Connect public, paid and private patent data with Google Patents Public Datasets

Device and method for determining analyte levels

Download PDF

Info

Publication number
US20070032718A1
US20070032718A1 US11546157 US54615706A US2007032718A1 US 20070032718 A1 US20070032718 A1 US 20070032718A1 US 11546157 US11546157 US 11546157 US 54615706 A US54615706 A US 54615706A US 2007032718 A1 US2007032718 A1 US 2007032718A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
sensor
layer
glucose
membrane
device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11546157
Inventor
Mark Shults
Stuart Updike
Rathbun Rhodes
Barbara Gilligan
Mark Tapsak
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DexCom Inc
Original Assignee
DexCom Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/001Enzyme electrodes
    • C12Q1/005Enzyme electrodes involving specific analytes or enzymes
    • C12Q1/006Enzyme electrodes involving specific analytes or enzymes for glucose
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0031Implanted circuitry
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14558Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters by polarisation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1486Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using enzyme electrodes, e.g. with immobilised oxidase
    • A61B5/14865Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using enzyme electrodes, e.g. with immobilised oxidase invasive, e.g. introduced into the body by a catheter or needle or using implanted sensors

Abstract

Devices and methods for determining analyte levels are described. The devices and methods allow for the implantation of analyte-monitoring devices, such as glucose monitoring devices that result in the delivery of a dependable flow of blood to deliver sample to the implanted device. The devices include unique architectural arrangement in the sensor region that allows accurate data to be obtained over long periods of time.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • [0001]
    This is a continuation-in-part of Ser. No. 09/447,227, filed Nov. 22, 1999, which is a divisional of Ser. No. 08/811,473, filed Mar. 4, 1997, now U.S. Pat. No. 6,001,067.
  • FIELD OF THE INVENTION
  • [0002]
    The present invention relates generally to devices and methods for determining analyte levels, and, more particularly, to implantable devices and methods for monitoring glucose levels in a biological fluid.
  • BACKGROUND OF THE INVENTION
  • [0003]
    The continuous measurement of substances in biological fluids is of interest in the control and study of metabolic disorders. Electrode systems have been developed for this purpose whereby an enzyme-catalyzed reaction is monitored (e.g., by the changing concentrations of reactants or products) by an electrochemical sensor. In such electrode systems, the electrochemical sensor comprises an electrode with potentiometric or amperometric function in close contact with a thin layer containing an enzyme in dissolved or insoluble form. Generally, a semipermeable membrane separates the thin layer of the electrode containing the enzyme from the sample of biological fluid that includes the substance to be measured.
  • [0004]
    Electrode systems that include enzymes have been used to convert amperometrically inactive substances into reaction products that are amperometrically active. For example, in the analysis of blood for glucose content, glucose (which is relatively inactive amperometrically) may be catalytically converted by the enzyme glucose oxidase in the presence of oxygen and water to gluconic acid and hydrogen peroxide. Tracking the concentration of glucose is thereby possible since for every glucose molecule reacted a proportional change in either oxygen or hydrogen peroxide sensor current will occur [U.S. Pat. Nos. 4,757,022 and 4,994,167 to Shults et al., both of which are hereby incorporated by reference]. Hydrogen peroxide is anodically active and produces a current that is proportional to the concentration of hydrogen peroxide. [Updike et al., Diabetes Care, 11:801-807 (1988)].
  • [0005]
    Despite recent advances in the field of implantable glucose monitoring devices, presently used devices are unable to provide data safely and reliably for long periods of time (e.g., months or years) [See, e.g., Moatti-Sirat et al., Diabetologia 35:224-30 (1992)]. For example, Armour et al., Diabetes 39:1519-26 (1990), describes a miniaturized sensor that is placed intravascularly, thereby allowing the tip of the sensor to be in continuous contact with the blood. Unfortunately, probes that are placed directly into the vasculature put the recipient at risk for thrombophlebosis, thromboembolism, and thrombophlebitis.
  • [0006]
    Currently available glucose monitoring devices that may be implanted in tissue (e.g., subcutaneously) are also associated with several shortcomings. For example, there is no dependable flow of blood to deliver sample to the tip of the probe of the implanted device. Similarly, in order to be effective, the probe must consume some oxygen and glucose, but not enough to perturb the available glucose which it is intended to measure; subcutaneously implanted probes often reside in a relatively low oxygen environment in which oxygen or glucose depletion zones around the probe tip may result in erroneously low measured glucose levels. In addition, implantable devices that utilize electrode sensors require membranes of the appropriate composition to protect the sensor from harsh in vivo environmental conditions. Current membrane technology has allowed the development of a single structural membrane that performs the same functions that previously required multiple membranes. However, these single membranes have been observed to delaminate and thus prevent accurate long-term glucose monitoring. Finally, the probe may be subject to “motion artifact” because the device is not adequately secured to the tissue, thus contributing to unreliable results. Partly because of these limitations, it has previously been difficult to obtain accurate information regarding the changes in the amounts of analytes (e.g., whether blood glucose levels are increasing or decreasing); this information is often extremely important, for example, in ascertaining whether immediate corrective action is needed in the treatment of diabetic patients.
  • [0007]
    There is a need for a device that accurately and continuously determines the presence and the amounts of a particular analyte, such as glucose, in biological fluids. The device should be easy to use, be capable of accurate measurement of the analyte over long periods of time, and should not readily be susceptible to motion artifact.
  • SUMMARY OF TEE INVENTION
  • [0008]
    The present invention relates generally to devices and methods for determining analyte levels, and, more particularly, to implantable devices and methods for monitoring glucose levels in a biological fluid.
  • [0009]
    In one aspect of the present invention, an implantable device for measuring an analyte in a biological fluid is provided, which includes the following: a housing including an electronic circuit; and a sensor operably connected to the electronic circuit of the housing, the sensor including i) a member for determining the amount of glucose in a biological sample ii) a bioprotective membrane, the bioprotective membrane positioned more distal to the housing than the glucose determining member and substantially impermeable to macrophages, and iii) an angiogenic layer, the angiogenic layer positioned more distal to the housing than the bioprotective membrane.
  • [0010]
    The present invention further encompasses a method of monitoring glucose levels, the method including the steps of providing a host, and an implantable device as described above and implanting the device in the host under conditions such that the device measures glucose for a period exceeding 360 days.
  • [0011]
    In one embodiment of this aspect, the invention encompasses a method of measuring glucose in a biological fluid that includes the steps of providing a host, and an implantable device as provided above, wherein the glucose determining member of the implantable device is capable of continuous glucose sensing, and implanting the device in the host.
  • [0000]
    Definitions
  • [0012]
    In order to facilitate an understanding of the present invention, a number of terms are defined below.
  • [0013]
    The term “accurately” means, for example, 95% of measured values within 25% of the actual value as determined by analysis of blood plasma, preferably within 15% of the actual value, and most preferably within 5% of the actual value. Alternatively, “accurately” means that 85% of the measured values fall into the A and B regions of a Clarke error grid, or preferably 90%, or most preferably 95% of the measured values fall into these regions. It is understood that like any analytical device, calibration, calibration validation and recalibration are required for the most accurate operation of the device.
  • [0014]
    The term “analyte” refers to a substance or chemical constituent in a biological fluid (e.g., blood or urine) that can be analyzed. A preferred analyte for measurement by the devices and methods of the present invention is glucose.
  • [0015]
    The terms “sensor interface,” “sensor means,” “sensor” and the like refer to the region of a monitoring device responsible for the detection of a particular analyte. For example, in some embodiments of a glucose monitoring device, the sensor interface refers to that region wherein a biological sample (e.g., blood or interstitial fluid) or a portion thereof contacts (directly or after passage through one or more membranes or layers) an enzyme (e.g., glucose oxidase); the reaction of the biological sample (or portion thereof) results in the formation of reaction products that allow a determination of the glucose level in the biological sample. In preferred embodiments of the present invention, the sensor means comprises an angiogenic layer, a bioprotective layer, an enzyme layer, and an electrolyte phase (i.e., a free-flowing liquid phase comprising an electrolyte-containing fluid [described further below]). In some preferred embodiments, the sensor interface protrudes beyond the plane of the housing.
  • [0016]
    The term “tissue interface” refers to that region of a monitoring device that is in contact with tissue.
  • [0017]
    The terms “operably connected,” “operably linked,” and the like refer to one or more components being linked to another component(s) in a manner that allows transmission of, e.g., signals between the components. For example, one or more electrodes may be used to detect the amount of analyte in a sample and convert that information into a signal; the signal may then be transmitted to electronic circuit means (i.e., the electrode is “operably linked” to the electronic circuit means), which may convert the signal into a numerical value in the form of known standard values.
  • [0018]
    The term “electronic circuit means” or “electronic circuit” refers to the electronic circuitry components of a biological fluid measuring device required to process information obtained by a sensor means regarding a particular analyte in a biological fluid, thereby providing data regarding the amount of that analyte in the fluid. U.S. Pat. No. 4,757,022 to Shults et al., previously incorporated by reference, describes suitable electronic circuit means (see, e.g., FIG. 7); of course, the present invention is not limited to use with the electronic circuit means described therein. A variety of circuits are contemplated, including but not limited to those circuits described in U.S. Pat. Nos. 5,497,772 and 4,787,398, hereby incorporated by reference.
  • [0019]
    The terms “angiogenic layer,” “angiogenic membrane,” and the like refer to a region, membrane, etc. of a biological fluid measuring device that promotes and maintains the development of blood vessels microcirculation around the sensor region of the device. As described in detail below, the angiogenic layer of the devices of the present invention may be constructed of membrane materials alone or in combination such as polytetrafluoroethylene, hydrophilic polyvinylidene fluoride, mixed cellulose esters, polyvinylchloride, and other polymers including, but not limited to, polypropylene, polysulfone, and polymethylmethacrylate.
  • [0020]
    The phrase “positioned more distal” refers to the spatial relationship between various elements in comparison to a particular point of reference. For example, some embodiments of a biological fluid measuring device comprise both a bioprotective membrane and an angiogenic layer/membrane. If the housing of the biological fluid measuring device is deemed to be the point of reference and the angiogenic layer is positioned more distal to the housing than the bioprotective layer, then the bioprotective layer is closer to the housing than the angiogenic layer.
  • [0021]
    The terms “bioprotective membrane,” “bioprotective layer,” and the like refer to a semipermeable membrane comprised of protective biomaterials of a few microns thickness or more that are permeable to oxygen and glucose and are placed over the tip of the sensor to keep the white blood cells (e.g., tissue macrophages) from gaining proximity to and then damaging the enzyme membrane. In some embodiments, the bioprotective membrane has pores (typically from approximately 0.1 to approximately 1.0 micron). In preferred embodiments, a bioprotective membrane comprises polytetrafluoroethylene and contains pores of approximately 0.4 microns in diameter. Pore size is defined as the pore size provided by the manufacturer or supplier.
  • [0022]
    The phrase “substantially impermeable to macrophages” means that few, if any, macrophages are able to cross a barrier (e.g., the bioprotective membrane). In preferred embodiments, fewer than 1% of the macrophages that come in contact with the bioprotective membrane are able to cross.
  • [0023]
    The phrase “material for securing said device to biological tissue” refers to materials suitable for attaching the devices of the present invention to, the fibrous tissue of a foreign body capsule. Suitable materials include, but are not limited to, poly(ethylene terephthalate). In preferred embodiments, the top of the housing is covered with the materials in the form of surgical grade fabrics; more preferred embodiments also contain material in the sensor interface region (see FIG. 1B).
  • [0024]
    The phrase “member for determining the amount of glucose in a biological sample” refers broadly to any mechanism (e.g., enzymatic or non-enzymatic) by which glucose can be quantitated. For example, some embodiments of the present invention utilize a membrane that contains glucose oxidase that catalyzes the conversion of glucose to gluconate: Glucose+O2=Gluconate+H2O2. Because for each glucose molecule converted to gluconate, there is a proportional change in the co-reactant O2 and the product H2O2, one can monitor the current change in either the co-reactant or the product to determine glucose concentration.
  • [0025]
    The phrase “apparatus for transmitting data to a location external to said device” refers broadly to any mechanism by which data collected by a biological fluid measuring device implanted within a subject may be transferred to a location external to the subject. In preferred embodiments of the present invention, radiotelemetry is used to provide data regarding blood glucose levels, trends, and the like.
  • [0026]
    The terms “radiotelemetry,” “radiotelemetric device,” and the like refer to the transmission by radio waves of the data recorded by the implanted device to an ex vivo recording station (e.g., a computer), where the data is recorded and, if desired, further processed (see, e.g., U.S. Pat. Nos. 5,321,414 and 4,823,808, hereby incorporated by reference; PCT Pat. Publication WO 94/22367).
  • [0027]
    The term “host” refers to both humans and animals.
  • [0028]
    The phrase “continuous glucose sensing” refers to the period in which monitoring of plasma glucose concentration is continuously carried out. More specifically, at the beginning of the period in which continuous glucose sensing is effected, the background sensor output noise diminishes and the sensor output stabilizes (e.g., over several days) to a long-term level reflecting adequate microcirculatory delivery of glucose and oxygen to the tip of the sensor (see FIG. 2).
  • [0029]
    The term “filtrate layer” refers to any permeable membrane that is able to limit molecules from passing through the membrane based on their properties including molecular weight. More particularly, the resistance layer, interference layer and bioprotective membrane are examples of layers that can function as filtrate layers, depending on the materials from which they are prepared. These layers can control delivery of analyte to a sensing means. Furthermore, these layers can reduce a number of undesirable molecular species that may otherwise be exposed to the sensor for detection and provide a controlled sample volume to the analyte sensing means.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0030]
    FIG. 1A depicts a cross-sectional drawing of one embodiment of an implantable analyte measuring device of the present invention.
  • [0031]
    FIG. 1B depicts a cross-sectional exploded view of the sensor interface dome of FIG. 1A.
  • [0032]
    FIG. 1C depicts a cross-sectional exploded view of the electrode-membrane region of FIG. 1B detailing the sensor tip and the functional membrane layers.
  • [0033]
    FIG. 2 graphically depicts glucose levels as a function of the number of days post-implant.
  • [0034]
    FIG. 3 is a graphical representation of the number of functional sensors versus time (i.e. weeks) comparing control devices including only a cell-impermeable domain (“Control”), with devices including a cell-impermeable domain and a barrier-cell domain (“Test”).
  • [0035]
    FIG. 4A is a photograph of an intact composite bioprotective/angiogenic membrane after implantation in a dog for 137 days.
  • [0036]
    FIG. 4B is a photograph of a delaminated ePTFE bilayer membrane after implantation in a dog for 125 days.
  • DETAILED DESCRIPTION OF THE INVENTION
  • [0037]
    The present invention relates generally to devices and methods for determining analyte levels, and, more particularly, to implantable devices and methods for monitoring glucose levels in a biological fluid. In a preferred embodiment, the device and methods of the present invention are used to determine the level of glucose in a host, a particularly important measurement for individuals having diabetes.
  • [0038]
    Although the description that follows is primarily directed at glucose monitoring devices and methods for their use, the devices and methods of the present invention are not limited to glucose measurement. Rather, the devices and methods may be applied to detect and quantitate other analytes present in biological fluids (including, but not limited to, amino acids and lactate), especially those analytes that are substrates for oxidase enzymes [see, e.g., U.S. Pat. No. 4,703,756 to Gough et al., hereby incorporated by reference]. Moreover, the devices and methods of the present invention may be utilized to present components of biological fluids to measurement methods which are not enzyme-based, including, but not limited to, those based on surface plasmon resonance, surface acoustic waves, optical absorbance in the long wave infrared region, and optical rotation of polarized light.
  • [0039]
    For example, surface plasmon resonance sensors that analyze a region within less than one wavelength of analysis light near the flat surface of the sensor have been described (See U.S. Pat. No. 5,492,840). These sensors have been used, for example, in the study of immunochemistry and other surface bound chemical reactions (Jonsson et al., Annales de Biologies Clinique 51(10:19, 1993). This type of sensor may be incorporated into the implantable device of the present invention for the detection of a number of different analytes including glucose. One skilled in the art would recognize that the surface plasmon resonance sensor is an optical sensor and that the implantable device of the present invention may further include a source of coherent radiation (e.g. a laser operating in the visible or near infrared).
  • [0040]
    In one application, referred to here as a consumptive approach, an enzyme that consumes the analyte producing a detectable product is immobilized on the sensor in the filtrate layer. When the enzyme consumes the analyte, the reaction products diffuse away from the enzyme at a rate dependent on the permeability of the layers distal to the enzyme layer. As a result, reaction products will accumulate at a higher concentration near the sensor, within one wavelength of analysis light, where they may be detected and measured. One example of such a system that detects the presence of glucose would immobilize a glucose oxidase enzyme layer on the sensor surface.
  • [0041]
    The layers of the present invention play an important role in the effective operation and function of this type of sensor. In particular, the angiogenic layer assures a constant supply of analyte from the tissues of the subject, the bioprotective membrane protects the underlying layers from cellular attack, the resistance layer controls the rate of delivery of analyte and the filtrate layer performs many functions including; providing a low molecular weight filtrate, reducing the number of undesirable molecular species available to the sensor for detection and providing a controlled volume of sample for detection by the sensor. As mentioned above, the bioprotective membrane, resistance layer and interference layer can function as filtrate layers. For example, it is well within the contemplation of the present invention that the bioprotective membrane can be made of a material that is able to exclude certain molecules from passing through the membrane based on their size.
  • [0042]
    One skilled in the art would recognize that the reaction kinetics associated with each type of enzyme that may be selected for use with this sensor is unique. However, in general, if an excess of enzyme is provided, the enzyme turnover rate is proportional to the flux of analyte to the enzyme and independent of the enzyme concentration. Therefore, the actual analyte concentration may be calculated utilizing the diffusion rate of the detectable analyte across the bioprotective resistance layers.
  • [0043]
    In another application, referred to here as a non-consumptive approach, an analyte-binding compound is provided on the surface plasmon resonance sensor surface within one wavelength of analysis light. This compound reversibly binds, but does not consume, the analyte. In this application, the analyte moves reversibly onto and off of attachment sites on the binding compound. This reaction provides a steady state condition for bound and unbound analyte that may be quantitated and analyte concentration mathematically calculated. One skilled in the art would recognize that the reaction kinetics associated with binding and release of the analyte is unique for each type of binding compound selected. Examples of such a system that detects the presence of glucose provide a binding compound comprised of conconavalin A or a wide range of borate containing compounds (See U.S. Pat. No. 6,011,985).
  • [0044]
    Since this is a chemical equilibrium-based approach, a filtrate layer is not necessarily required to maintain an analyte concentration near the sensor. However, such a membrane would still be desired to reduce the number of undesirable molecular species available to the analyte-binding layer. Preferably, the bioprotective layer is thin to allow rapid sensor equilibration to changes in analyte levels. As described above, one skilled in the art would recognize that the function of the filtrate layer could be incorporated into the bioprotective membrane by selection of the appropriate molecular exclusion, such as exclusion by molecular weight, if desired.
  • [0045]
    A variety of materials may be utilized to construct a combination angiogenic/bioprotective membrane, many of which are described below under the angiogenic layer and bioprotective membrane headings. Preferably, this combination membrane is ePTFE embedded in a layer of PVP containing urethane hydrogel. However, any material that performs a similar function as the PVP containing polyurethane hydrogel could be substituted.
  • [0046]
    In either application, consumptive or non-consumptive, one skilled in the art would recognize that the response time of the sensor is subject to Fick's law of diffusion. More specifically, sensors with thick membrane layers or that have low analyte diffusivity will respond slower to change in analyte concentration than sensors with thin membranes or that have high analyte diffusivity. Consequently, reasonable optimization experimentation with the membrane and layers would be required to meet various use requirements.
  • [0047]
    One skilled in the art would further recognize that the consumptive or non-consumptive approaches of the previous example could be applied to additional sensor modalities as follows:
  • [0048]
    1. Another sensor that may be incorporated into the device of the present invention that has been previously described is a surface acoustic wave sensor (See U.S. Pat. No. 5,932,953). This sensor, also referred to as a bulk-acoustic wave piezoelectric resonator, typically includes a planar surface of piezoelectric material with two respective metal layers bonded on opposite sides that form the electrodes of the resonator. The two surfaces of the resonator are free to undergo vibrational movement when the resonator is driven by a signal within the resonance band of the resonator. One of these surfaces is adapted to provide reversible binding sites for the analyte being detected. The binding of the analyte on the surface of the resonator alters the resonant characteristics of the resonator and changes in the resonant characteristics may be detected and interpreted to provide quantitative information regarding the analyte concentration.
  • [0049]
    2. Another sensor that may be incorporated into the device of the present invention is an optical absorbance sensor (See U.S. Pat. No. 6,049,727). This sensor utilizes short to medium wavelength infrared light that is passed through a sample with the unabsorbed infrared light being monitored by an optical detector.
  • [0050]
    Previously developed methods for analysis of analytes such as glucose in tissues and blood have been relatively unsuccessful for two reasons, interference from other chemicals present in the complex biological sample and signal variation due to poor control of sample volume. These problems may be solved by providing a low molecular weight filtrate of biological fluid in a controlled volume of sample to the sensor. In one system of the present invention, biological analyte is provided to the sensor through the angiogenic layer. This analyte is then filtered through the bioprotective membrane to produce a desirable filtrate. Alternatively, a third filtrate layer, such as an interference layer, may be utilized having specific filtration properties to produce the desired filtrate. The three-dimensional structure of the bioprotective membrane and/or other filtrate layers is utilized to define and stabilize the sample volume. One skilled in the art would recognize that any material that provides a low molecular weight filtrate to the sensor in a controlled volume might be utilized. Preferably, this material is polyurethane.
  • [0051]
    The sensor may be enhanced by partial metallization of the distal side of the filtrate producing material that would serve to isolate by reflection the optical signal to the space within the filtrate region directly adjacent to the sensor. This metal film may be a durable metal including, but not restricted to, gold or platinum and may be vacuum deposited onto the filtrate producing material.
  • [0052]
    One skilled in the art would recognize that the optical absorbance sensor requires a source of short to medium wavelength infrared light. Consequently, the implantable device of the present invention would further include a source of infrared radiation and an optical detector.
  • [0053]
    3. Another sensor that may be incorporated into the device of the present invention that has been previously described is a polarized light optical rotation sensor (See U.S. Pat. No. 5,209,231). This sensor may be used to detect an analyte that rotates polarized light such as glucose. In particular, glucose concentrations in biological fluids in the range of 0.05 to 1.00% w/v may be detected and quantitated. Normal non-diabetic subjects generally have biological glucose concentrations ranging from 0.07 to 0.12% w/v.
  • [0054]
    In this type of sensor, the optical detector receives polarized light passed through a biological sample and then further through a polarizing filter. The optical activity of an analyte in the sample rotates the polarized light in proportion to its concentration. Unfortunately, accurate measurements of glucose in complex biological samples has proven difficult because of the optical activity of interfering substances and poor control of sample volume. These problems may be solved by providing a low molecular weight filtrate of biological fluid in a controlled volume to the sensor. The present invention meets this criterion by providing a continuous supply of biological glucose to the sensor through the angiogenic layer that is filtered through a bioprotective membrane and/or a filtrate layer as described previously for the optical absorbance sensor. One skilled in the art would recognize that any material that provides a low molecular weight filtrate to the sensor in a controlled geometry might be utilized. Preferably, this material is polyurethane. In addition, one skilled in the art would recognize that the polarized light optical rotation sensor requires a source of polarized light. Consequently, the implantable device of the present invention would further include a source of polarized radiation.
  • [0055]
    4. Another sensor that may be incorporated into the device of the present invention that has been previously described is a fluorescence sensor (See U.S. Pat. No. 5,341,805). The invention of Colvin provides a method for incorporating an ultraviolet light source and fluorescent sensing molecules in an implantable device. However, Colvin does not describe how the sensor would survive harsh in vivo environmental conditions, how the device would be functionally integrated into body tissues or how a continuous supply of glucose would be maintained for detection by the sensor. These problems may be solved by providing a low molecular weight filtrate of biological fluid in a controlled volume to the sensor.
  • [0056]
    In this example, a continuous supply of biological glucose passes to the sensor through the angiogenic layer that prevents isolation of the sensor by the body tissue. The glucose is then filtered through the bioprotective membrane to produce a desirable filtrate having fewer interfering molecules and to protect the sensor from in vivo environmental conditions. Alternatively, a filtrate layer may be utilized having specific filtration properties to produce the desired filtrate. The three-dimensional structure of the bioprotective membrane and/or filtrate layer also provides stabilized sample volume for detection by the sensor.
  • [0057]
    One skilled in the art would recognize that a fluorescence sensor requires a source of light. Consequently, the implantable device of the present invention would further comprise a source of radiation, as well as fluorescent sensing molecules to detect the presence of analyte.
  • [0000]
    I. Nature of the Foreign Body Capsule.
  • [0058]
    Devices and probes that are implanted into subcutaneous tissue will almost always elicit a foreign body capsule (FBC) as part of the body's response to the introduction of a foreign material. Therefore, implantation of a glucose sensor results in an acute inflammatory reaction followed by building of fibrotic tissue. Ultimately, a mature FBC including primarily a vascular fibrous tissue forms around the device (Shanker and Greisler, Inflammation and Biomaterials in Greco R S, ed. Implantation Biology: The Host Response and Biomedical Devices, pp 68-80, CRC Press (1994)).
  • [0059]
    Although fluid is frequently found within the capsular space between the sensor and the capsule, levels of analytes (e.g., glucose and oxygen) within the fluid often do not mimic levels in the body's vasculature, making accurate measurement difficult.
  • [0060]
    In general the formation of a FBC has precluded the collection of reliable, continuous information, reportedly because of poor vascularization, the composition of a FBC has prevented stabilization of the implanted device, contributing to motion artifact that renders unreliable results. Thus, conventionally, it has been the practice of those skilled in the art to attempt to minimize FBC formation by, for example, using a short-lived needle geometry or sensor coatings to minimize the foreign body reaction (“Biosensors in the Body” David M. Fraser, ed.; 1997 pp 117-170. Wiley & Sons Ltd., West Sussex, England),
  • [0061]
    In contrast to the prior art, the teachings of the present invention recognize that FBC formation is the dominant event surrounding long term implantation of any sensor and must be orchestrated to support rather than hinder or block sensor performance. For example, sensors often do not perform well until the FBC has matured sufficiently to provide ingrowth of well-attached tissue bearing a rich supply of capillaries directly to the surface of the sensor. With reference to FIG. 2, stabilization of device function generally occurs between about 2 and 8 weeks depending on the rate of healing and formation of new capillaries. In some cases, devices are functional from the time of implant, and sometimes it may take as long as 12 weeks. However, the majority of devices begin functioning between weeks 2 and 8 after implantation. This maturation process, when initiated according to the present invention, is a function of biomaterial and host factors that initiate and modulate angiogenesis, and promote and control fibrocyte ingrowth. The present invention contemplates the use of particular materials to promote angiogenesis adjacent to the sensor interface (also referred to as the electrode-membrane region, described below) and to anchor the device within the FBC.
  • [0000]
    II. The Implantable Glucose Monitoring Device of the Present Invention
  • [0062]
    The present invention contemplates the use of a unique micro-geometry at the sensor interface of an implantable device. Moreover, the present invention contemplates the use of materials covering all or a portion of the device to assist in the stabilization of the device following implantation. However, it should be pointed out that the present invention does not require a device comprising particular electronic components (e.g., electrodes, circuitry, etc). Indeed, the teachings of the present invention can be used with virtually any monitoring device suitable for implantation (or subject to modification allowing implantation); suitable devices include, but are not limited, to those described in U.S. Pat. No. 6,001,067 to Shults et al.; U.S. Pat. No. 4,703,756 to Gough et al., and U.S. Pat. No. 4,431,004 to Bessman et al.; the contents of each being hereby incorporated by reference, and Bindra et al., Anal. Chem. 63:1692-96 (1991).
  • [0063]
    In the discussion that follows, an example of an implantable device that includes the features of the present invention is first described. Thereafter, the specific characteristics of, for example, the sensor interface contemplated by the present invention will be described in detail.
  • [0064]
    Generally speaking, the implantable devices contemplated for use with the present invention are cylindrical or oval shaped; of course, devices with other shapes may also be used with the present invention. The sample device includes a housing composed of radiotransparent ceramic. FIG. 1A depicts a cross-sectional drawing of one embodiment of an implantable measuring device. Referring to FIG. 1A, the cylindrical device includes a ceramic body 1 and ceramic head 10 houses the sensor electronics that include a circuit board 2, a microprocessor 3, a battery 4, and an antenna 5. Furthermore, the ceramic body 1 and head 10 possess a matching taper joint 6 that is sealed with epoxy. The electrodes are subsequently connected to the circuit board via a socket 8.
  • [0065]
    As indicated in detail in FIG. 1B, three electrodes protrude through the ceramic head 10, a platinum working electrode 21, a platinum counter electrode 22 and a silver/silver chloride reference electrode 20. Each of these is hermetically brazed 26 to the ceramic head 10 and further affixed with epoxy 28. The sensing region 24 is covered with the sensing membrane described below and the ceramic head 10 contains a groove 29 so that the membrane may be affixed into place with an o-ring.
  • [0066]
    In a preferred embodiment, the device is cylindrical, as shown in FIG. 1A, and is approximately 1 cm in diameter, and 5.5 cm long. The sensing region is situated at one extreme end of the cylinder. The sensor region includes a dome onto which the sensing membranes are attached.
  • [0067]
    Maintaining the blood supply near an implanted foreign body like an implanted analyte-monitoring sensor requires stable fixation of FBC tissue on the surface of the foreign body. This can be achieved, for example, by using capsular attachment (anchoring) materials (e.g., those materials that includes the sensor interface and tissue anchoring layers) developed to repair or reinforce tissues, including, but not limited to, polyester (DACRON®; DuPont; poly(ethylene terephthalate)) velour, expanded polytetrafluoroethylene (TEFLON®; Gore), polytetrafluoroethylene felts, polypropylene cloth, and related porous implant materials. In a preferred embodiment, porous silicone materials are used for anchoring the device. In another embodiment, non-woven polyester fibers are used for anchoring the device. Tissue tends to aggressively grow into the materials disclosed above and form a strong mechanical bond (i.e., tissue anchoring); this fixation of the implant in its capsule is essential to prevent motion artifact or disturbance of the newly developed capillary blood supply.
  • [0068]
    In a preferred embodiment, the anchoring material is attached directly to the body of the device. In the case of non-woven polyester fibers, they may be sutured into place by rolling the material onto the circumferential periphery of the device and further encircling the membrane with PTFE sutures and tying the sutures to hold the membrane in place. In another preferred embodiment, porous silicone is attached to the surface of the cylindrical device using medical grade silicone adhesive. In either case, the material may be further held in place by an o-ring (FIG. 1B).
  • [0069]
    As shown in FIG. 1A, the interior of the housing contains one or more batteries 4 operably connected to an electronic circuit means (e.g., a circuit board 2), which, in turn, is operably connected to at least one electrode (described below); in another embodiment, at least two electrodes are carried by the housing. In a preferred embodiment, three electrodes are used. Any electronic circuitry and batteries that render reliable, continuous, long-term (e.g., months to years) results may be used in conjunction with the devices of the present invention.
  • [0070]
    The housing of the devices of the present invention preferably contain a biocompatible ceramic material. A preferred embodiment of the device contains a radiofrequency transmitter and antenna within the body of the ceramic device. Ceramic materials are radiotransparent and, therefore, are preferred over metals that are radioopaque. Ceramic materials are preferred over plastic materials (which may also be radiotransparent) because they are more effective than plastics at preventing water penetration. In one embodiment of the invention, the ceramic head and body are connected at an approximately 0.9 cm long taper joint sealed with epoxy. In other embodiments, the head and body may be attached by sealing with metals to produce a completely hermetic package.
  • [0071]
    FIG. 1C depicts a cross-sectional exploded view of the electrode-membrane region 24 set forth in FIG. 1B detailing the sensor tip and the functional membrane layers. As depicted in FIG. 1C, the electrode-membrane region includes several different membrane layers, the compositions and functions of which are described in detail below. The top ends of the electrodes are in contact with the electrolyte phase 30, a free-flowing fluid phase. The electrolyte phase is covered by the sensing membrane 32 that contains an enzyme, e.g., glucose oxidase, and several functional polymer layers (as described below). In turn, a composite bioprotective/angiogenic membrane 33 covers the sensing membrane 32 and serves, in part, to protect the sensor from external forces that may result in environmental stress cracking of the sensing membrane 32.
  • [0072]
    In one preferred embodiment of the inventive device, each of the membrane layers is affixed to the ceramic head 10 in FIGS. 1A and 1B by an o-ring. The o-ring may be formed of fluoroelastomer.
  • [0073]
    The present invention contemplates the construction of the membrane layers of the sensor interface region using standard film coating techniques. This type of membrane fabrication facilitates control of membrane properties and membrane testing.
  • [0000]
    III. The Sensor Interface Region
  • [0074]
    As mentioned above and disclosed in FIG. 1C, in a preferred embodiment, the sensor interface region includes several different layers and membranes that cover the electrodes of an implantable analyte-measuring device. The characteristics of these layers and membranes are now discussed in more detail. The layers and membranes prevent direct contact of the biological fluid sample with the electrodes, while permitting selected substances (e.g., analytes) of the fluid to pass therethrough for electrochemical reaction with the electrodes.
  • [0075]
    Measurement of analyte in a filtrate of biological fluid samples has been shown to be preferred over direct measurement of analyte in biological fluid in order to minimize effects of interfering substances and improve control of sample volume. It is well known in the-art that electrode surfaces exposed to a wide range of biological molecules will suffer poisoning of catalytic activity and failure. However, utilizing the layers and membranes of the present invention, the active electrochemical surfaces of the sensor electrodes are preserved, allowing activity to be retained for extended periods of time in vivo. By limiting exposure of the platinum sensor surface to certain molecular species (e.g., molecules having a molecular weight below 34 Daltons, the molecular weight of hydrogen peroxide), in vivo sensor operating life in excess of one year in canine subjects has been observed.
  • [0000]
    A. Angiogenic Layer
  • [0076]
    For implantable glucose monitoring devices, a sensor/tissue interface must be created which provides the sensor with oxygen and glucose concentrations comparable to that normally available to tissue comprised of living cells. Absent such an interface, the sensor is associated with unstable and chaotic performance indicating that inadequate oxygen and/or glucose are reaching the sensor. The development of interfaces in other contexts has been reported. For example, investigators have developed techniques that stimulate and maintain blood vessels inside a FBC to provide for the demanding oxygen needs of pancreatic islets within an implanted membrane. [See, e.g., Brauker et al., J. Biomed. Mater. Res. (1995) 29:1517-1524]. These techniques depend, in part, on the use of a vascularizing layer on the exterior of the implanted membrane. However, previously described implantable analyte-monitoring devices have not been able to successfully maintain sufficient blood flow to the sensor interface.
  • [0077]
    As described above, the outermost layer of the electrode-membrane region includes an angiogenic material. The angiogenic layer of the devices of the present invention may be constructed of membrane materials such as hydrophilic polyvinylidene fluoride (e.g., Durapore®; Millipore Bedford, Mass.), mixed cellulose esters (e.g., MF; Millipore Bedford, Mass.), polyvinyl chloride (e.g., PVC; Millipore Bedford, Mass.), and other polymers including, but not limited to, polypropylene, polysulphone, and polymethylmethacrylate. Preferably, the thickness of the angiogenic layer is about 10 μm to about 20 μm. The angiogenic layer comprises pores sizes of about 0.5 μm to about 20 μm, and more preferably about 1.0 μm to about 10 μm, sizes that allow most substances to pass through, including, e.g., macrophages. The preferred material is expanded PTFE of a thickness of about 15 μm and pore sizes of about 5 μm to about 10 μm.
  • [0078]
    To further promote stable foreign body capsule structure without interfering with angiogenesis, an additional outermost layer of material comprised of a thin low-density non-woven polyester (e.g., manufactured by Reemay) can be laminated over the preferred PTFE described above. In preferred embodiments, the thickness of this layer is about 120 μm. This additional thin layer of material does not interfere with angiogenesis and enhances the manufacturability of the angiogenic layer. [See U.S. Pat. No. 5,741,330 to Brauker et al., hereby incorporated by reference; also U.S. Pat. Nos. 5,782,912, 5,800,529, 5,882,354 5,964,804 assigned to Baxter].
  • [0000]
    B. Bioprotective Membrane
  • [0079]
    The inflammatory response that initiates and sustains a FBC is associated with both advantages and disadvantages. Some inflammatory response is needed to create a new capillary bed in close proximity to the surface of the sensor in order to i) continuously deliver adequate oxygen and glucose and ii) create sufficient tissue ingrowth to anchor the implant and prevent motion artifact. On the other hand, inflammation is associated with invasion of tissue macrophages that have the ability to biodegrade many artificial biomaterials (some of which were, until recently, considered nonbiodegradable). When activated by a foreign body, tissue macrophages degranulate, releasing from their cytoplasmic myeloperoxidase system hypochlorite (bleach), H2O2 and other oxidant species. Both hypochlorite and H2O2 are known to break down a variety of polymers, including polyurethane, by a phenomenon referred to as environmental stress cracking. [Phillips et al., J. Biomat. Appl., 3:202-227 (1988); Stokes, J. Biomat. Appl. 3:228-259 (1988)]. Indeed, environmental stress cracking has been shown to limit the lifetime and performance of an enzyme-active polyurethane membrane stretched over the tip of a glucose sensor. [Updike et al., Am. Soc. Artificial Internal Organs, 40:157-163 (1994)].
  • [0080]
    Because both hypochlorite and H2O2 are short-lived chemical species in vivo, biodegradation will not occur if macrophages are kept a sufficient distance from the enzyme active membrane. The present invention contemplates the use of a bioprotective membrane that allows transport of glucose and oxygen but prevents the entry of inflammatory cells such as macrophages and foreign body giant cells. The bioprotective membrane is placed proximal to the angiogenic membrane. It may be simply placed adjacent to the angiogenic layer without adhering, or it may be attached with an adhesive material to the angiogenic layer, or it may be cast in place upon the angiogenic layer as described in Example 1. The devices of the present invention are not limited by the nature of the bioprotective layer. However, the bioprotective layer should be biostable for long periods of time (e.g., several years); the present invention contemplates the use of polymers including, but not limited to, polyurethane, polypropylene, polysulphone, polytetrafluoroethylene (PTFE), and poly(ethylene terephthalate) (PET).
  • [0081]
    The bioprotective membrane and the angiogenic layer may be combined into a single bilayer membrane as more fully described in Example 1. The active angiogenic function of the combined membrane is based on the presentation of the ePTFE side of the membrane to the reactive cells of the foreign body capsule and further to the response of the tissue to the microstructure of the ePTFE. This bioprotective/angiogenic membrane is unique in that the membrane does not delaminate as has been observed with other commercially available membranes (see FIG. 4A as compared with FIG. 4B). This is desirable for an implantable device to assure accurate measurement of analyte over long periods of time. Although the physical structure of the ePTFE represents a preferred embodiment, many other combinations of materials that provide the same function as the membrane of Example 1 could be utilized. For example, the ePTFE could be replaced by other fine fibrous materials. In particular, polymers such as spun polyolefin or non-organic materials such as mineral or glass fibers may be useful. Likewise, the polyurethane bioprotective layer of Example 1, which includes a biostable urethane and polyvinylpyrrolidone (PVP), could be replaced by polymers able to pass analyte while blocking macrophages and mechanically retaining the fine fibrous material presented to the reactive cells of the foreign body capsule.
  • [0000]
    C. Sensing Membrane
  • [0082]
    The present invention contemplates membranes impregnated with enzyme. It is not intended that the present invention be limited by the nature of the enzyme membrane. The sensing membrane of a preferred embodiment is depicted in FIG. 1C as being a single, homogeneous structure. However, in preferred embodiments, the sensing membrane includes a plurality of distinct layers. In a particularly preferred embodiment, the sensing membrane includes the following four layers (in succession from the bioprotective membrane to the layer most proximal to the electrodes): i) a resistance layer; ii) an enzyme layer; iii) an interference layer; and iv) an electrolyte layer.
  • [0000]
    Resistance Layer
  • [0083]
    There is a molar excess of glucose relative to the amount of oxygen in samples of blood. Indeed, for every free oxygen molecule in extracellular fluid, there are typically more than 100 glucose molecules present [Updike et al., Diabetes Care 5:207-21(1982)]. However, an immobilized enzyme-based sensor using oxygen (O2) as cofactor must be supplied with oxygen in non-rate-limiting excess in order to respond linearly to changes in glucose concentration while not responding to changes in oxygen tension. More specifically, when a glucose-monitoring reaction is oxygen-limited, linearity is not achieved above minimal concentrations of glucose. Without a semipermeable membrane over the enzyme layer, linear response to glucose levels can be obtained only up to about 40 mg/dL; however, in a clinical setting, linear response to glucose levels are desirable up to at least about 500 mg/dL.
  • [0084]
    The resistance layer includes a semipermeable membrane that controls the flux of oxygen and glucose to the underlying enzyme layer (i.e., limits the flux of glucose), rendering the necessary supply of oxygen in non-rate-limiting excess. As a result, the upper limit of linearity of glucose measurement is extended to a much higher value than that which could be achieved without the resistance layer. The devices of the present invention contemplate resistance layers comprising polymer membranes with oxygen-to-glucose permeability ratios of approximately 200:1; as a result, one-dimensional reactant diffusion is adequate to provide excess oxygen at all reasonable glucose and oxygen concentrations found in the subcutaneous matrix [Rhodes et al., Anal. Chem., 66:1520-1529 (1994)].
  • [0085]
    In preferred embodiments, the resistance layer has a thickness of less than about 45 μm, more preferably in the range of about 15 to about 40 μm, and most preferably in the range of about 20 to about 35 μm.
  • [0086]
    The resistance layer is desirably constructed of a mixture of hydrophobic and hydrophilic polyurethanes.
  • [0000]
    Enzyme Layer
  • [0087]
    In addition to glucose oxidase, the present invention contemplates the use of a membrane layer impregnated with other oxidases, e.g., galactose oxidase, uricase. For an enzyme-based electrochemical glucose sensor to perform well, the sensor's response must neither be limited by enzyme activity nor cofactor concentration. Because enzymes, including the very robust glucose oxidase, are subject to deactivation as a function of ambient conditions, this behavior needs to be accounted for in constructing sensors for long-term use.
  • [0088]
    Excess glucose oxidase loading is required for long sensor life. When excess glucose oxidase is used, up to 1.5 years of performance may be possible from the glucose-monitoring devices contemplated by the present invention.
  • [0089]
    In one preferred embodiment, the enzyme layer includes a polyurethane latex.
  • [0000]
    Interference Layer
  • [0090]
    The interference layer includes a thin, hydrophobic membrane that is non-swellable and restricts diffusion of low molecular weight species. The interference layer is permeable to relatively low molecular weight substances, such as hydrogen peroxide, but restricts the passage of higher molecular weight substances, including glucose and ascorbic acid. The interference layer serves to allow analytes and other substances that are to be measured by the electrodes to pass through, while preventing passage of other substances.
  • [0091]
    Preferred materials from which the interference layer can be made include polyurethanes. In one desired embodiment, the interference layer includes an aliphatic polyetherurethane.
  • [0092]
    The interference layer has a preferred thickness of less than about 5 μm, more preferably in the range of about 0.1 to about 5 μm and most preferably in the range of about 0.5 to about 3 μm. Thicker membranes also may be useful, but thinner membranes are preferred because they have a lower impact on the rate of diffusion of hydrogen peroxide from the enzyme membrane to the electrodes.
  • [0000]
    Electrolyte Layer
  • [0093]
    To ensure electrochemical reaction, the electrolyte layer comprises a semipermeable coating that maintains hydrophilicity at the electrode region of the sensor interface. The electrolyte layer enhances the stability of the interference layer of the present invention by protecting and supporting the membrane that makes up the interference layer. Furthermore, the electrolyte layer assists in stabilizing operation of the device by overcoming electrode start-up problems and drifting problems caused by inadequate electrolyte. The buffered electrolyte solution contained in the electrolyte layer also protects against pH-mediated damage that may result from the formation of a large pH gradient between the hydrophobic interference layer and the electrode (or electrodes) due to the electrochemical activity of the electrode.
  • [0094]
    Preferably, the coating includes a flexible, water-swellable, substantially solid gel-like film having a “dry film” thickness of about 2.5 μm to about 12.5 μm, preferably about 6.0 μm. “Dry film” thickness refers to the thickness of a cured film cast from a coating formulation onto the surface of the membrane by standard coating techniques. The coating formulation includes a premix of film-forming polymers and a crosslinking agent and is curable upon the application of moderate heat.
  • [0095]
    Suitable coatings are formed of a curable copolymer of a urethane polymer and a hydrophilic film-forming polymer. Particularly preferred coatings are formed of a polyurethane polymer having anionic carboxylate functional groups and non-ionic hydrophilic polyether segments, which is crosslinked in the present of polyvinylpyrrolidone and cured at a moderate temperature of about 50° C.
  • [0096]
    Particularly suitable for this purpose are aqueous dispersions of fully reacted colloidal polyurethane polymers having cross-linkable carboxyl functionality (e.g., BAYBOND®; Mobay Corporation, Pittsburgh, Pa.). These polymers are supplied in dispersion grades having a polycarbonate-polyurethane backbone containing carboxylate groups identified as XW-121 and XW-123; and a polyester-polyurethane backbone containing carboxylate groups, identified as XW-110-2. Particularly preferred is BAYBOND® 123, an aqueous anionic dispersion of an aliphate polycarbonate urethane polymer, sold as a 35 weight percent solution in water and co-solvent N-methyl-2-pyrrolidone.
  • [0097]
    Polyvinylpyrrolidone is also particularly preferred as a hydrophilic water-soluble polymer and is available commercially in a range of viscosity grades and average molecular weights ranging from about 18,000 to about 500,000, under the PVP K® homopolymer series by BASF Wyandotte (Parsippany, N.J.) and by GAF Corporation (New York, N.Y.). Particularly preferred is the homopolymer having an average molecular weight of about 360,000, identified as PVP-K90 (BASF Wyandotte). Also suitable are hydrophilic, film-forming copolymers of N-vinylpyrrolidone, such as a copolymer of N-vinylpyrrolidone and vinyl acetate, a copolymer of N-vinylpyrrolidone, ethylmethacrylate and methacrylic acid monomers, and the like.
  • [0098]
    The polyurethane polymer is crosslinked in the presence of the polyvinylpyrrolidone by preparing a premix of the polymers and adding a cross-linking agent just prior to the production of the membrane. Suitable cross-linking agents can be carbodiimides, epoxides and melamine/formaldehyde resins. Carbodiimide is preferred, and a preferred carbodiimide crosslinker is UCARLNK® XL-25 (Union Carbide, Chicago, Ill.).
  • [0099]
    The flexibility and hardness of the coating can be varied as desired by varying the dry weight solids of the components in the coating formulation. The term “dry weight solids” refers to the dry weight percent based on the total coating composition after the time the crosslinker is included. A preferred useful coating formulation can contain about 6 to about 20 dry weight percent, preferably about 8 dry weight percent, of polyvinylpyrrolidone; about 3 to about 10 dry weight percent, preferably about 5 dry weight percent of cross-linking agent; and about 70 to about 91 weight percent, preferably about 87 weight percent of a polyurethane polymer, preferably a polycarbonate-polyurethane polymer. The reaction product of such a coating formulation is referred to herein as a water-swellable cross-linked matrix of polyurethane and PVP.
  • [0000]
    D. The Electrolyte Phase
  • [0100]
    The electrolyte phase is a free-fluid phase including a solution containing at least one compound, usually a soluble chloride salt that conducts electric current. The electrolyte phase flows over the electrodes (see FIG. 1C) and is in contact with the electrolyte layer of the enzyme membrane. The devices of the present invention contemplate the use of any suitable electrolyte solution, including standard, commercially available solutions.
  • [0101]
    Generally speaking, the electrolyte phase should have the same or less osmotic pressure than the sample being analyzed. In preferred embodiments of the present invention, the electrolyte phase includes saline.
  • [0000]
    E. The Electrode
  • [0102]
    The electrode assembly of this invention may also be used in the manner commonly employed in the making of amperometric measurements. The interstitial fluids containing the analyte to be measured is in contact with a reference electrode, e.g., silver/silver-chloride, and the anode and cathode of this invention, which are preferably formed of platinum. In the preferred embodiment, the electrodes are connected to a circuit board in the body of the sensor, the current is read and the information is radiotransmitted to a receiver. The invention is not limited to this preferred embodiment. Indeed the membranes of the present invention could be used with any form of implantable sensor and adapted to the particular features of the sensor by one skilled in the art.
  • [0103]
    The ability of the present device electrode assembly to accurately measure the concentration of substances such as glucose over a broad range of concentrations enables the rapid and accurate determination of the concentration of those substances. That information can be employed in the study and control of metabolic disorders including diabetes.
  • [0000]
    IV. Sensor Implantation and Radiotelemetric Output
  • [0104]
    Long-term sensor performance is best achieved, and transcutaneous bacterial infection is eliminated, with implanted devices capable of radiotelemetric output. The present invention contemplates the use of radiotelemetry to provide data regarding blood glucose levels, trends, and the like. The term “radiotelemetry” refers to the transmission by radio waves of the data recorded by the implanted device to an ex vivo recording station (e.g., a computer), where the data is recorded and, if desired, further processed.
  • [0105]
    Although totally implanted glucose sensors of three month lifetime, with radiotelemetric output, have been tested in animal models at intravenous sites [see, e.g. Armour et al., Diabetes, 39:1519-1526 (1990)], subcutaneous implantation is the preferred mode of implantation [see, e.g., Gilligan et al., Diabetes Care 17:882-887 (1994)]. The subcutaneous site has the advantage of lowering the risk for thrombophlebitis with hematogenous spread of infection and also lowers the risk of venous thrombosis with pulmonary embolism. In addition, subcutaneous placement is technically easier and more cost-effective than intravenous placement, as it may be performed under local anesthesia by a non-surgeon health care provider in an outpatient setting.
  • [0106]
    Preferably, the radiotelemetry devices contemplated for use in conjunction with the present invention possess features including small package size, adequate battery life, acceptable noise-free transmission range, freedom from electrical interference, and easy data collection and processing. Radiotelemetry provides several advantages, one of the most important of which is the ability of an implanted device to measure analyte levels in a sealed-off, sterile environment.
  • [0107]
    The present invention is not limited by the nature of the radiotelemetry equipment or methods for its use. Indeed, commercially available equipment can be modified for use with the devices of the present invention (e.g., devices manufactured by Data Sciences). Similarly, custom-designed radiotelemetry devices like those reported in the literature can be used in conjunction with the implantable analyte-measuring devices of the present invention [see, e.g., McKean and Gough, IEEE Trans. Biomed. Eng. 35:526-532 (1988); Shichiri et al., Diabetes Care 9:298-301 (1986); and Shults et al., IEEE Trans. Biomed. Eng. 41:937-942 (1994)]. In a preferred embodiment, transmitters are programmed with an external magnet to transmit at 0.5 or 5-minute intervals, depending on the need of the subject; presently, battery lifetimes at transmission intervals of 5 minutes are approximately up to 1.5 years.
  • [0000]
    V. Experimental
  • [0108]
    The following examples serve to illustrate certain preferred embodiments and aspects of the present invention and are not to be construed as limiting the scope thereof.
  • [0109]
    In the preceding description and the experimental disclosure which follows, the following abbreviations apply: Eq and Eqs (equivalents); mEq (milliequivalents); M (molar); mM (millimolar) μM (micromolar); N (Normal); mol (moles); mmol (millimoles); μmol (micromoles); nmol (nanomoles); g (grams); mg (milligrams); μg (micrograms); Kg (kilograms); L (liters); mL (milliliters); dL (deciliters); μL (microliters); cm (centimeters); mm (millimeters); μm (micrometers); nm (nanometers); h and hr (hours); min. (minutes); s and sec. (seconds); ° C. (degrees Centigrade); Astor Wax (Titusville, Pa.); BASF Wyandotte Corporation (Parsippany, N.J.); Data Sciences, Inc. (St. Paul, Minn.); DuPont (DuPont Co., Wilmington, Del.); Exxon Chemical (Houston, Tex.); GAF Corporation (New York, N.Y.); Markwell Medical (Racine, Wis.); Meadox Medical, Inc. (Oakland, N.J.); Mobay (Mobay Corporation, Pittsburgh, Pa.); Sandoz (East Hanover, N.J.); and Union Carbide (Union Carbide Corporation; Chicago, Ill.).
  • EXAMPLE 1
  • [0000]
    Preparation of Composite Membrane of the Present Invention
  • [0110]
    The angiogenic layer may be an ePTFE filtration membrane (Zefluor™, 3.0 μm P5PI001, Pall Gelman, Ann Arbor, Mich.) and the bioprotective membrane (C30P) may then be coated on the angiogenic layer. For example, the C30P coating solution was prepared by placing approximately 706 gm of dimethylacetamide (DMAC) into a 3L stainless steel bowl to which a polycarbonateurethane solution (1325 g, Chronoflex AR 25% solids in DMAC and 5100 cp) and polyvinylpyrrolidone (125 g, Plasdone K-90D) were added. The bowl was then fitted to a planetary mixer with a paddle type blade and the contents were stirred for 1 hour at room temperature. This solution was then coated on the ePTFE filtration membrane by knife-edge drawn at a gap of 0.006″ and dried at 60° C. for 24 hours.
  • [0111]
    Alternatively, the C30P solution prepared above can be coated onto a PET release liner using a knife over roll coating machine. This material is then dried at 305° F. for approximately 2 minutes. Next, the Zefluor™ is immersed in 50:50 (w/v) mixture of tetrahydrofuran/DMAC and then placed upon the coated polyurethane polyvinylpyrrolidone material. Light pressure atop the assembly intimately embeds the ePTFE into the C30P layer. The membrane is then dried at 60° C. for 24 hours.
  • EXAMPLE 2
  • [0000]
    Preparation of the Sensing Membrane
  • [0112]
    The sensing membrane includes a resistance layer, an enzyme layer, an interference layer and an electrolyte layer. The resistance layer was prepared by placing approximately 281 gm of DMAC into a 3 L stainless steel bowl to which a solution of polyetherurethaneurea (344 gm of Chronothane H, 29,750 cp at 25% solids in DMAC) was added. To this mixture was added another polyetherurethaneurea (312 gm, Chronothane 1020, 6275 cp at 25% solids in DMAC). The bowl was fitted to a planetary mixer with a paddle type blade and the contents were stirred for 30 minutes at room temperature. The resistance layer coating solution produced is coated onto a PET release liner (Douglas Hansen Co., Inc. Minneapolis, Minn.) using a knife over roll set at a 0.012″ gap. This film is then dried at 305° F.
  • [0113]
    The enzyme layer was prepared by placing 304 gm polyurethane latex (Bayhydrol 140AQ, Bayer, Pittsburgh, Pa.) into a 3 L stainless steel bowl to which 51 gm of pyrogen free water and 5.85 gm of glucose oxidase (Sigma type VII from Aspergillus niger) is added. The bowl was then fitted to a planetary mixer with a whisk type blade and the mixture was stirred for 15 minutes. Approximately 24 hr prior to coating, a solution of glutaraldehyde (15.4 ml of a 2.5% solution in pyrogen free water) and 14 ml of pyrogen free water was added to the mixture. The solution was mixed by inverting a capped glass bottle by hand for about 3 minutes at room temperature. This mixture was then coated over the resistance layer with a #10 Mayer rod and dried above room temperature preferably at about 50° C.
  • [0114]
    The interference layer was prepared by placing 187 gm of tetrahydrofuran into a 500 ml glass bottle to which an 18.7 gm aliphatic polyetherurethane (Tecoflex SG-85A, Thermedics Inc., Woburn, Mass.) was added. The bottle was placed onto a roller at approximately 3 rpm within an oven set at 37° C. The mixture was allowed to roll for 24 hr. This mixture was coated over the dried enzyme layer using a flexible knife and dried above room temperature, preferably at about 50° C.
  • [0115]
    The electrolyte layer was prepared by placing 388 gm of polyurethane latex (Bayhydrol 123, Bayer, Pittsburgh, Pa. in a 3 L stainless steel bowl to which 125 gm of pyrogen free water and 12.5 gm polyvinylpyrrolidone (Plasdone K-90D) was added. The bowl was then fitted to a planetary mixer with a paddle type blade and stirred for 1 hr at room temperature. Within 30 minutes of coating, approximately 13.1 ml of carbodiimide (UCARLNK) was added and the solution was mixed by inverting a capped polyethylene jar by hand for about 3 min at room temperature. This mixture was coated over the dried interference layer with a #10 Mayer rod and dried above room temperature preferably at about 50° C.
  • [0116]
    In order to affix this multi-region membrane to a sensor head, it is first placed into phosphate buffer (pH 7.4) for about 2 minutes. It is then stretched over the nonconductive body of sensor head and affixed into place with an o-ring.
  • EXAMPLE 3
  • [0000]
    In vivo Evaluation of Glucose Measuring Devices including the Biointerface Membranes of the Present Invention
  • [0117]
    In vivo sensor function was determined by correlating the sensor output to blood glucose values derived from an external blood glucose meter. We have found that non-diabetic dogs do not experience rapid blood glucose changes, even after ingestion of a high sugar meal. Thus, a 10% dextrose solution was infused into the sensor-implanted dog. A second catheter is placed in the opposite leg for the purpose of blood collection. The implanted sensor was programmed to transmit at 30-second intervals using a pulsed electromagnet. A dextrose solution was infused at a rate of 9.3 ml/minute for the first 25 minutes, 3.5 ml/minute for the next 20 minutes, 1.5 ml/minute for the next 20 minutes, and then the infusion pump was powered off. Blood glucose values were measured in duplicate every five minutes on a blood glucose meter (LXN Inc., San Diego, Calif.) for the duration of the study. A computer collected the sensor output. The data was then compiled and graphed in a spreadsheet, time aligned, and time shifted until an optimal R-squared value was achieved. The R-squared value reflects how well the sensor tracks with the blood glucose values.
  • [0118]
    To test the importance of the composite membrane of the invention described in Example 1, implantable glucose sensors including the composite and sensing membranes of the present invention were implanted into dogs in the subcutaneous tissues and monitored for glucose response on a weekly basis. Control devices including only a bioprotective C30P layer (“Control”) were compared with devices including both a bioprotective and an angiogenic layer (“Test”), which corresponded to the composite bioprotective/angiogenic membrane of the device of the present invention described in Example 1.
  • [0119]
    Four devices from each condition were implanted subcutaneously in the ventral abdomen of normal dogs. On a weekly basis, the dogs were infused with glucose as described above in order to increase their blood glucose levels from about 120 mg/dl to about 300 mg/dl. Blood glucose values were determined with a LXN blood glucose meter at 5-minute intervals. Sensor values were transmitted at 0.5-minute intervals. Regression analysis was done between blood glucose values and the nearest sensor value within one minute. Devices with an R-squared value greater than 0.5 were considered functional. FIG. 3 shows, for each condition, the cumulative number of functional devices over the 12-week period of the study. The Test devices performed better than the Control devices over the entire 12 weeks of the study. All of the test devices were functional by week 8. In contrast, none of the control devices were functional until week 10, after which 2 were functional for the remaining 2 weeks. The data shows that the use of the inventive biointerface membrane enables the function of implantable glucose sensors.
  • [0120]
    The description and experimental materials presented above are intended to be illustrative of the present invention while not limiting the scope thereof It will be apparent to those skilled in the art that variations and modifications can be made without departing from the spirit and scope of the present invention.

Claims (22)

1. An implantable device for measuring an analyte, the device comprising:
a sensor body comprising a sensor interface configured to measure an analyte;
an angiogenic layer disposed on at least a portion of the sensor interface; and
an anchoring material attached to the sensor body and configured for anchoring the sensor body to a host tissue,
wherein the angiogenic layer comprises a micro-geometry configured to create a new capillary bed in close proximity to the sensor interface.
2. The device of claim 1, wherein the new capillary bed provides the sensor with an oxygen concentration comparable to that normally available to tissue comprised of living cells, and a glucose concentration comparable to that normally available to tissue comprised of living cells.
3. The device of claim 1, wherein the anchoring material comprises at least one material selected from the group consisting of porous silicone, poly(ethylene terephthalate), surgical grade fabric, polyester, velour, expanded polytetrafluoroethylene, polytetrafluoroethylene felt, and polypropylene cloth.
4. The device of claim 1, wherein the angiogenic layer comprises at least one material selected from the group consisting of polytetrafluoroethylene, hydrophilic polyvinylidene fluoride, mixed cellulose esters, polyvinylchloride, polypropylene, polysulfone, and polymethylmethacrylate.
5. The device of claim 4, wherein the angiogenic layer comprises expanded polytetrafluoroethylene.
6. The device of claim 1, further comprising an additional outermost layer, wherein the additional outermost layer comprises a woven material or a non-woven material.
7. The device of claim 6, wherein the additional outermost layer comprises a low-density non-woven polyester.
8. The device of claim 1, wherein the angiogenic layer comprises pores having pore sizes of from about 0.5 microns to about 20 microns.
9. The device of claim 8, wherein the angiogenic layer comprises pores having pore sizes of from about 1.0 μm to about 10 μm.
10. The device of claim 8, wherein the angiogenic layer comprises expanded polytetrafluoroethylene.
11. The device of claim 1, wherein the angiogenic layer has a thickness of from about 10 microns to about 20 microns.
12. The device of claim 1, wherein the sensor body is cylindrical.
13. The device of claim 1, sensing interface comprises a dome.
14. The device of claim 1, wherein the angiogenic layer and the anchoring material are the same.
15. An implantable device for measuring an analyte, the device comprising:
a sensor body comprising a sensor configured to measure an analyte; and
a composite bilayer membrane comprising an angiogenic layer and a bioprotective membrane disposed on at least a portion of the sensor.
16. The device of claim 15, wherein the bioprotective comprises pores having pore sizes of from about 0.1 microns to about 1.0 micron.
17. The device of claim 15, wherein the bioprotective membrane comprises at least one material selected from the group consisting of polytetrafluoroethylene, polypropylene, polysulfone, and polyethylene terephthalate.
18. The device of claim 15, wherein the angiogenic layer comprises expanded polytetrafluoroethylene.
19. The device of claim 15, wherein the bioprotective layer comprises polyvinylpyrrolidone.
20. The device of claim 15, wherein the bioprotective layer comprises a urethane hydrogel.
21. An implantable device for measuring an analyte in a biological fluid, the device comprising:
a sensor body comprising a sensor interface;
an angiogenic layer disposed on at least a portion of the sensor interface; and
a material for anchoring the sensor body to a host tissue, wherein the implantable device comprises porous silicone.
22. The device of claim 21, wherein the angiogenic layer and the material for anchoring the sensor body to a host tissue are the same.
US11546157 1997-03-04 2006-10-10 Device and method for determining analyte levels Abandoned US20070032718A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US08811473 US6001067A (en) 1997-03-04 1997-03-04 Device and method for determining analyte levels
US09447227 US8527025B1 (en) 1997-03-04 1999-11-22 Device and method for determining analyte levels
US09916858 US6862465B2 (en) 1997-03-04 2001-07-27 Device and method for determining analyte levels
US11039269 US7136689B2 (en) 1997-03-04 2005-01-19 Device and method for determining analyte levels
US11546157 US20070032718A1 (en) 1997-03-04 2006-10-10 Device and method for determining analyte levels

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US11546157 US20070032718A1 (en) 1997-03-04 2006-10-10 Device and method for determining analyte levels
US12696003 US8155723B2 (en) 1997-03-04 2010-01-28 Device and method for determining analyte levels
US13411414 US8527026B2 (en) 1997-03-04 2012-03-02 Device and method for determining analyte levels
US13949088 US8923947B2 (en) 1997-03-04 2013-07-23 Device and method for determining analyte levels
US14553382 US9439589B2 (en) 1997-03-04 2014-11-25 Device and method for determining analyte levels
US15264577 US20170020418A1 (en) 1997-03-04 2016-09-13 Device and method for determining analyte levels

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11039269 Continuation US7136689B2 (en) 1997-03-04 2005-01-19 Device and method for determining analyte levels

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12696003 Continuation US8155723B2 (en) 1997-03-04 2010-01-28 Device and method for determining analyte levels

Publications (1)

Publication Number Publication Date
US20070032718A1 true true US20070032718A1 (en) 2007-02-08

Family

ID=46298763

Family Applications (4)

Application Number Title Priority Date Filing Date
US09916858 Active 2018-07-27 US6862465B2 (en) 1997-03-04 2001-07-27 Device and method for determining analyte levels
US11039269 Expired - Lifetime US7136689B2 (en) 1997-03-04 2005-01-19 Device and method for determining analyte levels
US11546157 Abandoned US20070032718A1 (en) 1997-03-04 2006-10-10 Device and method for determining analyte levels
US12696003 Expired - Lifetime US8155723B2 (en) 1997-03-04 2010-01-28 Device and method for determining analyte levels

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US09916858 Active 2018-07-27 US6862465B2 (en) 1997-03-04 2001-07-27 Device and method for determining analyte levels
US11039269 Expired - Lifetime US7136689B2 (en) 1997-03-04 2005-01-19 Device and method for determining analyte levels

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12696003 Expired - Lifetime US8155723B2 (en) 1997-03-04 2010-01-28 Device and method for determining analyte levels

Country Status (1)

Country Link
US (4) US6862465B2 (en)

Cited By (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040186362A1 (en) * 2001-07-27 2004-09-23 Dexcom, Inc. Membrane for use with implantable devices
US20050031689A1 (en) * 2003-05-21 2005-02-10 Dexcom, Inc. Biointerface membranes incorporating bioactive agents
US20050143635A1 (en) * 2003-12-05 2005-06-30 Kamath Apurv U. Calibration techniques for a continuous analyte sensor
US20050182451A1 (en) * 2004-01-12 2005-08-18 Adam Griffin Implantable device with improved radio frequency capabilities
US20050181012A1 (en) * 2004-01-12 2005-08-18 Sean Saint Composite material for implantable device
US20050245799A1 (en) * 2004-05-03 2005-11-03 Dexcom, Inc. Implantable analyte sensor
US20060015020A1 (en) * 2004-07-06 2006-01-19 Dexcom, Inc. Systems and methods for manufacture of an analyte-measuring device including a membrane system
US20060016700A1 (en) * 2004-07-13 2006-01-26 Dexcom, Inc. Transcutaneous analyte sensor
US20060086624A1 (en) * 2002-05-22 2006-04-27 Tapsak Mark A Techniques to improve polyurethane membranes for implantable glucose sensors
US20060200019A1 (en) * 2003-07-25 2006-09-07 James Petisce Oxygen enhancing membrane systems for implantable devices
US20060200022A1 (en) * 2003-04-04 2006-09-07 Brauker James H Optimized sensor geometry for an implantable glucose sensor
US20060222566A1 (en) * 2003-08-01 2006-10-05 Brauker James H Transcutaneous analyte sensor
US20060253012A1 (en) * 2005-05-05 2006-11-09 Petisce James R Cellulosic-based resistance domain for an analyte sensor
US20060257996A1 (en) * 2005-04-15 2006-11-16 Simpson Peter C Analyte sensing biointerface
US20060270923A1 (en) * 2004-07-13 2006-11-30 Brauker James H Analyte sensor
US20070197890A1 (en) * 2003-07-25 2007-08-23 Robert Boock Analyte sensor
US20080030738A1 (en) * 1997-02-04 2008-02-07 Biacore Ab Analytical method and apparatus
US20080045824A1 (en) * 2003-10-28 2008-02-21 Dexcom, Inc. Silicone composition for biocompatible membrane
US20080195232A1 (en) * 2004-02-12 2008-08-14 Dexcom, Inc. Biointerface with macro- and micro-architecture
US20080292026A1 (en) * 2006-08-25 2008-11-27 Alcatel Lucent Digital signal receiver with q-monitor
US20090030294A1 (en) * 2004-05-03 2009-01-29 Dexcom, Inc. Implantable analyte sensor
US20090076356A1 (en) * 2003-07-25 2009-03-19 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US20090247855A1 (en) * 2008-03-28 2009-10-01 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US7657297B2 (en) 2004-05-03 2010-02-02 Dexcom, Inc. Implantable analyte sensor
US20100076283A1 (en) * 2008-09-19 2010-03-25 Dexcom, Inc. Particle-containing membrane and particulate electrode for analyte sensors
US20100204559A1 (en) * 1997-03-04 2010-08-12 Dexcom, Inc. Device and method for determining analyte levels
US7811231B2 (en) 2002-12-31 2010-10-12 Abbott Diabetes Care Inc. Continuous glucose monitoring system and methods of use
US20100274107A1 (en) * 2008-03-28 2010-10-28 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US7860544B2 (en) 1998-04-30 2010-12-28 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US7920907B2 (en) 2006-06-07 2011-04-05 Abbott Diabetes Care Inc. Analyte monitoring system and method
US7976778B2 (en) 2001-04-02 2011-07-12 Abbott Diabetes Care Inc. Blood glucose tracking apparatus
US8052601B2 (en) 2003-08-01 2011-11-08 Dexcom, Inc. System and methods for processing analyte sensor data
US8064977B2 (en) 2002-05-22 2011-11-22 Dexcom, Inc. Silicone based membranes for use in implantable glucose sensors
US8118877B2 (en) 2003-05-21 2012-02-21 Dexcom, Inc. Porous membranes for use with implantable devices
US8155723B2 (en) 1997-03-04 2012-04-10 Dexcom, Inc. Device and method for determining analyte levels
US8160669B2 (en) 2003-08-01 2012-04-17 Dexcom, Inc. Transcutaneous analyte sensor
USRE43399E1 (en) 2003-07-25 2012-05-22 Dexcom, Inc. Electrode systems for electrochemical sensors
US8229535B2 (en) 2008-02-21 2012-07-24 Dexcom, Inc. Systems and methods for blood glucose monitoring and alert delivery
US8275437B2 (en) 2003-08-01 2012-09-25 Dexcom, Inc. Transcutaneous analyte sensor
US8287454B2 (en) 1998-04-30 2012-10-16 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8346337B2 (en) 1998-04-30 2013-01-01 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8364229B2 (en) 2003-07-25 2013-01-29 Dexcom, Inc. Analyte sensors having a signal-to-noise ratio substantially unaffected by non-constant noise
US8465425B2 (en) 1998-04-30 2013-06-18 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8509871B2 (en) 2001-07-27 2013-08-13 Dexcom, Inc. Sensor head for use with implantable devices
US8527026B2 (en) 1997-03-04 2013-09-03 Dexcom, Inc. Device and method for determining analyte levels
WO2013152090A2 (en) 2012-04-04 2013-10-10 Dexcom, Inc. Transcutaneous analyte sensors, applicators therefor, and associated methods
US8583204B2 (en) 2008-03-28 2013-11-12 Dexcom, Inc. Polymer membranes for continuous analyte sensors
WO2013184566A2 (en) 2012-06-05 2013-12-12 Dexcom, Inc. Systems and methods for processing analyte data and generating reports
US8612159B2 (en) 1998-04-30 2013-12-17 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
WO2014004460A1 (en) 2012-06-29 2014-01-03 Dexcom, Inc. Use of sensor redundancy to detect sensor failures
US8622905B2 (en) 2003-08-01 2014-01-07 Dexcom, Inc. System and methods for processing analyte sensor data
WO2014011488A2 (en) 2012-07-09 2014-01-16 Dexcom, Inc. Systems and methods for leveraging smartphone features in continuous glucose monitoring
US8652043B2 (en) 2001-01-02 2014-02-18 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8688188B2 (en) 1998-04-30 2014-04-01 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
WO2014052080A1 (en) 2012-09-28 2014-04-03 Dexcom, Inc. Zwitterion surface modifications for continuous sensors
US8792955B2 (en) 2004-05-03 2014-07-29 Dexcom, Inc. Transcutaneous analyte sensor
WO2014158327A2 (en) 2013-03-14 2014-10-02 Dexcom, Inc. Advanced calibration for analyte sensors
WO2014158405A2 (en) 2013-03-14 2014-10-02 Dexcom, Inc. Systems and methods for processing and transmitting sensor data
EP2796093A1 (en) 2007-03-26 2014-10-29 DexCom, Inc. Analyte sensor
EP2796090A1 (en) 2006-10-04 2014-10-29 DexCom, Inc. Analyte sensor
US8974386B2 (en) 1998-04-30 2015-03-10 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9066695B2 (en) 1998-04-30 2015-06-30 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
WO2015156966A1 (en) 2014-04-10 2015-10-15 Dexcom, Inc. Sensors for continuous analyte monitoring, and related methods
US9179875B2 (en) 2009-12-21 2015-11-10 Sherwin Hua Insertion of medical devices through non-orthogonal and orthogonal trajectories within the cranium and methods of using
EP3092949A1 (en) 2011-09-23 2016-11-16 Dexcom, Inc. Systems and methods for processing and transmitting sensor data
US9763609B2 (en) 2003-07-25 2017-09-19 Dexcom, Inc. Analyte sensors having a signal-to-noise ratio substantially unaffected by non-constant noise
US9795331B2 (en) 2005-12-28 2017-10-24 Abbott Diabetes Care Inc. Method and apparatus for providing analyte sensor insertion

Families Citing this family (272)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5593852A (en) 1993-12-02 1997-01-14 Heller; Adam Subcutaneous glucose electrode
US7899511B2 (en) * 1997-03-04 2011-03-01 Dexcom, Inc. Low oxygen in vivo analyte sensor
US9757061B2 (en) 2006-01-17 2017-09-12 Dexcom, Inc. Low oxygen in vivo analyte sensor
US20050033132A1 (en) 1997-03-04 2005-02-10 Shults Mark C. Analyte measuring device
US6134461A (en) * 1998-03-04 2000-10-17 E. Heller & Company Electrochemical analyte
US9282925B2 (en) * 2002-02-12 2016-03-15 Dexcom, Inc. Systems and methods for replacing signal artifacts in a glucose sensor data stream
US8260393B2 (en) * 2003-07-25 2012-09-04 Dexcom, Inc. Systems and methods for replacing signal data artifacts in a glucose sensor data stream
US20060258761A1 (en) * 2002-05-22 2006-11-16 Robert Boock Silicone based membranes for use in implantable glucose sensors
US8423113B2 (en) * 2003-07-25 2013-04-16 Dexcom, Inc. Systems and methods for processing sensor data
US7727181B2 (en) * 2002-10-09 2010-06-01 Abbott Diabetes Care Inc. Fluid delivery device with autocalibration
US7993108B2 (en) * 2002-10-09 2011-08-09 Abbott Diabetes Care Inc. Variable volume, shape memory actuated insulin dispensing pump
CA2501825C (en) * 2002-10-09 2009-12-01 Therasense, Inc. Fluid delivery device, system and method
US20040108226A1 (en) * 2002-10-28 2004-06-10 Constantin Polychronakos Continuous glucose quantification device and method
US7381184B2 (en) * 2002-11-05 2008-06-03 Abbott Diabetes Care Inc. Sensor inserter assembly
EP1594551A2 (en) 2003-02-19 2005-11-16 Sicel Technologies, Inc. In vivo fluorescence sensors, systems, and related methods operating in conjunction with fluorescent analytes
US7587287B2 (en) * 2003-04-04 2009-09-08 Abbott Diabetes Care Inc. Method and system for transferring analyte test data
US7679407B2 (en) * 2003-04-28 2010-03-16 Abbott Diabetes Care Inc. Method and apparatus for providing peak detection circuitry for data communication systems
US8460243B2 (en) * 2003-06-10 2013-06-11 Abbott Diabetes Care Inc. Glucose measuring module and insulin pump combination
US8066639B2 (en) 2003-06-10 2011-11-29 Abbott Diabetes Care Inc. Glucose measuring device for use in personal area network
US8071028B2 (en) 2003-06-12 2011-12-06 Abbott Diabetes Care Inc. Method and apparatus for providing power management in data communication systems
US7695239B2 (en) * 2003-07-14 2010-04-13 Fortrend Engineering Corporation End effector gripper arms having corner grippers which reorient reticle during transfer
US7722536B2 (en) * 2003-07-15 2010-05-25 Abbott Diabetes Care Inc. Glucose measuring device integrated into a holster for a personal area network device
WO2005010518A1 (en) * 2003-07-23 2005-02-03 Dexcom, Inc. Rolled electrode array and its method for manufacture
US20050056552A1 (en) * 2003-07-25 2005-03-17 Simpson Peter C. Increasing bias for oxygen production in an electrode system
US7108778B2 (en) * 2003-07-25 2006-09-19 Dexcom, Inc. Electrochemical sensors including electrode systems with increased oxygen generation
US8886273B2 (en) * 2003-08-01 2014-11-11 Dexcom, Inc. Analyte sensor
US8369919B2 (en) * 2003-08-01 2013-02-05 Dexcom, Inc. Systems and methods for processing sensor data
US8626257B2 (en) 2003-08-01 2014-01-07 Dexcom, Inc. Analyte sensor
US8886272B2 (en) 2004-07-13 2014-11-11 Dexcom, Inc. Analyte sensor
US8761856B2 (en) 2003-08-01 2014-06-24 Dexcom, Inc. System and methods for processing analyte sensor data
US9247901B2 (en) 2003-08-22 2016-02-02 Dexcom, Inc. Systems and methods for replacing signal artifacts in a glucose sensor data stream
US8233959B2 (en) * 2003-08-22 2012-07-31 Dexcom, Inc. Systems and methods for processing analyte sensor data
US8010174B2 (en) * 2003-08-22 2011-08-30 Dexcom, Inc. Systems and methods for replacing signal artifacts in a glucose sensor data stream
US7299082B2 (en) 2003-10-31 2007-11-20 Abbott Diabetes Care, Inc. Method of calibrating an analyte-measurement device, and associated methods, devices and systems
US7519408B2 (en) * 2003-11-19 2009-04-14 Dexcom, Inc. Integrated receiver for continuous analyte sensor
US20050176136A1 (en) * 2003-11-19 2005-08-11 Dexcom, Inc. Afinity domain for analyte sensor
US7424318B2 (en) 2003-12-05 2008-09-09 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US8287453B2 (en) 2003-12-05 2012-10-16 Dexcom, Inc. Analyte sensor
US8423114B2 (en) 2006-10-04 2013-04-16 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US7467003B2 (en) * 2003-12-05 2008-12-16 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US7831287B2 (en) * 2006-10-04 2010-11-09 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US7460898B2 (en) * 2003-12-05 2008-12-02 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US8425417B2 (en) 2003-12-05 2013-04-23 Dexcom, Inc. Integrated device for continuous in vivo analyte detection and simultaneous control of an infusion device
US7366556B2 (en) 2003-12-05 2008-04-29 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US7081195B2 (en) * 2003-12-08 2006-07-25 Dexcom, Inc. Systems and methods for improving electrochemical analyte sensors
EP1711791B1 (en) * 2003-12-09 2014-10-15 DexCom, Inc. Signal processing for continuous analyte sensor
JP4574993B2 (en) * 2004-01-16 2010-11-04 オリンパス株式会社 Lesion detection system
US8771183B2 (en) 2004-02-17 2014-07-08 Abbott Diabetes Care Inc. Method and system for providing data communication in continuous glucose monitoring and management system
US7591801B2 (en) 2004-02-26 2009-09-22 Dexcom, Inc. Integrated delivery device for continuous glucose sensor
US8808228B2 (en) 2004-02-26 2014-08-19 Dexcom, Inc. Integrated medicament delivery device for use with continuous analyte sensor
US7946984B2 (en) 2004-07-13 2011-05-24 Dexcom, Inc. Transcutaneous analyte sensor
EP2327984B8 (en) 2004-07-13 2015-04-22 DexCom, Inc. Transcutaneous analyte sensor
US8452368B2 (en) 2004-07-13 2013-05-28 Dexcom, Inc. Transcutaneous analyte sensor
US7783333B2 (en) * 2004-07-13 2010-08-24 Dexcom, Inc. Transcutaneous medical device with variable stiffness
US9247900B2 (en) 2004-07-13 2016-02-02 Dexcom, Inc. Analyte sensor
US8565848B2 (en) * 2004-07-13 2013-10-22 Dexcom, Inc. Transcutaneous analyte sensor
US8571624B2 (en) 2004-12-29 2013-10-29 Abbott Diabetes Care Inc. Method and apparatus for mounting a data transmission device in a communication system
US20060166629A1 (en) * 2005-01-24 2006-07-27 Therasense, Inc. Method and apparatus for providing EMC Class-B compliant RF transmitter for data monitoring an detection systems
US7545272B2 (en) 2005-02-08 2009-06-09 Therasense, Inc. RF tag on test strips, test strip vials and boxes
US7920906B2 (en) 2005-03-10 2011-04-05 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
EP1863559A4 (en) * 2005-03-21 2008-07-30 Abbott Diabetes Care Inc Method and system for providing integrated medication infusion and analyte monitoring system
US7651596B2 (en) 2005-04-08 2010-01-26 Dexcom, Inc. Cellulosic-based interference domain for an analyte sensor
US20070173710A1 (en) * 2005-04-08 2007-07-26 Petisce James R Membranes for an analyte sensor
US8112240B2 (en) * 2005-04-29 2012-02-07 Abbott Diabetes Care Inc. Method and apparatus for providing leak detection in data monitoring and management systems
US20060249381A1 (en) * 2005-05-05 2006-11-09 Petisce James R Cellulosic-based resistance domain for an analyte sensor
EP1885871B1 (en) 2005-05-17 2012-05-30 Radiometer Medical ApS Enzyme sensor with a cover membrane layer covered by a hydrophilic polymer
US7768408B2 (en) 2005-05-17 2010-08-03 Abbott Diabetes Care Inc. Method and system for providing data management in data monitoring system
US7620437B2 (en) 2005-06-03 2009-11-17 Abbott Diabetes Care Inc. Method and apparatus for providing rechargeable power in data monitoring and management systems
US20100081968A1 (en) * 2005-07-15 2010-04-01 Home Diagnostics, Inc. Test Strip With Integrated Lancet
US20070027381A1 (en) * 2005-07-29 2007-02-01 Therasense, Inc. Inserter and methods of use
US7731657B2 (en) * 2005-08-30 2010-06-08 Abbott Diabetes Care Inc. Analyte sensor introducer and methods of use
US20080200434A1 (en) * 2006-09-14 2008-08-21 Daniloff George Y Chemical Target-Binding Compositions
US7883464B2 (en) 2005-09-30 2011-02-08 Abbott Diabetes Care Inc. Integrated transmitter unit and sensor introducer mechanism and methods of use
US9398882B2 (en) 2005-09-30 2016-07-26 Abbott Diabetes Care Inc. Method and apparatus for providing analyte sensor and data processing device
US8880138B2 (en) * 2005-09-30 2014-11-04 Abbott Diabetes Care Inc. Device for channeling fluid and methods of use
US9521968B2 (en) 2005-09-30 2016-12-20 Abbott Diabetes Care Inc. Analyte sensor retention mechanism and methods of use
US7756561B2 (en) 2005-09-30 2010-07-13 Abbott Diabetes Care Inc. Method and apparatus for providing rechargeable power in data monitoring and management systems
US8512243B2 (en) 2005-09-30 2013-08-20 Abbott Diabetes Care Inc. Integrated introducer and transmitter assembly and methods of use
US9168383B2 (en) 2005-10-14 2015-10-27 Pacesetter, Inc. Leadless cardiac pacemaker with conducted communication
US9358400B2 (en) 2005-10-14 2016-06-07 Pacesetter, Inc. Leadless cardiac pacemaker
US7583190B2 (en) 2005-10-31 2009-09-01 Abbott Diabetes Care Inc. Method and apparatus for providing data communication in data monitoring and management systems
US20090054747A1 (en) * 2005-10-31 2009-02-26 Abbott Diabetes Care, Inc. Method and system for providing analyte sensor tester isolation
US7766829B2 (en) 2005-11-04 2010-08-03 Abbott Diabetes Care Inc. Method and system for providing basal profile modification in analyte monitoring and management systems
DE602006014591D1 (en) * 2005-12-15 2010-07-08 Cardiac Pacemakers Inc Method and apparatus for a small power source for an implantable device
US8353881B2 (en) 2005-12-28 2013-01-15 Abbott Diabetes Care Inc. Infusion sets for the delivery of a therapeutic substance to a patient
US8515518B2 (en) 2005-12-28 2013-08-20 Abbott Diabetes Care Inc. Analyte monitoring
CA2636034A1 (en) * 2005-12-28 2007-10-25 Abbott Diabetes Care Inc. Medical device insertion
US8160670B2 (en) 2005-12-28 2012-04-17 Abbott Diabetes Care Inc. Analyte monitoring: stabilizer for subcutaneous glucose sensor with incorporated antiglycolytic agent
US7736310B2 (en) * 2006-01-30 2010-06-15 Abbott Diabetes Care Inc. On-body medical device securement
US8095198B2 (en) * 2006-01-31 2012-01-10 Warsaw Orthopedic. Inc. Methods for detecting osteolytic conditions in the body
US8344966B2 (en) * 2006-01-31 2013-01-01 Abbott Diabetes Care Inc. Method and system for providing a fault tolerant display unit in an electronic device
EP2407095A1 (en) 2006-02-22 2012-01-18 DexCom, Inc. Analyte sensor
US8133178B2 (en) 2006-02-22 2012-03-13 Dexcom, Inc. Analyte sensor
US8029441B2 (en) 2006-02-28 2011-10-04 Abbott Diabetes Care Inc. Analyte sensor transmitter unit configuration for a data monitoring and management system
US7826879B2 (en) * 2006-02-28 2010-11-02 Abbott Diabetes Care Inc. Analyte sensors and methods of use
US7981034B2 (en) 2006-02-28 2011-07-19 Abbott Diabetes Care Inc. Smart messages and alerts for an infusion delivery and management system
US7885698B2 (en) 2006-02-28 2011-02-08 Abbott Diabetes Care Inc. Method and system for providing continuous calibration of implantable analyte sensors
US8226891B2 (en) 2006-03-31 2012-07-24 Abbott Diabetes Care Inc. Analyte monitoring devices and methods therefor
US7801582B2 (en) 2006-03-31 2010-09-21 Abbott Diabetes Care Inc. Analyte monitoring and management system and methods therefor
US7620438B2 (en) 2006-03-31 2009-11-17 Abbott Diabetes Care Inc. Method and system for powering an electronic device
US7918796B2 (en) * 2006-04-11 2011-04-05 Warsaw Orthopedic, Inc. Volumetric measurement and visual feedback of tissues
US20090105569A1 (en) * 2006-04-28 2009-04-23 Abbott Diabetes Care, Inc. Introducer Assembly and Methods of Use
US20090054749A1 (en) * 2006-05-31 2009-02-26 Abbott Diabetes Care, Inc. Method and System for Providing Data Transmission in a Data Management System
US20080004601A1 (en) * 2006-06-28 2008-01-03 Abbott Diabetes Care, Inc. Analyte Monitoring and Therapy Management System and Methods Therefor
US20090171269A1 (en) * 2006-06-29 2009-07-02 Abbott Diabetes Care, Inc. Infusion Device and Methods Therefor
US9119582B2 (en) * 2006-06-30 2015-09-01 Abbott Diabetes Care, Inc. Integrated analyte sensor and infusion device and methods therefor
US20090105571A1 (en) * 2006-06-30 2009-04-23 Abbott Diabetes Care, Inc. Method and System for Providing Data Communication in Data Management Systems
US8206296B2 (en) * 2006-08-07 2012-06-26 Abbott Diabetes Care Inc. Method and system for providing integrated analyte monitoring and infusion system therapy management
US8932216B2 (en) 2006-08-07 2015-01-13 Abbott Diabetes Care Inc. Method and system for providing data management in integrated analyte monitoring and infusion system
US7653425B2 (en) 2006-08-09 2010-01-26 Abbott Diabetes Care Inc. Method and system for providing calibration of an analyte sensor in an analyte monitoring system
WO2008029403A1 (en) * 2006-09-06 2008-03-13 Medingo Ltd. Fluid delivery system with optical sensing of analyte concentration levels
US8333714B2 (en) 2006-09-10 2012-12-18 Abbott Diabetes Care Inc. Method and system for providing an integrated analyte sensor insertion device and data processing unit
EP2083673B1 (en) 2006-09-29 2012-07-04 Medingo Ltd. Fluid delivery system with electrochemical sensing of analyte concentration levels
US7618369B2 (en) 2006-10-02 2009-11-17 Abbott Diabetes Care Inc. Method and system for dynamically updating calibration parameters for an analyte sensor
US8364231B2 (en) 2006-10-04 2013-01-29 Dexcom, Inc. Analyte sensor
US8562528B2 (en) 2006-10-04 2013-10-22 Dexcom, Inc. Analyte sensor
US8449464B2 (en) 2006-10-04 2013-05-28 Dexcom, Inc. Analyte sensor
US20080200788A1 (en) * 2006-10-04 2008-08-21 Dexcorn, Inc. Analyte sensor
US8298142B2 (en) * 2006-10-04 2012-10-30 Dexcom, Inc. Analyte sensor
US8447376B2 (en) 2006-10-04 2013-05-21 Dexcom, Inc. Analyte sensor
US8364230B2 (en) * 2006-10-04 2013-01-29 Dexcom, Inc. Analyte sensor
US8425416B2 (en) * 2006-10-04 2013-04-23 Dexcom, Inc. Analyte sensor
US8478377B2 (en) 2006-10-04 2013-07-02 Dexcom, Inc. Analyte sensor
US8275438B2 (en) 2006-10-04 2012-09-25 Dexcom, Inc. Analyte sensor
US9788771B2 (en) 2006-10-23 2017-10-17 Abbott Diabetes Care Inc. Variable speed sensor insertion devices and methods of use
US9259175B2 (en) * 2006-10-23 2016-02-16 Abbott Diabetes Care, Inc. Flexible patch for fluid delivery and monitoring body analytes
US7630748B2 (en) 2006-10-25 2009-12-08 Abbott Diabetes Care Inc. Method and system for providing analyte monitoring
JP2010508091A (en) 2006-10-26 2010-03-18 アボット ダイアベティス ケア インコーポレイテッドAbbott Diabetes Care Inc. The method for detecting a decrease sensitivity of the analyte sensor in real time systems, and computer program products
US20080119710A1 (en) * 2006-10-31 2008-05-22 Abbott Diabetes Care, Inc. Medical devices and methods of using the same
US8579853B2 (en) 2006-10-31 2013-11-12 Abbott Diabetes Care Inc. Infusion devices and methods
US7852490B2 (en) * 2007-02-05 2010-12-14 Palo Alto Research Center Incorporated Implanting optical cavity structures
US7633629B2 (en) 2007-02-05 2009-12-15 Palo Alto Research Center Incorporated Tuning optical cavities
US7936463B2 (en) * 2007-02-05 2011-05-03 Palo Alto Research Center Incorporated Containing analyte in optical cavity structures
US8121857B2 (en) 2007-02-15 2012-02-21 Abbott Diabetes Care Inc. Device and method for automatic data acquisition and/or detection
US20080199894A1 (en) * 2007-02-15 2008-08-21 Abbott Diabetes Care, Inc. Device and method for automatic data acquisition and/or detection
US8930203B2 (en) 2007-02-18 2015-01-06 Abbott Diabetes Care Inc. Multi-function analyte test device and methods therefor
US8732188B2 (en) 2007-02-18 2014-05-20 Abbott Diabetes Care Inc. Method and system for providing contextual based medication dosage determination
US9636450B2 (en) 2007-02-19 2017-05-02 Udo Hoss Pump system modular components for delivering medication and analyte sensing at seperate insertion sites
US8636672B2 (en) * 2007-02-28 2014-01-28 Nipro Diagnostics, Inc. Test strip with integrated lancet
US8123686B2 (en) 2007-03-01 2012-02-28 Abbott Diabetes Care Inc. Method and apparatus for providing rolling data in communication systems
EP2137637A4 (en) 2007-04-14 2012-06-20 Abbott Diabetes Care Inc Method and apparatus for providing data processing and control in medical communication system
US7768387B2 (en) 2007-04-14 2010-08-03 Abbott Diabetes Care Inc. Method and apparatus for providing dynamic multi-stage signal amplification in a medical device
US9204827B2 (en) * 2007-04-14 2015-12-08 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in medical communication system
WO2009096992A1 (en) * 2007-04-14 2009-08-06 Abbott Diabetes Care, Inc. Method and apparatus for providing data processing and control in medical communication system
US9008743B2 (en) * 2007-04-14 2015-04-14 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in medical communication system
CA2683959C (en) * 2007-04-14 2017-08-29 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in medical communication system
US20080281179A1 (en) * 2007-05-08 2008-11-13 Abbott Diabetes Care, Inc. Analyte monitoring system and methods
US7928850B2 (en) 2007-05-08 2011-04-19 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US8456301B2 (en) 2007-05-08 2013-06-04 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US8665091B2 (en) * 2007-05-08 2014-03-04 Abbott Diabetes Care Inc. Method and device for determining elapsed sensor life
US8461985B2 (en) * 2007-05-08 2013-06-11 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US8103471B2 (en) 2007-05-14 2012-01-24 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8444560B2 (en) 2007-05-14 2013-05-21 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8260558B2 (en) * 2007-05-14 2012-09-04 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US7996158B2 (en) 2007-05-14 2011-08-09 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US9125548B2 (en) * 2007-05-14 2015-09-08 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US20090006034A1 (en) * 2007-05-14 2009-01-01 Abbott Diabetes Care, Inc. Method and apparatus for providing data processing and control in a medical communication system
US8600681B2 (en) 2007-05-14 2013-12-03 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8560038B2 (en) * 2007-05-14 2013-10-15 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8140312B2 (en) 2007-05-14 2012-03-20 Abbott Diabetes Care Inc. Method and system for determining analyte levels
US8239166B2 (en) 2007-05-14 2012-08-07 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
WO2008150917A1 (en) 2007-05-31 2008-12-11 Abbott Diabetes Care, Inc. Insertion devices and methods
EP2152350A4 (en) * 2007-06-08 2013-03-27 Dexcom Inc Integrated medicament delivery device for use with continuous analyte sensor
CA2690870C (en) * 2007-06-21 2017-07-11 Abbott Diabetes Care Inc. Health monitor
US8597188B2 (en) 2007-06-21 2013-12-03 Abbott Diabetes Care Inc. Health management devices and methods
WO2008157819A1 (en) * 2007-06-21 2008-12-24 Abbott Diabetes Care, Inc. Health management devices and methods
US8641618B2 (en) * 2007-06-27 2014-02-04 Abbott Diabetes Care Inc. Method and structure for securing a monitoring device element
US8085151B2 (en) * 2007-06-28 2011-12-27 Abbott Diabetes Care Inc. Signal converting cradle for medical condition monitoring and management system
US8160900B2 (en) * 2007-06-29 2012-04-17 Abbott Diabetes Care Inc. Analyte monitoring and management device and method to analyze the frequency of user interaction with the device
US8834366B2 (en) 2007-07-31 2014-09-16 Abbott Diabetes Care Inc. Method and apparatus for providing analyte sensor calibration
US20090036760A1 (en) * 2007-07-31 2009-02-05 Abbott Diabetes Care, Inc. Method and apparatus for providing data processing and control in a medical communication system
US7768386B2 (en) * 2007-07-31 2010-08-03 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US20090076360A1 (en) 2007-09-13 2009-03-19 Dexcom, Inc. Transcutaneous analyte sensor
EP2203216A1 (en) * 2007-09-20 2010-07-07 Nanostim, Inc. Leadless cardiac pacemaker with secondary fixation capability
US8216138B1 (en) 2007-10-23 2012-07-10 Abbott Diabetes Care Inc. Correlation of alternative site blood and interstitial fluid glucose concentrations to venous glucose concentration
US8409093B2 (en) 2007-10-23 2013-04-02 Abbott Diabetes Care Inc. Assessing measures of glycemic variability
US8377031B2 (en) 2007-10-23 2013-02-19 Abbott Diabetes Care Inc. Closed loop control system with safety parameters and methods
US8374668B1 (en) 2007-10-23 2013-02-12 Abbott Diabetes Care Inc. Analyte sensor with lag compensation
US8417312B2 (en) 2007-10-25 2013-04-09 Dexcom, Inc. Systems and methods for processing sensor data
WO2009066287A3 (en) 2007-11-21 2009-07-16 Medingo Ltd Hypodermic optical monitoring of bodily analyte
US9135402B2 (en) 2007-12-17 2015-09-15 Dexcom, Inc. Systems and methods for processing sensor data
US8320983B2 (en) 2007-12-17 2012-11-27 Palo Alto Research Center Incorporated Controlling transfer of objects affecting optical characteristics
US9839395B2 (en) 2007-12-17 2017-12-12 Dexcom, Inc. Systems and methods for processing sensor data
US20090164251A1 (en) * 2007-12-19 2009-06-25 Abbott Diabetes Care, Inc. Method and apparatus for providing treatment profile management
US20090164239A1 (en) * 2007-12-19 2009-06-25 Abbott Diabetes Care, Inc. Dynamic Display Of Glucose Information
US8473022B2 (en) 2008-01-31 2013-06-25 Abbott Diabetes Care Inc. Analyte sensor with time lag compensation
US8396528B2 (en) 2008-03-25 2013-03-12 Dexcom, Inc. Analyte sensor
US20090242399A1 (en) * 2008-03-25 2009-10-01 Dexcom, Inc. Analyte sensor
US8583205B2 (en) 2008-03-28 2013-11-12 Abbott Diabetes Care Inc. Analyte sensor calibration management
US8346335B2 (en) 2008-03-28 2013-01-01 Abbott Diabetes Care Inc. Analyte sensor calibration management
US20090259118A1 (en) * 2008-03-31 2009-10-15 Abbott Diabetes Care Inc. Shallow Implantable Analyte Sensor with Rapid Physiological Response
US20090259217A1 (en) * 2008-04-09 2009-10-15 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Methods and systems associated with delivery of one or more agents to an individual
US20090259112A1 (en) * 2008-04-09 2009-10-15 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Sensors
EP2982383A1 (en) * 2008-04-10 2016-02-10 Abbott Diabetes Care, Inc. Method for sterilizing an analyte sensor
US7826382B2 (en) 2008-05-30 2010-11-02 Abbott Diabetes Care Inc. Close proximity communication device and methods
US8924159B2 (en) 2008-05-30 2014-12-30 Abbott Diabetes Care Inc. Method and apparatus for providing glycemic control
US20090300616A1 (en) * 2008-05-30 2009-12-03 Abbott Diabetes Care, Inc. Automated task execution for an analyte monitoring system
US8591410B2 (en) 2008-05-30 2013-11-26 Abbott Diabetes Care Inc. Method and apparatus for providing glycemic control
WO2010009172A1 (en) 2008-07-14 2010-01-21 Abbott Diabetes Care Inc. Closed loop control system interface and methods
US8734422B2 (en) 2008-08-31 2014-05-27 Abbott Diabetes Care Inc. Closed loop control with improved alarm functions
US20100057040A1 (en) * 2008-08-31 2010-03-04 Abbott Diabetes Care, Inc. Robust Closed Loop Control And Methods
US9392969B2 (en) * 2008-08-31 2016-07-19 Abbott Diabetes Care Inc. Closed loop control and signal attenuation detection
US20100057041A1 (en) * 2008-08-31 2010-03-04 Abbott Diabetes Care, Inc. Closed Loop Control With Reference Measurement And Methods Thereof
US8622988B2 (en) 2008-08-31 2014-01-07 Abbott Diabetes Care Inc. Variable rate closed loop control and methods
US20100082364A1 (en) * 2008-09-30 2010-04-01 Abbott Diabetes Care, Inc. Medical Information Management
US8219173B2 (en) * 2008-09-30 2012-07-10 Abbott Diabetes Care Inc. Optimizing analyte sensor calibration
US8986208B2 (en) 2008-09-30 2015-03-24 Abbott Diabetes Care Inc. Analyte sensor sensitivity attenuation mitigation
US9326707B2 (en) * 2008-11-10 2016-05-03 Abbott Diabetes Care Inc. Alarm characterization for analyte monitoring devices and systems
US8103456B2 (en) 2009-01-29 2012-01-24 Abbott Diabetes Care Inc. Method and device for early signal attenuation detection using blood glucose measurements
US8224415B2 (en) 2009-01-29 2012-07-17 Abbott Diabetes Care Inc. Method and device for providing offset model based calibration for analyte sensor
US20100198196A1 (en) * 2009-01-30 2010-08-05 Abbott Diabetes Care, Inc. Therapy Delivery Device Programming Tool
US8560082B2 (en) 2009-01-30 2013-10-15 Abbott Diabetes Care Inc. Computerized determination of insulin pump therapy parameters using real time and retrospective data processing
US8527068B2 (en) 2009-02-02 2013-09-03 Nanostim, Inc. Leadless cardiac pacemaker with secondary fixation capability
US20100198034A1 (en) 2009-02-03 2010-08-05 Abbott Diabetes Care Inc. Compact On-Body Physiological Monitoring Devices and Methods Thereof
EP2400886A4 (en) * 2009-02-26 2014-07-02 Abbott Diabetes Care Inc Improved analyte sensors and methods of making and using the same
EP2228004B1 (en) 2009-03-09 2013-09-18 Achilleas Tsoukalis Implantable biosensor with automatic calibration
WO2010111660A1 (en) 2009-03-27 2010-09-30 Dexcom, Inc. Methods and systems for promoting glucose management
WO2010114942A1 (en) * 2009-03-31 2010-10-07 Abbott Diabetes Care Inc. Precise fluid dispensing method and device
WO2010121084A1 (en) 2009-04-15 2010-10-21 Abbott Diabetes Care Inc. Analyte monitoring system having an alert
WO2010127050A1 (en) * 2009-04-28 2010-11-04 Abbott Diabetes Care Inc. Error detection in critical repeating data in a wireless sensor system
EP2425210A4 (en) * 2009-04-28 2013-01-09 Abbott Diabetes Care Inc Dynamic analyte sensor calibration based on sensor stability profile
WO2010129375A1 (en) * 2009-04-28 2010-11-11 Abbott Diabetes Care Inc. Closed loop blood glucose control algorithm analysis
EP2425209A4 (en) 2009-04-29 2013-01-09 Abbott Diabetes Care Inc Method and system for providing real time analyte sensor calibration with retrospective backfill
US8368556B2 (en) 2009-04-29 2013-02-05 Abbott Diabetes Care Inc. Method and system for providing data communication in continuous glucose monitoring and management system
US8613892B2 (en) 2009-06-30 2013-12-24 Abbott Diabetes Care Inc. Analyte meter with a moveable head and methods of using the same
CN104799866A (en) 2009-07-23 2015-07-29 雅培糖尿病护理公司 The analyte monitoring device
EP2456351B1 (en) * 2009-07-23 2016-10-12 Abbott Diabetes Care, Inc. Real time management of data relating to physiological control of glucose levels
US8478557B2 (en) * 2009-07-31 2013-07-02 Abbott Diabetes Care Inc. Method and apparatus for providing analyte monitoring system calibration accuracy
WO2011025999A1 (en) * 2009-08-29 2011-03-03 Abbott Diabetes Care Inc. Analyte sensor
US8514086B2 (en) 2009-08-31 2013-08-20 Abbott Diabetes Care Inc. Displays for a medical device
EP2473098A4 (en) 2009-08-31 2014-04-09 Abbott Diabetes Care Inc Analyte signal processing device and methods
WO2011026130A1 (en) * 2009-08-31 2011-03-03 Abbott Diabetes Care Inc. Inserter device including rotor subassembly
EP2473099A4 (en) 2009-08-31 2015-01-14 Abbott Diabetes Care Inc Analyte monitoring system and methods for managing power and noise
CA2765712A1 (en) * 2009-08-31 2011-03-03 Abbott Diabetes Care Inc. Medical devices and methods
EP2482720A4 (en) 2009-09-29 2014-04-23 Abbott Diabetes Care Inc Method and apparatus for providing notification function in analyte monitoring systems
US20110190603A1 (en) * 2009-09-29 2011-08-04 Stafford Gary A Sensor Inserter Having Introducer
US9351669B2 (en) * 2009-09-30 2016-05-31 Abbott Diabetes Care Inc. Interconnect for on-body analyte monitoring device
US20110079075A1 (en) * 2009-10-02 2011-04-07 Honeywell International Inc. Molecular imprinted three-dimensionally ordered macroporous sensor and method of forming the same
WO2011044386A1 (en) * 2009-10-07 2011-04-14 Abbott Diabetes Care Inc. Sensor inserter assembly having rotatable trigger
WO2011053881A1 (en) 2009-10-30 2011-05-05 Abbott Diabetes Care Inc. Method and apparatus for detecting false hypoglycemic conditions
US20110184258A1 (en) * 2010-01-28 2011-07-28 Abbott Diabetes Care Inc. Balloon Catheter Analyte Measurement Sensors and Methods for Using the Same
EP2537032A1 (en) * 2010-02-19 2012-12-26 Lightship Medical Limited Subcutaneous glucose sensor
US9326709B2 (en) 2010-03-10 2016-05-03 Abbott Diabetes Care Inc. Systems, devices and methods for managing glucose levels
CA2766693A1 (en) 2010-03-24 2011-09-29 Abbott Diabetes Care Inc. Medical device inserters and processes of inserting and using medical devices
US8635046B2 (en) 2010-06-23 2014-01-21 Abbott Diabetes Care Inc. Method and system for evaluating analyte sensor response characteristics
US9572534B2 (en) 2010-06-29 2017-02-21 Abbott Diabetes Care Inc. Devices, systems and methods for on-skin or on-body mounting of medical devices
US9060692B2 (en) 2010-10-12 2015-06-23 Pacesetter, Inc. Temperature sensor for a leadless cardiac pacemaker
CN103249452A (en) 2010-10-12 2013-08-14 内诺斯蒂姆股份有限公司 Temperature sensor for a leadless cardiac pacemaker
CN103249454A (en) 2010-10-13 2013-08-14 内诺斯蒂姆股份有限公司 Leadless cardiac pacemaker with anti-nscrewing feature
US20120149828A1 (en) * 2010-12-08 2012-06-14 David Scott Webb Waterborne polyisocyanate composition that provides a low friction coating
US8615310B2 (en) 2010-12-13 2013-12-24 Pacesetter, Inc. Delivery catheter systems and methods
EP3090779B1 (en) 2010-12-13 2017-11-08 Pacesetter, Inc. Pacemaker retrieval systems
CN103328040B (en) 2010-12-20 2016-09-14 内诺斯蒂姆股份有限公司 No pacemaker having radial wire securing mechanism
CN107019515A (en) 2011-02-28 2017-08-08 雅培糖尿病护理公司 Devices, systems, and methods associated with analyte monitoring devices and devices incorporating the same
US9743862B2 (en) 2011-03-31 2017-08-29 Abbott Diabetes Care Inc. Systems and methods for transcutaneously implanting medical devices
US9380965B2 (en) * 2011-05-20 2016-07-05 Abbott Diabetes Care Inc. Analyte sensors having a membrane with low temperature sensitivity
US20120302471A1 (en) * 2011-05-23 2012-11-29 David Scott Webb Waterborne polyisocyanate composition that provides a low friction coating
WO2013066873A1 (en) 2011-10-31 2013-05-10 Abbott Diabetes Care Inc. Electronic devices having integrated reset systems and methods thereof
WO2013066849A1 (en) 2011-10-31 2013-05-10 Abbott Diabetes Care Inc. Model based variable risk false glucose threshold alarm prevention mechanism
US9511236B2 (en) 2011-11-04 2016-12-06 Pacesetter, Inc. Leadless cardiac pacemaker with integral battery and redundant welds
US9317656B2 (en) 2011-11-23 2016-04-19 Abbott Diabetes Care Inc. Compatibility mechanisms for devices in a continuous analyte monitoring system and methods thereof
US8710993B2 (en) 2011-11-23 2014-04-29 Abbott Diabetes Care Inc. Mitigating single point failure of devices in an analyte monitoring system and methods thereof
US9339217B2 (en) 2011-11-25 2016-05-17 Abbott Diabetes Care Inc. Analyte monitoring system and methods of use
EP2713879B1 (en) 2011-12-11 2017-07-26 Abbott Diabetes Care, Inc. Analyte sensor devices, connections, and methods
JP2015527117A (en) 2012-07-09 2015-09-17 カリフォルニア インスティチュート オブ テクノロジー Implantable vascular biosensors and their use having grown capillary bed
EP2879758A4 (en) 2012-08-01 2016-01-27 Nanostim Inc Biostimulator circuit with flying cell
US9675290B2 (en) 2012-10-30 2017-06-13 Abbott Diabetes Care Inc. Sensitivity calibration of in vivo sensors used to measure analyte concentration
US8858884B2 (en) 2013-03-15 2014-10-14 American Sterilizer Company Coupled enzyme-based method for electronic monitoring of biological indicator
US9474475B1 (en) 2013-03-15 2016-10-25 Abbott Diabetes Care Inc. Multi-rate analyte sensor data collection with sample rate configurable signal processing
US9121050B2 (en) 2013-03-15 2015-09-01 American Sterilizer Company Non-enzyme based detection method for electronic monitoring of biological indicator
US20140350370A1 (en) * 2013-04-08 2014-11-27 The Texas A&M University System Glucose sensing assay
US20150185225A1 (en) * 2013-12-27 2015-07-02 Becton, Dickinson And Company System and method for dynamically calibrating and measuring analyte concentration in diabetes management monitors

Citations (89)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4197840A (en) * 1975-11-06 1980-04-15 Bbc Brown Boveri & Company, Limited Permanent magnet device for implantation
US4225410A (en) * 1978-12-04 1980-09-30 Technicon Instruments Corporation Integrated array of electrochemical sensors
US4255500A (en) * 1979-03-29 1981-03-10 General Electric Company Vibration resistant electrochemical cell having deformed casing and method of making same
US4324257A (en) * 1978-02-20 1982-04-13 U.S. Philips Corporation Device for the transcutaneous measurement of the partial oxygen pressure in blood
US4353888A (en) * 1980-12-23 1982-10-12 Sefton Michael V Encapsulation of live animal cells
US4374013A (en) * 1980-03-05 1983-02-15 Enfors Sven Olof Oxygen stabilized enzyme electrode
US4431004A (en) * 1981-10-27 1984-02-14 Bessman Samuel P Implantable glucose sensor
US4431507A (en) * 1981-01-14 1984-02-14 Matsushita Electric Industrial Co., Ltd. Enzyme electrode
US4436094A (en) * 1981-03-09 1984-03-13 Evreka, Inc. Monitor for continuous in vivo measurement of glucose concentration
US4453537A (en) * 1981-08-04 1984-06-12 Spitzer Daniel E Apparatus for powering a body implant device
US4686044A (en) * 1979-08-13 1987-08-11 Akzo Nv Polycarbonate-polyether-copolymer membrane
US4721677A (en) * 1985-09-18 1988-01-26 Children's Hospital Medical Center Implantable gas-containing biosensor and method for measuring an analyte such as glucose
US4750496A (en) * 1987-01-28 1988-06-14 Xienta, Inc. Method and apparatus for measuring blood glucose concentration
US4757022A (en) * 1986-04-15 1988-07-12 Markwell Medical Institute, Inc. Biological fluid measuring device
US4759828A (en) * 1987-04-09 1988-07-26 Nova Biomedical Corporation Glucose electrode and method of determining glucose
US4803243A (en) * 1986-03-26 1989-02-07 Shin-Etsu Chemical Co., Ltd. Block-graft copolymer
US4823808A (en) * 1987-07-06 1989-04-25 Clegg Charles T Method for control of obesity, overweight and eating disorders
US4871440A (en) * 1987-07-06 1989-10-03 Daiken Industries, Ltd. Biosensor
US4890620A (en) * 1985-09-20 1990-01-02 The Regents Of The University Of California Two-dimensional diffusion glucose substrate sensing electrode
US4902294A (en) * 1986-12-03 1990-02-20 Olivier Gosserez Implantable mammary prosthesis adapted to combat the formation of a retractile shell
US4927407A (en) * 1989-06-19 1990-05-22 Regents Of The University Of Minnesota Cardiac assist pump with steady rate supply of fluid lubricant
US4953552A (en) * 1989-04-21 1990-09-04 Demarzo Arthur P Blood glucose monitoring system
US4994167A (en) * 1986-04-15 1991-02-19 Markwell Medical Institute, Inc. Biological fluid measuring device
US5034112A (en) * 1988-05-19 1991-07-23 Nissan Motor Company, Ltd. Device for measuring concentration of nitrogen oxide in combustion gas
US5130231A (en) * 1985-10-18 1992-07-14 Chem-Elec, Inc. Blood plasma test device including a semipermeable membrane made of an expanded hydrophobic material that has been treated with a surfactant
US5190041A (en) * 1989-08-11 1993-03-02 Palti Yoram Prof System for monitoring and controlling blood glucose
US5222980A (en) * 1991-09-27 1993-06-29 Medtronic, Inc. Implantable heart-assist device
US5249576A (en) * 1991-10-24 1993-10-05 Boc Health Care, Inc. Universal pulse oximeter probe
US5282848A (en) * 1990-08-28 1994-02-01 Meadox Medicals, Inc. Self-supporting woven vascular graft
US5314471A (en) * 1991-07-24 1994-05-24 Baxter International Inc. Tissue inplant systems and methods for sustaining viable high cell densities within a host
US5321414A (en) * 1990-03-01 1994-06-14 Her Majesty In Right Of Canada As Represented By The Minister Of Communications Dual polarization dipole array antenna
US5322063A (en) * 1991-10-04 1994-06-21 Eli Lilly And Company Hydrophilic polyurethane membranes for electrochemical glucose sensors
US5337747A (en) * 1989-10-06 1994-08-16 Frederic Neftel Implantable device for estimating glucose levels
US5344454A (en) * 1991-07-24 1994-09-06 Baxter International Inc. Closed porous chambers for implanting tissue in a host
US5352351A (en) * 1993-06-08 1994-10-04 Boehringer Mannheim Corporation Biosensing meter with fail/safe procedures to prevent erroneous indications
US5380536A (en) * 1990-10-15 1995-01-10 The Board Of Regents, The University Of Texas System Biocompatible microcapsules
US5384028A (en) * 1992-08-28 1995-01-24 Nec Corporation Biosensor with a data memory
US5391250A (en) * 1994-03-15 1995-02-21 Minimed Inc. Method of fabricating thin film sensors
US5390671A (en) * 1994-03-15 1995-02-21 Minimed Inc. Transcutaneous sensor insertion set
US5411647A (en) * 1992-11-23 1995-05-02 Eli Lilly And Company Techniques to improve the performance of electrochemical sensors
US5417395A (en) * 1993-06-30 1995-05-23 Medex, Inc. Modular interconnecting component support plate
US5421923A (en) * 1993-12-03 1995-06-06 Baxter International, Inc. Ultrasonic welding horn with sonics dampening insert
US5431921A (en) * 1990-09-28 1995-07-11 Pfizer Inc Dispensing device containing a hydrophobic medium
US5431160A (en) * 1989-07-19 1995-07-11 University Of New Mexico Miniature implantable refillable glucose sensor and material therefor
US5453278A (en) * 1991-07-24 1995-09-26 Baxter International Inc. Laminated barriers for tissue implants
US5458631A (en) * 1989-01-06 1995-10-17 Xavier; Ravi Implantable catheter with electrical pulse nerve stimulators and drug delivery system
US5462645A (en) * 1991-09-20 1995-10-31 Imperial College Of Science, Technology & Medicine Dialysis electrode device
US5462064A (en) * 1993-12-22 1995-10-31 International Medical Associates, Inc. Integrated system for biological fluid constituent analysis
US5497772A (en) * 1993-11-19 1996-03-12 Alfred E. Mann Foundation For Scientific Research Glucose monitoring system
US5529066A (en) * 1994-06-27 1996-06-25 Cb-Carmel Biotechnology Ltd. Implantable capsule for enhancing cell electric signals
US5538511A (en) * 1994-04-01 1996-07-23 Minimed Inc. Indwelling catheter with stable enzyme coating
US5545223A (en) * 1990-10-31 1996-08-13 Baxter International, Inc. Ported tissue implant systems and methods of using same
US5549675A (en) * 1994-01-11 1996-08-27 Baxter International, Inc. Method for implanting tissue in a host
US5564439A (en) * 1991-05-13 1996-10-15 George J. Picha Infusion device for soft tissue
US5569186A (en) * 1994-04-25 1996-10-29 Minimed Inc. Closed loop infusion pump system with removable glucose sensor
US5569462A (en) * 1993-09-24 1996-10-29 Baxter International Inc. Methods for enhancing vascularization of implant devices
US5607565A (en) * 1995-03-27 1997-03-04 Coulter Corporation Apparatus for measuring analytes in a fluid sample
US5628890A (en) * 1995-09-27 1997-05-13 Medisense, Inc. Electrochemical sensor
US5640954A (en) * 1994-01-19 1997-06-24 Pfeiffer; Ernst Method and apparatus for continuously monitoring the concentration of a metabolyte
US5653863A (en) * 1995-05-05 1997-08-05 Bayer Corporation Method for reducing bias in amperometric sensors
US5704354A (en) * 1994-06-23 1998-01-06 Siemens Aktiengesellschaft Electrocatalytic glucose sensor
US5711861A (en) * 1995-11-22 1998-01-27 Ward; W. Kenneth Device for monitoring changes in analyte concentration
US5713888A (en) * 1990-10-31 1998-02-03 Baxter International, Inc. Tissue implant systems
US5741330A (en) * 1990-10-31 1998-04-21 Baxter International, Inc. Close vascularization implant material
US5777060A (en) * 1995-03-27 1998-07-07 Minimed, Inc. Silicon-containing biocompatible membranes
US5791344A (en) * 1993-11-19 1998-08-11 Alfred E. Mann Foundation For Scientific Research Patient monitoring system
US5807406A (en) * 1994-10-07 1998-09-15 Baxter International Inc. Porous microfabricated polymer membrane structures
US6011984A (en) * 1995-11-22 2000-01-04 Minimed Inc. Detection of biological molecules using chemical amplification and optical sensors
US6119028A (en) * 1997-10-20 2000-09-12 Alfred E. Mann Foundation Implantable enzyme-based monitoring systems having improved longevity due to improved exterior surfaces
US6122536A (en) * 1995-07-06 2000-09-19 Animas Corporation Implantable sensor and system for measurement and control of blood constituent levels
US6175752B1 (en) * 1998-04-30 2001-01-16 Therasense, Inc. Analyte monitoring device and methods of use
US6180416B1 (en) * 1998-09-30 2001-01-30 Cygnus, Inc. Method and device for predicting physiological values
US6200772B1 (en) * 1997-08-23 2001-03-13 Sensalyse Holdings Limited Modified polyurethane membrane sensors and analytical methods
US6201908B1 (en) * 1999-07-02 2001-03-13 Blaze Network Products, Inc. Optical wavelength division multiplexer/demultiplexer having preformed passively aligned optics
US6201980B1 (en) * 1998-10-05 2001-03-13 The Regents Of The University Of California Implantable medical sensor system
US6208894B1 (en) * 1997-02-26 2001-03-27 Alfred E. Mann Foundation For Scientific Research And Advanced Bionics System of implantable devices for monitoring and/or affecting body parameters
US6223080B1 (en) * 1998-04-29 2001-04-24 Medtronic, Inc. Power consumption reduction in medical devices employing multiple digital signal processors and different supply voltages
US6223083B1 (en) * 1999-04-16 2001-04-24 Medtronic, Inc. Receiver employing digital filtering for use with an implantable medical device
US6230059B1 (en) * 1999-03-17 2001-05-08 Medtronic, Inc. Implantable monitor
US6233471B1 (en) * 1998-05-13 2001-05-15 Cygnus, Inc. Signal processing for measurement of physiological analysis
US6256522B1 (en) * 1992-11-23 2001-07-03 University Of Pittsburgh Of The Commonwealth System Of Higher Education Sensors for continuous monitoring of biochemicals and related method
US6254586B1 (en) * 1998-09-25 2001-07-03 Minimed Inc. Method and kit for supplying a fluid to a subcutaneous placement site
US6259937B1 (en) * 1997-09-12 2001-07-10 Alfred E. Mann Foundation Implantable substrate sensor
US6272364B1 (en) * 1998-05-13 2001-08-07 Cygnus, Inc. Method and device for predicting physiological values
US6272382B1 (en) * 1998-07-31 2001-08-07 Advanced Bionics Corporation Fully implantable cochlear implant system
US6368274B1 (en) * 1999-07-01 2002-04-09 Medtronic Minimed, Inc. Reusable analyte sensor site and method of using the same
US20020042090A1 (en) * 1991-03-04 2002-04-11 Therasense, Inc. Subcutaneous glucose electrode
US6454710B1 (en) * 2001-04-11 2002-09-24 Motorola, Inc. Devices and methods for monitoring an analyte
US6741877B1 (en) * 1997-03-04 2004-05-25 Dexcom, Inc. Device and method for determining analyte levels

Family Cites Families (272)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3381371A (en) 1965-09-27 1968-05-07 Sanders Associates Inc Method of constructing lightweight antenna
USRE31916E (en) 1970-11-10 1985-06-18 Becton Dickinson & Company Electrochemical detection cell
US3791871A (en) 1971-04-14 1974-02-12 Lockheed Aircraft Corp Electrochemical cell
CA978457A (en) 1971-09-09 1975-11-25 Hoffmann-La Roche Limited Enzyme electrode
US3943918A (en) 1971-12-02 1976-03-16 Tel-Pac, Inc. Disposable physiological telemetric device
US3775182A (en) 1972-02-25 1973-11-27 Du Pont Tubular electrochemical cell with coiled electrodes and compressed central spindle
US3898984A (en) 1974-02-04 1975-08-12 Us Navy Ambulatory patient monitoring system
US4273636A (en) * 1977-05-26 1981-06-16 Kiyoo Shimada Selective chemical sensitive field effect transistor transducers
NL7812318A (en) 1977-12-23 1979-06-26 Ceske Vysoke Uceni Tech Hemodialysis apparatus.
JPS5921500B2 (en) * 1978-01-28 1984-05-21 Toyo Boseki
US4253469A (en) 1979-04-20 1981-03-03 The Narda Microwave Corporation Implantable temperature probe
US4260725A (en) 1979-12-10 1981-04-07 Bausch & Lomb Incorporated Hydrophilic contact lens made from polysiloxanes which are thermally bonded to polymerizable groups and which contain hydrophilic sidechains
US4403984A (en) 1979-12-28 1983-09-13 Biotek, Inc. System for demand-based adminstration of insulin
US4340458A (en) * 1980-06-02 1982-07-20 Joslin Diabetes Center, Inc. Glucose sensor
US4442841A (en) 1981-04-30 1984-04-17 Mitsubishi Rayon Company Limited Electrode for living bodies
US4418148A (en) 1981-11-05 1983-11-29 Miles Laboratories, Inc. Multilayer enzyme electrode membrane
US4494950A (en) 1982-01-19 1985-01-22 The Johns Hopkins University Plural module medication delivery system
EP0098592A3 (en) 1982-07-06 1985-08-21 Fujisawa Pharmaceutical Co., Ltd. Portable artificial pancreas
DE3228551A1 (en) 1982-07-30 1984-02-02 Siemens Ag Method for determining the glucose concentration
US4571292A (en) 1982-08-12 1986-02-18 Case Western Reserve University Apparatus for electrochemical measurements
US4603152A (en) 1982-11-05 1986-07-29 Baxter Travenol Laboratories, Inc. Antimicrobial compositions
CA1226036A (en) 1983-05-05 1987-08-25 Irving J. Higgins Analytical equipment and sensor electrodes therefor
US4484987A (en) 1983-05-19 1984-11-27 The Regents Of The University Of California Method and membrane applicable to implantable sensor
US4650547A (en) 1983-05-19 1987-03-17 The Regents Of The University Of California Method and membrane applicable to implantable sensor
US4655880A (en) 1983-08-01 1987-04-07 Case Western Reserve University Apparatus and method for sensing species, substances and substrates using oxidase
US4554927A (en) 1983-08-30 1985-11-26 Thermometrics Inc. Pressure and temperature sensor
GB8329375D0 (en) 1983-11-03 1983-12-07 Anderson J Sudden infant death syndrome monitor
US4883057A (en) 1984-05-09 1989-11-28 Research Foundation, The City University Of New York Cathodic electrochemical current arrangement with telemetric application
US5464013A (en) 1984-05-25 1995-11-07 Lemelson; Jerome H. Medical scanning and treatment system and method
US5171689A (en) 1984-11-08 1992-12-15 Matsushita Electric Industrial Co., Ltd. Solid state bio-sensor
US4787398A (en) 1985-04-08 1988-11-29 Garid, Inc. Glucose medical monitoring system
US5364770A (en) 1985-08-29 1994-11-15 Genencor International Inc. Heterologous polypeptides expressed in aspergillus
US4805624A (en) * 1985-09-09 1989-02-21 The Montefiore Hospital Association Of Western Pa Low-potential electrochemical redox sensors
CA1299653C (en) 1988-07-07 1992-04-28 Markwell Medical Institute, Inc. Biological fluid measuring device
EP0647849A3 (en) 1986-04-30 1996-05-15 Igen Inc Detecting the presence of analytes in a sample.
US4703756A (en) 1986-05-06 1987-11-03 The Regents Of The University Of California Complete glucose monitoring system with an implantable, telemetered sensor module
US4731726A (en) 1986-05-19 1988-03-15 Healthware Corporation Patient-operated glucose monitor and diabetes management system
GB8612861D0 (en) 1986-05-27 1986-07-02 Cambridge Life Sciences Immobilised enzyme biosensors
DE3700119A1 (en) 1987-01-03 1988-07-14 Inst Diabetestechnologie Gemei Implantable electrochemical sensor
US4805625A (en) 1987-07-08 1989-02-21 Ad-Tech Medical Instrument Corporation Sphenoidal electrode and insertion method
GB8725936D0 (en) 1987-11-05 1987-12-09 Genetics Int Inc Sensing system
US4852573A (en) 1987-12-04 1989-08-01 Kennedy Philip R Implantable neural electrode
US4890621A (en) 1988-01-19 1990-01-02 Northstar Research Institute, Ltd. Continuous glucose monitoring and a system utilized therefor
US5019096A (en) 1988-02-11 1991-05-28 Trustees Of Columbia University In The City Of New York Infection-resistant compositions, medical devices and surfaces and methods for preparing and using same
GB8817997D0 (en) 1988-07-28 1988-09-01 Cambridge Life Sciences Enzyme electrodes & improvements in manufacture thereof
EP0353328A1 (en) 1988-08-03 1990-02-07 Dräger Nederland B.V. A polarographic-amperometric three-electrode sensor
NL8802481A (en) 1988-10-10 1990-05-01 Texas Instruments Holland Transponder as well as method for the manufacture thereof.
US5269891A (en) 1989-03-09 1993-12-14 Novo Nordisk A/S Method and apparatus for determination of a constituent in a fluid
JPH02298855A (en) 1989-03-20 1990-12-11 Assoc Univ Inc Electrochemical biosensor using immobilized enzyme and redox polymer
US5089112A (en) 1989-03-20 1992-02-18 Associated Universities, Inc. Electrochemical biosensor based on immobilized enzymes and redox polymers
EP0396788A1 (en) 1989-05-08 1990-11-14 Dräger Nederland B.V. Process and sensor for measuring the glucose content of glucosecontaining fluids
US4988341A (en) 1989-06-05 1991-01-29 Eastman Kodak Company Sterilizing dressing device and method for skin puncture
US5334681A (en) 1989-06-20 1994-08-02 Ciba-Geigy Corporation Fluorine and/or silicone containing poly(alkylene-oxide)-block copolymer hydrogels and contact lenses thereof
DE59005357D1 (en) 1989-07-07 1994-05-19 Disetronic Holding Ag Burgdorf Glucose meter.
US4986271A (en) 1989-07-19 1991-01-22 The University Of New Mexico Vivo refillable glucose sensor
US5264104A (en) 1989-08-02 1993-11-23 Gregg Brian A Enzyme electrodes
US5101814A (en) * 1989-08-11 1992-04-07 Palti Yoram Prof System for monitoring and controlling blood glucose
US5050612A (en) 1989-09-12 1991-09-24 Matsumura Kenneth N Device for computer-assisted monitoring of the body
JPH0414980B2 (en) 1989-10-18 1992-03-16 Nishitomo Kk
US5985129A (en) 1989-12-14 1999-11-16 The Regents Of The University Of California Method for increasing the service life of an implantable sensor
FR2656423A1 (en) 1989-12-22 1991-06-28 Rhone Poulenc Chimie Electrochemical biosensor
US5108819A (en) 1990-02-14 1992-04-28 Eli Lilly And Company Thin film electrical component
US5316008A (en) 1990-04-06 1994-05-31 Casio Computer Co., Ltd. Measurement of electrocardiographic wave and sphygmus
US5165407A (en) 1990-04-19 1992-11-24 The University Of Kansas Implantable glucose sensor
US5331555A (en) 1990-05-11 1994-07-19 Sharp Kabushiki Kaisha Electronic apparatus
US5202261A (en) 1990-07-19 1993-04-13 Miles Inc. Conductive sensors and their use in diagnostic assays
WO1992013271A1 (en) 1991-01-25 1992-08-06 Markwell Medical Institute, Inc. Implantable biological fluid measuring device
US5328451A (en) 1991-08-15 1994-07-12 Board Of Regents, The University Of Texas System Iontophoretic device and method for killing bacteria and other microbes
DE69210832T2 (en) 1991-09-13 1996-12-19 Rodney Arthur Stafford An electronic identification system for animals
DE4130742A1 (en) 1991-09-16 1993-03-18 Inst Diabetestechnologie Gemei Method and arrangement for determining the concentration of substances in body fluids
EP0539625A1 (en) 1991-10-28 1993-05-05 Dräger Medical Electronics B.V. Electrochemical sensor for measuring the glucose content of glucose containing fluids
US5310469A (en) 1991-12-31 1994-05-10 Abbott Laboratories Biosensor with a membrane containing biologically active material
NL9200207A (en) 1992-02-05 1993-09-01 Nedap Nv Implantable biomedical sensor device, in particular for measurement of the glucose concentration.
US5284140A (en) 1992-02-11 1994-02-08 Eli Lilly And Company Acrylic copolymer membranes for biosensors
EP0563795B1 (en) 1992-03-31 1998-07-22 Dai Nippon Printing Co., Ltd. Enzyme-immobilized electrode, composition for preparation of the same and electrically conductive enzyme
ES2167332T3 (en) 1992-04-01 2002-05-16 Baxter Int Procedures and systems for implanting living cells in host organisms.
US5324322A (en) 1992-04-20 1994-06-28 Case Western Reserve University Thin film implantable electrode and method of manufacture
GB9211402D0 (en) 1992-05-29 1992-07-15 Univ Manchester Sensor devices
JPH0634596A (en) 1992-07-20 1994-02-08 Fujitsu Ltd Oxygen electrode, biosensor and manufacture thereof
US5298144A (en) 1992-09-15 1994-03-29 The Yellow Springs Instrument Company, Inc. Chemically wired fructose dehydrogenase electrodes
GB9221099D0 (en) 1992-10-07 1992-11-18 Ecossensors Ltd Improvements in and relating to gas permeable membranes for amperometric gas electrodes
US5387327A (en) 1992-10-19 1995-02-07 Duquesne University Of The Holy Ghost Implantable non-enzymatic electrochemical glucose sensor
US5883115A (en) * 1992-11-09 1999-03-16 Pharmetrix Division Technical Chemicals & Products, Inc. Transdermal delivery of the eutomer of a chiral drug
US5299571A (en) 1993-01-22 1994-04-05 Eli Lilly And Company Apparatus and method for implantation of sensors
US5411866A (en) 1993-03-30 1995-05-02 National Research Council Of Canada Method and system for determining bioactive substances
WO1994022367A1 (en) 1993-03-30 1994-10-13 Pfizer Inc. Radiotelemetry impedance plethysmography device
US5387329A (en) 1993-04-09 1995-02-07 Ciba Corning Diagnostics Corp. Extended use planar sensors
CA2161122A1 (en) * 1993-04-21 1994-10-27 Philippe Moullier Biocompatible implant for expression and secretion of a therapeutic compound in vivo
US5508030A (en) * 1993-08-05 1996-04-16 Bierman; Howard R. Creating new capillary blood pools for practicing bidirectional medicine
DE4329898A1 (en) 1993-09-04 1995-04-06 Marcus Dr Besson Wireless medical diagnostic and monitoring equipment
US5582184A (en) 1993-10-13 1996-12-10 Integ Incorporated Interstitial fluid collection and constituent measurement
KR970010981B1 (en) 1993-11-04 1997-07-05 구자홍 Alcohol concentration measuring bio-sensor, manufacturing method and related apparatus
US5508509A (en) 1993-11-30 1996-04-16 Minnesota Mining And Manufacturing Company Sensing elements and methods for uniformly making individual sensing elements
WO1995028634A1 (en) 1994-04-14 1995-10-26 Memtec America Corporation Electrochemical cells
US5466356A (en) 1994-04-29 1995-11-14 Mine Safety Appliances Company Potentiostat circuit for electrochemical cells
DE4415896A1 (en) 1994-05-05 1995-11-09 Boehringer Mannheim Gmbh Analysis system for monitoring the concentration of an analyte in the blood of a patient
DE59509994D1 (en) 1994-06-03 2002-02-21 Metrohm Ag Herisau Apparatus for voltammetry, indicator electrode assembly for such a device, in particular as part of a tape cartridge, and series analysis method for voltammetry
US5771890A (en) 1994-06-24 1998-06-30 Cygnus, Inc. Device and method for sampling of substances using alternating polarity
US5494562A (en) 1994-06-27 1996-02-27 Ciba Corning Diagnostics Corp. Electrochemical sensors
US5429735A (en) 1994-06-27 1995-07-04 Miles Inc. Method of making and amperometric electrodes
ES2125630T3 (en) 1994-07-08 1999-03-01 Baxter Int implantable device containing tumor cells, for the treatment of cancer.
US5480711A (en) 1994-07-12 1996-01-02 Ruefer; Bruce G. Nano-porous PTFE biomaterial
US5513636A (en) 1994-08-12 1996-05-07 Cb-Carmel Biotechnology Ltd. Implantable sensor chip
CA2159052C (en) 1994-10-28 2007-03-06 Rainer Alex Injection device
JPH10508518A (en) 1994-11-04 1998-08-25 イーラン・メディカル・テクノロジーズ・リミテッド Liquid is regulated by analyte dispensing device and analyte monitoring
US5837728A (en) 1995-01-27 1998-11-17 Molecular Design International 9-cis retinoic acid esters and amides and uses thereof
US5741319A (en) 1995-01-27 1998-04-21 Medtronic, Inc. Biocompatible medical lead
US5568806A (en) 1995-02-16 1996-10-29 Minimed Inc. Transcutaneous sensor insertion set
US5586553A (en) 1995-02-16 1996-12-24 Minimed Inc. Transcutaneous sensor insertion set
CA2213854C (en) 1995-03-10 2010-08-10 Meso Scale Technologies, Llc Multi-array, multi-specific electrochemiluminescence testing
US5582697A (en) 1995-03-17 1996-12-10 Matsushita Electric Industrial Co., Ltd. Biosensor, and a method and a device for quantifying a substrate in a sample liquid using the same
WO1996032076A1 (en) 1995-04-11 1996-10-17 Baxter Internatonal Inc. Tissue implant systems
FR2733104B1 (en) 1995-04-12 1997-06-06 Droz Francois Answering small size and method of manufacture of such answering machines
US6060640A (en) 1995-05-19 2000-05-09 Baxter International Inc. Multiple-layer, formed-in-place immunoisolation membrane structures for implantation of cells in host tissue
US5743262A (en) 1995-06-07 1998-04-28 Masimo Corporation Blood glucose monitoring system
US5584813A (en) 1995-06-07 1996-12-17 Minimed Inc. Subcutaneous injection set
US5840148A (en) 1995-06-30 1998-11-24 Bio Medic Data Systems, Inc. Method of assembly of implantable transponder
CA2259254C (en) 1996-07-08 2008-02-19 Animas Corporation Implantable sensor and system for in vivo measurement and control of fluid constituent levels
US5989409A (en) 1995-09-11 1999-11-23 Cygnus, Inc. Method for glucose sensing
US5735273A (en) 1995-09-12 1998-04-07 Cygnus, Inc. Chemical signal-impermeable mask
WO1997024059A1 (en) 1995-12-28 1997-07-10 Cygnus, Inc. Continuous monitoring of physiological analyte
US6309526B1 (en) 1997-07-10 2001-10-30 Matsushita Electric Industrial Co., Ltd. Biosensor
US5833603A (en) 1996-03-13 1998-11-10 Lipomatrix, Inc. Implantable biosensing transponder
US5776324A (en) 1996-05-17 1998-07-07 Encelle, Inc. Electrochemical biosensors
US5964261A (en) 1996-05-29 1999-10-12 Baxter International Inc. Implantation assembly
US5804048A (en) 1996-08-15 1998-09-08 Via Medical Corporation Electrode assembly for assaying glucose
US5963132A (en) 1996-10-11 1999-10-05 Avid Indentification Systems, Inc. Encapsulated implantable transponder
DE19642453C2 (en) 1996-10-15 1998-07-23 Bosch Gmbh Robert Arrangement for gas sensor electrodes
US5964993A (en) * 1996-12-19 1999-10-12 Implanted Biosystems Inc. Glucose sensor
US5914026A (en) 1997-01-06 1999-06-22 Implanted Biosystems Inc. Implantable sensor employing an auxiliary electrode
US6093172A (en) 1997-02-05 2000-07-25 Minimed Inc. Injector for a subcutaneous insertion set
US7329239B2 (en) 1997-02-05 2008-02-12 Medtronic Minimed, Inc. Insertion device for an insertion set and method of using the same
US6001067A (en) 1997-03-04 1999-12-14 Shults; Mark C. Device and method for determining analyte levels
US20050033132A1 (en) 1997-03-04 2005-02-10 Shults Mark C. Analyte measuring device
US6558321B1 (en) 1997-03-04 2003-05-06 Dexcom, Inc. Systems and methods for remote monitoring and modulation of medical devices
US6862465B2 (en) 1997-03-04 2005-03-01 Dexcom, Inc. Device and method for determining analyte levels
FR2760962B1 (en) 1997-03-20 1999-05-14 Sillonville Francis Klefstad System support and medical supervision Remote
US5961451A (en) 1997-04-07 1999-10-05 Motorola, Inc. Noninvasive apparatus having a retaining member to retain a removable biosensor
US6059946A (en) 1997-04-14 2000-05-09 Matsushita Electric Industrial Co., Ltd. Biosensor
US5944661A (en) 1997-04-16 1999-08-31 Giner, Inc. Potential and diffusion controlled solid electrolyte sensor for continuous measurement of very low levels of transdermal alcohol
CA2294610A1 (en) 1997-06-16 1998-12-23 George Moshe Katz Methods of calibrating and testing a sensor for in vivo measurement of an analyte and devices for use in such methods
US6117290A (en) 1997-09-26 2000-09-12 Pepex Biomedical, Llc System and method for measuring a bioanalyte such as lactate
WO1999017095A1 (en) 1997-09-30 1999-04-08 M-Biotech, Inc. Biosensor
US7115884B1 (en) 1997-10-06 2006-10-03 Trustees Of Tufts College Self-encoding fiber optic sensor
US6081736A (en) 1997-10-20 2000-06-27 Alfred E. Mann Foundation Implantable enzyme-based monitoring systems adapted for long term use
US6088608A (en) 1997-10-20 2000-07-11 Alfred E. Mann Foundation Electrochemical sensor and integrity tests therefor
US5967986A (en) 1997-11-25 1999-10-19 Vascusense, Inc. Endoluminal implant with fluid flow sensing capability
US6134461A (en) 1998-03-04 2000-10-17 E. Heller & Company Electrochemical analyte
US6013113A (en) 1998-03-06 2000-01-11 Wilson Greatbatch Ltd. Slotted insulator for unsealed electrode edges in electrochemical cells
CA2265119C (en) 1998-03-13 2002-12-03 Cygnus, Inc. Biosensor, iontophoretic sampling system, and methods of use thereof
JP3104672B2 (en) 1998-03-31 2000-10-30 日本電気株式会社 Current detection type sensor element, and a manufacturing method thereof
US6091975A (en) 1998-04-01 2000-07-18 Alza Corporation Minimally invasive detecting device
US6074775A (en) 1998-04-02 2000-06-13 The Procter & Gamble Company Battery having a built-in controller
US6534711B1 (en) 1998-04-14 2003-03-18 The Goodyear Tire & Rubber Company Encapsulation package and method of packaging an electronic circuit module
DE69910003D1 (en) 1998-05-13 2003-09-04 Cygnus Therapeutic Systems Monitoring physiological analytes
US6702972B1 (en) 1998-06-09 2004-03-09 Diametrics Medical Limited Method of making a kink-resistant catheter
US7344499B1 (en) 1998-06-10 2008-03-18 Georgia Tech Research Corporation Microneedle device for extraction and sensing of bodily fluids
US6290839B1 (en) 1998-06-23 2001-09-18 Clinical Micro Sensors, Inc. Systems for electrophoretic transport and detection of analytes
EP0967788A2 (en) 1998-06-26 1999-12-29 Hewlett-Packard Company Dynamic generation of multi-resolution and tile-based images from flat compressed images
US6495023B1 (en) 1998-07-09 2002-12-17 Michigan State University Electrochemical methods for generation of a biological proton motive force and pyridine nucleotide cofactor regeneration
JP4689825B2 (en) * 1998-08-26 2011-05-25 センサーズ・フォー・メデセン・アンド・サイエンス・インコーポレーテッド Optical detection device
US6409674B1 (en) 1998-09-24 2002-06-25 Data Sciences International, Inc. Implantable sensor with wireless communication
EP1102559B1 (en) 1998-09-30 2003-06-04 Cygnus, Inc. Method and device for predicting physiological values
US6338790B1 (en) 1998-10-08 2002-01-15 Therasense, Inc. Small volume in vitro analyte sensor with diffusible or non-leachable redox mediator
WO2000030532A1 (en) 1998-11-20 2000-06-02 University Of Connecticut Generic integrated implantable potentiostat telemetry unit for electrochemical sensors
US6066083A (en) 1998-11-27 2000-05-23 Syntheon Llc Implantable brachytherapy device having at least partial deactivation capability
US6447448B1 (en) 1998-12-31 2002-09-10 Ball Semiconductor, Inc. Miniature implanted orthopedic sensors
US6424847B1 (en) 1999-02-25 2002-07-23 Medtronic Minimed, Inc. Glucose monitor calibration methods
US6360888B1 (en) 1999-02-25 2002-03-26 Minimed Inc. Glucose sensor package system
US6895263B2 (en) 2000-02-23 2005-05-17 Medtronic Minimed, Inc. Real time self-adjusting calibration algorithm
US6296615B1 (en) 1999-03-05 2001-10-02 Data Sciences International, Inc. Catheter with physiological sensor
US6285897B1 (en) 1999-04-07 2001-09-04 Endonetics, Inc. Remote physiological monitoring system
WO2000059376A1 (en) 1999-04-07 2000-10-12 Endonetics, Inc. Implantable monitoring probe
US6615078B1 (en) 1999-04-22 2003-09-02 Cygnus, Inc. Methods and devices for removing interfering species
US6300002B1 (en) 1999-05-13 2001-10-09 Moltech Power Systems, Inc. Notched electrode and method of making same
US6546268B1 (en) 1999-06-02 2003-04-08 Ball Semiconductor, Inc. Glucose sensor
US7267665B2 (en) 1999-06-03 2007-09-11 Medtronic Minimed, Inc. Closed loop system for controlling insulin infusion
WO2000077163A1 (en) 1999-06-10 2000-12-21 Matsushita Electric Industrial Co., Ltd. Electrochemical device for moving particles covered with protein
US7247138B2 (en) 1999-07-01 2007-07-24 Medtronic Minimed, Inc. Reusable analyte sensor site and method of using the same
US6343225B1 (en) 1999-09-14 2002-01-29 Implanted Biosystems, Inc. Implantable glucose sensor
CA2381539A1 (en) 1999-09-15 2001-03-22 Medtronic Minimed, Inc. Glucose sensing molecules having selected fluorescent properties
US6406426B1 (en) 1999-11-03 2002-06-18 Criticare Systems Medical monitoring and alert system for use with therapeutic devices
WO2001034243A1 (en) 1999-11-11 2001-05-17 St. Jude Medical Ab Recommended replacement time of an implantable medical device
JP3426549B2 (en) 1999-11-12 2003-07-14 本田技研工業株式会社 Connection structure of the exhaust pipe
DE19956822B4 (en) 1999-11-25 2004-01-29 Siemens Ag Method for determining the NOx concentration
GB9928071D0 (en) 1999-11-29 2000-01-26 Polybiomed Ltd Blood compatible medical articles
US6558320B1 (en) 2000-01-20 2003-05-06 Medtronic Minimed, Inc. Handheld personal data assistant (PDA) with a medical device and method of using the same
DE60130536D1 (en) 2000-02-10 2007-10-31 Medtronic Minimed Inc Analytensensor
US6405066B1 (en) 2000-03-17 2002-06-11 The Regents Of The University Of California Implantable analyte sensor
EP1304952A2 (en) 2000-03-17 2003-05-02 Boehringer Mannheim Gmbh Implantable analyte sensor
WO2001088524A1 (en) 2000-05-12 2001-11-22 Therasense, Inc. Electrodes with multilayer membranes and methods of using and making the electrodes
US6442413B1 (en) 2000-05-15 2002-08-27 James H. Silver Implantable sensor
WO2001088534A9 (en) 2000-05-16 2002-12-12 Cygnus Therapeutic Systems Methods for improving performance and reliability of biosensors
JP3701608B2 (en) * 2000-05-23 2005-10-05 ラジオメーター・メディカル・アー・ペー・エス Sensor membrane, their preparation, sensors and layered membrane structures for such sensors
US6773565B2 (en) 2000-06-22 2004-08-10 Kabushiki Kaisha Riken NOx sensor
US6591125B1 (en) 2000-06-27 2003-07-08 Therasense, Inc. Small volume in vitro analyte sensor with diffusible or non-leachable redox mediator
US6400974B1 (en) 2000-06-29 2002-06-04 Sensors For Medicine And Science, Inc. Implanted sensor processing system and method for processing implanted sensor output
US7404819B1 (en) 2000-09-14 2008-07-29 C.R. Bard, Inc. Implantable prosthesis
US6991643B2 (en) 2000-12-20 2006-01-31 Usgi Medical Inc. Multi-barbed device for retaining tissue in apposition and methods of use
US6793802B2 (en) 2001-01-04 2004-09-21 Tyson Bioresearch, Inc. Biosensors having improved sample application and measuring properties and uses thereof
US6666821B2 (en) 2001-01-08 2003-12-23 Medtronic, Inc. Sensor system
US6926670B2 (en) 2001-01-22 2005-08-09 Integrated Sensing Systems, Inc. Wireless MEMS capacitive sensor for physiologic parameter measurement
US6547839B2 (en) 2001-01-23 2003-04-15 Skc Co., Ltd. Method of making an electrochemical cell by the application of polysiloxane onto at least one of the cell components
US6721587B2 (en) 2001-02-15 2004-04-13 Regents Of The University Of California Membrane and electrode structure for implantable sensor
US6952603B2 (en) 2001-03-16 2005-10-04 Roche Diagnostics Operations, Inc. Subcutaneous analyte sensor
US6528584B2 (en) 2001-04-12 2003-03-04 The University Of Akron Multi-component polymeric networks containing poly(ethylene glycol)
US6613379B2 (en) 2001-05-08 2003-09-02 Isense Corp. Implantable analyte sensor
US6891317B2 (en) 2001-05-22 2005-05-10 Sri International Rolled electroactive polymers
US6501976B1 (en) 2001-06-12 2002-12-31 Lifescan, Inc. Percutaneous biological fluid sampling and analyte measurement devices and methods
US6793632B2 (en) 2001-06-12 2004-09-21 Lifescan, Inc. Percutaneous biological fluid constituent sampling and measurement devices and methods
US6569309B2 (en) 2001-07-05 2003-05-27 Asahi Kasei Kabushiki Kaisha Fuel cell type reactor and method for producing a chemical compound by using the same
US20030032874A1 (en) 2001-07-27 2003-02-13 Dexcom, Inc. Sensor head for use with implantable devices
US6702857B2 (en) 2001-07-27 2004-03-09 Dexcom, Inc. Membrane for use with implantable devices
US7481759B2 (en) 2001-08-03 2009-01-27 Cardiac Pacemakers, Inc. Systems and methods for treatment of coronary artery disease
US6952604B2 (en) 2001-12-21 2005-10-04 Becton, Dickinson And Company Minimally-invasive system and method for monitoring analyte levels
US7018336B2 (en) 2001-12-27 2006-03-28 Medtronic Minimed, Inc. Implantable sensor flush sleeve
EP1474038A1 (en) 2002-01-29 2004-11-10 Sicel Technologies, Inc. Implantable sensor housing and fabrication methods
US6936006B2 (en) 2002-03-22 2005-08-30 Novo Nordisk, A/S Atraumatic insertion of a subcutaneous device
WO2003082098A3 (en) 2002-03-22 2004-04-01 Cygnus Therapeutic Systems Improving performance of an analyte monitoring device
WO2003087775A3 (en) 2002-04-05 2004-02-26 Eyelab Group Llc Monitoring blood substances using self-sampled tears
US7153265B2 (en) 2002-04-22 2006-12-26 Medtronic Minimed, Inc. Anti-inflammatory biosensor for reduced biofouling and enhanced sensor performance
US8364229B2 (en) 2003-07-25 2013-01-29 Dexcom, Inc. Analyte sensors having a signal-to-noise ratio substantially unaffected by non-constant noise
JP2005531759A (en) 2002-06-28 2005-10-20 ノヴェンバー アクティエンゲゼルシャフトNovember Aktiengesellschaft Electrochemical detection apparatus and method
US7150975B2 (en) 2002-08-19 2006-12-19 Animas Technologies, Llc Hydrogel composition for measuring glucose flux
US7736309B2 (en) 2002-09-27 2010-06-15 Medtronic Minimed, Inc. Implantable sensor method and system
US6737158B1 (en) 2002-10-30 2004-05-18 Gore Enterprise Holdings, Inc. Porous polymeric membrane toughened composites
US7248912B2 (en) 2002-10-31 2007-07-24 The Regents Of The University Of California Tissue implantable sensors for measurement of blood solutes
US6965791B1 (en) 2003-03-26 2005-11-15 Sorenson Medical, Inc. Implantable biosensor system, apparatus and method
US7134999B2 (en) 2003-04-04 2006-11-14 Dexcom, Inc. Optimized sensor geometry for an implantable glucose sensor
US6949816B2 (en) 2003-04-21 2005-09-27 Motorola, Inc. Semiconductor component having first surface area for electrically coupling to a semiconductor chip and second surface area for electrically coupling to a substrate, and method of manufacturing same
US7192450B2 (en) 2003-05-21 2007-03-20 Dexcom, Inc. Porous membranes for use with implantable devices
US8454566B2 (en) 2003-07-10 2013-06-04 Medtronic Minimed, Inc. Methods and compositions for the inhibition of biofilms on medical devices
WO2005010518A1 (en) 2003-07-23 2005-02-03 Dexcom, Inc. Rolled electrode array and its method for manufacture
WO2005011520A3 (en) 2003-07-25 2005-12-15 Dexcom Inc Oxygen enhancing membrane systems for implantable devices
US20050056552A1 (en) 2003-07-25 2005-03-17 Simpson Peter C. Increasing bias for oxygen production in an electrode system
US7108778B2 (en) 2003-07-25 2006-09-19 Dexcom, Inc. Electrochemical sensors including electrode systems with increased oxygen generation
EP1649260A4 (en) 2003-07-25 2010-07-07 Dexcom Inc Electrode systems for electrochemical sensors
US7774145B2 (en) 2003-08-01 2010-08-10 Dexcom, Inc. Transcutaneous analyte sensor
US7778680B2 (en) 2003-08-01 2010-08-17 Dexcom, Inc. System and methods for processing analyte sensor data
US8275437B2 (en) 2003-08-01 2012-09-25 Dexcom, Inc. Transcutaneous analyte sensor
US20050090607A1 (en) 2003-10-28 2005-04-28 Dexcom, Inc. Silicone composition for biocompatible membrane
ES2282898T3 (en) 2003-10-31 2007-10-16 Lifescan Scotland Ltd Electrochemical test strip to reduce the effect of the direct interference current.
EP2239567B1 (en) 2003-12-05 2015-09-02 DexCom, Inc. Calibration techniques for a continuous analyte sensor
US7081195B2 (en) 2003-12-08 2006-07-25 Dexcom, Inc. Systems and methods for improving electrochemical analyte sensors
US20050182451A1 (en) 2004-01-12 2005-08-18 Adam Griffin Implantable device with improved radio frequency capabilities
US7637868B2 (en) 2004-01-12 2009-12-29 Dexcom, Inc. Composite material for implantable device
US7364592B2 (en) 2004-02-12 2008-04-29 Dexcom, Inc. Biointerface membrane with macro-and micro-architecture
US7657297B2 (en) 2004-05-03 2010-02-02 Dexcom, Inc. Implantable analyte sensor
US8277713B2 (en) 2004-05-03 2012-10-02 Dexcom, Inc. Implantable analyte sensor
US20050245799A1 (en) 2004-05-03 2005-11-03 Dexcom, Inc. Implantable analyte sensor
US20050272989A1 (en) 2004-06-04 2005-12-08 Medtronic Minimed, Inc. Analyte sensors and methods for making and using them
US20060015020A1 (en) 2004-07-06 2006-01-19 Dexcom, Inc. Systems and methods for manufacture of an analyte-measuring device including a membrane system
US20080242961A1 (en) 2004-07-13 2008-10-02 Dexcom, Inc. Transcutaneous analyte sensor
US20060270922A1 (en) 2004-07-13 2006-11-30 Brauker James H Analyte sensor
US20060016700A1 (en) 2004-07-13 2006-01-26 Dexcom, Inc. Transcutaneous analyte sensor
US8060174B2 (en) 2005-04-15 2011-11-15 Dexcom, Inc. Analyte sensing biointerface
WO2006113618A1 (en) 2005-04-15 2006-10-26 Dexcom, Inc. Analyte sensing biointerface
WO2006130854A3 (en) 2005-06-02 2007-11-15 Isense Corp Use of multiple data points and filtering in an analyte sensor
US7725148B2 (en) 2005-09-23 2010-05-25 Medtronic Minimed, Inc. Sensor with layered electrodes
US8962165B2 (en) 2006-05-02 2015-02-24 The Penn State Research Foundation Materials and configurations for scalable microbial fuel cells
CA2652025A1 (en) 2006-07-25 2008-01-31 Glumetrics, Inc. Flourescent dyes for use in glucose sensing
EP2079358B1 (en) 2006-09-27 2011-08-10 University of Connecticut Implantable biosensor and methods of use thereof
US7751863B2 (en) 2007-02-06 2010-07-06 Glumetrics, Inc. Optical determination of ph and glucose
US8110251B2 (en) 2007-02-06 2012-02-07 Glumetrics, Inc. Method for polymerizing a monomer solution within a cavity to generate a smooth polymer surface
WO2008098087A3 (en) 2007-02-06 2008-11-27 Glumetrics Inc Optical systems and methods for rationmetric measurement of blood glucose concentration
JP5706686B2 (en) 2007-05-01 2015-04-22 メドトロニック ミニメド インコーポレイテッド Pyridinium boronic acid quencher, a method of manufacturing the same, and glucose sensor
CA2686065A1 (en) 2007-05-10 2008-11-20 Glumetrics, Inc. Equilibrium non-consuming fluorescence sensor for real time intravascular glucose measurement
EP2150814A2 (en) 2007-05-10 2010-02-10 Glumetrics, Inc. Device and methods for calibrating analyte sensors
DK2222686T3 (en) 2007-07-11 2015-09-21 Medtronic Minimed Inc Polyviologenboronsyredeaktivatorer for use in analytsensorer
JP2010535903A (en) 2007-08-06 2010-11-25 グルメトリックス,インコーポレイテッドGluMetrics,Inc. Used in analyte sensor HPTS- mono- and bis -Cys-MA polymerizable fluorescent dyes
JP5631215B2 (en) 2007-11-21 2014-11-26 メドトロニック ミニメド インコーポレイテッド Blood sugar management maintenance system
WO2009129186A2 (en) 2008-04-17 2009-10-22 Glumetrics, Inc. Sensor for percutaneous intravascular deployment without an indwelling cannula

Patent Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4197840A (en) * 1975-11-06 1980-04-15 Bbc Brown Boveri & Company, Limited Permanent magnet device for implantation
US4324257A (en) * 1978-02-20 1982-04-13 U.S. Philips Corporation Device for the transcutaneous measurement of the partial oxygen pressure in blood
US4225410A (en) * 1978-12-04 1980-09-30 Technicon Instruments Corporation Integrated array of electrochemical sensors
US4255500A (en) * 1979-03-29 1981-03-10 General Electric Company Vibration resistant electrochemical cell having deformed casing and method of making same
US4686044A (en) * 1979-08-13 1987-08-11 Akzo Nv Polycarbonate-polyether-copolymer membrane
US4374013A (en) * 1980-03-05 1983-02-15 Enfors Sven Olof Oxygen stabilized enzyme electrode
US4353888A (en) * 1980-12-23 1982-10-12 Sefton Michael V Encapsulation of live animal cells
US4431507A (en) * 1981-01-14 1984-02-14 Matsushita Electric Industrial Co., Ltd. Enzyme electrode
US4436094A (en) * 1981-03-09 1984-03-13 Evreka, Inc. Monitor for continuous in vivo measurement of glucose concentration
US4453537A (en) * 1981-08-04 1984-06-12 Spitzer Daniel E Apparatus for powering a body implant device
US4431004A (en) * 1981-10-27 1984-02-14 Bessman Samuel P Implantable glucose sensor
US4721677A (en) * 1985-09-18 1988-01-26 Children's Hospital Medical Center Implantable gas-containing biosensor and method for measuring an analyte such as glucose
US4890620A (en) * 1985-09-20 1990-01-02 The Regents Of The University Of California Two-dimensional diffusion glucose substrate sensing electrode
US5130231A (en) * 1985-10-18 1992-07-14 Chem-Elec, Inc. Blood plasma test device including a semipermeable membrane made of an expanded hydrophobic material that has been treated with a surfactant
US4803243A (en) * 1986-03-26 1989-02-07 Shin-Etsu Chemical Co., Ltd. Block-graft copolymer
US4994167A (en) * 1986-04-15 1991-02-19 Markwell Medical Institute, Inc. Biological fluid measuring device
US4757022A (en) * 1986-04-15 1988-07-12 Markwell Medical Institute, Inc. Biological fluid measuring device
US4902294A (en) * 1986-12-03 1990-02-20 Olivier Gosserez Implantable mammary prosthesis adapted to combat the formation of a retractile shell
US4750496A (en) * 1987-01-28 1988-06-14 Xienta, Inc. Method and apparatus for measuring blood glucose concentration
US4759828A (en) * 1987-04-09 1988-07-26 Nova Biomedical Corporation Glucose electrode and method of determining glucose
US4871440A (en) * 1987-07-06 1989-10-03 Daiken Industries, Ltd. Biosensor
US4823808A (en) * 1987-07-06 1989-04-25 Clegg Charles T Method for control of obesity, overweight and eating disorders
US5034112A (en) * 1988-05-19 1991-07-23 Nissan Motor Company, Ltd. Device for measuring concentration of nitrogen oxide in combustion gas
US5458631A (en) * 1989-01-06 1995-10-17 Xavier; Ravi Implantable catheter with electrical pulse nerve stimulators and drug delivery system
US4953552A (en) * 1989-04-21 1990-09-04 Demarzo Arthur P Blood glucose monitoring system
US4927407A (en) * 1989-06-19 1990-05-22 Regents Of The University Of Minnesota Cardiac assist pump with steady rate supply of fluid lubricant
US5431160A (en) * 1989-07-19 1995-07-11 University Of New Mexico Miniature implantable refillable glucose sensor and material therefor
US5190041A (en) * 1989-08-11 1993-03-02 Palti Yoram Prof System for monitoring and controlling blood glucose
US5337747A (en) * 1989-10-06 1994-08-16 Frederic Neftel Implantable device for estimating glucose levels
US5321414A (en) * 1990-03-01 1994-06-14 Her Majesty In Right Of Canada As Represented By The Minister Of Communications Dual polarization dipole array antenna
US5282848A (en) * 1990-08-28 1994-02-01 Meadox Medicals, Inc. Self-supporting woven vascular graft
US5431921A (en) * 1990-09-28 1995-07-11 Pfizer Inc Dispensing device containing a hydrophobic medium
US5380536A (en) * 1990-10-15 1995-01-10 The Board Of Regents, The University Of Texas System Biocompatible microcapsules
US5782912A (en) * 1990-10-31 1998-07-21 Baxter International, Inc. Close vascularization implant material
US5741330A (en) * 1990-10-31 1998-04-21 Baxter International, Inc. Close vascularization implant material
US5733336A (en) * 1990-10-31 1998-03-31 Baxter International, Inc. Ported tissue implant systems and methods of using same
US5713888A (en) * 1990-10-31 1998-02-03 Baxter International, Inc. Tissue implant systems
US5800529A (en) * 1990-10-31 1998-09-01 Baxter International, Inc. Close vascularization implant material
US5882354A (en) * 1990-10-31 1999-03-16 Baxter International Inc. Close vascularization implant material
US5653756A (en) * 1990-10-31 1997-08-05 Baxter International Inc. Closed porous chambers for implanting tissue in a host
US5593440A (en) * 1990-10-31 1997-01-14 Baxter International Inc. Tissue implant systems and methods for sustaining viable high cell densities within a host
US5545223A (en) * 1990-10-31 1996-08-13 Baxter International, Inc. Ported tissue implant systems and methods of using same
US20020042090A1 (en) * 1991-03-04 2002-04-11 Therasense, Inc. Subcutaneous glucose electrode
US5706807A (en) * 1991-05-13 1998-01-13 Applied Medical Research Sensor device covered with foam membrane
US5564439A (en) * 1991-05-13 1996-10-15 George J. Picha Infusion device for soft tissue
US5453278A (en) * 1991-07-24 1995-09-26 Baxter International Inc. Laminated barriers for tissue implants
US5344454A (en) * 1991-07-24 1994-09-06 Baxter International Inc. Closed porous chambers for implanting tissue in a host
US5314471A (en) * 1991-07-24 1994-05-24 Baxter International Inc. Tissue inplant systems and methods for sustaining viable high cell densities within a host
US5462645A (en) * 1991-09-20 1995-10-31 Imperial College Of Science, Technology & Medicine Dialysis electrode device
US5222980A (en) * 1991-09-27 1993-06-29 Medtronic, Inc. Implantable heart-assist device
US5322063A (en) * 1991-10-04 1994-06-21 Eli Lilly And Company Hydrophilic polyurethane membranes for electrochemical glucose sensors
US5249576A (en) * 1991-10-24 1993-10-05 Boc Health Care, Inc. Universal pulse oximeter probe
US5384028A (en) * 1992-08-28 1995-01-24 Nec Corporation Biosensor with a data memory
US5411647A (en) * 1992-11-23 1995-05-02 Eli Lilly And Company Techniques to improve the performance of electrochemical sensors
US6256522B1 (en) * 1992-11-23 2001-07-03 University Of Pittsburgh Of The Commonwealth System Of Higher Education Sensors for continuous monitoring of biochemicals and related method
US5352351A (en) * 1993-06-08 1994-10-04 Boehringer Mannheim Corporation Biosensing meter with fail/safe procedures to prevent erroneous indications
US5417395A (en) * 1993-06-30 1995-05-23 Medex, Inc. Modular interconnecting component support plate
US5569462A (en) * 1993-09-24 1996-10-29 Baxter International Inc. Methods for enhancing vascularization of implant devices
US5791344A (en) * 1993-11-19 1998-08-11 Alfred E. Mann Foundation For Scientific Research Patient monitoring system
US5497772A (en) * 1993-11-19 1996-03-12 Alfred E. Mann Foundation For Scientific Research Glucose monitoring system
US5660163A (en) * 1993-11-19 1997-08-26 Alfred E. Mann Foundation For Scientific Research Glucose sensor assembly
US5421923A (en) * 1993-12-03 1995-06-06 Baxter International, Inc. Ultrasonic welding horn with sonics dampening insert
US5462064A (en) * 1993-12-22 1995-10-31 International Medical Associates, Inc. Integrated system for biological fluid constituent analysis
US5549675A (en) * 1994-01-11 1996-08-27 Baxter International, Inc. Method for implanting tissue in a host
US5640954A (en) * 1994-01-19 1997-06-24 Pfeiffer; Ernst Method and apparatus for continuously monitoring the concentration of a metabolyte
US5390671A (en) * 1994-03-15 1995-02-21 Minimed Inc. Transcutaneous sensor insertion set
US5391250A (en) * 1994-03-15 1995-02-21 Minimed Inc. Method of fabricating thin film sensors
US5538511A (en) * 1994-04-01 1996-07-23 Minimed Inc. Indwelling catheter with stable enzyme coating
US5569186A (en) * 1994-04-25 1996-10-29 Minimed Inc. Closed loop infusion pump system with removable glucose sensor
US5704354A (en) * 1994-06-23 1998-01-06 Siemens Aktiengesellschaft Electrocatalytic glucose sensor
US5529066A (en) * 1994-06-27 1996-06-25 Cb-Carmel Biotechnology Ltd. Implantable capsule for enhancing cell electric signals
US5807406A (en) * 1994-10-07 1998-09-15 Baxter International Inc. Porous microfabricated polymer membrane structures
US5777060A (en) * 1995-03-27 1998-07-07 Minimed, Inc. Silicon-containing biocompatible membranes
US5607565A (en) * 1995-03-27 1997-03-04 Coulter Corporation Apparatus for measuring analytes in a fluid sample
US5882494A (en) * 1995-03-27 1999-03-16 Minimed, Inc. Polyurethane/polyurea compositions containing silicone for biosensor membranes
US5653863A (en) * 1995-05-05 1997-08-05 Bayer Corporation Method for reducing bias in amperometric sensors
US6122536A (en) * 1995-07-06 2000-09-19 Animas Corporation Implantable sensor and system for measurement and control of blood constituent levels
US5628890A (en) * 1995-09-27 1997-05-13 Medisense, Inc. Electrochemical sensor
US6011984A (en) * 1995-11-22 2000-01-04 Minimed Inc. Detection of biological molecules using chemical amplification and optical sensors
US5711861A (en) * 1995-11-22 1998-01-27 Ward; W. Kenneth Device for monitoring changes in analyte concentration
US6212416B1 (en) * 1995-11-22 2001-04-03 Good Samaritan Hospital And Medical Center Device for monitoring changes in analyte concentration
US6208894B1 (en) * 1997-02-26 2001-03-27 Alfred E. Mann Foundation For Scientific Research And Advanced Bionics System of implantable devices for monitoring and/or affecting body parameters
US6741877B1 (en) * 1997-03-04 2004-05-25 Dexcom, Inc. Device and method for determining analyte levels
US6200772B1 (en) * 1997-08-23 2001-03-13 Sensalyse Holdings Limited Modified polyurethane membrane sensors and analytical methods
US6259937B1 (en) * 1997-09-12 2001-07-10 Alfred E. Mann Foundation Implantable substrate sensor
US6119028A (en) * 1997-10-20 2000-09-12 Alfred E. Mann Foundation Implantable enzyme-based monitoring systems having improved longevity due to improved exterior surfaces
US6223080B1 (en) * 1998-04-29 2001-04-24 Medtronic, Inc. Power consumption reduction in medical devices employing multiple digital signal processors and different supply voltages
US6175752B1 (en) * 1998-04-30 2001-01-16 Therasense, Inc. Analyte monitoring device and methods of use
US6272364B1 (en) * 1998-05-13 2001-08-07 Cygnus, Inc. Method and device for predicting physiological values
US6233471B1 (en) * 1998-05-13 2001-05-15 Cygnus, Inc. Signal processing for measurement of physiological analysis
US6272382B1 (en) * 1998-07-31 2001-08-07 Advanced Bionics Corporation Fully implantable cochlear implant system
US6254586B1 (en) * 1998-09-25 2001-07-03 Minimed Inc. Method and kit for supplying a fluid to a subcutaneous placement site
US6180416B1 (en) * 1998-09-30 2001-01-30 Cygnus, Inc. Method and device for predicting physiological values
US6201980B1 (en) * 1998-10-05 2001-03-13 The Regents Of The University Of California Implantable medical sensor system
US6230059B1 (en) * 1999-03-17 2001-05-08 Medtronic, Inc. Implantable monitor
US6223083B1 (en) * 1999-04-16 2001-04-24 Medtronic, Inc. Receiver employing digital filtering for use with an implantable medical device
US6368274B1 (en) * 1999-07-01 2002-04-09 Medtronic Minimed, Inc. Reusable analyte sensor site and method of using the same
US6201908B1 (en) * 1999-07-02 2001-03-13 Blaze Network Products, Inc. Optical wavelength division multiplexer/demultiplexer having preformed passively aligned optics
US6454710B1 (en) * 2001-04-11 2002-09-24 Motorola, Inc. Devices and methods for monitoring an analyte

Cited By (206)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080030738A1 (en) * 1997-02-04 2008-02-07 Biacore Ab Analytical method and apparatus
US9339223B2 (en) 1997-03-04 2016-05-17 Dexcom, Inc. Device and method for determining analyte levels
US8527025B1 (en) 1997-03-04 2013-09-03 Dexcom, Inc. Device and method for determining analyte levels
US7970448B2 (en) 1997-03-04 2011-06-28 Dexcom, Inc. Device and method for determining analyte levels
US7835777B2 (en) 1997-03-04 2010-11-16 Dexcom, Inc. Device and method for determining analyte levels
US8676288B2 (en) 1997-03-04 2014-03-18 Dexcom, Inc. Device and method for determining analyte levels
US9439589B2 (en) 1997-03-04 2016-09-13 Dexcom, Inc. Device and method for determining analyte levels
US8155723B2 (en) 1997-03-04 2012-04-10 Dexcom, Inc. Device and method for determining analyte levels
US7792562B2 (en) 1997-03-04 2010-09-07 Dexcom, Inc. Device and method for determining analyte levels
US20100204555A1 (en) * 1997-03-04 2010-08-12 Dexcom, Inc. Device and method for determining analyte levels
US20100204559A1 (en) * 1997-03-04 2010-08-12 Dexcom, Inc. Device and method for determining analyte levels
US8527026B2 (en) 1997-03-04 2013-09-03 Dexcom, Inc. Device and method for determining analyte levels
US7974672B2 (en) 1997-03-04 2011-07-05 Dexcom, Inc. Device and method for determining analyte levels
US8923947B2 (en) 1997-03-04 2014-12-30 Dexcom, Inc. Device and method for determining analyte levels
US8306598B2 (en) 1998-04-30 2012-11-06 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9042953B2 (en) 1998-04-30 2015-05-26 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9014773B2 (en) 1998-04-30 2015-04-21 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8255031B2 (en) 1998-04-30 2012-08-28 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9066694B2 (en) 1998-04-30 2015-06-30 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9011331B2 (en) 1998-04-30 2015-04-21 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8974386B2 (en) 1998-04-30 2015-03-10 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9066697B2 (en) 1998-04-30 2015-06-30 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8840553B2 (en) 1998-04-30 2014-09-23 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8473021B2 (en) 1998-04-30 2013-06-25 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8774887B2 (en) 1998-04-30 2014-07-08 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9066695B2 (en) 1998-04-30 2015-06-30 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8353829B2 (en) 1998-04-30 2013-01-15 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8744545B2 (en) 1998-04-30 2014-06-03 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8734346B2 (en) 1998-04-30 2014-05-27 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8357091B2 (en) 1998-04-30 2013-01-22 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8734348B2 (en) 1998-04-30 2014-05-27 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8738109B2 (en) 1998-04-30 2014-05-27 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8688188B2 (en) 1998-04-30 2014-04-01 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9072477B2 (en) 1998-04-30 2015-07-07 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8880137B2 (en) 1998-04-30 2014-11-04 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8260392B2 (en) 1998-04-30 2012-09-04 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9326714B2 (en) 1998-04-30 2016-05-03 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8265726B2 (en) 1998-04-30 2012-09-11 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8670815B2 (en) 1998-04-30 2014-03-11 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8366614B2 (en) 1998-04-30 2013-02-05 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8275439B2 (en) 1998-04-30 2012-09-25 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US7860544B2 (en) 1998-04-30 2010-12-28 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US7869853B1 (en) 1998-04-30 2011-01-11 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8660627B2 (en) 1998-04-30 2014-02-25 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8226558B2 (en) 1998-04-30 2012-07-24 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US7885699B2 (en) 1998-04-30 2011-02-08 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8649841B2 (en) 1998-04-30 2014-02-11 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8641619B2 (en) 1998-04-30 2014-02-04 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8622906B2 (en) 1998-04-30 2014-01-07 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8346336B2 (en) 1998-04-30 2013-01-01 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8617071B2 (en) 1998-04-30 2013-12-31 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8235896B2 (en) 1998-04-30 2012-08-07 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8612159B2 (en) 1998-04-30 2013-12-17 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8597189B2 (en) 1998-04-30 2013-12-03 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8273022B2 (en) 1998-04-30 2012-09-25 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8231532B2 (en) 1998-04-30 2012-07-31 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8226555B2 (en) 1998-04-30 2012-07-24 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8480580B2 (en) 1998-04-30 2013-07-09 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8666469B2 (en) 1998-04-30 2014-03-04 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8346337B2 (en) 1998-04-30 2013-01-01 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8465425B2 (en) 1998-04-30 2013-06-18 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8409131B2 (en) 1998-04-30 2013-04-02 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8162829B2 (en) 1998-04-30 2012-04-24 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8175673B2 (en) 1998-04-30 2012-05-08 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8177716B2 (en) 1998-04-30 2012-05-15 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8391945B2 (en) 1998-04-30 2013-03-05 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8380273B2 (en) 1998-04-30 2013-02-19 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8224413B2 (en) 1998-04-30 2012-07-17 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8372005B2 (en) 1998-04-30 2013-02-12 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8672844B2 (en) 1998-04-30 2014-03-18 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8226557B2 (en) 1998-04-30 2012-07-24 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8287454B2 (en) 1998-04-30 2012-10-16 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9498159B2 (en) 2001-01-02 2016-11-22 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9011332B2 (en) 2001-01-02 2015-04-21 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8652043B2 (en) 2001-01-02 2014-02-18 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8668645B2 (en) 2001-01-02 2014-03-11 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9610034B2 (en) 2001-01-02 2017-04-04 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8765059B2 (en) 2001-04-02 2014-07-01 Abbott Diabetes Care Inc. Blood glucose tracking apparatus
US8268243B2 (en) 2001-04-02 2012-09-18 Abbott Diabetes Care Inc. Blood glucose tracking apparatus and methods
US8236242B2 (en) 2001-04-02 2012-08-07 Abbott Diabetes Care Inc. Blood glucose tracking apparatus and methods
US7976778B2 (en) 2001-04-02 2011-07-12 Abbott Diabetes Care Inc. Blood glucose tracking apparatus
US9477811B2 (en) 2001-04-02 2016-10-25 Abbott Diabetes Care Inc. Blood glucose tracking apparatus and methods
US9328371B2 (en) 2001-07-27 2016-05-03 Dexcom, Inc. Sensor head for use with implantable devices
US8840552B2 (en) 2001-07-27 2014-09-23 Dexcom, Inc. Membrane for use with implantable devices
US9532741B2 (en) 2001-07-27 2017-01-03 Dexcom, Inc. Membrane for use with implantable devices
US20100087724A1 (en) * 2001-07-27 2010-04-08 Dexcom, Inc. Membrane for use with implantable devices
US9804114B2 (en) 2001-07-27 2017-10-31 Dexcom, Inc. Sensor head for use with implantable devices
US8509871B2 (en) 2001-07-27 2013-08-13 Dexcom, Inc. Sensor head for use with implantable devices
US20040186362A1 (en) * 2001-07-27 2004-09-23 Dexcom, Inc. Membrane for use with implantable devices
US8064977B2 (en) 2002-05-22 2011-11-22 Dexcom, Inc. Silicone based membranes for use in implantable glucose sensors
US9801574B2 (en) 2002-05-22 2017-10-31 Dexcom, Inc. Techniques to improve polyurethane membranes for implantable glucose sensors
US9549693B2 (en) 2002-05-22 2017-01-24 Dexcom, Inc. Silicone based membranes for use in implantable glucose sensors
US8050731B2 (en) 2002-05-22 2011-11-01 Dexcom, Inc. Techniques to improve polyurethane membranes for implantable glucose sensors
US20100119693A1 (en) * 2002-05-22 2010-05-13 Dexcom, Inc. Techniques to improve polyurethane membranes for implantable glucose sensors
US9179869B2 (en) 2002-05-22 2015-11-10 Dexcom, Inc. Techniques to improve polyurethane membranes for implantable glucose sensors
US8865249B2 (en) 2002-05-22 2014-10-21 Dexcom, Inc. Techniques to improve polyurethane membranes for implantable glucose sensors
US20060086624A1 (en) * 2002-05-22 2006-04-27 Tapsak Mark A Techniques to improve polyurethane membranes for implantable glucose sensors
US8543184B2 (en) 2002-05-22 2013-09-24 Dexcom, Inc. Silicone based membranes for use in implantable glucose sensors
US8053018B2 (en) 2002-05-22 2011-11-08 Dexcom, Inc. Techniques to improve polyurethane membranes for implantable glucose sensors
US8187183B2 (en) 2002-12-31 2012-05-29 Abbott Diabetes Care Inc. Continuous glucose monitoring system and methods of use
US7811231B2 (en) 2002-12-31 2010-10-12 Abbott Diabetes Care Inc. Continuous glucose monitoring system and methods of use
US8622903B2 (en) 2002-12-31 2014-01-07 Abbott Diabetes Care Inc. Continuous glucose monitoring system and methods of use
US7881763B2 (en) 2003-04-04 2011-02-01 Dexcom, Inc. Optimized sensor geometry for an implantable glucose sensor
US20060211921A1 (en) * 2003-04-04 2006-09-21 Brauker James H Optimized sensor geometry for an implantable glucose sensor
US20060200022A1 (en) * 2003-04-04 2006-09-07 Brauker James H Optimized sensor geometry for an implantable glucose sensor
US20060224108A1 (en) * 2003-04-04 2006-10-05 Brauker James H Optimized sensor geometry for an implantable glucose sensor
US8118877B2 (en) 2003-05-21 2012-02-21 Dexcom, Inc. Porous membranes for use with implantable devices
US20050031689A1 (en) * 2003-05-21 2005-02-10 Dexcom, Inc. Biointerface membranes incorporating bioactive agents
US7875293B2 (en) 2003-05-21 2011-01-25 Dexcom, Inc. Biointerface membranes incorporating bioactive agents
USRE43399E1 (en) 2003-07-25 2012-05-22 Dexcom, Inc. Electrode systems for electrochemical sensors
US9763609B2 (en) 2003-07-25 2017-09-19 Dexcom, Inc. Analyte sensors having a signal-to-noise ratio substantially unaffected by non-constant noise
US7761130B2 (en) 2003-07-25 2010-07-20 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US9597027B2 (en) 2003-07-25 2017-03-21 Dexcom, Inc. Oxygen enhancing membrane systems for implantable devices
US20060200019A1 (en) * 2003-07-25 2006-09-07 James Petisce Oxygen enhancing membrane systems for implantable devices
US20100145172A1 (en) * 2003-07-25 2010-06-10 Dexcom, Inc. Oxygen enhancing membrane systems for implantable devices
US20090076356A1 (en) * 2003-07-25 2009-03-19 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US8255030B2 (en) 2003-07-25 2012-08-28 Dexcom, Inc. Oxygen enhancing membrane systems for implantable devices
US8909314B2 (en) 2003-07-25 2014-12-09 Dexcom, Inc. Oxygen enhancing membrane systems for implantable devices
US8364229B2 (en) 2003-07-25 2013-01-29 Dexcom, Inc. Analyte sensors having a signal-to-noise ratio substantially unaffected by non-constant noise
US8255032B2 (en) 2003-07-25 2012-08-28 Dexcom, Inc. Oxygen enhancing membrane systems for implantable devices
US8255033B2 (en) 2003-07-25 2012-08-28 Dexcom, Inc. Oxygen enhancing membrane systems for implantable devices
US20070197890A1 (en) * 2003-07-25 2007-08-23 Robert Boock Analyte sensor
US7896809B2 (en) 2003-07-25 2011-03-01 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US7828728B2 (en) 2003-07-25 2010-11-09 Dexcom, Inc. Analyte sensor
US8442610B2 (en) 2003-08-01 2013-05-14 Dexcom, Inc. System and methods for processing analyte sensor data
US8622905B2 (en) 2003-08-01 2014-01-07 Dexcom, Inc. System and methods for processing analyte sensor data
US8275437B2 (en) 2003-08-01 2012-09-25 Dexcom, Inc. Transcutaneous analyte sensor
US8788007B2 (en) 2003-08-01 2014-07-22 Dexcom, Inc. Transcutaneous analyte sensor
US8000901B2 (en) 2003-08-01 2011-08-16 Dexcom, Inc. Transcutaneous analyte sensor
US8788006B2 (en) 2003-08-01 2014-07-22 Dexcom, Inc. System and methods for processing analyte sensor data
US8676287B2 (en) 2003-08-01 2014-03-18 Dexcom, Inc. System and methods for processing analyte sensor data
US8160669B2 (en) 2003-08-01 2012-04-17 Dexcom, Inc. Transcutaneous analyte sensor
US8394021B2 (en) 2003-08-01 2013-03-12 Dexcom, Inc. System and methods for processing analyte sensor data
US8052601B2 (en) 2003-08-01 2011-11-08 Dexcom, Inc. System and methods for processing analyte sensor data
US8700117B2 (en) 2003-08-01 2014-04-15 Dexcom, Inc. System and methods for processing analyte sensor data
US8986209B2 (en) 2003-08-01 2015-03-24 Dexcom, Inc. Transcutaneous analyte sensor
US20060222566A1 (en) * 2003-08-01 2006-10-05 Brauker James H Transcutaneous analyte sensor
US8915849B2 (en) 2003-08-01 2014-12-23 Dexcom, Inc. Transcutaneous analyte sensor
US20080045824A1 (en) * 2003-10-28 2008-02-21 Dexcom, Inc. Silicone composition for biocompatible membrane
US8160671B2 (en) 2003-12-05 2012-04-17 Dexcom, Inc. Calibration techniques for a continuous analyte sensor
US7715893B2 (en) 2003-12-05 2010-05-11 Dexcom, Inc. Calibration techniques for a continuous analyte sensor
US8483793B2 (en) 2003-12-05 2013-07-09 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US8428678B2 (en) 2003-12-05 2013-04-23 Dexcom, Inc. Calibration techniques for a continuous analyte sensor
US20050143635A1 (en) * 2003-12-05 2005-06-30 Kamath Apurv U. Calibration techniques for a continuous analyte sensor
US20100063373A1 (en) * 2003-12-05 2010-03-11 Dexcom, Inc. Calibration techniques for a continuous analyte sensor
USRE44695E1 (en) 2003-12-05 2014-01-07 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US8249684B2 (en) 2003-12-05 2012-08-21 Dexcom, Inc. Calibration techniques for a continuous analyte sensor
US8929968B2 (en) 2003-12-05 2015-01-06 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US7917186B2 (en) 2003-12-05 2011-03-29 Dexcom, Inc. Calibration techniques for a continuous analyte sensor
US20050182451A1 (en) * 2004-01-12 2005-08-18 Adam Griffin Implantable device with improved radio frequency capabilities
US20050181012A1 (en) * 2004-01-12 2005-08-18 Sean Saint Composite material for implantable device
US20100049024A1 (en) * 2004-01-12 2010-02-25 Dexcom, Inc. Composite material for implantable device
US20080195232A1 (en) * 2004-02-12 2008-08-14 Dexcom, Inc. Biointerface with macro- and micro-architecture
US9833143B2 (en) 2004-05-03 2017-12-05 Dexcom, Inc. Transcutaneous analyte sensor
US8792955B2 (en) 2004-05-03 2014-07-29 Dexcom, Inc. Transcutaneous analyte sensor
US20050245799A1 (en) * 2004-05-03 2005-11-03 Dexcom, Inc. Implantable analyte sensor
US7657297B2 (en) 2004-05-03 2010-02-02 Dexcom, Inc. Implantable analyte sensor
US20090030294A1 (en) * 2004-05-03 2009-01-29 Dexcom, Inc. Implantable analyte sensor
US8277713B2 (en) 2004-05-03 2012-10-02 Dexcom, Inc. Implantable analyte sensor
US20060015020A1 (en) * 2004-07-06 2006-01-19 Dexcom, Inc. Systems and methods for manufacture of an analyte-measuring device including a membrane system
US20060270923A1 (en) * 2004-07-13 2006-11-30 Brauker James H Analyte sensor
US20060016700A1 (en) * 2004-07-13 2006-01-26 Dexcom, Inc. Transcutaneous analyte sensor
US8060174B2 (en) 2005-04-15 2011-11-15 Dexcom, Inc. Analyte sensing biointerface
US9788766B2 (en) 2005-04-15 2017-10-17 Dexcom, Inc. Analyte sensing biointerface
US20060257996A1 (en) * 2005-04-15 2006-11-16 Simpson Peter C Analyte sensing biointerface
US8744546B2 (en) 2005-05-05 2014-06-03 Dexcom, Inc. Cellulosic-based resistance domain for an analyte sensor
US20060253012A1 (en) * 2005-05-05 2006-11-09 Petisce James R Cellulosic-based resistance domain for an analyte sensor
US9326716B2 (en) 2005-11-01 2016-05-03 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8915850B2 (en) 2005-11-01 2014-12-23 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9078607B2 (en) 2005-11-01 2015-07-14 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8920319B2 (en) 2005-11-01 2014-12-30 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9795331B2 (en) 2005-12-28 2017-10-24 Abbott Diabetes Care Inc. Method and apparatus for providing analyte sensor insertion
US7920907B2 (en) 2006-06-07 2011-04-05 Abbott Diabetes Care Inc. Analyte monitoring system and method
US20080292026A1 (en) * 2006-08-25 2008-11-27 Alcatel Lucent Digital signal receiver with q-monitor
EP2796090A1 (en) 2006-10-04 2014-10-29 DexCom, Inc. Analyte sensor
EP2796093A1 (en) 2007-03-26 2014-10-29 DexCom, Inc. Analyte sensor
US9143569B2 (en) 2008-02-21 2015-09-22 Dexcom, Inc. Systems and methods for processing, transmitting and displaying sensor data
US9020572B2 (en) 2008-02-21 2015-04-28 Dexcom, Inc. Systems and methods for processing, transmitting and displaying sensor data
US8229535B2 (en) 2008-02-21 2012-07-24 Dexcom, Inc. Systems and methods for blood glucose monitoring and alert delivery
US8591455B2 (en) 2008-02-21 2013-11-26 Dexcom, Inc. Systems and methods for customizing delivery of sensor data
US8583204B2 (en) 2008-03-28 2013-11-12 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US9693721B2 (en) 2008-03-28 2017-07-04 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US9173606B2 (en) 2008-03-28 2015-11-03 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US20100274107A1 (en) * 2008-03-28 2010-10-28 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US9173607B2 (en) 2008-03-28 2015-11-03 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US9572523B2 (en) 2008-03-28 2017-02-21 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US8954128B2 (en) 2008-03-28 2015-02-10 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US9566026B2 (en) 2008-03-28 2017-02-14 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US20090247855A1 (en) * 2008-03-28 2009-10-01 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US8682408B2 (en) 2008-03-28 2014-03-25 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US9549699B2 (en) 2008-03-28 2017-01-24 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US9339222B2 (en) 2008-09-19 2016-05-17 Dexcom, Inc. Particle-containing membrane and particulate electrode for analyte sensors
US8560039B2 (en) 2008-09-19 2013-10-15 Dexcom, Inc. Particle-containing membrane and particulate electrode for analyte sensors
US20100076283A1 (en) * 2008-09-19 2010-03-25 Dexcom, Inc. Particle-containing membrane and particulate electrode for analyte sensors
US9642552B2 (en) 2009-12-21 2017-05-09 Sherwin Hua Insertion of medical devices through non-orthogonal and orthogonal trajectories within the cranium and methods of using
US9820668B2 (en) 2009-12-21 2017-11-21 Sherwin Hua Insertion of medical devices through non-orthogonal and orthogonal trajectories within the cranium and methods of using
US9179875B2 (en) 2009-12-21 2015-11-10 Sherwin Hua Insertion of medical devices through non-orthogonal and orthogonal trajectories within the cranium and methods of using
EP3092949A1 (en) 2011-09-23 2016-11-16 Dexcom, Inc. Systems and methods for processing and transmitting sensor data
WO2013152090A2 (en) 2012-04-04 2013-10-10 Dexcom, Inc. Transcutaneous analyte sensors, applicators therefor, and associated methods
WO2013184566A2 (en) 2012-06-05 2013-12-12 Dexcom, Inc. Systems and methods for processing analyte data and generating reports
WO2014004460A1 (en) 2012-06-29 2014-01-03 Dexcom, Inc. Use of sensor redundancy to detect sensor failures
WO2014011488A2 (en) 2012-07-09 2014-01-16 Dexcom, Inc. Systems and methods for leveraging smartphone features in continuous glucose monitoring
WO2014052080A1 (en) 2012-09-28 2014-04-03 Dexcom, Inc. Zwitterion surface modifications for continuous sensors
WO2014158327A2 (en) 2013-03-14 2014-10-02 Dexcom, Inc. Advanced calibration for analyte sensors
WO2014158405A2 (en) 2013-03-14 2014-10-02 Dexcom, Inc. Systems and methods for processing and transmitting sensor data
WO2015156966A1 (en) 2014-04-10 2015-10-15 Dexcom, Inc. Sensors for continuous analyte monitoring, and related methods

Also Published As

Publication number Publication date Type
US8155723B2 (en) 2012-04-10 grant
US20100160760A1 (en) 2010-06-24 application
US7136689B2 (en) 2006-11-14 grant
US20040011671A1 (en) 2004-01-22 application
US20050124873A1 (en) 2005-06-09 application
US6862465B2 (en) 2005-03-01 grant

Similar Documents

Publication Publication Date Title
Frost et al. Implantable chemical sensors for real-time clinical monitoring: progress and challenges
Csoeregi et al. Design, characterization, and one-point in vivo calibration of a subcutaneously implanted glucose electrode
Fischer et al. Assessment of subcutaneous glucose concentration: validation of the wick technique as a reference for implanted electrochemical sensors in normal and diabetic dogs
Pickup Developing glucose sensors for in vivo use
US7183068B2 (en) Methods of manufacturing glucose measuring assemblies with hydrogels
Wilson et al. Enzyme-based biosensors for in vivo measurements
Palmisano et al. Electrosynthesized bilayer polymeric membrane for effective elimination of electroactive interferents in amperometric biosensors
Pickup et al. In vivo molecular sensing in diabetes mellitus: an implantable glucose sensor with direct electron transfer
US7192450B2 (en) Porous membranes for use with implantable devices
US20110275919A1 (en) Oxygen enhancing membrane systems for implantable devices
US7699964B2 (en) Membrane suitable for use in an analyte sensor, analyte sensor, and associated method
US7901354B2 (en) Low oxygen in vivo analyte sensor
US4401122A (en) Cutaneous methods of measuring body substances
Gough et al. Function of an implanted tissue glucose sensor for more than 1 year in animals
US20080034972A1 (en) Membranes with controlled permeability to polar and apolar molecules in solution and methods of making same
Updike et al. A subcutaneous glucose sensor with improved longevity, dynamic range, and stability of calibration.
US5411647A (en) Techniques to improve the performance of electrochemical sensors
US20040063167A1 (en) Minimising calibration problems of in vivo glucose sensors
Gough et al. Development of the implantable glucose sensor: What are the prospects and why is it taking so long?
US4458686A (en) Cutaneous methods of measuring body substances
US6477395B2 (en) Implantable enzyme-based monitoring systems having improved longevity due to improved exterior surfaces
US7150975B2 (en) Hydrogel composition for measuring glucose flux
US7433727B2 (en) Implantable biosensor
Wilson et al. Biosensors for real-time in vivo measurements
US7033322B2 (en) Implantable sensor

Legal Events

Date Code Title Description
AS Assignment

Owner name: DEXCOM, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SHULTS, MARK C.;UPDIKE, STUART J.;RHODES, RATHBUN K.;ANDOTHERS;REEL/FRAME:018410/0709;SIGNING DATES FROM 20011023 TO 20011106