US20070036248A1 - Frequency offset estimator - Google Patents
Frequency offset estimator Download PDFInfo
- Publication number
- US20070036248A1 US20070036248A1 US11/581,480 US58148006A US2007036248A1 US 20070036248 A1 US20070036248 A1 US 20070036248A1 US 58148006 A US58148006 A US 58148006A US 2007036248 A1 US2007036248 A1 US 2007036248A1
- Authority
- US
- United States
- Prior art keywords
- frequency offset
- power
- symbol
- complex
- symbol sequence
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/0014—Carrier regulation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/0014—Carrier regulation
- H04L2027/0024—Carrier regulation at the receiver end
- H04L2027/0026—Correction of carrier offset
- H04L2027/003—Correction of carrier offset at baseband only
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/0014—Carrier regulation
- H04L2027/0044—Control loops for carrier regulation
- H04L2027/0046—Open loops
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/0014—Carrier regulation
- H04L2027/0044—Control loops for carrier regulation
- H04L2027/0063—Elements of loops
- H04L2027/0065—Frequency error detectors
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/0014—Carrier regulation
- H04L2027/0083—Signalling arrangements
- H04L2027/0089—In-band signals
- H04L2027/0093—Intermittant signals
Definitions
- the present invention relates to a frequency offset estimator for use in a receiver which demodulates a signal modulated in accordance with an orthogonal modulation scheme.
- the quasi-synchronous detection typically used as a detection method in landline mobile communications requires that a transmission carrier frequency matches a reference carrier frequency for quasi-synchronous detection of a receiver.
- a frequency offset Since the frequency offset, if any, causes the phase of a detected signal to rotate, the signal cannot be correctly demodulated.
- AFC Automatic Frequency Control
- the AFC estimates a frequency offset in carrier frequency between the transmission side and reception side to control the frequencies of oscillators.
- the AFC also corrects demodulated signals for the rotated phase caused by the frequency offset.
- a frequency offset estimator for use in the AFC relies on the differential detection as can be seen in FIG. 2 in Laid-open Japanese Patent Application No. 8-213933, “Characteristics of 1 ⁇ 2 Symbol Differential Detection AFC Having Wide Frequency Pull-in Range,” Technical Report, RCS96-25, 1st-6th Paragraphs, June 1996, “Frequency Offset Estimating Method in Fading Transmission Path with Large Time Dispersion,” Technical Report, RCS98-81, 13th-18th paragraphs, September 1998, and the like.
- the differential detection type frequency offset estimator has a drawback that the accuracy of estimation is significantly degraded when the carrier to noise power ratio (CNR) is low.
- a CDMA (Code Division Multiple Access) communication system using the quasi-synchronous detection effectively utilizes a path diversity effect resulting from rake combination.
- required SNR Signal to Noise Power Ratio
- BER bit error rate
- a conventional frequency offset estimator will be described with reference to FIG. 1 .
- the differential detection frequency type offset estimator shown in FIG. 1 estimates a frequency offset from a difference in phase between symbols.
- complex multiplier 3 calculates a product of orthogonally detected complex demodulated symbol sequence 1 and a complex conjugate of a known symbol sequence 2 corresponding thereto.
- the product is fed to differential detector 15 as complex symbol sequence 13 .
- Differential detector 15 delays complex symbol sequence 13 by several symbols using delay circuit 16
- complex multiplier 3 calculates a product of a complex conjugate of the delayed symbol sequence, which have passed through delay circuit 16 , and original complex symbol sequence 13 .
- This product is provided to averaging circuit 17 for averaging, and then delivered as frequency offset estimate 18 .
- FFT Fast Fourier Transform
- This type of estimating method converts received symbols into a frequency domain by FFT, and determines a frequency indicative of a peak of a spectrum envelope as a frequency offset.
- This estimating method provides a higher accuracy of estimation at low CNR than the differential detection since the peak can be relatively easily found even if a received signal presents low CNR.
- the accuracy of estimation depends on the order of FFT.
- An article “FFT-Based Highly Accurate Frequency Determining Method,” Transactions-A of the Institute of Electronics, Information and Communication Engineers, Vol. J 70-A, No. 5, pp. 798-805 describes that FFT should be used at 32 points or more for estimating a frequency using FFT. However, the FFT cannot be used at 32 points or more in some occasions.
- known symbols transmitted in a predetermined order have been used for estimating a frequency offset.
- a section comprised of several symbols is called a “slot” which contains pilot symbols, data symbols, control symbols and the like.
- the pilot symbols refer to known symbols which are transmitted in a predetermined order. While the total number of symbols in a slot ranges from about fifteen to several hundreds, the number of pilot symbols is generally smaller than the number of data symbols.
- one slot includes only 16 pilot symbols at most even at a high bit rate.
- a frequency offset is estimated using sequential pilot symbols in one slot interval, a sufficient number of pilot symbols is not provided for utilizing the FFT.
- pilot symbols are used over a plurality of slot intervals, a frequency offset can be estimated in a narrower range.
- a peak detection type frequency offset estimating method has also been proposed, as can be seen in FIG. 1 in Laid-open Japanese Patent Application No. 9-200081.
- the proposed frequency offset estimating method which is for use in a direct code spread communication system, involves despreading baseband complex signals orthogonally detected using complex spread codes previously applied with frequency offsets which have an equal absolute value and different signs, averaging several symbols acquired at timings at which a maximal peak is detected, and converting the power value of the average to a frequency offset using a previously measured conversion table.
- This estimating method is considered to provide a better accuracy of estimation at low CNR than the differential detection type since it uses an average value of symbols which are despread by spreading codes applied with frequency offsets.
- a conversion table must be previously created for calculating a frequency offset.
- the conversion table it can be thought that if the characteristics of devices vary from one apparatus to another, a resulting frequency offset may be different depending on a particular apparatus, so that the creation of a conversion table, in general, is not an easy task.
- a memory is required for storing the conversion table.
- a correction may be required for suppressing variations in the characteristics of devices between apparatuses.
- the frequency offset estimator comprises complex multiplying means and frequency offset estimating means.
- the frequency offset estimating means includes a plurality of power sum calculating means and frequency offset control means.
- the complex multiplying means receives an orthogonally detected complex demodulated symbol sequence, and calculates a product of the complex demodulated symbol sequence and a conjugate complex number of a known symbol sequence corresponding to the complex demodulated symbol sequence to remove a symbol information component.
- Each of the power sum calculating means calculates a power sum for the complex demodulated symbol sequence based on an applied frequency offset after the symbol information component has been removed, and includes phase rotating means for changing the phase of the complex demodulated symbol sequence based on the frequency offset applied thereto after the symbol information component has been removed, N-symbol adding means for adding a plurality of complex symbols delivered from the phase rotating means, and M-power adding means for calculating the power of the complex symbol sum calculated by the N-symbol adding means, and adding the power of a plurality of symbols.
- the frequency offset control means controls a frequency offset applied to the power sum calculating means based on the power sums calculated by the plurality of power sum calculating means, estimates a frequency offset included in the complex demodulated symbol sequence, and delivers the estimated frequency offset.
- a frequency offset estimator comprises a plurality of complex multiplying means, maximal-ratio combining means, a plurality of power sum calculating means, and frequency offset control means.
- Each complex multiplying means receives an orthogonally detected complex demodulated symbol sequence, and calculates a product of the complex demodulated symbol sequence and a conjugate complex number of a known symbol sequence corresponding to the complex demodulated symbol sequence to remove a symbol information component included in each complex demodulated symbol sequence.
- the maximal-ratio combining means combines a plurality of complex demodulated symbol sequences, from which symbol information component has been removed, at a maximal-ratio to generate a single complex symbol sequence.
- the power sum calculating means and frequency offset control means are identical to the counterparts in the first aspect.
- a frequency offset estimator comprises a plurality of the frequency offset estimators in the first aspect, and a maximal-ratio combiner for combining frequency offset estimates of these frequency offset estimators at a maximal ratio.
- FIG. 1 is a block diagram illustrating a conventional frequency offset estimator based on the differential detection
- FIG. 2 is a block diagram illustrating a frequency offset estimator according to a first embodiment of the present invention
- FIG. 3 is a diagram showing the relationship between the power spectrum of a signal including a frequency offset fz and frequency offsets fa, fb, fc controlled by frequency offset control unit 7 ;
- FIG. 4 is a block diagram illustrating a specific example of frequency offset control unit 7 ;
- FIG. 5 is a block diagram illustrating a frequency offset estimator according to a second embodiment of the present invention.
- FIG. 6 is a block diagram illustrating a frequency offset estimator according to a third embodiment of the present invention.
- a frequency offset estimator uses an orthogonally detected complex demodulated symbol sequence 1 and a known symbol sequence 2 corresponding thereto as input signals, and comprises complex multiplier 3 and frequency offset estimating unit 11 .
- Frequency offset estimating unit 11 comprises power sum calculating units 20 a , 20 b , 20 c , and frequency offset control unit 7 .
- Power sum calculating unit 20 a comprises phase rotating unit 4 a , N-symbol adder 5 a , and M-power adder 6 a .
- power sum calculating units 20 b , 20 c comprise phase rotating units 4 b , 4 c ; N-symbol adders 5 b , 5 c ; and M-power adders 6 b , 6 c , respectively.
- complex multiplier 3 calculates a product of orthogonally detected complex demodulated symbol sequence 1 and a conjugate complex number of known symbol sequence 2 .
- This processing can remove a symbol information component included in the demodulated symbol sequence to extract complex symbol sequence 13 , the phase of which is rotated by a frequency offset.
- Used as known symbol sequence 2 may be pilot symbols which are generally used in a communication system based on the orthogonal modulation. Alternatively, in a direct code spread communication system, products of known spreading codes and pilot symbols can be used as known symbol sequence 2 . Conventionally, a frequency offset has been estimated by the delayed detection using this complex symbol sequence 13 .
- three different frequency offsets are applied to complex symbol sequence 13 , a plurality of resulting symbols are added, and the power is added over the plurality of symbols.
- the frequency offsets applied to complex symbol sequence 13 are appropriately controlled based on three power sums thus calculated. This processing is repeated several times to estimate a frequency offset.
- Phase rotating units 4 a , 4 b , 4 c change the phase of complex symbol sequence 13 based on frequency offsets fa, fb, fc, respectively, applied thereto from frequency offset control unit 7 .
- Frequency offsets fa, fb, fc are applied as the amount of phase change per symbol.
- Phase rotating unit 4 a rotates the phase of complex symbol sequence 13 by frequency offset fa in the negative direction.
- phase rotating units 4 b , 4 c rotate the phase of complex symbol sequence 13 by frequency offset fb, fc, respectively, in the negative direction.
- N-symbol adders 5 a , 5 b , 5 c each add N symbols of values provided from phase rotating units 4 a , 4 b , 4 c , and N-symbol adder 5 a supplies the resulting value after the addition to M-power adder 6 a ; N-symbol adder 5 b to M-power adder 6 b ; and N-symbol adder 5 c to M-power adder 6 c , respectively, where N is an integer equal to or larger than two.
- frequency offset control unit 7 If any of frequency offsets fa, fb, fc supplied from frequency offset control unit 7 is close to a true frequency offset to be estimated, the sum of symbols applied with that frequency offset takes a larger value than the sums of symbols applied with other frequency offsets. Further, the additions made in N-symbol adders 5 a , 5 b , 5 c relatively reduce the proportion of additive white Gauss noise which accounts for symbols after the additions.
- M-power adders 6 a , 6 b , 6 c respectively calculate the power of values supplied from N-symbol adders 5 a , 5 b , 5 c , and repeat the addition of the power M times where M is an integer equal to or larger than two. In this manner, the power values of the sums delivered from N-symbol adders 5 a , 5 b , 5 c are averaged. The three power sums thus calculated are provided to frequency offset control unit 7 .
- N-symbol adders 5 a , 5 b , 5 c add N symbols
- M-power adders 6 a , 6 b , 6 c add the power M times, so that M-power adders 6 a , 6 b , 6 c each supply one power sum to frequency offset control unit 7 using N ⁇ M complex demodulated symbols which are orthogonally detected.
- Frequency offset control unit 7 controls frequency offsets applied to phase rotating units 4 a , 4 b , 4 c based on the three power sums supplied from M-power adders 6 a , 6 b , 6 c .
- the three power values calculated by adding complex symbols, while applying the frequency offsets thereto, and adding the power, are larger as the frequency offset applied thereto are closer to a true frequency offset to be estimated.
- frequency offset control unit 7 can control frequency offsets fa, fb, fc applied to phase rotating units 4 a , 4 b , 4 c.
- frequency offset control unit 7 updates frequency offsets fa, fb, fc applied to phase rotating units 4 a , 4 b , 4 c .
- the power sums are calculated again by phase rotating units 4 a , 4 b , 4 c , N-symbol adders 5 a , 5 b , 5 c , and M-power adders 6 a , 6 b , 6 c using the updated frequency offsets.
- Frequency offset control unit 7 appropriately controls frequency offsets fa, fb, fc again using the calculated power sums. After repeating the calculation of power sums and the update of frequency offsets several times, frequency offset control unit 7 selects one from frequency offsets fa, fb, fc for delivery as frequency offset estimate 8 .
- FIGS. 3 a , 3 b show a power spectrum distribution of complex symbol sequence 13 in FIG. 2 , where the horizontal axis represents the frequency, and the vertical axis represents the magnitude of power spectrum. Since complex symbol sequence 13 in FIG. 2 is the product of orthogonally detected complex demodulated symbol sequence 1 and a complex conjugate of known symbol sequence 2 , a peak should exist in a direct current component if no frequency offset is present.
- the power spectrum of complex symbol sequence 13 presents a simple convex waveform with the center frequency being shifted by fz in the positive direction, as shown in FIGS. 3 a , 3 b .
- the power spectrum is largest at frequency offset fz, and is reduced as it is further away from fz.
- frequency offsets applied to phase rotating units 4 a , 4 b , 4 c are designated fa, fb, fc, respectively, and are placed in a magnitude relationship represented by fa ⁇ fb ⁇ fc.
