JP5439726B2 - Receiver synchronizer in spread spectrum direct communication system - Google Patents

Receiver synchronizer in spread spectrum direct communication system Download PDF

Info

Publication number
JP5439726B2
JP5439726B2 JP2008049245A JP2008049245A JP5439726B2 JP 5439726 B2 JP5439726 B2 JP 5439726B2 JP 2008049245 A JP2008049245 A JP 2008049245A JP 2008049245 A JP2008049245 A JP 2008049245A JP 5439726 B2 JP5439726 B2 JP 5439726B2
Authority
JP
Japan
Prior art keywords
phase rotation
value
rotation amount
signal
correlation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008049245A
Other languages
Japanese (ja)
Other versions
JP2009207037A (en
Inventor
慶太郎 大塚
武志 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Semiconductor Ltd
Original Assignee
Fujitsu Semiconductor Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Semiconductor Ltd filed Critical Fujitsu Semiconductor Ltd
Priority to JP2008049245A priority Critical patent/JP5439726B2/en
Publication of JP2009207037A publication Critical patent/JP2009207037A/en
Application granted granted Critical
Publication of JP5439726B2 publication Critical patent/JP5439726B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、直接拡散方式によるスペクトラム拡散通信方式における、受信同期装置に関する。 The present invention relates to a reception synchronization apparatus in a spread spectrum communication system using a direct spreading system.

図7に相関器の出力vs周波数特性の一例の図を、図8に従来例のスペクトラム直接拡散通信方式における復調器の回路構成の一例の図を示す。
図8において、ミキサ10には、高周波信号から中間周波信号に変換された受信スペクトラム拡散信号(SS受信信号)と、電圧制御発振器(VCO)11の出力の乗算によりベースバンドスペクトラム拡散信号を出力する。このベースバンドスペクトラム拡散信号をローパス・フィルタ(LPF)12に通すことにより、高調波成分とエリアシング雑音(折り返し雑音)をカットする。LPF12の出力はAD変換器13で所定クロック周波数でサンプリングすることによりAD変換され、ディジタル化した受信スペクトラム拡散信号となる。このディジタル化した受信スペクトラム拡散信号は相関器14に入力され、予め準備されている拡散符号パターンとの相関を求めることにより相関値を出力する。例えば、掃引制御器15によって制御される、カウンタで構成される掃引器16の出力をDA変換器17を介してアナログ電圧に変換して、VCO11の制御信号とする。この掃引器16の出力電圧を一定範囲内で順次増加させて周波数を掃引することにより、相関器からは図7に示すような相関値vs周波数の特性が得られる。相関値を電力変換器18で電力に変化した後、最大値検出器19でこの相関値の最大値を求め、相関値の最大値が得られた時のVCO11の出力周波数(fc)でAFC20の初期引き込みが完了したとして掃引を停止し、相関器から逆拡散タイミングを出力する。逆拡散タイミングが取得されたならば、逆拡散器21で、そのタイミングで逆拡散する。
FIG. 7 shows an example of the output vs. frequency characteristic of the correlator, and FIG. 8 shows an example of the circuit configuration of the demodulator in the conventional direct spectrum spread spectrum communication system.
In FIG. 8, the mixer 10 outputs a baseband spread spectrum signal by multiplying the received spread spectrum signal (SS received signal) converted from the high frequency signal into the intermediate frequency signal and the output of the voltage controlled oscillator (VCO) 11. . By passing this baseband spread spectrum signal through a low-pass filter (LPF) 12, harmonic components and aliasing noise (folding noise) are cut. The output of the LPF 12 is AD converted by sampling at a predetermined clock frequency by the AD converter 13 and becomes a digitized received spread spectrum signal. The digitized received spectrum spread signal is input to the correlator 14 and a correlation value is output by obtaining a correlation with a spread code pattern prepared in advance. For example, the output of the sweeper 16 configured by a counter controlled by the sweep controller 15 is converted into an analog voltage via the DA converter 17 and used as a control signal for the VCO 11. By sequentially increasing the output voltage of the sweeper 16 within a certain range and sweeping the frequency, the correlation value vs. frequency characteristic as shown in FIG. 7 is obtained from the correlator. After the correlation value is changed to electric power by the power converter 18, the maximum value of the correlation value is obtained by the maximum value detector 19, and the output frequency (fc) of the VCO 11 when the maximum value of the correlation value is obtained is When the initial pull-in is completed, the sweep is stopped and the despread timing is output from the correlator. If the despreading timing is acquired, the despreader 21 performs despreading at that timing.

しかしながら、受信信号のS/Nが悪い場合は、逆拡散タイミングを正確に得られない場合が考えられる。通常、拡散1周期の掃引では正確な逆拡散タイミングが得られない場合は、相関電圧を複数回積分する方法が用いられる。この方式による復調器の構成を図9に示す。図9においては、積分器が設けられており、積分回数設定値Nにより、拡散周期N回分の積分を行なう。拡散1周期の積分では、拡散符号の位相一致による相関電圧値よりも雑音電圧の方が高い場合が考えられ、得られる逆拡散タイミングの信頼度が低い。しかし、入力される雑音成分は白色ガウス雑音とみなす事ができ、すべての周波数成分を同強度で含む為、積分することにより、その電圧は零へ収束する事を利用する。よって、複数回積分することにより拡散符号の位相が一致している点での相関電圧は強め合い、雑音電圧部分は零に収束することになる。この方法により、S/Nが改善され、逆拡散タイミングの検出確率を高めることが可能となるが、伝送速度が低い場合などで周波数偏差が無視できない場合は積分効果が得られない、もしくは積分によって逆にピーク部分が打ち消しあうなどの問題が発生する為、周波数偏差を除去する必要がある。(周波数偏差が無い場合の積分による効果例と、偏差が有る場合で積分効果が得られない例を図10、図11に示す。図10は、積分効果が得られる場合であり、相関器の出力電圧を拡散周期で積分することにより、相関ピーク部分は強調され、ピークの大きさが積分回数倍になる。図11は、周波数偏差の存在により、相関値が大きく変化し、積分しても積分効果が得られない場合を示している。図11の上に示されるように、各拡散周期での相関値は、あるときは、正の大きな値となり、他の場合には、負の大きな値となる。ここで、相関値は、電力ではなく、電圧で示しているので、負の値になることが可能である。したがって、これらの相関値を複数回加算する積分を行なうと、ピーク部分は打ち消しあい、積分効果が得られない、あるいは、積分前よりもピーク値が減少する場合が生じる。このようなことがおきると、ピーク値の検出は所定の閾値との比較により行なわれるので、ピーク値が閾値よ
りも小さくなることがあり、正しくピーク値検出が出来ない、すなわち、正しい逆拡散タイミングが得られないという結果となる。
However, when the S / N of the received signal is poor, there may be a case where the despread timing cannot be obtained accurately. Usually, when accurate despreading timing cannot be obtained by sweeping one diffusion cycle, a method of integrating the correlation voltage multiple times is used. FIG. 9 shows the configuration of a demodulator according to this method. In FIG. 9, an integrator is provided, and integration for N diffusion periods is performed by an integration number setting value N. In the integration of one spreading period, there may be a case where the noise voltage is higher than the correlation voltage value due to the phase matching of the spreading code, and the reliability of the obtained despreading timing is low. However, the input noise component can be regarded as white Gaussian noise, and since all frequency components are included with the same intensity, it is utilized that the voltage converges to zero by integration. Therefore, by integrating a plurality of times, the correlation voltage at the point where the phases of the spreading codes coincide with each other is strengthened, and the noise voltage portion converges to zero. This method improves S / N and makes it possible to increase the detection probability of despreading timing. However, if the frequency deviation cannot be ignored due to a low transmission rate, the integration effect cannot be obtained, or by integration. Conversely, problems such as cancellation of peak portions occur, and therefore it is necessary to remove the frequency deviation. (Examples of the effect of integration when there is no frequency deviation and examples where the integration effect is not obtained when there is a deviation are shown in FIGS. 10 and 11. FIG. 10 shows the case where the integration effect is obtained. By integrating the output voltage with the diffusion period, the correlation peak portion is emphasized, and the size of the peak is multiplied by the number of integrations. 11 shows the case where the integration effect cannot be obtained, as shown in the upper part of Fig. 11. In some cases, the correlation value in each diffusion period becomes a large positive value, and in other cases, the negative large value. Here, since the correlation value is expressed not by electric power but by voltage, it can be a negative value, so if integration is performed by adding these correlation values multiple times, the peak value can be obtained. The parts cancel each other and the integration effect cannot be obtained. If this happens, the peak value is detected by comparison with a predetermined threshold value, so that the peak value may be smaller than the threshold value. As a result, the peak value cannot be detected correctly, that is, the correct despreading timing cannot be obtained.

また、周波数偏差が問題となる例として、次のような衛星携帯電話のシステムが考えられる。このシステムを図12に示す。
図12において、基地局からは常に共通パイロットチャネル(CPICH)と呼ばれる信号が送信されており、端末ではこのチャネルを基準として周波数同期を取る。このため、衛星の周波数偏差がΔFであったとすると、2×ΔFが基地局で受信されることになり、端末伝送速度が低速な場合で、逆拡散による相関値を拡散周期で複数回積分を行っている場合は問題となる。ここで、衛星の周波数偏差ΔFが基地局で2倍になるのは、信号が、基地局と端末の間を往復する際に衛星を2回通るので、衛星の周波数偏差を2回受けることになるからである。さらに、TDMA等でバーストフレームを受信するような場合、限られた時間内(フレームの先頭Pilot内など)で周波数同期及び逆拡散タイミングの検出を完了する必要があり、従来の掃引方法では同期完了まで長時間を必要とすることから問題がある。
Further, as an example in which frequency deviation becomes a problem, the following satellite mobile phone system can be considered. This system is shown in FIG.
In FIG. 12, a signal called a common pilot channel (CPICH) is always transmitted from the base station, and the terminal performs frequency synchronization with reference to this channel. For this reason, if the satellite frequency deviation is ΔF, 2 × ΔF is received by the base station, and when the terminal transmission rate is low, the correlation value by despreading is integrated several times in the spreading period. If so, it becomes a problem. Here, the frequency deviation ΔF of the satellite is doubled at the base station because the signal passes through the satellite twice when reciprocating between the base station and the terminal, so that the frequency deviation of the satellite is received twice. Because it becomes. Furthermore, when burst frames are received by TDMA or the like, it is necessary to complete the detection of frequency synchronization and despreading timing within a limited time (such as within the first pilot of the frame). With the conventional sweep method, synchronization is completed. There is a problem because it takes a long time.

従来技術としては、特許文献1〜3がある。特許文献1には、受信手段から復調手段への信号の転送ビット数を小さくし、装置の小型化や低消費電力化、位相変動や利得制御誤差をなくした高品質の復調信号を得られる受信装置が開示されている。特許文献2には、マルチパスフェージング、シャドウイングのある伝搬路の正しいパスの受信タイミングを正確に検出することのできる受信装置が開示されている。特許文献3には、初期同期における符号の検出をマッチドフィルタを用いて高速化する通信装置が開示されている。
特開2001−339455号公報 特開平10−32523号公報 特開平11−340874号公報
As the prior art, there are Patent Documents 1 to 3. Japanese Patent Laid-Open No. 2004-26883 discloses a reception that can obtain a high-quality demodulated signal by reducing the number of transfer bits of the signal from the receiving means to the demodulating means, reducing the size and power consumption of the apparatus, and eliminating phase fluctuations and gain control errors. An apparatus is disclosed. Patent Document 2 discloses a receiving apparatus that can accurately detect the reception timing of a correct path in a propagation path with multipath fading and shadowing. Patent Document 3 discloses a communication device that speeds up detection of codes in initial synchronization using a matched filter.
JP 2001-339455 A Japanese Patent Laid-Open No. 10-32523 Japanese Patent Laid-Open No. 11-340874

本受信同期装置の課題は、周波数偏差によらず相関値の積分効果を十分に得て、受信信号の周波数制御と逆相関タイミングの取得を正確に行なえる受信同期装置を提供することである。   An object of the present reception synchronization apparatus is to provide a reception synchronization apparatus capable of sufficiently obtaining the integration effect of the correlation value regardless of the frequency deviation and accurately performing the frequency control of the received signal and the acquisition of the inverse correlation timing.

本受信同期装置は、スペクトラム直接拡散通信方式の受信同期装置であって、無線信号を受信する受信手段と、受信信号に位相回転を与える位相回転手段と、位相回転された受信信号の相関値を取る相関手段と、該相関値を積分する積分手段と、複数の異なる位相回転量の位相回転が施された受信信号の相関値の積分値を電力変換した値から最大の相関値を与える位相回転量を検出する最大値検出手段と、受信信号を逆拡散する逆拡散手段と、該最大の相関値を与える位相回転量を該位相回転手段に設定し、以後の受信信号に対し、この位相回転量を与えて、逆拡散を行なう。   This reception synchronization apparatus is a reception synchronization apparatus of a direct spectrum spread communication system, and includes a reception means for receiving a radio signal, a phase rotation means for giving a phase rotation to the reception signal, and a correlation value of the phase-rotated reception signal. A correlation unit that takes the correlation value, an integration unit that integrates the correlation value, and a phase rotation that gives the maximum correlation value from a value obtained by converting the integral value of the correlation value of the received signal subjected to the phase rotation of a plurality of different phase rotation amounts. A maximum value detecting means for detecting the amount, a despreading means for despreading the received signal, and a phase rotation amount for giving the maximum correlation value are set in the phase rotating means, and this phase rotation is performed for the subsequent received signals. Give the amount and despread.

本受信同期装置によれば、周波数偏差によらず相関値の積分効果を十分に得て、受信信号の周波数制御と逆相関タイミングの取得を正確に行なえる受信同期装置を提供することができる。   According to this reception synchronization apparatus, it is possible to provide a reception synchronization apparatus that can sufficiently obtain the integration effect of the correlation value regardless of the frequency deviation and can accurately perform the frequency control of the received signal and the acquisition of the inverse correlation timing.

本実施形態においては、入力信号の周波数偏差を十分な積分効果が得られる範囲まで除去する。なお、ここでは、受信信号は、マルチキャリアからなり、あるサブキャリアでは、pilot信号が常時送信されているとし、周波数偏差の調整や逆拡散タイミングの検
出はpilot信号を用いて行なうことを考える。
In this embodiment, the frequency deviation of the input signal is removed to the extent that a sufficient integration effect can be obtained. Here, it is assumed that the received signal is composed of multicarriers, and that a pilot signal is always transmitted in a certain subcarrier, and that adjustment of frequency deviation and detection of despreading timing are performed using the pilot signal.

拡散周期と積分回数から、十分な積分効果が得られる周波数偏差量は求まり、周波数偏差の上限は、周波数の安定度といったシステム上の要素から推定する事が可能である。よって、積分に必要な信号をバッファに格納しておき、この格納した信号に対して推定される周波数偏差量を逆位相で与える事で周波数偏差をキャンセルする。ここで、取りうる全ての周波数偏差量を与える事はハードウェアの規模から非現実的であるので、
十分な積分効果を得られる周波数偏差量・・・・・A[Hz]以下
取りうる周波数偏差の範囲・・・・・・・・・・・−B[Hz]〜B[Hz]
とすると、B[Hz]〜−B[Hz]までの間を、A[Hz]の間隔で区切った離散値を位相回転器に与える。なお、ここで、取りうる周波数偏差の範囲は、システムの設計事項から当業者が見積もるものとし、十分な積分効果を得られる周波数偏差量は、積分回数等に依存するため、実験等を行って決定するものとする。
The amount of frequency deviation with which a sufficient integration effect can be obtained is obtained from the diffusion period and the number of integrations, and the upper limit of the frequency deviation can be estimated from system factors such as frequency stability. Therefore, a signal necessary for integration is stored in a buffer, and the frequency deviation is canceled by giving the estimated frequency deviation amount with an opposite phase to the stored signal. Here, since it is unrealistic from the scale of hardware to give all possible frequency deviations,
Amount of frequency deviation with which sufficient integration effect can be obtained. Range of frequency deviation that can be taken below A [Hz] ..... -B [Hz] to B [Hz]
Then, a discrete value obtained by dividing the interval from B [Hz] to -B [Hz] at intervals of A [Hz] is given to the phase rotator. Here, the range of frequency deviations that can be taken is estimated by those skilled in the art from system design matters, and the amount of frequency deviation that can obtain a sufficient integration effect depends on the number of integrations, etc. Shall be determined.

例として次のようなシステムを考える。
十分な積分効果を得られる周波数偏差量が10[Hz]以下
取りうる周波数偏差の範囲が−20[Hz]〜20[Hz]とすると、
バッファに格納してある信号に対して、
(1)−20[Hz]を与え、逆拡散による相関値を拡散周期で積分した結果得られる相関ピーク電力値
(2)−10[Hz]を与え、逆拡散による相関値を拡散周期で積分した結果得られる相関ピーク電力値
(3)0[Hz]を与え、逆拡散による相関値を拡散周期で積分した結果得られる相関ピーク電力値
(4)10[Hz]を与え、逆拡散による相関値を拡散周期で積分した結果得られる相関ピーク電力値
(5)20[Hz]を与え、逆拡散による相関値を拡散周期で積分した結果得られる相関ピーク電力値
(1)〜(5)までの結果の中で、最も高い相関ピーク電力値が得られた位相回転量が実際の周波数偏差量であり、偏差をキャンセルして積分効果を得られる事となる。
As an example, consider the following system.
When the range of the frequency deviation that can take a frequency deviation amount of 10 [Hz] or less capable of obtaining a sufficient integration effect is −20 [Hz] to 20 [Hz],
For the signal stored in the buffer,
(1) -20 [Hz] is given, the correlation peak power value (2) -10 [Hz] obtained as a result of integrating the correlation value by despreading with the spreading period is given, and the correlation value by despreading is integrated with the spreading period The correlation peak power value (3) 0 [Hz] obtained as a result of the correlation is given, and the correlation peak power value (4) 10 [Hz] obtained as a result of integrating the correlation value due to despreading with the spreading period is given. Correlation peak power value (5) 20 [Hz] obtained as a result of integrating the value with the spreading period is given, and correlation peak power value (1) to (5) obtained as a result of integrating the correlation value by despreading with the spreading period Among these results, the phase rotation amount at which the highest correlation peak power value was obtained is the actual frequency deviation amount, and the integration effect can be obtained by canceling the deviation.

この方法では、取りうる周波数偏差の範囲の中で複数の推定偏差量を格納している信号に与え、それぞれの偏差量による相関ピーク電力値を一括比較する事が可能であり、周波数同期及び逆拡散タイミングの検出を同時完了する事が出来る事から、従来手法と比較して大幅に時間を短縮可能である。   In this method, it is possible to apply a plurality of estimated deviation amounts to a stored signal within the range of possible frequency deviations, and collectively compare the correlation peak power values due to each deviation amount. Since the detection of the diffusion timing can be completed at the same time, the time can be greatly reduced as compared with the conventional method.

本実施形態にしたがって周波数偏差をキャンセルした場合の積分効果の概念説明図を図1に示す。
図1(a)は、周波数偏差のキャンセル前の相関値の概念図である。ここで、拡散周期Tを4ms、周波数偏差は、約36Hzであるとしている。周波数偏差があると、相関値が正の大きな値から負の大きな値になり、このまま積分しても積分効果が得られない。そこで、図1(b)に示すように、入力信号に−36Hzの位相回転を与え、周波数偏差をキャンセルしたとする。すると、図1(b)に示されるように、相関値は、正の大きな値になり、積分すると積分効果が十分得られる状態が得られる。
FIG. 1 is a conceptual explanatory diagram of the integration effect when the frequency deviation is canceled according to the present embodiment.
FIG. 1A is a conceptual diagram of a correlation value before frequency deviation cancellation. Here, it is assumed that the diffusion period T is 4 ms and the frequency deviation is about 36 Hz. If there is a frequency deviation, the correlation value changes from a large positive value to a large negative value, and even if integration is performed as it is, an integration effect cannot be obtained. Therefore, as shown in FIG. 1B, it is assumed that a phase rotation of −36 Hz is given to the input signal to cancel the frequency deviation. Then, as shown in FIG. 1B, the correlation value becomes a large positive value, and when it is integrated, a state in which an integration effect is sufficiently obtained can be obtained.

図2は、本発明の実施形態に従った復調器の構成図である。
図2において、図9と同じ構成要素には同じ参照符号を付す。
図2において、ミキサ10には高周波信号から中間周波信号に変換された受信スペクトラム拡散信号(SS受信信号)と、電圧制御発振器(VCO)11の出力の乗算によりベースバンドスペクトラム拡散信号を出力する。このベースバンドスペクトラム拡散信号をロー
パス・フィルタ(LPF)12に通すことにより、高調波成分とエリアシング雑音(折り返し雑音)をカットする。LPF12の出力はAD変換器13により、所定クロック周波数でサンプリングすることによりAD変換され、ディジタル化した受信スペクトラム拡散信号となる。このディジタル化した受信スペクトラム拡散信号は相関器14に入力され、予め準備されている拡散符号パターンとの相関を求めることにより相関値を出力する。例えば、カウンタで構成される掃引器16の出力をDA変換器17を介してアナログ電圧に変換してVCO11の制御信号とし、この掃引器16の出力電圧を一定範囲内で順次増加させて周波数を掃引することにより相関器14からは図7に示すような相関値vs周波数の特性が得られる。(ここで、相関値は従来のマッチドフィルタから得られる出力)最大値検出器19ではこの相関値の最大値を求め、相関値の最大値が得られた時のVCO出力周波数(fc)で掃引動作を停止し、周波数同期を完了する。
FIG. 2 is a block diagram of a demodulator according to an embodiment of the present invention.
In FIG. 2, the same components as those in FIG. 9 are denoted by the same reference numerals.
In FIG. 2, the mixer 10 outputs a baseband spread spectrum signal by multiplying the received spread spectrum signal (SS received signal) converted from the high frequency signal into the intermediate frequency signal and the output of the voltage controlled oscillator (VCO) 11. By passing this baseband spread spectrum signal through a low-pass filter (LPF) 12, harmonic components and aliasing noise (folding noise) are cut. The output of the LPF 12 is AD converted by sampling at a predetermined clock frequency by the AD converter 13 and becomes a digitized received spread spectrum signal. The digitized received spectrum spread signal is input to the correlator 14 and a correlation value is output by obtaining a correlation with a spread code pattern prepared in advance. For example, the output of the sweeper 16 composed of a counter is converted into an analog voltage via the DA converter 17 to obtain a control signal for the VCO 11, and the output voltage of the sweeper 16 is sequentially increased within a certain range to increase the frequency. By sweeping, the correlation value vs. frequency characteristic as shown in FIG. (Here, the correlation value is an output obtained from a conventional matched filter.) The maximum value detector 19 obtains the maximum value of the correlation value, and sweeps at the VCO output frequency (fc) when the maximum value of the correlation value is obtained. Stop operation and complete frequency synchronization.

次に、相関器14の出力を拡散周期で積分する動作へと移行する。掃引器16と掃引器16を制御する掃引制御器15を備えるAFC(Automatic Frequency Control)20による初期掃引による周波数残差もしくは衛星等の周波数偏差が積分に影響する場合、位相回転器31によって周波数偏差をキャンセルする。位相回転量は、最大値検出器19の出力である相関電力値を回転量制御部32が取得し、ピークの値の大きさが最大になるように、位相回転器の位相回転量を制御する。   Next, the operation proceeds to the operation of integrating the output of the correlator 14 with the diffusion period. When the frequency residual due to the initial sweep by the AFC (Automatic Frequency Control) 20 having the sweeper 16 and the sweep controller 15 for controlling the sweeper 16 or the frequency deviation of the satellite or the like affects the integration, the frequency deviation is caused by the phase rotator 31. Cancel. As for the phase rotation amount, the rotation amount control unit 32 acquires the correlation power value that is the output of the maximum value detector 19, and controls the phase rotation amount of the phase rotator so that the magnitude of the peak value becomes maximum. .

図2におけるバッファ30は、積分周期分の入力信号を格納するRAMであり、最終的な結果が得られるまで入力信号を保持する。拡散周期分の信号を格納後、バッファ30からのデータ読み出しと、読み出したデータに対する位相回転を行う。ここで、十分な積分効果が得られる周波数偏差量(A[Hz])以下まで偏差をキャンセルする必要があるので、システム上想定される周波数偏差の範囲の中を、A[Hz]の間隔で順次位相回転させ、それぞれの位相回転量で得られた積分後相関ピーク電力を比較し、最も高い値が得られた逆拡散タイミングを採用する。ここで、回転量制御部32では位相回転量の制御と、それぞれの位相回転量による相関電力値の比較を行う。   The buffer 30 in FIG. 2 is a RAM that stores an input signal for an integration period, and holds the input signal until a final result is obtained. After storing the signal for the diffusion period, data reading from the buffer 30 and phase rotation for the read data are performed. Here, since it is necessary to cancel the deviation to a frequency deviation amount (A [Hz]) or less at which a sufficient integration effect can be obtained, the frequency deviation range assumed in the system is set at intervals of A [Hz]. The phase is sequentially rotated, the post-integration correlation peak powers obtained with the respective phase rotation amounts are compared, and the despread timing at which the highest value is obtained is adopted. Here, the rotation amount control unit 32 controls the phase rotation amount and compares the correlation power value according to each phase rotation amount.

上記動作によって偏差の影響をキャンセルし、積分によるS/N改善効果を確実に得る事が可能となる為、逆拡散タイミングの検出率の向上が可能となる。
図3は、衛星携帯電話のようなシステムの基地局受信部で、周波数同期の動作が必要ない場合の復調器構成を示す図である。
The influence of the deviation can be canceled by the above operation, and the S / N improvement effect by integration can be surely obtained, so that the detection rate of the despreading timing can be improved.
FIG. 3 is a diagram showing a demodulator configuration when frequency synchronization operation is not necessary in the base station receiver of a system such as a satellite mobile phone.

図3において、図9と同じ構成要素には同じ参照符号を付す。
この場合は、入力信号(端末の送信信号)は基地局と周波数同期が取れているが、積分による効果を確実に得る為には衛星による周波数偏差を取り除く必要がある。
3, the same components as those in FIG. 9 are denoted by the same reference numerals.
In this case, although the input signal (terminal transmission signal) is frequency-synchronized with the base station, it is necessary to remove the frequency deviation due to the satellite in order to obtain the effect of integration reliably.

図3において、ミキサ10には高周波信号から中間周波信号に変換された受信スペクトラム拡散信号(SS受信信号)と、電圧制御発振器(VCO)11の出力の乗算によりベースバンドスペクトラム拡散信号を出力する。このベースバンドスペクトラム拡散信号をローパス・フィルタ(LPF)12に通すことにより高調波成分とエリアシング雑音(折り返し雑音)をカットする。LPF12の出力はAD変換器13で所定クロック周波数でサンプリングすることによりAD変換され、ディジタル化した受信スペクトラム拡散信号となる。   In FIG. 3, the mixer 10 outputs a baseband spread spectrum signal by multiplying the received spread spectrum signal (SS received signal) converted from the high frequency signal into the intermediate frequency signal and the output of the voltage controlled oscillator (VCO) 11. By passing the baseband spread spectrum signal through a low-pass filter (LPF) 12, harmonic components and aliasing noise (folding noise) are cut. The output of the LPF 12 is AD converted by sampling at a predetermined clock frequency by the AD converter 13 and becomes a digitized received spread spectrum signal.

次に、入力信号を拡散周期で積分する為にバッファ30へ積分周期分のデータを格納し、最終的な結果が得られるまで入力信号を保持する。拡散周期分の信号を格納後、バッファ30からのデータ読み出しと、読み出したデータに対する位相回転を行う。ここで、十分な積分効果が得られる周波数偏差量(A[Hz])以下まで偏差をキャンセルする必要があるので、システム上想定される周波数偏差の範囲の中を、A[Hz]の間隔で順次位
相回転させ、それぞれの位相回転量で得られた積分後相関ピーク電力を比較し、最も高い値が得られた逆拡散タイミングを採用する。ここで、回転量制御部32では位相回転量の制御と、それぞれの位相回転量による相関電力値の比較を行う。
Next, in order to integrate the input signal with the diffusion period, data for the integration period is stored in the buffer 30, and the input signal is held until a final result is obtained. After storing the signal for the diffusion period, data reading from the buffer 30 and phase rotation for the read data are performed. Here, since it is necessary to cancel the deviation to a frequency deviation amount (A [Hz]) or less at which a sufficient integration effect can be obtained, the frequency deviation range assumed in the system is set at intervals of A [Hz]. The phase is sequentially rotated, the post-integration correlation peak powers obtained with the respective phase rotation amounts are compared, and the despread timing at which the highest value is obtained is adopted. Here, the rotation amount control unit 32 controls the phase rotation amount and compares the correlation power value according to each phase rotation amount.

上記動作によって偏差の影響をキャンセルし、積分によるS/N改善効果を確実に得る事が可能となる為、逆拡散タイミングの検出率の向上が可能となる。
図4は、位相回転器の動作を説明する図である。
The influence of the deviation can be canceled by the above operation, and the S / N improvement effect by integration can be surely obtained, so that the detection rate of the despreading timing can be improved.
FIG. 4 is a diagram for explaining the operation of the phase rotator.

位相回転部はI,Q信号の複素演算を行っている。図4の位相回転部の入力信号Bi(t),Bq(t)はそれぞれ以下のように表現できる。   The phase rotation unit performs a complex operation on the I and Q signals. The input signals Bi (t) and Bq (t) of the phase rotation unit in FIG. 4 can be expressed as follows.

ここで、θ(t)は位相差、D(t)は変調データである。
Ri(t),Rq(t)は設定された位相回転量に基づくCos波、Sin波とすると、複素演算部(位相回転部)の演算は、
Here, θ (t) is a phase difference, and D (t) is modulation data.
When Ri (t) and Rq (t) are Cos waves and Sin waves based on the set phase rotation amount, the calculation of the complex calculation unit (phase rotation unit) is

となる。
入力信号の位相差と、設定された位相回転量が同じである場合、Ri(t),Rq(t)は、
It becomes.
When the phase difference of the input signal and the set phase rotation amount are the same, Ri (t) and Rq (t) are

(3)式に(1),(2),(4),(5)式をそれぞれ代入すると、 Substituting Equations (1), (2), (4), and (5) into Equation (3),

BPSKの場合、(6)式より出力信号は以下のように表される。 In the case of BPSK, the output signal is expressed as follows from equation (6).

図5は、バッファが無い場合の別実施形態に従った構成例を示す図である。
図5において、図9と同じ構成要素には同じ参照符号を付す。
FIG. 5 is a diagram showing a configuration example according to another embodiment when there is no buffer.
In FIG. 5, the same components as those in FIG. 9 are denoted by the same reference numerals.

図5において、ミキサ10には高周波信号から中間周波信号に変換された受信スペクトラム拡散信号(SS受信信号)と、電圧制御発振器(VCO)11の出力の乗算によりベースバンドスペクトラム拡散信号を出力する。このベースバンドスペクトラム拡散信号をローパス・フィルタ(LPF)12に通すことにより高調波成分とエリアシング雑音(折り返し雑音)をカットする。LPF12の出力はAD変換器13で所定クロック周波数でサンプリングすることによりAD変換され、ディジタル化した受信スペクトラム拡散信号となる。このディジタル化した受信スペクトラム拡散信号は相関器14−1〜14−nに入力され、予め準備されている拡散符号パターンとの相関を求めることにより相関値を出力する。ここで、本実施形態では、バッファにデータを格納し、順次異なる位相回転量を与えて相関値を取るのではなく、与える位相回転量の種類の数だけ位相回転制御部1〜nを設け、同時並列に異なる位相回転量を信号に与えて相関値を取り、最大値検出器19において、どの位相回転量を与えた場合が最も大きな相関値を得るかを検出し、周波数偏差を取得する。これにより、バッファを設けないでバッファを設けた場合と同様の効果を得ることが出来る。   In FIG. 5, the mixer 10 outputs a baseband spread spectrum signal by multiplying the received spread spectrum signal (SS received signal) converted from the high frequency signal into the intermediate frequency signal and the output of the voltage controlled oscillator (VCO) 11. By passing the baseband spread spectrum signal through a low-pass filter (LPF) 12, harmonic components and aliasing noise (folding noise) are cut. The output of the LPF 12 is AD converted by sampling at a predetermined clock frequency by the AD converter 13 and becomes a digitized received spread spectrum signal. The digitized received spectrum spread signal is input to correlators 14-1 to 14-n, and a correlation value is output by obtaining a correlation with a spread code pattern prepared in advance. Here, in this embodiment, instead of storing data in the buffer and sequentially giving different phase rotation amounts to obtain correlation values, phase rotation control units 1 to n are provided for the number of types of phase rotation amounts to be given, Simultaneously and in parallel, different phase rotation amounts are given to the signals to obtain correlation values, and the maximum value detector 19 detects which phase rotation amount gives the largest correlation value and obtains a frequency deviation. Thereby, the same effect as the case where a buffer is provided without providing a buffer can be obtained.

位相回転量の与え方は前述と同様に、十分な積分効果が得られる周波数偏差量(A[Hz])以下まで偏差をキャンセルする必要があるが、周波数偏差量は未知であるのでシステム上想定される周波数偏差の範囲の中を、A[Hz]の間隔で位相回転させる。システム上想定される周波数偏差の範囲がB[Hz]であるとすると、(B/A)個の位相回転器が必要となる。   In the same way as described above, it is necessary to cancel the deviation to a frequency deviation amount (A [Hz]) or less that can obtain a sufficient integration effect, but the frequency deviation amount is unknown and is assumed on the system. The phase of the frequency deviation is rotated at intervals of A [Hz]. If the frequency deviation range assumed in the system is B [Hz], (B / A) number of phase rotators are required.

これらの動作により、周波数偏差のキャンセルと積分によるS/N改善効果を確実に得ることが可能となる為、逆拡散タイミングの検出率が格段に向上する。また、同時間で周波数同期と逆拡散タイミング検出が完了する為、バースト動作等限られた時間内での動作が要求される場合に有利であり、そうでない場合にも動作率が下がるメリットが生じる。   By these operations, it becomes possible to reliably obtain the S / N improvement effect by canceling the frequency deviation and integrating, so that the detection rate of the despreading timing is remarkably improved. In addition, since frequency synchronization and despreading timing detection are completed in the same time, it is advantageous when operation within a limited time such as burst operation is required, and there is a merit that the operation rate decreases otherwise. .

図6は、TDMAバーストフレームの例を示す図である。
次に、pilot信号が常時送信されるシステムではなく、TDMA等でバーストフレームを受信する場合を考える。バーストフレームを受信する場合、フレームの先頭Pilotによる周波数同期および逆拡散タイミングの検出をフレーム毎に毎回行う必要があるが、周波数偏差に関しては前フレームで検出された偏差を中心とした変動であると推定できる。
FIG. 6 is a diagram illustrating an example of a TDMA burst frame.
Next, consider a case where a burst frame is received by TDMA or the like instead of a system in which a pilot signal is constantly transmitted. When receiving a burst frame, it is necessary to detect the frequency synchronization and despreading timing by the first pilot of each frame every frame, but the frequency deviation is a fluctuation centered on the deviation detected in the previous frame. Can be estimated.

例えば、周波数偏差の範囲が−160Hzから160Hzまでの間であり、10Hz間隔で位相回転を行っていた場合で、前フレームで+60Hzの周波数偏差が検出された場合、次のフレームのPilotに対して与える位相回転量は+60Hzを中心とし、1フレーム周期内で遷移しうる偏差量を与えていけばよい事になる。よって、与える位相回転
量は初回と比較して削減でき、2回目以降のフレームに対しての逆拡散タイミング検出時間は短くなり、回路の動作率も下がる事から低消費電力化が期待できる。
For example, when the frequency deviation range is from −160 Hz to 160 Hz and phase rotation is performed at 10 Hz intervals, and a frequency deviation of +60 Hz is detected in the previous frame, the pilot deviation of the next frame is The amount of phase rotation to be given should be a deviation amount that can shift within one frame period centered on +60 Hz. Therefore, the amount of phase rotation to be applied can be reduced compared to the first time, the despreading timing detection time for the second and subsequent frames is shortened, and the operation rate of the circuit is reduced, so that low power consumption can be expected.

上記実施形態によって、直接拡散方式によるスペクトラム拡散通信システムにおいて、従来方式から構成を大きく変える事無く、入力信号の周波数偏差を除去し、相関器の出力電圧積分によるS/N改善効果を確実に得る事が可能となり、高速且つ正確な受信同期確立を実現できる。   According to the above embodiment, in the spread spectrum communication system using the direct spreading method, the frequency deviation of the input signal is removed without significantly changing the configuration from the conventional method, and the S / N improvement effect by the integration of the output voltage of the correlator is reliably obtained. This makes it possible to establish high-speed and accurate reception synchronization.

本実施形態にしたがって周波数偏差をキャンセルした場合の積分効果の概念説明図である。It is a conceptual explanatory drawing of the integration effect at the time of canceling a frequency deviation according to this embodiment. 本発明の実施形態に従った復調器の構成図である。It is a block diagram of a demodulator according to an embodiment of the present invention. 衛星携帯電話のようなシステムの基地局受信部で、周波数同期の動作が必要ない場合の復調器構成を示す図である。It is a figure which shows a demodulator structure when the operation | movement of a frequency synchronization is not required in the base station receiver of a system like a satellite mobile phone. 位相回転器の動作を説明する図である。It is a figure explaining operation | movement of a phase rotator. バッファが無い場合の別実施形態に従った構成例を示す図である。It is a figure which shows the structural example according to another embodiment when there is no buffer. TDMAバーストフレームの例を示す図である。It is a figure which shows the example of a TDMA burst frame. 相関器の出力vs周波数特性の一例の図である。It is a figure of an example of the output vs frequency characteristic of a correlator. 従来例のスペクトラム直接拡散通信方式における復調器の回路構成の一例の図である。It is a figure of an example of the circuit structure of the demodulator in the spread spectrum direct communication system of a prior art example. 相関電圧を複数回積分する方法による復調器の構成を示す図である。It is a figure which shows the structure of the demodulator by the method of integrating a correlation voltage in multiple times. 周波数偏差が無い場合の積分による効果例を示す図である。It is a figure which shows the example of an effect by integration when there is no frequency deviation. 周波数偏差が有る場合で積分効果が得られない例を示す図である。It is a figure which shows the example in which an integration effect is not acquired when there exists a frequency deviation. 衛星携帯電話のシステムを説明する図である。It is a figure explaining the system of a satellite mobile telephone.

符号の説明Explanation of symbols

10 ミキサ
11 VCO
12 ローパス・フィルタ
13 A/D変換器
14、14−1〜14−n 相関器
15 掃引制御器
16 掃引器
17 D/A変換器
18、18−1〜18−n 電力変換器
19 最大値検出器
20 AFC
21 逆拡散器
22、22−1〜22−n 積分器
30 バッファ
31、31−1〜31−n 位相回転器
32 回転量制御部
10 Mixer 11 VCO
12 Low-pass filter 13 A / D converter 14, 14-1 to 14-n Correlator 15 Sweep controller 16 Sweep controller 17 D / A converter 18, 18-1 to 18-n Power converter 19 Maximum value detection 20 AFC
21 Despreader 22, 22-1 to 22-n Integrator 30 Buffer 31, 31-1 to 31-n Phase rotator 32 Rotation amount control unit

Claims (3)

スペクトラム拡散通信方式の受信同期装置であって、
無線信号を受信する受信手段と、
前記受信手段から入力される信号に位相回転を与える位相回転手段と、
前記位相回転手段から入力される信号と所定の拡散符号パターンとの相関を求めて相関ピーク電圧値を出力する相関手段と、
前記相関ピーク電圧値を拡散周期で積分する積分手段と、
前記積分手段で得られる積分値を電力変換する電力変換手段と、
前記電力変換手段から入力される相関ピーク電力値の最大値を検出する最大値検出手段と、
前記位相回転手段に、入力信号の前フレームで検出された周波数偏差に基づいて決定された、離散値となる周波数偏差を位相回転量として出力する位相回転量制御手段と、
を有し
前記位相回転量制御手段は、前記位相回転量を所定の範囲内で変化させた時の前記相関ピーク電力値の最大値に対応する最大位相回転量を取得して前記位相回転手段に出力し、
前記位相回転手段は、前記最大位相回転量に基づいて前記受信手段から入力される信号に位相回転を与えること
を特徴とする受信同期装置。
A spread synchronization communication type reception synchronization device,
Receiving means for receiving a radio signal;
Phase rotation means for applying phase rotation to a signal input from the reception means;
Correlation means for obtaining a correlation between a signal input from the phase rotation means and a predetermined spreading code pattern and outputting a correlation peak voltage value;
Integrating means for integrating the correlation peak voltage value with a diffusion period;
Power conversion means for power-converting an integral value obtained by the integration means;
Maximum value detection means for detecting the maximum value of the correlation peak power value input from the power conversion means;
A phase rotation amount control means for outputting a frequency deviation which is a discrete value determined as a phase rotation amount , based on the frequency deviation detected in the previous frame of the input signal, to the phase rotation means;
The phase rotation amount control means acquires a maximum phase rotation amount corresponding to a maximum value of the correlation peak power value when the phase rotation amount is changed within a predetermined range, and sends the phase rotation amount to the phase rotation means. Output,
The phase synchronizer provides phase rotation to a signal input from the receiver based on the maximum phase rotation amount.
スペクトラム拡散通信方式の受信同期装置において、
スペクトラム拡散された拡散信号を受信する受信手段と、
前記受信手段から入力される信号に位相回転を付与する位相回転手段と、
前記位相回転手段から入力される信号と所定の拡散符号パターンとの相関を求めて相関ピーク電圧値を出力する相関手段と、
前記相関ピーク電圧値を拡散周期で積分する積分手段と、
前記積分手段で得られる積分値を電力変換する電力変換手段と、
前記電力変換手段から入力される相関ピーク電力値の最大値を検出する最大値検出手段と、
前記位相回転手段に、入力信号の前フレームで検出された周波数偏差に基づいて決定された、離散値となる周波数偏差を位相回転量として出力する位相回転量制御手段と、
を有し、
前記位相回転量制御手段は、前記位相回転量を所定の範囲内で変化させた時の前記相関ピーク電力値の最大値に対応する最大位相回転量を取得して前記位相回転手段に出力し、
前記位相回転手段は、前記最大位相回転量を前記受信手段から入力される信号に付与すること
を特徴とする受信同期装置。
In the reception synchronization device of the spread spectrum communication system,
Receiving means for receiving a spread spectrum spread signal;
Phase rotation means for applying phase rotation to a signal input from the reception means;
Correlation means for obtaining a correlation between a signal input from the phase rotation means and a predetermined spreading code pattern and outputting a correlation peak voltage value;
Integrating means for integrating the correlation peak voltage value with a diffusion period;
Power conversion means for power-converting an integral value obtained by the integration means;
Maximum value detection means for detecting the maximum value of the correlation peak power value input from the power conversion means;
A phase rotation amount control means for outputting a frequency deviation which is a discrete value determined as a phase rotation amount , based on the frequency deviation detected in the previous frame of the input signal, to the phase rotation means;
Have
The phase rotation amount control means acquires a maximum phase rotation amount corresponding to a maximum value of the correlation peak power value when the phase rotation amount is changed within a predetermined range, and outputs the maximum phase rotation amount to the phase rotation means,
The phase synchronizer adds the maximum phase rotation amount to a signal input from the receiver.
スペクトラム拡散通信方式の受信同期方法において、
スペクトラム拡散された拡散信号を受信し、
前記拡散信号に位相回転量を付与し、
前記位相回転量が付与された前記拡散信号と所定の拡散符号パターンとの相関を求めて相関ピーク電圧値を出力し、
前記相関ピーク電圧値を拡散周期で積分して積分値を取得し、
前記積分値を電力変換して相関ピーク電力値を取得し、
前記相関ピーク電力値の最大値を検出し、
前記位相回転量を所定の範囲内で変化させた時の前記相関ピーク電力値の最大値に対応する最大位相回転量を取得し、
入力信号の前フレームで検出された周波数偏差に基づいて決定された、離散値となる周波数偏差である前記最大位相回転量を前記拡散信号に付与することを特徴とする受信同期方法。
In the reception synchronization method of the spread spectrum communication method,
Receives a spread spectrum spread signal,
Giving a phase rotation amount to the spread signal,
Obtaining a correlation between the spread signal to which the phase rotation amount is given and a predetermined spread code pattern, and outputting a correlation peak voltage value;
Integrating the correlation peak voltage value with a diffusion period to obtain an integral value,
The integral value is converted into power to obtain a correlation peak power value,
Detecting the maximum value of the correlation peak power value;
Obtaining a maximum phase rotation amount corresponding to a maximum value of the correlation peak power value when the phase rotation amount is changed within a predetermined range;
A reception synchronization method, comprising: adding the maximum phase rotation amount, which is a frequency deviation which is a discrete value, determined based on a frequency deviation detected in a previous frame of an input signal, to the spread signal.
JP2008049245A 2008-02-29 2008-02-29 Receiver synchronizer in spread spectrum direct communication system Expired - Fee Related JP5439726B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008049245A JP5439726B2 (en) 2008-02-29 2008-02-29 Receiver synchronizer in spread spectrum direct communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008049245A JP5439726B2 (en) 2008-02-29 2008-02-29 Receiver synchronizer in spread spectrum direct communication system

Publications (2)

Publication Number Publication Date
JP2009207037A JP2009207037A (en) 2009-09-10
JP5439726B2 true JP5439726B2 (en) 2014-03-12

Family

ID=41148830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008049245A Expired - Fee Related JP5439726B2 (en) 2008-02-29 2008-02-29 Receiver synchronizer in spread spectrum direct communication system

Country Status (1)

Country Link
JP (1) JP5439726B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03278747A (en) * 1990-03-28 1991-12-10 Toshiba Corp Frequency offset elimination circuit
JP3846546B2 (en) * 2000-08-29 2006-11-15 日本電気株式会社 Frequency offset estimator
JP2006345128A (en) * 2005-06-08 2006-12-21 Mitsubishi Electric Corp Detecting device
JP4828308B2 (en) * 2006-05-31 2011-11-30 三菱電機株式会社 Phase modulation sequence playback device
US7782967B2 (en) * 2007-03-19 2010-08-24 Alcatel-Lucent Usa Inc. Method of frequency offset compensation

Also Published As

Publication number Publication date
JP2009207037A (en) 2009-09-10

Similar Documents

Publication Publication Date Title
EP0750408B1 (en) Device and method for coherent-tracking of a signal for use in a cdma receiver
US7106784B2 (en) Universal rake receiver
US7889782B2 (en) Joint de-spreading and frequency correction using a correlator
US5724384A (en) PN code sync device using an adaptive threshold
US7826493B2 (en) Frequency offset correction circuit for WCDMA
US7020180B2 (en) Method and apparatus for acquiring pilots over code space and frequency errors in a CDMA communication system
JP4350271B2 (en) Method and apparatus for acquiring spreading code synchronization in receiver of CDMA communication system
EP1564903A2 (en) Apparatus and method for estimating initial frequency offset in an asynchronous mobile communication system
JPH08116293A (en) Synchronization method and device for spread spectrum communication
CN111989877B (en) Apparatus and receiver for performing synchronization in analog spread spectrum system
CN109586761B (en) Tracking demodulation method of high dynamic spread spectrum signal
CN108011653B (en) Self-adaptive rapid capture tracking system and method
GB2367211A (en) Slot timing acquisition and local oscillator frequency offset correction in a direct sequence spread spectrum receiver
JP2002530903A (en) Frequency acquisition tracking method and apparatus for DS-SSCDMA receiver
JPH07202750A (en) Spread spectrum reception method and receiver
US6728301B1 (en) System and method for automatic frequency control in spread spectrum communications
US8107564B2 (en) Device for detecting a frequency offset
US6950456B2 (en) High-speed cell searching apparatus and method using DPSK-based distributed sample acquisition
JP3852533B2 (en) Initial acquisition circuit
JP3418981B2 (en) Spread spectrum communication synchronization acquisition circuit
US20100317358A1 (en) Receiving apparatus, base station apparatus, and synchronization timing detection method
JP5439726B2 (en) Receiver synchronizer in spread spectrum direct communication system
CN110224807A (en) A kind of carrier synchronization method estimated based on AGC frequency deviation and system
US20100142596A1 (en) Synchronization error tracking device and method thereof
JP4406326B2 (en) Receiving device and communication device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131202

R150 Certificate of patent or registration of utility model

Ref document number: 5439726

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees