens 11 b is determined. The electronic zoom is stopped when the position of the zoom lens 11 b is determined to be more than a predetermined value (P2), while the electronic zoom is actuated when the position of the zoom lens 11 b is determined not to be more than the predetermined value (P2).
  • More specifically, the electronic zoom is actuated when the optical zoom magnification is in a range from 1 to 2. The size of the region R is linearly changed in conjunction with the optical zoom magnification as follows. The whole region of the CCD 13 is used when the optical zoom magnification is 1, while the used region R becomes minimum when the optical zoom magnification is 2.
  • According to the present embodiment too, over a wide range of the variable range of the optical zoom magnification, the imaging can be performed using the central portion of the CCD 13, so that image quality degradation caused by the performance degradation at the lens peripheral portion can be prevented.
  • In the present embodiment, the electronic zoom can automatically be switched between the actuation and the stop, using the imaging apparatus of which zoom magnification can be set by the setting ring mounted to the lens barrel.
  • INDUSTRIAL APPLICATION
  • The invention can be applied to the imaging apparatus such as a digital still camera having zoom functions of both electronic zoom and optical zoom.
  • Although the present invention has been described in connection with specified embodiments thereof, many other modifications, corrections and applications are apparent to those skilled in the art. Therefore, the present invention is not limited by the disclosure provided herein but limited only to the scope of the appended claims. The present disclosure relates to subject matter contained in Japanese Patent Application No. 2005-208601 filed on Jul. 19, 2005, which is expressly incorporated herein by reference in its entirety.

Claims (12)

1. An imaging apparatus comprising:
an optical system operable to collect optical information from a subject;
an imaging device operable to convert the optical information from the optical system into an electric signal to generate image data;
an optical zoom section operable to move the optical system to enlarge and/or reduce an image imaged on the imaging device;
an electronic zoom section operable to electronically enlarge and/or reduce the image data generated by the imaging device; and
a controller operable to control the optical zoom section and the electronic zoom section,
wherein, in an imaging mode in which the image generated by the imaging device is recorded with the number of pixels lower than that of the imaging device, the controller controls the zoom sections so as to actuate the electronic zoom section while preventing actuation of the optical zoom section when a total zoom magnification is not more than a predetermined value.
2. The imaging apparatus according to claim 1, wherein the controller controls the zoom sections so as to actuate only the optical zoom section when the total zoom magnification is more than the predetermined value.
3. The imaging apparatus according to claim 1, wherein the controller controls the electronic zoom section so as not to use magnification of the electronic zoom section in a predetermined range in the vicinity of 1.
4. The imaging apparatus according to claim 1, wherein the controller controls the zoom sections so as to actuate both the optical zoom section and the electronic zoom section when the total zoom magnification is more than the predetermined value.
5. An imaging apparatus comprising:
an optical system operable to collect optical information from a subject;
an imaging device having a plurality of pixel lines and operable to convert the optical information from the optical system into an electric signal to generate image data;
a display section operable to convert an image read from the imaging device into a through image to display the through image;
an electronic zoom section operable to electronically enlarge and/or reduce the image data generated by the imaging device; and
a controller operable to switch a driving mode of the imaging device,
wherein a plurality of modes are provided as the driving mode, the number of pixel lines of the image data outputted from the image device is different in each mode, and
in an imaging mode in which the image generated by the imaging device is recorded with the number of pixels lower than that of the imaging device, the controller changes the driving mode according to enlarging magnification and/or reducing magnification of the electronic zoom section.
6. An imaging apparatus comprising:
an optical system operable to collect optical information from a subject;
an imaging device having a plurality of pixel lines and operable to convert the optical information from the optical system into an electric signal to generate image data;
a display section operable to convert an image read from the imaging device into a through image to display the through image; and
a controller operable to switch driving mode of the imaging device,
wherein the driving mode includes a first mode which outputs an image signal for a predetermined number of pixel lines of the imaging device, and a second mode which outputs a image signal for the number of pixel lines larger than that of the first mode, and
the controller sets the drive mode at the first mode in an imaging mode in which the image generated by the imaging device is recorded with the number of pixels equal to that of the imaging device, and sets the drive mode at the second mode in an imaging mode in which the image generated by the imaging device is recorded with the number of pixels less than that of the imaging device.
7. An imaging apparatus comprising:
an optical system operable to collect optical information from a subject;
an imaging device operable to convert the optical information from the optical system into an electric signal to generate image data;
a hand shake compensation section operable to compensate a position of the optical system according to hand shake;
an image processor operable to process the image data generated by the imaging device to generate a recorded image to be recorded in a recording medium; and
a controller operable to control the hand shake compensation section,
wherein the controller changes a maximum value of a compensation amount of the hand shake compensation section according to a size of a region on the imaging device from which the image data to be processed by the image processor is generated.
8. An imaging apparatus comprising:
an optical system operable to collect optical information from a subject;
an imaging device operable to convert the optical information from the optical system into an electric signal to generate image data;
a zoom setting ring operable to set zoom magnification of the optical system;
an optical system moving mechanism operable to move the optical system according to the setting on the zoom setting ring;
an image processor operable to process the image data generated by the imaging device to generate a recorded image to be recorded in a recording medium; and
a region switching section operable to switch a region on the imaging device from which the image data to be processed by the image processor is generated.
9. The imaging apparatus according to claim 8, wherein the optical system, the zoom setting ring, and the optical system moving mechanism are arranged in a lens barrel which is detachably attached to a main body of the imaging apparatus.
10. An imaging apparatus comprising:
an optical system operable to collect optical information from a subject;
an imaging device operable to convert the optical information from the optical system into an electric signal to generate image data;
a zoom setting ring operable to set zoom magnification of the optical system;
an optical system moving mechanism operable to move the optical system according to the setting on the zoom setting ring;
an electronic zoom section operable to electronically enlarge and/or reduce the image data generated by the imaging device; and
a controller operable to set enlarging magnification and/or reducing magnification of the electronic zoom section according to the zoom magnification set by the zoom setting ring.
11. The imaging apparatus according to claim 10, wherein the optical system, the zoom setting ring, and the optical system moving mechanism are arranged in a lens barrel which is detachably attached to a main body of the imaging apparatus.
12. The imaging apparatus according to claim 10, wherein a region on the imaging device from which the image data to be processed by the electronic zoom section is generated is variable according to the enlarging magnification and/or reducing magnification set by the controller.
US11/489,700 2005-07-19 2006-07-19 Imaging apparatus having optical zoom and electronic zoom functions Expired - Fee Related US7936383B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005208601A JP2007028283A (en) 2005-07-19 2005-07-19 Image sensing device
JP2005-208601 2005-07-19

Publications (2)

Publication Number Publication Date
US20070053068A1 true US20070053068A1 (en) 2007-03-08
US7936383B2 US7936383B2 (en) 2011-05-03

Family

ID=37788442

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/489,700 Expired - Fee Related US7936383B2 (en) 2005-07-19 2006-07-19 Imaging apparatus having optical zoom and electronic zoom functions

Country Status (2)

Country Link
US (1) US7936383B2 (en)
JP (1) JP2007028283A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090167896A1 (en) * 2007-12-28 2009-07-02 Canon Kabushiki Kaisha Image pickup apparatus
US20100157102A1 (en) * 2008-12-24 2010-06-24 Sanyo Electric Co., Ltd. Electronic camera
US20100245630A1 (en) * 2009-03-27 2010-09-30 Casio Computer Co., Ltd. Imaging apparatus having a zoom function
US20130229502A1 (en) * 2011-05-12 2013-09-05 Olympus Medical Systems Corp. Endoscope system
US20140104460A1 (en) * 2012-10-12 2014-04-17 Olympus Corporation Imaging apparatus
US8982246B2 (en) 2010-10-22 2015-03-17 Panasonic Intellectual Property Management Co., Ltd. Imaging apparatus and camera body having optical zoom function and digital zoom function
US9325899B1 (en) * 2014-11-13 2016-04-26 Altek Semiconductor Corp. Image capturing device and digital zooming method thereof
JP2016197923A (en) * 2016-08-17 2016-11-24 オリンパス株式会社 Display device and operation method of display device
US20180271603A1 (en) * 2015-08-30 2018-09-27 M.S.T. Medical Surgery Technologies Ltd Intelligent surgical tool control system for laparoscopic surgeries

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5061631B2 (en) 2007-02-09 2012-10-31 ソニー株式会社 Imaging apparatus and imaging method
JP4853385B2 (en) * 2007-05-31 2012-01-11 パナソニック株式会社 Camera with conversion lens mode
JP5089372B2 (en) * 2007-12-28 2012-12-05 キヤノン株式会社 Imaging apparatus and control method thereof
JP4995854B2 (en) 2009-03-11 2012-08-08 富士フイルム株式会社 Imaging apparatus, image correction method, and image correction program
JP4940291B2 (en) * 2009-12-21 2012-05-30 キヤノン株式会社 Imaging apparatus and control method thereof
JP5615031B2 (en) * 2010-05-11 2014-10-29 キヤノン株式会社 Imaging device
JP5706654B2 (en) * 2010-09-16 2015-04-22 オリンパスイメージング株式会社 Imaging device, image display method and program
JP6004785B2 (en) * 2012-06-29 2016-10-12 キヤノン株式会社 Imaging apparatus, optical apparatus, imaging system, and control method
JP5992561B2 (en) * 2015-02-27 2016-09-14 オリンパス株式会社 Photographing equipment and photographing method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4711897A (en) * 1985-04-24 1987-12-08 Smithkline Beckman Corporation Animal feed methods and compositions using cysteamine
US20020028076A1 (en) * 2000-09-05 2002-03-07 Toshiyuki Okubo Image processing method and apparatus and computer-readable storage medium
US20020075395A1 (en) * 1996-06-19 2002-06-20 Hiroto Ohkawara Lens control device with operator and signal control
US20020097325A1 (en) * 1997-01-20 2002-07-25 Yukihiro Tanizoe Digital camera with interchangeable displays
US20040174444A1 (en) * 2003-03-04 2004-09-09 Yoshiki Ishii Signal processing apparatus and image data generation apparatus
US6853808B1 (en) * 2003-08-13 2005-02-08 Sankyo Seiki Mfg. Co., Ltd. Camera and portable equipment with camera
US20050140990A1 (en) * 2003-10-15 2005-06-30 Akira Ueno Image processing apparatus and method and image data display method for digital camera
US7059041B2 (en) * 2000-08-14 2006-06-13 United Monolithic Semiconductors Gmbh Methods for producing passive components on a semiconductor substrate
US7116364B2 (en) * 2002-10-29 2006-10-03 Hewlett-Packard Development Company, L.P. Method and apparatus for maintaining a consistent effective focal length in a digital camera
US7450155B2 (en) * 2004-10-26 2008-11-11 Konica Minolta Photo Imaging, Inc. Image capturing apparatus

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3429061B2 (en) * 1994-05-19 2003-07-22 富士写真フイルム株式会社 Electronic still camera
JP3588409B2 (en) * 1997-01-20 2004-11-10 松下電器産業株式会社 Display switching type digital camera
JPH11252500A (en) * 1998-03-03 1999-09-17 Olympus Optical Co Ltd Electronic image-pickup device
JP3593271B2 (en) * 1998-12-15 2004-11-24 シャープ株式会社 Electronic camera device
JP2000231149A (en) 1999-02-10 2000-08-22 Nikon Corp Camera
JP2000312309A (en) * 1999-04-28 2000-11-07 Matsushita Electric Ind Co Ltd Image pickup device
JP2001045364A (en) * 1999-07-30 2001-02-16 Fuji Photo Film Co Ltd Digital camera and operation control method therefor
JP3767367B2 (en) * 2000-10-30 2006-04-19 松下電器産業株式会社 Imaging device
JP2005151029A (en) * 2003-11-13 2005-06-09 Olympus Corp Display method of image data
EP1702766B1 (en) * 2003-12-24 2016-10-12 Dai Nippon Printing Co., Ltd. Thermal transfer sheet and method for producing same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4711897A (en) * 1985-04-24 1987-12-08 Smithkline Beckman Corporation Animal feed methods and compositions using cysteamine
US20020075395A1 (en) * 1996-06-19 2002-06-20 Hiroto Ohkawara Lens control device with operator and signal control
US20020097325A1 (en) * 1997-01-20 2002-07-25 Yukihiro Tanizoe Digital camera with interchangeable displays
US7059041B2 (en) * 2000-08-14 2006-06-13 United Monolithic Semiconductors Gmbh Methods for producing passive components on a semiconductor substrate
US20020028076A1 (en) * 2000-09-05 2002-03-07 Toshiyuki Okubo Image processing method and apparatus and computer-readable storage medium
US7116364B2 (en) * 2002-10-29 2006-10-03 Hewlett-Packard Development Company, L.P. Method and apparatus for maintaining a consistent effective focal length in a digital camera
US20040174444A1 (en) * 2003-03-04 2004-09-09 Yoshiki Ishii Signal processing apparatus and image data generation apparatus
US6853808B1 (en) * 2003-08-13 2005-02-08 Sankyo Seiki Mfg. Co., Ltd. Camera and portable equipment with camera
US20050140990A1 (en) * 2003-10-15 2005-06-30 Akira Ueno Image processing apparatus and method and image data display method for digital camera
US7450155B2 (en) * 2004-10-26 2008-11-11 Konica Minolta Photo Imaging, Inc. Image capturing apparatus

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8077225B2 (en) * 2007-12-28 2011-12-13 Canon Kabushiki Kaisha Image pickup apparatus
US20090167896A1 (en) * 2007-12-28 2009-07-02 Canon Kabushiki Kaisha Image pickup apparatus
US8836821B2 (en) * 2008-12-24 2014-09-16 Sanyo Electric Co., Ltd. Electronic camera
US20100157102A1 (en) * 2008-12-24 2010-06-24 Sanyo Electric Co., Ltd. Electronic camera
US20100245630A1 (en) * 2009-03-27 2010-09-30 Casio Computer Co., Ltd. Imaging apparatus having a zoom function
US8363126B2 (en) * 2009-03-27 2013-01-29 Casio Computer Co., Ltd. Imaging apparatus having a zoom function
US8982246B2 (en) 2010-10-22 2015-03-17 Panasonic Intellectual Property Management Co., Ltd. Imaging apparatus and camera body having optical zoom function and digital zoom function
US9030541B2 (en) * 2011-05-12 2015-05-12 Olympus Medical Systems Corp. Endoscope system
US20130229502A1 (en) * 2011-05-12 2013-09-05 Olympus Medical Systems Corp. Endoscope system
US20140104460A1 (en) * 2012-10-12 2014-04-17 Olympus Corporation Imaging apparatus
US9225908B2 (en) * 2012-10-12 2015-12-29 Olympus Corporation Imaging apparatus
US9325899B1 (en) * 2014-11-13 2016-04-26 Altek Semiconductor Corp. Image capturing device and digital zooming method thereof
US20180271603A1 (en) * 2015-08-30 2018-09-27 M.S.T. Medical Surgery Technologies Ltd Intelligent surgical tool control system for laparoscopic surgeries
US11638615B2 (en) * 2015-08-30 2023-05-02 Asensus Surgical Us, Inc. Intelligent surgical tool control system for laparoscopic surgeries
JP2016197923A (en) * 2016-08-17 2016-11-24 オリンパス株式会社 Display device and operation method of display device

Also Published As

Publication number Publication date
JP2007028283A (en) 2007-02-01
US7936383B2 (en) 2011-05-03

Similar Documents

Publication Publication Date Title
US7936383B2 (en) Imaging apparatus having optical zoom and electronic zoom functions
JP4250437B2 (en) Signal processing apparatus, signal processing method, and program
US8154623B2 (en) Image pickup apparatus and control method thereof
US7800681B2 (en) Image pickup device capturing a plurality of images that have different viewing angles
JP4262263B2 (en) Imaging apparatus and control method thereof
JP4596986B2 (en) Imaging device
US7999969B2 (en) Imaging device, printing system, printing device, image printing method, and storage medium having stored thereon program controlling the image printing method
JP5043635B2 (en) Imaging device
US20030223007A1 (en) Digital photographing device
JP4596988B2 (en) Imaging device
US20060221203A1 (en) Camera apparatus
US7477297B2 (en) Combined optical and digital zoom
JP4553798B2 (en) Imaging device
CN114342351A (en) Image capture mode adaptation
JP4596987B2 (en) Imaging device
US20040001152A1 (en) Digital image data correction apparatus, digital image data correction method and digital image pickup apparatus
JP2007124377A (en) Image data output control apparatus
JP4853385B2 (en) Camera with conversion lens mode
JP4043595B2 (en) Imaging device
JP2007336257A (en) Imaging device having focus-assisting function
JP4522956B2 (en) CAMERA SYSTEM CONTROL DEVICE, ITS PROGRAM, COMPUTER-READABLE RECORDING MEDIUM, CAMERA SYSTEM, AND CAMERA SYSTEM CONTROL METHOD
JP3746056B2 (en) Image enlargement apparatus and method
JP4266807B2 (en) Imaging apparatus and electronic zooming method
JP4793639B2 (en) Movie shooting device and movie shooting program
JP2021034866A (en) Display control device and control method therefor

Legal Events

Date Code Title Description
AS Assignment

Owner name: MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YAMAMOTO, YASUTOSHI;NAKAYAMA, MASAAKI;FUSA, SHINOBU;AND OTHERS;REEL/FRAME:018496/0001

Effective date: 20061024

AS Assignment

Owner name: PANASONIC CORPORATION, JAPAN

Free format text: CHANGE OF NAME;ASSIGNOR:MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.;REEL/FRAME:021897/0534

Effective date: 20081001

Owner name: PANASONIC CORPORATION,JAPAN

Free format text: CHANGE OF NAME;ASSIGNOR:MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.;REEL/FRAME:021897/0534

Effective date: 20081001

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20230503