- the magnitude relationship among Pa, Pb, Pc varies depending on the magnitude relationship among fa, fb, fc and fz.
- the magnitude relationship among the power spectra is represented by Pa ⁇ Pb ⁇ Pc.
- Frequency offset control unit 7 relies on the foregoing relationships to control the frequency offsets applied to phase rotating units 4 a , 4 b , 4 c.
- Frequency offset control unit 7 is applied with power values Pa, Pb, Pc from M-power adders 6 a , 6 b , 6 c , respectively.
- Pa is a power sum calculated by N-symbol adder 5 a and M-power adder 6 a while frequency offset fa is applied to phase rotating unit 4 a .
- Pb is a power sum calculated by N-symbol adder 5 b and M-power adder 6 b while frequency offset fb is applied to phase rotating unit 4 b .
- Pc is a power sum calculated by N-symbol adder 5 c and M-power adder 6 c while frequency offset fc is applied to phase rotating unit 4 c .
- Frequency offset control unit 7 updates frequency offsets fa, fb, fc applied to phase rotating units 4 a , 4 b , 4 c using these three power sums Pa, Pb, Pc.
- Frequency offset control unit 7 utilizes the aforementioned relationships among fz, fa, fb, fc and power spectra, and compares power sums Pa, Pb, Pc with one another to determine fcand. An exemplary process for determining fcand is shown below.
- any of the values fa, fb, fc before updating are substituted into fb. Therefore, a power sum corresponding to fcand of power sums Pa, Pb, Pc calculated before the update can be used as Pb as it is when fa, fb, fc are updated the next time.
- frequency offset control unit 7 first updates fa, fb, fc, phase rotating units 4 a , 4 b , 4 c , N-symbol adders 5 a , 5 b , 5 c , and M-power adders 6 a , 6 b , 6 c are fully operated to calculate power sums Pa, Pb, Pc.
- fa, fb, fc it is not necessary to operate phase rotating unit 4 b , N-symbol adder 5 b , and M-power adder 6 b .
- frequency offset control unit 7 delivers fcand as frequency offset estimate 8 after it has updated frequency offsets fa, fb, fc several times.
- frequency offset control unit 7 may employ a method of determining fa, fb, fc other than that described above.
- a frequency offset estimator uses P orthogonally detected complex demodulated symbol sequences 1 (# 1 -#P), and known symbol sequences 2 (# 1 -#P) corresponding thereto as input signals, and estimates a frequency offset using complex multiplier 3 , maximal-ratio combiner 9 , and frequency offset estimating unit 11 .
- Frequency offset estimating unit 11 has completely the same functions as frequency offset estimating unit 11 in FIG. 2 .
- P complex demodulated symbol sequences 1 may be, for example, signals from different antennas, or multipath signals, for example, in a direct spread communication system.
- the frequency offset estimator can expect a certain gain and also provide redundancy by the use of a plurality of complex demodulated symbol sequences 1 .
- Complex multiplier 3 calculates products of orthogonally detected complex demodulated symbol sequences # 1 -#P and conjugate complex numbers of known symbol sequences # 1 -#P corresponding thereto, and supplies the products to maximal-ratio combiner 9 .
- Maximal-ratio combiner 9 first estimates CNRs of complex symbol sequences # 1 -#P supplied from complex multiplier 3 .
- Maximal-ratio combiner 9 determines a weighting coefficient for each symbol sequence from CNR of each symbol sequence so as to provide maximal CNR after combination. Then, after weighting respective symbol sequences # 1 -#P using the determined weighting coefficients, the resulting symbol sequences are combined in phase, and delivered as complex symbol sequence 14 .
- Complex symbol sequence 14 generated by combining complex symbol sequences # 1 -#P at the maximal CNR, is provided to frequency offset estimating unit 11 .
- the frequency offset estimating unit 11 operates completely in the same manner as that shown in FIG. 2 .
- a frequency offset estimator uses P orthogonally detected complex demodulated symbol sequences 1 (# 1 -#P), and known symbol sequences 2 (# 1 -#P) corresponding thereto, and comprises P frequency offset estimating units 12 in the first embodiment, each for independently estimating a frequency offset for each complex demodulated symbol sequence 1 ; and maximal-ratio combiner 19 for combining P frequency offset estimates estimated by these frequency offset estimating units 12 at a maximal ratio.
- Frequency offset estimating units 12 are identical to the frequency offset estimating unit in the first embodiment. Frequency offset estimating units 12 each estimate frequency offset estimate 8 using corresponding complex symbol sequences # 1 -#P.
- Maximal-ratio combiner 19 first estimates CNR of complex symbol sequence 13 after information symbol components are removed from complex symbol sequences # 1 -#P. Next, maximal-ratio combiner 19 determines a weighting coefficient for each symbol sequence from the CNR of each symbol sequence to provide maximal CNR when it combines complex symbol sequences 13 for complex symbol sequences # 1 -#P. Then, maximal-ratio combiner 19 adds, with weighting, P frequency offset estimates 8 corresponding to complex demodulated symbol sequences # 1 -#P using the determined weighting coefficients, and delivers the resulting sum as frequency offset estimate 10 .
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
- Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
Abstract
A complex symbol sequence ( 13 ), which is a product of an orthogonally detected complex demodulated symbol sequence ( 1 ) and a conjugate complex number of a known symbol sequence ( 2 ), is applied to phase rotating units ( 4 a, 4 b, 4 c) which change the phase of the complex symbol sequence ( 13 ) based on frequency offsets (fa, fb, fc). N-symbol adders ( 5 a, 5 b, 5 c) each add N symbol values supplied from the phase rotating units ( 4 a, 4 b, 4 c), while M-power adders ( 6 a, 6 b, 6 c) each calculate the power of a value supplied from the N-symbol adders ( 5 a, 5 b, 5 c), and add the power M times. A frequency offset control unit ( 7 ) controls frequency offsets applied to the phase rotating units ( 4 a, 4 b, 4 c) based on three power sums supplied from the M-power adders ( 6 a, 6 b, 6 c), and delivers a power offset estimate ( 8 ).
Description
- This application is a Continuation of application Ser. No. 10/332,538, filed Jan. 10, 2003, of which claims priority to Japanese Patent Application No. 2000-259029 filed Aug. 29, 2000, entitled FREQUENCY OFFSET ESTIMATOR, the entire disclosure of which is incorporated herein by reference.
- The present invention relates to a frequency offset estimator for use in a receiver which demodulates a signal modulated in accordance with an orthogonal modulation scheme.
- The quasi-synchronous detection typically used as a detection method in landline mobile communications requires that a transmission carrier frequency matches a reference carrier frequency for quasi-synchronous detection of a receiver. However, when oscillators in a transmitter and a receiver are not sufficiently high in frequency stability and accuracy, this results in a difference in frequency between both sides. This is called a “frequency offset.” Since the frequency offset, if any, causes the phase of a detected signal to rotate, the signal cannot be correctly demodulated. To prevent this incorrect demodulation, AFC (Automatic Frequency Control) is typically used. The AFC estimates a frequency offset in carrier frequency between the transmission side and reception side to control the frequencies of oscillators. The AFC also corrects demodulated signals for the rotated phase caused by the frequency offset.
- Conventionally, a frequency offset estimator for use in the AFC relies on the differential detection as can be seen in FIG. 2 in Laid-open Japanese Patent Application No. 8-213933, “Characteristics of ½ Symbol Differential Detection AFC Having Wide Frequency Pull-in Range,” Technical Report, RCS96-25, 1st-6th Paragraphs, June 1996, “Frequency Offset Estimating Method in Fading Transmission Path with Large Time Dispersion,” Technical Report, RCS98-81, 13th-18th paragraphs, September 1998, and the like. However, the differential detection type frequency offset estimator has a drawback that the accuracy of estimation is significantly degraded when the carrier to noise power ratio (CNR) is low.
- For example, a CDMA (Code Division Multiple Access) communication system using the quasi-synchronous detection effectively utilizes a path diversity effect resulting from rake combination. In addition, required SNR (Signal to Noise Power Ratio) may occasionally be on the order of 0 dB at a bit error rate (BER) of 0.1%, resulting from the effects of error correcting codes, transmission power control and the like. It is therefore necessary to provide an expedient which is capable of estimating a frequency offset even at low CNR.
- A conventional frequency offset estimator will be described with reference to
FIG. 1 . The differential detection frequency type offset estimator shown inFIG. 1 estimates a frequency offset from a difference in phase between symbols. First,complex multiplier 3 calculates a product of orthogonally detected complex demodulatedsymbol sequence 1 and a complex conjugate of a knownsymbol sequence 2 corresponding thereto. The product is fed todifferential detector 15 ascomplex symbol sequence 13.Differential detector 15 delayscomplex symbol sequence 13 by several symbols usingdelay circuit 16, andcomplex multiplier 3 calculates a product of a complex conjugate of the delayed symbol sequence, which have passed throughdelay circuit 16, and originalcomplex symbol sequence 13. This product is provided to averagingcircuit 17 for averaging, and then delivered asfrequency offset estimate 18. In this event, as larger noise is added to orthogonally detected complex demodulatedsymbol sequence 1, larger variations occur in the phase difference between symbols, resulting in a degraded accuracy of estimation for frequency offset. It is known that the accuracy of estimation is improved to some extent even using the differential detection, if the number of delayed symbols is increased. This is because the phase difference between symbols becomes larger relative to variations in phase due to noise. Disadvantageously, however, an increased number of delayed symbols results in a narrower range in which a frequency offset can be estimated. Therefore, when the differential detection type frequency offset estimator is used, a tradeoff is inevitably made between the accuracy of estimation and an estimatable range in regard to the number of delayed symbols. - On the other hand, there has been proposed an FFT (Fast Fourier Transform) based method as another frequency offset estimating method. This type of estimating method converts received symbols into a frequency domain by FFT, and determines a frequency indicative of a peak of a spectrum envelope as a frequency offset. This estimating method provides a higher accuracy of estimation at low CNR than the differential detection since the peak can be relatively easily found even if a received signal presents low CNR. However, the accuracy of estimation depends on the order of FFT. An article “FFT-Based Highly Accurate Frequency Determining Method,” Transactions-A of the Institute of Electronics, Information and Communication Engineers, Vol. J 70-A, No. 5, pp. 798-805 describes that FFT should be used at 32 points or more for estimating a frequency using FFT. However, the FFT cannot be used at 32 points or more in some occasions.
- Conventionally, known symbols transmitted in a predetermined order have been used for estimating a frequency offset. In mobile communications, a section comprised of several symbols is called a “slot” which contains pilot symbols, data symbols, control symbols and the like. The pilot symbols refer to known symbols which are transmitted in a predetermined order. While the total number of symbols in a slot ranges from about fifteen to several hundreds, the number of pilot symbols is generally smaller than the number of data symbols.
- Taking as an example, the international standard IMT-2000 for the next generation mobile communications, as described in an article “3G TS 25.211 version 3.2.0, 3rd Generation Partnership Project: Technical Specification Group Radio Access Network; Physical channels and mapping of transport channels onto physical channels (FDD),” one slot includes only 16 pilot symbols at most even at a high bit rate. In other words, when a frequency offset is estimated using sequential pilot symbols in one slot interval, a sufficient number of pilot symbols is not provided for utilizing the FFT. When pilot symbols are used over a plurality of slot intervals, a frequency offset can be estimated in a narrower range.
- On the other hand, a peak detection type frequency offset estimating method has also been proposed, as can be seen in FIG. 1 in Laid-open Japanese Patent Application No. 9-200081. The proposed frequency offset estimating method, which is for use in a direct code spread communication system, involves despreading baseband complex signals orthogonally detected using complex spread codes previously applied with frequency offsets which have an equal absolute value and different signs, averaging several symbols acquired at timings at which a maximal peak is detected, and converting the power value of the average to a frequency offset using a previously measured conversion table. This estimating method is considered to provide a better accuracy of estimation at low CNR than the differential detection type since it uses an average value of symbols which are despread by spreading codes applied with frequency offsets. However, a conversion table must be previously created for calculating a frequency offset. When the conversion table is used, it can be thought that if the characteristics of devices vary from one apparatus to another, a resulting frequency offset may be different depending on a particular apparatus, so that the creation of a conversion table, in general, is not an easy task. In addition, a memory is required for storing the conversion table. Moreover, a correction may be required for suppressing variations in the characteristics of devices between apparatuses.
- It is an object of the present invention to provide a frequency offset estimator which is less susceptible to a degraded accuracy of estimation even at low CNR in a CDMA communication system.
- According to a first aspect of the present invention, the frequency offset estimator comprises complex multiplying means and frequency offset estimating means. The frequency offset estimating means includes a plurality of power sum calculating means and frequency offset control means.
- The complex multiplying means receives an orthogonally detected complex demodulated symbol sequence, and calculates a product of the complex demodulated symbol sequence and a conjugate complex number of a known symbol sequence corresponding to the complex demodulated symbol sequence to remove a symbol information component.
- Each of the power sum calculating means calculates a power sum for the complex demodulated symbol sequence based on an applied frequency offset after the symbol information component has been removed, and includes phase rotating means for changing the phase of the complex demodulated symbol sequence based on the frequency offset applied thereto after the symbol information component has been removed, N-symbol adding means for adding a plurality of complex symbols delivered from the phase rotating means, and M-power adding means for calculating the power of the complex symbol sum calculated by the N-symbol adding means, and adding the power of a plurality of symbols.
- The frequency offset control means controls a frequency offset applied to the power sum calculating means based on the power sums calculated by the plurality of power sum calculating means, estimates a frequency offset included in the complex demodulated symbol sequence, and delivers the estimated frequency offset.
- In this manner, the utilization of a gain resulting from the in-phase addition is utilized in a frequency offset estimation, and averaging of the in-phase added power values through the addition of power, results in the ability to estimate a frequency offset at CNR higher by several dB than CNR of received carrier power.
- According to a second aspect of the present invention, a frequency offset estimator comprises a plurality of complex multiplying means, maximal-ratio combining means, a plurality of power sum calculating means, and frequency offset control means.
- Each complex multiplying means receives an orthogonally detected complex demodulated symbol sequence, and calculates a product of the complex demodulated symbol sequence and a conjugate complex number of a known symbol sequence corresponding to the complex demodulated symbol sequence to remove a symbol information component included in each complex demodulated symbol sequence. The maximal-ratio combining means combines a plurality of complex demodulated symbol sequences, from which symbol information component has been removed, at a maximal-ratio to generate a single complex symbol sequence. The power sum calculating means and frequency offset control means are identical to the counterparts in the first aspect.
- According to a third aspect of the present invention, a frequency offset estimator comprises a plurality of the frequency offset estimators in the first aspect, and a maximal-ratio combiner for combining frequency offset estimates of these frequency offset estimators at a maximal ratio.
-
FIG. 1 is a block diagram illustrating a conventional frequency offset estimator based on the differential detection; -
FIG. 2 is a block diagram illustrating a frequency offset estimator according to a first embodiment of the present invention; -
FIG. 3 is a diagram showing the relationship between the power spectrum of a signal including a frequency offset fz and frequency offsets fa, fb, fc controlled by frequency offsetcontrol unit 7; -
FIG. 4 is a block diagram illustrating a specific example of frequency offsetcontrol unit 7; -
FIG. 5 is a block diagram illustrating a frequency offset estimator according to a second embodiment of the present invention; and -
FIG. 6 is a block diagram illustrating a frequency offset estimator according to a third embodiment of the present invention. - First Embodiment
- Referring to
FIG. 2 , a frequency offset estimator according to a first embodiment of the present invention uses an orthogonally detected complexdemodulated symbol sequence 1 and a knownsymbol sequence 2 corresponding thereto as input signals, and comprisescomplex multiplier 3 and frequency offset estimatingunit 11. Frequency offset estimatingunit 11 comprises powersum calculating units control unit 7. Powersum calculating unit 20 a comprisesphase rotating unit 4 a, N-symbol adder 5 a, and M-power adder 6 a. Similarly, powersum calculating units phase rotating units 4 b, 4 c; N-symbol adders power adders - First,
complex multiplier 3 calculates a product of orthogonally detected complexdemodulated symbol sequence 1 and a conjugate complex number of knownsymbol sequence 2. This processing can remove a symbol information component included in the demodulated symbol sequence to extractcomplex symbol sequence 13, the phase of which is rotated by a frequency offset. Used as knownsymbol sequence 2 may be pilot symbols which are generally used in a communication system based on the orthogonal modulation. Alternatively, in a direct code spread communication system, products of known spreading codes and pilot symbols can be used as knownsymbol sequence 2. Conventionally, a frequency offset has been estimated by the delayed detection using thiscomplex symbol sequence 13. - In this embodiment, three different frequency offsets are applied to
complex symbol sequence 13, a plurality of resulting symbols are added, and the power is added over the plurality of symbols. The frequency offsets applied tocomplex symbol sequence 13 are appropriately controlled based on three power sums thus calculated. This processing is repeated several times to estimate a frequency offset. -
Complex symbol sequence 13 delivered fromcomplex multiplier 3 is provided to phaserotating units Phase rotating units complex symbol sequence 13 based on frequency offsets fa, fb, fc, respectively, applied thereto from frequency offsetcontrol unit 7. Frequency offsets fa, fb, fc are applied as the amount of phase change per symbol.Phase rotating unit 4 a rotates the phase ofcomplex symbol sequence 13 by frequency offset fa in the negative direction. Similarly,phase rotating units 4 b, 4 c rotate the phase ofcomplex symbol sequence 13 by frequency offset fb, fc, respectively, in the negative direction. Complex symbols delivered fromphase rotating unit 4 a are provided to N-symbol adder 5 a; those fromphase rotating unit 4 b to N-symbol adder 5 b; and those from phase rotating unit 4 c to N-symbol adder 5 c, respectively. N-symbol adders phase rotating units symbol adder 5 a supplies the resulting value after the addition to M-power adder 6 a; N-symbol adder 5 b to M-power adder 6 b; and N-symbol adder 5 c to M-power adder 6 c, respectively, where N is an integer equal to or larger than two. - If any of frequency offsets fa, fb, fc supplied from frequency offset
control unit 7 is close to a true frequency offset to be estimated, the sum of symbols applied with that frequency offset takes a larger value than the sums of symbols applied with other frequency offsets. Further, the additions made in N-symbol adders - M-
power adders symbol adders symbol adders control unit 7. N-symbol adders power adders power adders control unit 7 using N×M complex demodulated symbols which are orthogonally detected. - Frequency offset
control unit 7 controls frequency offsets applied to phaserotating units power adders control unit 7 can control frequency offsets fa, fb, fc applied to phaserotating units - As frequency offset
control unit 7 updates frequency offsets fa, fb, fc applied to phaserotating units phase rotating units symbol adders power adders control unit 7 appropriately controls frequency offsets fa, fb, fc again using the calculated power sums. After repeating the calculation of power sums and the update of frequency offsets several times, frequency offsetcontrol unit 7 selects one from frequency offsets fa, fb, fc for delivery as frequency offsetestimate 8. - Next, the magnitude relationship among the three power sums calculated by M-
power adders FIGS. 3 a, 3 b.FIGS. 3 a, 3 b show a power spectrum distribution ofcomplex symbol sequence 13 inFIG. 2 , where the horizontal axis represents the frequency, and the vertical axis represents the magnitude of power spectrum. Sincecomplex symbol sequence 13 inFIG. 2 is the product of orthogonally detected complexdemodulated symbol sequence 1 and a complex conjugate of knownsymbol sequence 2, a peak should exist in a direct current component if no frequency offset is present. When positive frequency offset fz is included, the power spectrum ofcomplex symbol sequence 13 presents a simple convex waveform with the center frequency being shifted by fz in the positive direction, as shown inFIGS. 3 a, 3 b. In other words, the power spectrum is largest at frequency offset fz, and is reduced as it is further away from fz. - Assume now that in the frequency offset estimator of
FIG. 2 , frequency offsets applied to phaserotating units FIG. 3 a, when fa<fb<fc<fz, the magnitude relationship among the power spectra is represented by Pa<Pb<Pc. Conversely, when fz<fa<fb<fc, Pa>Pb>Pc is established as shown inFIG. 3 b. Frequency offsetcontrol unit 7 relies on the foregoing relationships to control the frequency offsets applied to phaserotating units - Next, a specific example of frequency offset
control unit 7 will be supplied with reference toFIG. 4 . Frequency offsetcontrol unit 7 is applied with power values Pa, Pb, Pc from M-power adders symbol adder 5 a and M-power adder 6 a while frequency offset fa is applied to phaserotating unit 4 a. Pb is a power sum calculated by N-symbol adder 5 b and M-power adder 6 b while frequency offset fb is applied to phaserotating unit 4 b. Pc is a power sum calculated by N-symbol adder 5 c and M-power adder 6 c while frequency offset fc is applied to phase rotating unit 4 c. Frequency offsetcontrol unit 7 updates frequency offsets fa, fb, fc applied to phaserotating units control unit 7 utilizes the aforementioned relationships among fz, fa, fb, fc and power spectra, and compares power sums Pa, Pb, Pc with one another to determine fcand. An exemplary process for determining fcand is shown below. - (1) When power sums Pa, Pc, Pc are in a magnitude relationship represented by Pa>Pb>Pc, fcand=fa.
- (2) When power sums Pa, Pc, Pc are in a magnitude relationship represented by Pc>Pb>Pa, fcand=fc.
- (3) When power sums Pa, Pb, Pc are in a magnitude relationship which does not fall under either (1) or (2), fcand=fb.
- Furthermore, a value Δf is used. One-half of current Δf value is used as the next Δf:
Δf=Δf/2 - Frequency offset
control unit 7 updates frequency offsets fa, fb, fc in the following manner using fcand and Δf thus determined:
fa=fcand+Δf
fb=fcand
fc=fcand−Δf - In accordance with the foregoing method of determining fa, fb, fc, any of the values fa, fb, fc before updating are substituted into fb. Therefore, a power sum corresponding to fcand of power sums Pa, Pb, Pc calculated before the update can be used as Pb as it is when fa, fb, fc are updated the next time. In other words, when frequency offset
control unit 7 first updates fa, fb, fc,phase rotating units symbol adders power adders phase rotating unit 4 b, N-symbol adder 5 b, and M-power adder 6 b. In the foregoing manner, frequency offsetcontrol unit 7 delivers fcand as frequency offsetestimate 8 after it has updated frequency offsets fa, fb, fc several times. Of course, frequency offsetcontrol unit 7 may employ a method of determining fa, fb, fc other than that described above. - Second Embodiment
- Next, a second embodiment of the present invention will be described with reference to
FIG. 5 . A frequency offset estimator according to the second embodiment uses P orthogonally detected complex demodulated symbol sequences 1 (#1-#P), and known symbol sequences 2 (#1-#P) corresponding thereto as input signals, and estimates a frequency offset usingcomplex multiplier 3, maximal-ratio combiner 9, and frequency offset estimatingunit 11. Frequency offset estimatingunit 11 has completely the same functions as frequency offset estimatingunit 11 inFIG. 2 . - P complex
demodulated symbol sequences 1 may be, for example, signals from different antennas, or multipath signals, for example, in a direct spread communication system. The frequency offset estimator can expect a certain gain and also provide redundancy by the use of a plurality of complexdemodulated symbol sequences 1. -
Complex multiplier 3 calculates products of orthogonally detected complex demodulated symbol sequences #1-#P and conjugate complex numbers of known symbol sequences #1-#P corresponding thereto, and supplies the products to maximal-ratio combiner 9. Maximal-ratio combiner 9 first estimates CNRs of complex symbol sequences #1-#P supplied fromcomplex multiplier 3. Next, Maximal-ratio combiner 9 determines a weighting coefficient for each symbol sequence from CNR of each symbol sequence so as to provide maximal CNR after combination. Then, after weighting respective symbol sequences #1-#P using the determined weighting coefficients, the resulting symbol sequences are combined in phase, and delivered ascomplex symbol sequence 14.Complex symbol sequence 14, generated by combining complex symbol sequences #1-#P at the maximal CNR, is provided to frequency offset estimatingunit 11. The frequency offset estimatingunit 11 operates completely in the same manner as that shown inFIG. 2 . - Third Embodiment
- Next, a third embodiment of the present invention will be described with reference to
FIG. 6 . A frequency offset estimator according to the third embodiment uses P orthogonally detected complex demodulated symbol sequences 1 (#1-#P), and known symbol sequences 2 (#1-#P) corresponding thereto, and comprises P frequency offset estimatingunits 12 in the first embodiment, each for independently estimating a frequency offset for each complexdemodulated symbol sequence 1; and maximal-ratio combiner 19 for combining P frequency offset estimates estimated by these frequency offset estimatingunits 12 at a maximal ratio. - First, orthogonally detected complex demodulated symbol sequences #1-#P are supplied to P frequency offset estimating
units 12. Frequency offset estimatingunits 12 are identical to the frequency offset estimating unit in the first embodiment. Frequency offset estimatingunits 12 each estimate frequency offsetestimate 8 using corresponding complex symbol sequences #1-#P. Maximal-ratio combiner 19 first estimates CNR ofcomplex symbol sequence 13 after information symbol components are removed from complex symbol sequences #1-#P. Next, maximal-ratio combiner 19 determines a weighting coefficient for each symbol sequence from the CNR of each symbol sequence to provide maximal CNR when it combinescomplex symbol sequences 13 for complex symbol sequences #1-#P. Then, maximal-ratio combiner 19 adds, with weighting, P frequency offsetestimates 8 corresponding to complex demodulated symbol sequences #1-#P using the determined weighting coefficients, and delivers the resulting sum as frequency offsetestimate 10.
Claims (5)
1. A frequency offset estimator comprising:
symbol information removing means for receiving an orthogonally detected complex demodulated symbol sequence, and removing a symbol information component;
a plurality of power sum calculating means each for calculating a power sum for said complex demodulated symbol sequence based on an applied frequency offset after the symbol information component has been removed; and
frequency offset control means for controlling a frequency offset applied to said each power sum calculating means based on power sums calculated by said plurality of power sum calculating means, estimating a frequency offset included in said complex demodulated symbol sequence, and delivering the estimated frequency offset,
wherein said each power sum calculating means include:
phase rotating means for changing the phase of the complex demodulated symbol sequence based on the frequency offset applied thereto after the symbol information component has been removed,
N-symbol adding means for adding one or more complex symbols delivered from said phase rotating means, and
M-power adding means for calculating the power of the complex symbol sum calculated by said N-symbol adding mean while adding the power of one or more symbols.
2. A frequency offset estimator comprising:
a plurality of symbol information removing means each for receiving one of a plurality of orthogonally detected complex demodulated symbol sequences, and removing a symbol information component included in said complex modulated symbol sequence;
maximal-ratio combining means for combining said plurality of complex demodulated symbol sequences, from which the symbol information components are removed, at a maximal ratio to generate a single complex symbol sequence;
a plurality of power sum calculating means for calculating a power sum for said complex symbol sequence after the maximal-ratio combination based on applied frequency offsets; and
frequency offset control means for controlling a frequency offset applied to said each power sum calculating means based on power sums calculated by said plurality of power sum calculating means, estimating a frequency offset included in said complex demodulated symbol sequence, and delivering the estimated frequency offset,
wherein said each power sum calculating mean include:
phase rotating means for changing the phase of said complex symbol sequence after the maximal-ratio combination based on the applied frequency offset,
N-symbol adding means for adding one or more complex symbols delivered by said phase rotating means, and
M-power adding means for calculating the power of a complex symbol sum calculated by said N-symbol adding means, and adding the power of one or more symbols.
3. A frequency offset estimator comprising:
a plurality of frequency offset estimating units each including:
symbol information removing means for receiving an orthogonally detected complex demodulated symbol sequence, and removing a symbol information component,
a plurality of power sum calculating means each for calculating a power sum for said complex demodulated symbol sequence based on an applied frequency offset after the symbol information component has been removed, and
frequency offset control means for controlling a frequency offset applied to said each power sum calculating means based on power sums calculated by said plurality of power sum calculating means, estimating a frequency offset included in said complex demodulated symbol sequence, and delivering the estimated frequency offset,
wherein each of said plurality of power sum calculating means include:
phase rotating means for changing the phase of the complex demodulated symbol sequence based on the frequency offset applied thereto after the symbol information component has been removed,
N-symbol adding means for adding one or more complex symbols delivered from said phase rotating means, and
M-power adding means for calculating the power of the complex symbol sum calculated by said N-symbol adding means, and adding the power of said one or more a symbols; and
a maximal-ratio combiner for combining frequency offset estimates provided by said plurality of frequency offset estimating units at a maximal ratio to generate a single frequency offset estimate.
4. A frequency offset estimating method comprising:
a) receiving an orthogonally detected complex demodulated symbol sequence, and removing a symbol information component;
b) calculating a power sum for said complex demodulated symbol sequence based on an applied frequency offset after the symbol information component has been removed; and
c) controlling a frequency offset applied to said step b) based on power sums calculated at said step b), estimating a frequency offset included in said complex demodulated symbol sequence, and delivering the estimated frequency offset.
wherein said step b) further includes
a phase rotating step for changing the phase of the complex demodulated symbol sequence based on the frequency offset applied thereto after the symbol information component has been removed,
an N-symbol adding step for adding one or more complex symbols delivered from said phase rotating step, and
an M-power adding step for calculating the power of the complex symbol sum calculated at said N-symbol adding step while adding the power of one or more symbols.
5. A frequency offset estimating method comprising:
a) receiving one of a plurality of orthogonally detected complex demodulated symbol sequences, and removing a symbol information component included in said complex modulated symbol sequence;
b) combining said plurality of complex demodulated symbol sequences, from which the symbol information components are removed, at a maximal ratio to generate a single complex symbol sequence;
c) calculating a power sum for said complex symbol sequence after the maximal-ratio combination based on applied frequency offsets; and
d) controlling a frequency offset applied to said step b) based on power sums calculated at said step b), estimating a frequency offset included in said complex demodulated symbol sequence, and delivering the estimated frequency offset,
wherein said step c) further includes:
a phase rotating step for changing the phase of said complex symbol sequence after the maximal-ratio combination based on the applied frequency offset,
an N-symbol adding step for adding one or more complex symbols delivered at said phase rotating step, and
an M-power adding step for calculating the power of a complex symbol sum calculated at said N-symbol adding step, and adding the power of said one or more symbols.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/581,480 US20070036248A1 (en) | 2000-08-29 | 2006-10-17 | Frequency offset estimator |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000259029A JP3846546B2 (en) | 2000-08-29 | 2000-08-29 | Frequency offset estimator |
JP2000-259029 | 2000-08-29 | ||
US10/332,538 US7269236B2 (en) | 2000-08-29 | 2001-08-22 | Frequency offset estimator |
US11/581,480 US20070036248A1 (en) | 2000-08-29 | 2006-10-17 | Frequency offset estimator |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/332,538 Continuation US7269236B2 (en) | 2000-08-29 | 2001-08-22 | Frequency offset estimator |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/587,600 Continuation US7982866B2 (en) | 2003-12-16 | 2009-10-09 | Calibration of a surveying instrument |
Publications (1)
Publication Number | Publication Date |
---|---|
US20070036248A1 true US20070036248A1 (en) | 2007-02-15 |
Family
ID=18747252
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/332,538 Expired - Lifetime US7269236B2 (en) | 2000-08-29 | 2001-08-22 | Frequency offset estimator |
US11/581,480 Abandoned US20070036248A1 (en) | 2000-08-29 | 2006-10-17 | Frequency offset estimator |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/332,538 Expired - Lifetime US7269236B2 (en) | 2000-08-29 | 2001-08-22 | Frequency offset estimator |
Country Status (3)
Country | Link |
---|---|
US (2) | US7269236B2 (en) |
JP (1) | JP3846546B2 (en) |
WO (1) | WO2002019645A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050129149A1 (en) * | 2003-12-12 | 2005-06-16 | Kuntz Thomas L. | Detecting GSM downlink signal frequency correction burst |
WO2008102877A1 (en) * | 2007-02-23 | 2008-08-28 | Nippon Hoso Kyokai | Digital data transmitting device and digital data receiving device |
US20080273635A1 (en) * | 2007-05-03 | 2008-11-06 | Holger Neuhaus | Frequency-offset estimation |
US20120163426A1 (en) * | 2010-12-23 | 2012-06-28 | Microchip Technology Incorporated | Automatic frequency control under low signal-to-noise conditions |
US9853787B2 (en) | 2015-06-24 | 2017-12-26 | Nxp Usa, Inc. | Carrier frequency offset estimation for wireless communication |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3846546B2 (en) * | 2000-08-29 | 2006-11-15 | 日本電気株式会社 | Frequency offset estimator |
US7042968B1 (en) * | 2001-09-12 | 2006-05-09 | Nokia Corporation | Efficient multipurpose code matched filter for wideband CDMA |
GB0124952D0 (en) * | 2001-10-17 | 2001-12-05 | Nokia Corp | A receiver and a receiving method |
US7116727B2 (en) * | 2002-01-30 | 2006-10-03 | Mediatek Inc. | Frequency offset estimation apparatus for intersymbol interference channels |
US7257102B2 (en) * | 2002-04-02 | 2007-08-14 | Broadcom Corporation | Carrier frequency offset estimation from preamble symbols |
KR100979153B1 (en) * | 2002-11-22 | 2010-08-31 | 인터디지탈 테크날러지 코포레이션 | Channel gain estimation in a rake receiver using complex weight generation(cwg) algorithms |
US7302233B2 (en) * | 2003-06-23 | 2007-11-27 | Texas Instruments Incorporated | Multiuser detection for wireless communications systems in the presence of interference |
US7468735B2 (en) * | 2003-07-24 | 2008-12-23 | Sony Corporation | Transitioning between two high resolution images in a slideshow |
JP2007521679A (en) * | 2003-08-04 | 2007-08-02 | トムソン ライセンシング | Frequency synchronization during cell search in universal mobile communication system receiver |
JP4358686B2 (en) * | 2004-06-17 | 2009-11-04 | 富士通株式会社 | Fading frequency estimation apparatus and estimation method thereof |
US7865158B2 (en) * | 2005-07-26 | 2011-01-04 | Interdigital Technology Corporation | Method and apparatus for automatically correcting receiver oscillator frequency |
JP2008104015A (en) * | 2006-10-19 | 2008-05-01 | Mitsubishi Electric Corp | Automatic frequency control apparatus, receiver, communication apparatus, and communicating system |
US8325856B2 (en) * | 2007-03-05 | 2012-12-04 | Qualcomm Incorporated | Coherent initial acquisition |
JP5439726B2 (en) * | 2008-02-29 | 2014-03-12 | 富士通セミコンダクター株式会社 | Receiver synchronizer in spread spectrum direct communication system |
US9270304B2 (en) * | 2012-11-07 | 2016-02-23 | Datum Systems, Inc. | Method and apparatus for nonlinear-channel identification and estimation of nonlinear-distorted signals |
TWI635719B (en) * | 2016-08-19 | 2018-09-11 | 晨星半導體股份有限公司 | Apparatus and method for estimating carrier frequency offset |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6353642B1 (en) * | 1999-06-29 | 2002-03-05 | Mitsubishi Denki Kabushiki Kaisha | Automatic frequency controller and demodulator unit |
US6522696B1 (en) * | 1997-04-11 | 2003-02-18 | Agere Systems Inc. | Adaptive frequency correction in a wireless communications system, such as for GSM and IS54 |
US7269236B2 (en) * | 2000-08-29 | 2007-09-11 | Nec Corporation | Frequency offset estimator |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2503726B2 (en) | 1990-05-25 | 1996-06-05 | 日本電気株式会社 | Decision feedback equalizer |
JPH04351137A (en) * | 1991-05-29 | 1992-12-04 | Japan Radio Co Ltd | Frequency offset detection circuit |
CA2089154C (en) * | 1991-06-28 | 1999-08-03 | Kevin L. Baum | Automatic frequency control by an adaptive filter |
JP2705613B2 (en) | 1995-01-31 | 1998-01-28 | 日本電気株式会社 | Frequency offset correction device |
JP3079950B2 (en) | 1995-06-20 | 2000-08-21 | 松下電器産業株式会社 | Receiving apparatus and transmission method for orthogonal frequency division multiplex modulation signal |
JP3193613B2 (en) | 1996-01-12 | 2001-07-30 | 株式会社日立国際電気 | Correlation peak detection type frequency error detection circuit |
-
2000
- 2000-08-29 JP JP2000259029A patent/JP3846546B2/en not_active Expired - Fee Related
-
2001
- 2001-08-22 US US10/332,538 patent/US7269236B2/en not_active Expired - Lifetime
- 2001-08-22 WO PCT/JP2001/007177 patent/WO2002019645A1/en active Application Filing
-
2006
- 2006-10-17 US US11/581,480 patent/US20070036248A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6522696B1 (en) * | 1997-04-11 | 2003-02-18 | Agere Systems Inc. | Adaptive frequency correction in a wireless communications system, such as for GSM and IS54 |
US6353642B1 (en) * | 1999-06-29 | 2002-03-05 | Mitsubishi Denki Kabushiki Kaisha | Automatic frequency controller and demodulator unit |
US7269236B2 (en) * | 2000-08-29 | 2007-09-11 | Nec Corporation | Frequency offset estimator |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050129149A1 (en) * | 2003-12-12 | 2005-06-16 | Kuntz Thomas L. | Detecting GSM downlink signal frequency correction burst |
WO2008102877A1 (en) * | 2007-02-23 | 2008-08-28 | Nippon Hoso Kyokai | Digital data transmitting device and digital data receiving device |
US20100166008A1 (en) * | 2007-02-23 | 2010-07-01 | Akinori Hashimoto | Digital data transmitting apparatus and digital data receiving apparatus |
US8000220B2 (en) | 2007-02-23 | 2011-08-16 | Nippon Hoso Kyokai | Digital data transmitting apparatus and digital data receiving apparatus |
US8942078B2 (en) | 2007-02-23 | 2015-01-27 | Nippon Hoso Kyokai | Digital data transmitting device and digital data receiving device |
US20080273635A1 (en) * | 2007-05-03 | 2008-11-06 | Holger Neuhaus | Frequency-offset estimation |
US7899136B2 (en) * | 2007-05-03 | 2011-03-01 | Infineon Technologies Ag | Frequency-offset estimation |
US20120163426A1 (en) * | 2010-12-23 | 2012-06-28 | Microchip Technology Incorporated | Automatic frequency control under low signal-to-noise conditions |
US8548033B2 (en) * | 2010-12-23 | 2013-10-01 | Microchip Technology Incorporated | Automatic frequency control under low signal-to-noise conditions |
KR20140016257A (en) * | 2010-12-23 | 2014-02-07 | 마이크로칩 테크놀로지 인코포레이티드 | Automatic frequency control under low signal-to-noise conditions |
KR101891679B1 (en) | 2010-12-23 | 2018-08-24 | 마이크로칩 테크놀로지 인코포레이티드 | Automatic frequency control under low signal-to-noise conditions |
US9853787B2 (en) | 2015-06-24 | 2017-12-26 | Nxp Usa, Inc. | Carrier frequency offset estimation for wireless communication |
Also Published As
Publication number | Publication date |
---|---|
JP2002077287A (en) | 2002-03-15 |
JP3846546B2 (en) | 2006-11-15 |
WO2002019645A1 (en) | 2002-03-07 |
US20030147456A1 (en) | 2003-08-07 |
US7269236B2 (en) | 2007-09-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20070036248A1 (en) | Frequency offset estimator | |
US6721296B2 (en) | Code division multiple access mobile communication system | |
US7336597B2 (en) | System and method for two channel frequency offset estimation of OFDM signals | |
US7310503B2 (en) | Diversity reception device and diversity reception method | |
US5787112A (en) | Data demodulation circuit and method for spread spectrum communication | |
US6904078B1 (en) | CDMA receiver and CDMA transmitter/receiver | |
US6134260A (en) | Method and apparatus for frequency acquisition and tracking for DS-SS CDMA receivers | |
KR20070105383A (en) | Automatic frequency correction method and apparatus for time division dupliex modes of 3g wireless communications | |
JP3238120B2 (en) | Orthogonal frequency division multiplex signal demodulator | |
GB2354678A (en) | CDMA receiver capable of estimating frequency offset from complex pilot symbols | |
US20070058708A1 (en) | Method and apparatus for automatically correcting receiver oscillator frequency | |
JP4043287B2 (en) | Wireless communication system, communication apparatus, and reception quality measuring method | |
US20070183537A1 (en) | Radio receiver and noise estimated value correction method | |
US7039140B2 (en) | OFDM data demodulators synchronization | |
US7263349B2 (en) | Velocity responsive time tracking | |
KR20040105248A (en) | Simple and robust digital code tracking loop for wireless communication systems | |
US7130329B2 (en) | Apparatus and method for radio frequency tracking and acquisition | |
US7529327B2 (en) | Method and apparatus for compensating for the frequency offset in interleaved frequency division multiple access | |
CA2275615A1 (en) | Interference rejection combining with frequency correction | |
KR20000076706A (en) | Method and system for compensation of channel distortion using lagrange polynomial interpolation | |
GB2368250A (en) | Ofdm receivers | |
JP2002290371A (en) | Orthogonal frequency division multiplex transmission signal receiver | |
KR20040023440A (en) | Frequency error detector and frequency error combiner for receiver in a mobile communication system | |
JP3355147B2 (en) | Automatic frequency control method | |
JP2001345778A (en) | Ofdm reception signal synchronizing device using diversity |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |