US20070003788A1 - Organic electroluminescence device - Google Patents

Organic electroluminescence device Download PDF

Info

Publication number
US20070003788A1
US20070003788A1 US11/397,561 US39756106A US2007003788A1 US 20070003788 A1 US20070003788 A1 US 20070003788A1 US 39756106 A US39756106 A US 39756106A US 2007003788 A1 US2007003788 A1 US 2007003788A1
Authority
US
United States
Prior art keywords
compound
electroluminescence device
organic electroluminescence
organic
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/397,561
Inventor
Sanae Tagami
Hidetsugu Ikeda
Chishio Hosokawa
Takashi Arakane
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to US11/397,561 priority Critical patent/US20070003788A1/en
Publication of US20070003788A1 publication Critical patent/US20070003788A1/en
Priority to US11/947,899 priority patent/US20080074045A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C13/00Cyclic hydrocarbons containing rings other than, or in addition to, six-membered aromatic rings
    • C07C13/28Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof
    • C07C13/32Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings
    • C07C13/62Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with more than three condensed rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C13/00Cyclic hydrocarbons containing rings other than, or in addition to, six-membered aromatic rings
    • C07C13/28Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof
    • C07C13/32Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings
    • C07C13/70Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with a condensed ring system consisting of at least two, mutually uncondensed aromatic ring systems, linked by an annular structure formed by carbon chains on non-adjacent positions of the aromatic ring, e.g. cyclophanes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/57Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton
    • C07C211/61Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton with at least one of the condensed ring systems formed by three or more rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C217/00Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton
    • C07C217/78Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton
    • C07C217/80Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of non-condensed six-membered aromatic rings
    • C07C217/82Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of non-condensed six-membered aromatic rings of the same non-condensed six-membered aromatic ring
    • C07C217/92Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of non-condensed six-membered aromatic rings of the same non-condensed six-membered aromatic ring the nitrogen atom of at least one of the amino groups being further bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C217/00Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton
    • C07C217/78Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton
    • C07C217/94Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C229/00Compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C229/52Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton
    • C07C229/68Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton with amino and carboxyl groups bound to carbon atoms of six-membered aromatic rings being part of the same condensed ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/01Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms
    • C07C255/32Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms having cyano groups bound to acyclic carbon atoms of a carbon skeleton containing at least one six-membered aromatic ring
    • C07C255/42Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms having cyano groups bound to acyclic carbon atoms of a carbon skeleton containing at least one six-membered aromatic ring the carbon skeleton being further substituted by singly-bound nitrogen atoms, not being further bound to other hetero atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/49Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
    • C07C255/58Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton containing cyano groups and singly-bound nitrogen atoms, not being further bound to other hetero atoms, bound to the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D219/00Heterocyclic compounds containing acridine or hydrogenated acridine ring systems
    • C07D219/14Heterocyclic compounds containing acridine or hydrogenated acridine ring systems with hydrocarbon radicals, substituted by nitrogen atoms, attached to the ring nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D223/00Heterocyclic compounds containing seven-membered rings having one nitrogen atom as the only ring hetero atom
    • C07D223/14Heterocyclic compounds containing seven-membered rings having one nitrogen atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D223/00Heterocyclic compounds containing seven-membered rings having one nitrogen atom as the only ring hetero atom
    • C07D223/14Heterocyclic compounds containing seven-membered rings having one nitrogen atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D223/18Dibenzazepines; Hydrogenated dibenzazepines
    • C07D223/22Dibenz [b, f] azepines; Hydrogenated dibenz [b, f] azepines
    • C07D223/24Dibenz [b, f] azepines; Hydrogenated dibenz [b, f] azepines with hydrocarbon radicals, substituted by nitrogen atoms, attached to the ring nitrogen atom
    • C07D223/26Dibenz [b, f] azepines; Hydrogenated dibenz [b, f] azepines with hydrocarbon radicals, substituted by nitrogen atoms, attached to the ring nitrogen atom having a double bond between positions 10 and 11
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D223/00Heterocyclic compounds containing seven-membered rings having one nitrogen atom as the only ring hetero atom
    • C07D223/14Heterocyclic compounds containing seven-membered rings having one nitrogen atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D223/18Dibenzazepines; Hydrogenated dibenzazepines
    • C07D223/22Dibenz [b, f] azepines; Hydrogenated dibenz [b, f] azepines
    • C07D223/24Dibenz [b, f] azepines; Hydrogenated dibenz [b, f] azepines with hydrocarbon radicals, substituted by nitrogen atoms, attached to the ring nitrogen atom
    • C07D223/28Dibenz [b, f] azepines; Hydrogenated dibenz [b, f] azepines with hydrocarbon radicals, substituted by nitrogen atoms, attached to the ring nitrogen atom having a single bond between positions 10 and 11
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D279/00Heterocyclic compounds containing six-membered rings having one nitrogen atom and one sulfur atom as the only ring hetero atoms
    • C07D279/101,4-Thiazines; Hydrogenated 1,4-thiazines
    • C07D279/141,4-Thiazines; Hydrogenated 1,4-thiazines condensed with carbocyclic rings or ring systems
    • C07D279/18[b, e]-condensed with two six-membered rings
    • C07D279/22[b, e]-condensed with two six-membered rings with carbon atoms directly attached to the ring nitrogen atom
    • C07D279/24[b, e]-condensed with two six-membered rings with carbon atoms directly attached to the ring nitrogen atom with hydrocarbon radicals, substituted by amino radicals, attached to the ring nitrogen atom
    • C07D279/26[b, e]-condensed with two six-membered rings with carbon atoms directly attached to the ring nitrogen atom with hydrocarbon radicals, substituted by amino radicals, attached to the ring nitrogen atom without other substituents attached to the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D295/00Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
    • C07D295/02Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms containing only hydrogen and carbon atoms in addition to the ring hetero elements
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D295/00Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
    • C07D295/04Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms
    • C07D295/12Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by singly or doubly bound nitrogen atoms
    • C07D295/135Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by singly or doubly bound nitrogen atoms with the ring nitrogen atoms and the substituent nitrogen atoms separated by carbocyclic rings or by carbon chains interrupted by carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D295/00Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
    • C07D295/04Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms
    • C07D295/14Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D295/155Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals with the ring nitrogen atoms and the carbon atoms with three bonds to hetero atoms separated by carbocyclic rings or by carbon chains interrupted by carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/06Peri-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/624Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing six or more rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/54Ortho- or ortho- and peri-condensed systems containing more than five condensed rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1037Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with sulfur
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/324Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising aluminium, e.g. Alq3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/917Electroluminescent

Definitions

  • the present invention relates to an organic electroluminescence device which is used as a light source such as a planar light emitting member of televisions and a back light of displays, exhibits an excellent purity of color and a high efficiency of light emission, has a long life and emits reddish light and to a novel compound having these characteristics.
  • Electroluminescence (referred to as EL, hereinafter) devices using organic compounds are expected to be used for inexpensive full color display devices of the solid light emission type which can display a large area and development thereof has been actively conducted.
  • an EL device is constituted with a light emitting layer and a pair of electrodes faced to each other at both sides of the light emitting layer.
  • a voltage is applied between the electrodes, electrons are injected at the side of the cathode and holes are injected at the side of the anode.
  • the electrons are combined with the holes in the light emitting layer and an excited state is formed.
  • the excited state returns to the normal state, the energy is emitted as light.
  • a device emitting red light in which a derivative of naphthacene or pentacene is added to a light emitting layer is disclosed in Japanese Patent Application Laid-Open No. Heisei 8(1996)-311442. Although this device exhibits an excellent purity of red light, the device exhibits an efficiency of light emission as low as 0.7 lm/W and has an insufficient average life which is shorter than 150 hours. An average life of at least several thousand hours is necessary for practical applications.
  • a device in which a compound derived from dicyanomethylene (DCM) is added to a light emitting layer is disclosed in Japanese Patent Application Laid-Open No. Heisei 3(1991)-162481.
  • the present invention has been made to overcome the above problems and has an object of providing an organic EL device which exhibits an excellent purity of color and a high efficiency of light emission, has a long life and emits reddish light and a novel compound having these characteristics.
  • an organic electroluminescence device referred to as an organic EL device, hereinafter
  • an organic EL device having the above advantageous properties
  • the object can be achieved by using a compound having a fluoranthene skeleton structure substituted at least with an amine group or an alkenyl group as the light emitting material.
  • the organic electroluminescence device of the present invention comprises an organic layer disposed between at least one pair of electrodes, wherein the organic layer comprises a compound having a fluoranthene skeleton structure substituted at least with an amine group or an alkenyl group.
  • the above compound is a compound selected from compounds represented by the following general formulae [1] to [18]: wherein X 1 to X 20 each independently represents hydrogen atom, a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, a linear, branched or cyclic alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted aryl group having 6 to 30 carbon atoms, a substituted or unsubstituted aryloxy group having 6 to 30 carbon groups, a substituted or unsubstituted arylamino group having 6 to 30 carbon atoms, a substituted or unsubstituted alkylamino group having 1 to 30 carbon atoms, a substituted or unsubstituted arylalkylamino group having 7 to 30 carbon atoms or a substituted or unsubstituted alkenyl groups having 8 to 30 carbon atoms; a pair of adjacent groups represented by
  • novel compound of the present invention is a compound represented by any of the above general formulae [1] to [18].
  • FIG. 1 shows the 1 H-NMR spectrum of an example of the novel compound of the present invention.
  • FIG. 2 shows the 1 H-NMR spectrum of another example of the novel compound of the present invention.
  • FIG. 3 shows the 1 H-NMR spectrum of still another example of the novel compound of the present invention.
  • the organic electroluminescence device of the present invention comprises an organic layer disposed between at least one pair of electrodes, wherein the organic layer comprises compounds having a fluoranthene skeleton structure substituted at least with an amine group or an alkenyl group.
  • This compound is a novel compound and is represented by any of the above general formulae [1] to [18].
  • X 1 to X 20 each independently represents hydrogen atom, a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, a linear, branched or cyclic alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted aryl group having 6 to 30 carbon atoms, a substituted or unsubstituted aryloxy group having 6 to 30 carbon groups, a substituted or unsubstituted arylamino group having 6 to 30 carbon atoms, a substituted or unsubstituted alkylamino group having 1 to 30 carbon atoms, a substituted or unsubstituted arylalkylamino group having 7 to 30 carbon atoms or a substituted or unsubstituted alkenyl groups having 8 to 30 carbon atoms; a pair of adjacent groups represented by X 1 to X 20 and a pair of adjacent substituents to groups represented by
  • R 1 to R 4 each independently represent an alkyl group having 1 to 20 carbon atoms or a substituted or unsubstituted aryl group having 6 to 30 carbon atoms; in one or both of a pair of groups represented by R 1 and R 2 and a pair of groups represented by R 3 and R 4 , the groups forming the pair may be bonded through —O— or —S—;
  • R 5 to R 16 represents hydrogen atom, a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, a linear, branched or cyclic alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted aryl group having 6 to 30 carbon atoms, a substituted or unsubstituted aryloxy group having 6 to 30 carbon groups, a substituted or unsubstituted arylamino group having 6 to 30 carbon atoms, a substituted or unsubstituted alkyla
  • the fluoranthene skeleton structure comprises at least 5 condensed rings and more preferably at least 6 condensed rings.
  • the compounds having this structure light having a longer wave length such as yellowish to reddish light can be emitted.
  • the fluoranthene skeleton structure is substituted with an amino group.
  • the amino group is a substituted or unsubstituted arylamino group and more preferably a substituted or unsubstituted diarylamino group.
  • the above compound has a symmetric structure having an axial symmetry or a symmetry with respect to plane.
  • durability of the device is improved and the quantum efficiency of fluorescence is enhanced.
  • the above compound has at least ten six-membered rings or five-membered rings.
  • the compound has a glass transition temperature of 100° C. or higher due to this structure and heat stability of a layer composed of or comprising this compound is improved.
  • the above compound has an aryl group, a cyclic alkyl group, an aryloxy group, an arylthio group or an arylalkyl group each having 4 or more carbon atoms. Since these groups exhibit steric hindrance and the decrease in the light emission at increased concentrations of the compound can be prevented.
  • R 15 and R 9 each represent a group having a substituent.
  • the compound represented by general formula [17] or [18] has this structure, the compound has an improved stability against oxidation and reduction and the life of the device can be extended.
  • the compound having this fluoranthene skeleton structure has isomers.
  • Dibromo-substituted acenaphtho[1,2-k]fluoranthene has two isomers, i.e., 3,10-dibromo-7,14-diphenylacenaphtho[1,2-k]fluoranthene (isomer A) and 3,11-dibromo-7,14-diphenylacenaphtho[1,2-k]fluoranthene (isomer B).
  • the final product obtained from isomer A and isomer B as the intermediates contains an amino-substituted compound derived from isomer A and an amino-substituted compound derived from isomer B.
  • the dibromo-substituted compounds may be obtained from a solution portion of a reaction mixture in which the dibromo-substituted compounds are dissolved.
  • the dibromo-substituted compounds may also be obtained from precipitates formed by recrystallization from a solution which is obtained by dissolving the product obtained above from the solution portion of the reaction mixture.
  • the dibromo-substituted compounds may also be obtained from the solution left after the above recrystallization.
  • the object compound containing various amounts of isomer A and isomer B and, specifically, having a ratio of the amount by mole of isomer A to the amount in mole of isomer B in the range of 10:90 to 90:10 can be obtained.
  • the ratio of the amounts of the isomers will be described as approximately constant and, when the relation (ii) is satisfied, the ratio of the amounts of the isomers will be described as constant, hereinafter.
  • the device is prepared under the condition that the ratio of the amounts of the isomers is kept approximately constant or constant.
  • the spectrum of the light emitted from the device can be kept the same.
  • the color of the emitted light can be kept the same.
  • the color of the emitted light can be changed by changing the ratio of the amounts of the isomers.
  • the organic layer may comprise a single compound with exclusion of any other isomers.
  • one of the isomers can emit light having a longer wavelength than that of light emitted from other isomers. Therefore, light having a longer wavelength such red light can be emitted when the ratio of the amount by mole of the isomer which can emit light having a longer wavelength to the amount by mole of the isomer which can emit light having a shorter wavelength is preferably in the range of 90:10 to 60:40 and more preferably in the range of 99:1 to 70:30.
  • the ratio of the amounts of the isomers can be calculated from the ratio of the areas of peak signals assigned to each isomer.
  • the organic layer is at least one of a hole transportation layer and a light emitting layer.
  • a layer of an inorganic compound may be disposed between the organic layer and the electrode.
  • the organic EL device of the present invention emits reddish light.
  • Examples of the compounds represented by general formulae [1] to [18] of the present invention include (A-1) to (A-18) and (B-1) to (B-17) which are shown in the following. However, the present invention is not limited to these compounds shown as the examples.
  • Me means methyl group
  • Et means ethyl group.
  • the compound used for the organic EL device of the present invention has the fluoranthene skeleton structure substituted with an amine group or an alkenyl group, the compound exhibits a high yield of fluorescence and emits reddish or yellowish light. Therefore, the organic EL device using this compound emits reddish to yellowish light, exhibits a high efficiency of light emission and has a long life.
  • the organic EL device of the present invention is a device in which one or a plurality of organic thin films are disposed between an anode and a cathode.
  • a light emitting layer is disposed between an anode and a cathode.
  • the light emitting layer contains a light emitting material and may also contain a hole injecting material to transport holes injected at the anode to the light emitting material or an electron injecting material to transport electrons injected at the cathode to the light emitting material. It is preferable that the light emitting layer is formed with a light emitting material having a very high quantum efficiency of fluorescence emission and excellent ability to transfer holes and electrons and a uniform thin film is formed.
  • the organic EL device having a multi-layer structure has a laminate structure such as: (an anode/a hole injecting layer/a light emitting layer/a cathode), (an anode/a light emitting layer/an electron injecting layer/a cathode) and (an anode/a hole injecting layer/a light emitting layer/an electron injecting layer/a cathode).
  • conventional light emitting materials, doping materials, hole injecting materials and electron injecting materials may be used in addition to the compound represented by any of general formulae [1] to [18] of the present invention. It is preferable that these compounds are added to any of the light emitting layer, the electron injecting layer, the hole transporting layer or the hole injecting layer in a concentration of 1 to 70% by weight and more preferably in a concentration of 1 to 20% by weight. In particular, it is preferable that the compound of the present invention is used as the doping material.
  • Deterioration in the luminance and the life caused by quenching can be prevented by the multi-layer structure of the organic EL.
  • light emitting materials other doping materials, hole injecting materials and electron injecting materials may be used in combination.
  • hole injecting layer, the light emitting layer and the electron injecting layer may each have a multi-layer structure having two or more layers.
  • the layer into which holes are injected from the electrode is referred to as the hole injecting layer and the layer which receives holes from the hole injecting layer and transports holes from the hole injecting layer to the light emitting layer is referred to as the hole transporting layer.
  • the layer into which electrons are injected from the electrode is referred to as the electron injecting layer and the layer which receives electrons from the electron injecting layer and transports electrons from the electron injecting layer to the light emitting layer is referred to as the electron transporting layer.
  • These layers are each selected and used in accordance with factors such as the energy level, heat resistance and adhesion with the organic layers or the metal electrodes of the material.
  • Examples of the material which can be used in the organic layer as the light emitting material or the host material in combination with the compound represented by any of general formulae [1], [2] and [4] to [16] include anthracene derivatives, naphthalene derivatives, phenanthrene derivatives, pyrene derivatives, tetracene derivatives, coronene derivatives, chrysene derivatives, perylene derivatives, phthaloperylene derivatives, naphthaloperylene derivatives, perynone derivatives, phthaloperynone derivatives, naphthaloperynone derivatives, and rubrene derivatives, and fluorescent pigments.
  • the above material is not limited to the compounds described above as the examples.
  • the hole injecting material a compound which has the ability to transfer holes, exhibits an excellent effect of hole injection from the anode and an excellent effect of hole injection to the light emitting layer or the light emitting material, prevents transfer of excited components formed in the light emitting layer into the electron injecting layer or the electron injecting material and has excellent ability to form a thin film is preferable.
  • Examples of the above compound include phthalocyanine derivatives, naphthalocyanine derivatives, porphyrin derivatives, oxazole, oxadiazole, triazole, imidazole, imidazolone, imdazolethione, pyrazoline, pyrazolone, tetrahydroimidazole, oxazole, oxadiazole, hydrazone, acylhydrazone, polyarylalkanes, stilbene, butadiene, triphenylamines of the benzidine-type, triphenylamines of the styrylamine type, triphenylamines of the diamine type, derivatives of these compounds and macromolecular compounds such as polyvinylcarbazole, polysilane and conductive macromolecules.
  • the above compound is not limited to the compounds described above as the examples.
  • aromatic tertiary amine derivatives and phthalocyanine derivatives are more effective.
  • aromatic tertiary amine derivative examples include triphenylamine, tritolylamine, tolyldiphenylamine, N,N′-diphenyl-N,N′-(3-methylphenyl)-1,1′-biphenyl-4,4′-diamine, N,N,N′,N′-(4-methylphenyl)-1,1′-phenyl-4,4′-diamine, N,N,N′,N′-(4-methylphenyl)-1,1′-biphenyl-4,4′-diamine, N,N′-diphenyl-N,N′-dinaphthyl-1,1′-biphenyl-4,4′-diamine, N,N′-(methylphenyl)-N,N′-(4-n-butylphenyl)phenanthrene-9,10-diamine, N,N-bis(4-di-4-tolylaminophenyl)-4-phenyl
  • phthalocyanine (Pc) derivative examples include H 2 Pc, CuPc, CoPc, NiPc, ZnPc, PdPc, FePc, MnPc, ClAlPc, ClGaPc, ClInPc, ClSnPc, Cl 2 SiPc, (HO)AlPc, (HO)GaPc, VOPc, TiOPc, MoOPc, GaPc-O—GaPc and corresponding derivatives of naphthalocyanine.
  • the derivatives of phthalocyanine and naphthalocyanine are not limited to the compounds described above as the examples.
  • the electron injecting material a compound which has the ability to transport electrons, exhibits an excellent effect of electron injection from the cathode and an excellent effect of electron injection to the light emitting layer or the light emitting material, prevents transfer of excited components formed in the light emitting layer into the hole injecting layer and has excellent ability to form a thin film is preferable.
  • the above compound include fluorenone, anthraquinodimethane, diphenoquinone, thiopyrane dioxide, oxazole, oxadiazole, triazole, imidazole, peryleneteteracarboxylic acid, fluorenylidenemethane, anthraquinodimethane, anthrone and derivatives of these compounds.
  • the above compound is not limited to the compounds described above as the examples.
  • the charge injecting property can be improved by adding an electron accepting material to the hole injecting material or by adding an electron donating material to the electron injecting material.
  • more effective electron injecting materials are metal complex compounds and five-membered derivatives containing nitrogen.
  • the metal complex compound examples include 8-hydroxy quinolinatolithium, bis(8-hydroxyquinolinato)zinc, bis(8-hydroxyquinolinato)copper, bis(8-hydroxyquinolinato)manganese, tris(8-hydroxy quinolinato)aluminum, tris(2-methyl-8-hydroxyquinolinato)aluminum, tris(8-hydroxyquinilinato)gallium, bis(10-hydroxybenzo[h]quinolinato)beryllium, bis(10-hydroxybenzo[h]quinolinato)zinc, bis(2-methyl-8-quinolinato)chlorogallium, bis(2-methyl-8-quinolinato)(o-cresolato)gallium, bis(2-methyl-8-quinolinato)(1-naphtholato)aluminum and bis(2-methyl-8-quinolinato)(2-naphtholato)gallium.
  • the metal complex compound is not limited to the compounds described above as the examples.
  • the five-membered derivative containing nitrogen include derivatives of oxazoles, thiazoles, thiadiazoles and triazoles. Specific examples include 2,5-bis(1-phenyl)-1,3,4-oxazole, dimethylPOPOP, 2,5-bis(1-phenyl)-1,3,4-thiazole, 2,5-bis(1-phenyl)-1,3,4-oxadiazole, 2-(4′-tert-butylphenyl)-5-(4′′-biphenyl)-1,3,4-oxadiazole, 2,5-bis(1-naphthyl)-1,3,4-oxadiazole, 1,4-bis[2-(5-phenyloxadiazolyl)]benzene, 1,4-bis[2-(5-phenyloxadiazolyl)-4-tert-butylbenzene], 2-(4′-tert-butylphenyl)-5-(4′′-biphenyl)
  • the organic layer may contain at least one of light emitting materials, doping materials, hole injecting materials and electron injecting materials in the same layer in addition to the compound represented by any of general formulae [1] to [18].
  • a protecting layer may be formed on the surface of the device or the entire device may be protected with silicon oil or a resin.
  • a material having a work function of 4 eV or greater is suitable.
  • examples of such a material include carbon, aluminum, vanadium, iron, cobalt, nickel, tungsten, silver, gold, platinum, palladium, alloys of these metals, metal oxides used for ITO substrates and NESA substrates such as tin oxide and indium oxide and organic conductive resins such as polythiophene and polypyrrol.
  • a material having a work function smaller than 4 eV is suitable.
  • Examples of such a material include magnesium, calcium, tin, lead, titanium, yttrium, lithium, ruthenium, manganese, aluminum and alloys of these metals.
  • the materials used for the anode and the cathode are not limited to the materials described above as the examples.
  • Typical examples of the alloy include alloys of magnesium and silver, alloys of magnesium and indium and alloys of lithium and aluminum.
  • the alloy is not limited to these alloys described as the examples.
  • the composition of the alloy is controlled by the temperature of the source of vapor deposition, the atmosphere and the degree of vacuum and can be adjusted suitably.
  • the anode and the cathode may have a multi-layer structure having two or more layers, where necessary.
  • a layer of a chalcogenide, a metal halide or a metal oxide is disposed on the surface of at least one of the pair of electrodes prepared as described above.
  • a layer of a chalcogenide (including an oxide) of a metal such as silicon and aluminum is disposed on the surface of the anode at the side of the layer of the light emitting medium and a layer of a metal halide or a metal oxide is disposed on the surface of the cathode at the side of the layer of the light emitting medium. Due to the above layers, stability in driving can be improved.
  • Preferable examples of the chalcogenide include SiO x (1 ⁇ x ⁇ 2), AlO x (1 ⁇ x ⁇ 1.5), SiON and SiAlON.
  • Preferable examples of the metal halide include LiF, MgF 2 , CaF 2 and fluorides of rare earth metals.
  • Preferable examples of the metal oxide include Cs 2 O, Li 2 O, MgO, SrO, BaO and CaO.
  • a mixed region of an electron transmitting compound and a reducing dopant or a mixed region of a hole transmitting compound and an oxidizing dopant is disposed on the surface of at least one of the pair of electrodes prepared as described above. Due to the mixed region disposed on the surface of the pair of electrodes, the electron transmitting compound is reduced to form an anion and injection and transportation of electrons from the mixed region into the light emitting medium can be facilitated. The hole transmitting compound is oxidized to form a cation and injection and transportation of holes from the mixed region into the light emitting medium is facilitated.
  • the oxidizing dopant include various types of Lewis acid and acceptor compounds.
  • the reducing dopant include alkali metals, compounds of alkali metals, alkaline earth metals, rare earth metals and compounds of these metals.
  • the organic EL device to achieve efficient light emission, it is preferable that at least one face of the device is sufficiently transparent in the wave length region of the emitted light. It is preferable that the substrate is also transparent.
  • the transparent electrode is disposed in accordance with vapor deposition or sputtering using the above conductive material in a manner such that the prescribed transparency is surly obtained. It is preferable that the electrode disposed on the light emitting face has a transmittance of light of 10% or greater.
  • the substrate is not particularly limited as long as the substrate has sufficient mechanical strength and strength at high temperatures and is transparent. Glass substrates or transparent films of resins may be used.
  • Example of the transparent films of resins include films of polyethylene, ethylene-vinyl acetate copolymers, ethylene-vinyl alcohol copolymers, polypropylene, polystyrene, polymethyl methacrylate, polyvinyl chloride, polyvinyl alcohol, polyvinyl butyral, nylon, polyether ether ketones, polsulfones, polyether sulfones, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymers, polyvinyl fluoride, tetrafluoroethylene-ethylene copolymers, tetrafluoroethylene-hexafluoropropylene copolymers, polychlorotrifluoro-ethylene, polyvinylidene fluoride, polyesters, polycarbonates, polyurethanes, polyimides, polyether imides, polyimides and polypropylene.
  • Each layer of the organic EL device of the present invention can be formed suitably in accordance with a dry process of film formation such as vacuum vapor deposition, sputtering, plasma plating and ion plating or a wet process of film formation such as spin coating, dipping and flow coating.
  • the thickness of the film is not particularly limited. However, it is necessary that the thickness be set at a suitable value. When the thickness is greater than the suitable value, a high voltage must be applied to obtain a prescribed output of light and the efficiency decreases. When the thickness is smaller than the suitable value, pin holes are formed and a sufficient luminance cannot be obtained even when the electric field is applied.
  • the suitable range of the thickness is 5 nm to 10 ⁇ m. A thickness in the range of 10 nm to 0.2 ⁇ m is preferable.
  • materials forming each layer are dissolved or dispersed in a suitable solvent such as ethanol, chloroform, tetrahydrofuran and dioxane and a film is formed from the solution or the suspension.
  • a suitable solvent such as ethanol, chloroform, tetrahydrofuran and dioxane
  • the solvent is not particularly limited.
  • suitable resins and additives may be used to improve the property to form a film and to prevent formation of pin holes.
  • the resin which can be used examples include insulating resins such as polystyrene, polycarbonates, polyarylates, polyesters, polyamides, polyurethanes, polysulfones, polymethyl methacrylate, polymethyl acrylate and cellulose, copolymers derived from these resins, photoconductive resins such as poly-N-vinylcarbazole and polysilane and conductive resins such as polythiophene and polypyrrol.
  • the additive include antioxidants, ultraviolet light absorbents and plasticizers.
  • the organic EL device exhibiting an excellent purity of color and a high efficiency of light emission, having a long life and emitting red light can be obtained.
  • the organic EL device of the present invention can be used for a planar light emitting member such as a flat panel display of wall televisions, a back light for copiers, printers and liquid crystal displays, a light source of instruments, display panels and a marker light.
  • a planar light emitting member such as a flat panel display of wall televisions, a back light for copiers, printers and liquid crystal displays, a light source of instruments, display panels and a marker light.
  • the filtrate was concentrated and 4.8 g of a red orange powdery solid was obtained.
  • the solution was fractionated in accordance with the column chromatography using a column packed with silica gel and 4.1 g of the main component was obtained.
  • the main component was confirmed to be 3,10- and 3,11-diphenylamino-7,14-diphenylacenaphthofluoranthenes (Compound A-1) from FD-MS (812) and the structure of Compound (7).
  • Precipitates in the reaction mixture separated by the filtration was washed with acetone and water and dried and 0.6 g of a powdery solid was obtained.
  • the obtained solid was confirmed to have the same structure as that of the product obtained from the filtrate from FD-MS (812) and the 1 H-NMR spectrum.
  • the reaction was conducted in accordance with the same procedures as those conducted in Synthesis Example 1 (B) except that 2.31 g (11.7 mmole) of p,p′-ditolylamine was used in place of diphenylamine. After the reaction was completed, the reaction mixture was filtered. The filtrate was washed with water and concentrated and a red powdery solid was obtained. The obtained solid was fractionated in accordance with the column chromatography using a column packed with silica gel and 2.9 g of the main component having a high purity was obtained. The main component was confirmed to be Compound A-16 from FD-MS (868).
  • the reaction was conducted in accordance with the same procedures as those conducted in Synthesis Example 1 (B) except that 2.27 g (11.7 mmole) of iminostilbene was used in place of diphenylamine. After the reaction was completed, the product precipitated in the reaction mixture was separated, repeatedly washed with acetone and water and dried and 3.4 g of a red orange powdery solid was obtained. The obtained solid was dissolved in tetrahydrofuran and fractionated in accordance with the thin layer chromatography using a thin layer of silica gel and 2.3 g of the main component having a high purity was obtained. The main component was confirmed to be Compound B-15 from FD-MS (862).
  • the reaction was conducted in accordance with the same procedures as those conducted in Synthesis Example 1 (B) except that 1.0 g (11.7 mmole) of piperidine was used in place of diphenylamine. After the reaction was completed, the reaction mixture was filtered. The filtrate was washed with water and concentrated and a red powdery solid was obtained. The obtained solid was dissolved in toluene and fractionated in accordance with the column chromatography using a column packed with silica gel and 2.1 g of the main component having a high purity was obtained. The main component was confirmed to be Compound A-8 from FD-MS (644).
  • the reaction was conducted in accordance with the same procedures as those conducted in Synthesis Example 1 (B) except that 1.96 g (11.7 mmole) of carbazole was used in place of diphenylamine. After the reaction was completed, the product precipitated in the reaction mixture was separated, repeatedly washed with acetone and water and dried and 3.8 g of a red orange powdery solid was obtained. The obtained solid was dissolved in tetrahydrofuran and fractionated in accordance with the thin layer chromatography using a thin layer of silica gel and 2.0 g of the main component having a high purity was obtained. The main component was confirmed to be Compound B-18 from FD-MS (808).
  • the reaction was conducted in accordance with the same procedures as those conducted in Synthesis Example 1 (B) except that 2.33 g (11.7 mmole) of phenothiazine was used in place of diphenylamine. After the reaction was completed, the reaction mixture was filtered. The filtrate was washed with water, concentrated and dried and 4.2 g of a orange powdery solid was obtained. The obtained solid was dissolved in toluene and fractionated in accordance with the thin layer chromatography using a layer of silica gel and 2.6 g of the main component having a high purity was obtained. The main component was confirmed to be Compound B-17 from FD-MS (872).
  • Compound A-4 was synthesized via the reaction route shown in the following:
  • the reaction was conducted in accordance with the same procedures as those conducted in Synthesis Example 1 (B) except that 3.12 g (5.6 mmole) of Compound (8) was used in place of Compound (7) and 0.51 g (11.5 mmole) of piperidine was used in place of diphenylamine.
  • the solid obtained by the reaction was dissolved in toluene and fractionated in accordance with the column chromatography using a column packed with silica gel and 2.2 g of Compound (9) having a high purity was obtained.
  • Compound A-6 was synthesized via the reaction route shown in the following:
  • Compound B-5 was synthesized via the reaction route shown in the following (Beil. 5(3) 2278):
  • Compound A-12 was synthesized via the reaction route shown in the following:
  • a composition containing 3,10-bisdiphenylamino-7,14-diphenylacenaphtho[1,2-k]fluoranthene and 3,11-bisdiphenylamino-7,14-diphenylacenaphtho[1,2-k]fluoranthene in a ratio of the amounts by mole in the range of 20:80 to 30:70 was synthesized via the reaction route shown in the following:
  • 9,16-diphenylfluorantheno[8,9-a]aceanthrylene was synthesized by the reaction of 1,3-diphenylcyclopenta[a]aceanthrylen-2-one and acenaphthylene using aceanthrylenequinone as the starting material [Indian J. Chem., Vol. 21B, 91 (1982)].
  • the solid was confirmed to be 5,12-dibromo-9,16-diphenylfluorantheno[8,9-a]aceanthrylene and/or 5,13-dibromo-9,16-diphenylfluorantheno[8,9-a]aceanthrylene from FD-MS (686) and the 1 H-NMR spectrum.
  • the filtrate was concentrated and fractionated in accordance with the column chromatography using a column packed with silica gel and 4.27 g of a black purple powdery solid of the main component was obtained.
  • the main component was confirmed to be 5,12- and/or 5,13-bisdiphenylamino-9,16-diphenylfluorantheno[8,9-a]aceanthrylene from FD-MS (862) and the 1 H-NMR spectrum (H: 400 MHz; the solvent of the measurement: DMSO (120° C.); shown in FIG. 2 ).
  • the resultant reaction mixture was washed with an aqueous solution of sodium hydrogencarbonate and pure water, concentrated and purified in accordance with the column chromatography using a column packed with silica gel and 3.20 g of yellow crystals were obtained.
  • the crystals were confirmed to be 7,16-diphenylfluorantheno[8,9-k]fluoranthene (22) from FD-MS (528) and the 1 H-NMR spectrum.
  • the crystals were confirmed to be 3,11- and/or 3,12-dibromo-7,16-diphenylfluorantheno[8,9-k]fluoranthene (23) from FD-MS (686) and the 1 H-NMR spectrum.
  • the filtrate was purified in accordance with the column chromatography using a column packed with silica gel and 4.27 g of a orange powdery crystals were obtained.
  • the crystals were confirmed to be 3,11- and/or 3,12-bisdiphenylamino-7,16-diphenylfluorantheno[8,9-k]fluoranthene from FD-MS (862) and the 1 H-NMR spectrum (H: 400 MHz; the solvent of the measurement: DMSO (120° C.); shown in FIG. 3 ).
  • a composition containing 3,10-bisdiphenylamino-7,14-diphenylacenaphtho[1,2-k]fluoranthene and 3,11-bisdiphenylamino-7,14-diphenylacenaphtho[1,2-k]fluoranthene in a ratio of the amounts by mole in the range of 80:20 to 90:10 was synthesized.
  • composition containing the dibromo compounds was obtained in accordance with the same procedures as those conducted in Synthesis Example 15 (A).
  • the following compound (H232) as the hole injecting material was vapor deposited so that a film having a thickness of 60 nm was formed.
  • the following compound (NPD) as the hole transporting material was vapor deposited so that a film having a thickness of 20 nm was formed.
  • Alq 8-hydroxyquinoline
  • Compound A-1 3,10- and 3,11-diphenylamino-7,14-diphenylacenaphthofluoranthenes
  • the light emitting property of this device was as follows: the luminance under application of a direct current of 5.5 V: 103 cd/m 2 ; the efficiency of light emission: as high as 6.2 cd/A.
  • the emitted light was orange light having chromaticity coordinates of (0.56, 0.44).
  • the half-life was as long as 2600 hours.
  • This example shows that an organic EL device exhibiting a high performance can be obtained by using Compound A-1 as the doping material.
  • the spectrum of the light emitted by the device was obtained and found to be the same as the fluorescence spectrum of the doping material. Thus, it is shown that the doping material worked as the center of light emission.
  • An organic EL device was obtained in accordance with the same procedures as those conducted in Example 1 except that rubrene was vapor deposited in place of Compound A-1 so that a film containing 4.0% by mole of rubrene was formed.
  • the light emitting property of this device was as follows: the luminance under application of a direct current of 5.5 V: 105 cd/m 2 ; the efficiency of light emission: 7.6 cd/A. However, the emitted light was yellow light having chromaticity coordinates of (0.50, 0.50). The half-life was 1000 hours when the device was driven under a constant current at an initial luminance of 500 cd/m 2 and shorter than that of the device of Example 1.
  • An organic EL device was obtained in accordance with the same procedures as those conducted in Example 1 except that fluorantheno[8,9-k]fluoranthene described in Japanese Patent Application Laid-Open No. Heisei 11(1999)-40360 was vapor deposited in place of Compound A-1 so that a film containing 2% by mole of this fluoranthene was formed.
  • the light emitting property of this device was as follows: the luminance under application of a direct current of 5.5 V: 35 cd/m 2 ; the efficiency of light emission: 3.0 cd/A. The emitted light was yellow green light. The half-life was as short as 300 hours when the device was driven under a constant current at an initial luminance of 500 cd/m 2 .
  • An organic EL device was obtained in accordance with the same procedures as those conducted in Example 1 except that 7,14-diphenylacenaphtho[1,2-k]fluoranthene described in Japanese Patent Application Laid-Open No. Heisei 10(1998)-168445 was vapor deposited on place of Compound A-1 so that a film containing 2% by mole of this fluoroanthene was formed.
  • the light emitting property of this device was as follows: the luminance under application of a direct current of 6 V: 69 cd/m 2 ; the efficiency of light emission: 1.3 cd/A.
  • the emitted light was yellow green light.
  • the efficiency was smaller than that of a device in which Alq alone was used as the light emitting material.
  • the half-life was as short as 400 hours when the device was driven under a constant current at an initial luminance of 500 cd/m 2 .
  • the spectrum of the light emitted by the device was obtained, the spectrum did not agree with the fluorescence spectrum of the doping material. Thus, it was found that the above compound did not emit light and the yellow green light was emitted from Alq.
  • the doping material did not work as the light emitting material.
  • Organic EL devices were obtained in accordance with the same procedures as those conducted in Example 1 except that compounds shown in Table 1 were vapor deposited in place of Compound A-1.
  • the light emitting properties of these devices were obtained in accordance with the same methods as those used in Example 1.
  • the voltage applied in the measurements, the luminance, the efficiency of light emission, the color of the emitted light and the half-life when the device was driven under a constant current at an initial luminance of 500 cd/m 2 are shown in Table 1.
  • An organic EL device was obtained in accordance with the same procedures as those conducted in Example 1 except that the composition containing the prescribed relative amounts of the isomers which was obtained in Synthesis Example 12 (Compound A-1) was used for the light emitting layer in a concentration of 100% and Alq was not used.
  • the light emitting property of this device was as follows: the luminance under application of a direct current of 4.5 V: 80 cd/m 2 ; the efficiency of light emission: 3.5 cd/A.
  • the half-life was as long as 2100 hours when the device was driven under a constant current at an initial luminance of 500 cd/m 2 .
  • the device had a longer life than that of the device of Example 1 and can be used also as the main light emitting material.
  • An organic EL device was obtained in accordance with the same procedures as those conducted in Example 1 except that the composition containing the prescribed relative amounts of the isomers which was obtained in Synthesis Example 15 (Compound A-16) was used for the light emitting layer in place of Compound A-1.
  • the light emitting property of this device was as follows: the luminance under application of a direct current of 5.5 V: 94 cd/m 2 ; the efficiency of light emission: 5.94 cd/A.
  • the emitted light was reddish orange light having chromaticity coordinates of (0.60, 0.39).
  • the half-life was as long as 3200 hours when the device was driven under a constant current at an initial luminance of 500 cd/m 2 .
  • An organic EL device was obtained in accordance with the same procedures as those conducted in Example 1 except that the composition containing the prescribed relative amounts of the isomers which was obtained in Synthesis Example 16 (Compound A-1) was used for the light emitting layer in place of Compound A-1.
  • the light emitting property of this device was as follows: the luminance under application of a direct current of 6 V: 100 cd/m 2 ; the efficiency of light emission: 4.75 cd/A.
  • the emitted light had chromaticity coordinates of (0.58, 0.42).
  • the half-life was as long as 1800 hours when the device was driven under a constant current at an initial luminance of 500 cd/m 2 .
  • the light having more reddish color than that of the light emitted in Example 1 could be emitted by using the above compound.
  • the organic electroluminescence device of the present invention which utilizes the compound selected from the compounds represented by general formulae [1] to [18] emits yellowish to reddish light, exhibits an excellent purity of color and a high efficiency of light emission and has a long life.
  • the organic electroluminescence device of the present invention is advantageously used as a light source such as a planar light emitting member of televisions and a back light of displays.

Abstract

An organic electroluminescence device which exhibits an excellent purity of color and a high efficiency of light emission, has a long life and emits reddish light and a novel compound having these characteristics are provided. The organic electroluminescence device comprises an organic layer disposed between at least one pair of electrodes, wherein the organic layer comprises a compound having a fluoranthene skeleton structure substituted at least with an amine group or an alkenyl group.

Description

    TECHNICAL FIELD
  • The present invention relates to an organic electroluminescence device which is used as a light source such as a planar light emitting member of televisions and a back light of displays, exhibits an excellent purity of color and a high efficiency of light emission, has a long life and emits reddish light and to a novel compound having these characteristics.
  • BACKGROUND ART
  • Electroluminescence (referred to as EL, hereinafter) devices using organic compounds are expected to be used for inexpensive full color display devices of the solid light emission type which can display a large area and development thereof has been actively conducted. In general, an EL device is constituted with a light emitting layer and a pair of electrodes faced to each other at both sides of the light emitting layer. When a voltage is applied between the electrodes, electrons are injected at the side of the cathode and holes are injected at the side of the anode. The electrons are combined with the holes in the light emitting layer and an excited state is formed. When the excited state returns to the normal state, the energy is emitted as light.
  • Although the practical application of organic EL devices has started recently, devices for full color displays are still under development. In particular, a material for organic EL devices which exhibits an excellent purity of color and a high efficiency of light emission, has a long life and emits reddish light has been desired.
  • In an attempt to satisfy the above desire, a device emitting red light in which a derivative of naphthacene or pentacene is added to a light emitting layer is disclosed in Japanese Patent Application Laid-Open No. Heisei 8(1996)-311442. Although this device exhibits an excellent purity of red light, the device exhibits an efficiency of light emission as low as 0.7 lm/W and has an insufficient average life which is shorter than 150 hours. An average life of at least several thousand hours is necessary for practical applications. A device in which a compound derived from dicyanomethylene (DCM) is added to a light emitting layer is disclosed in Japanese Patent Application Laid-Open No. Heisei 3(1991)-162481. However, this device exhibits an insufficient purity of red light. In Japanese Patent Application Laid-Open Nos. Heisei 10(1998)-340782 and Heisei 11(1999)-40360, organic EL devices using fluoranthene compounds are disclosed. However, the devices using the compounds disclosed in the above patent applications do not emit yellow to red light. The efficiency of light emission is as small as 4 cd/A or smaller and insufficient.
  • DISCLOSURE OF THE INVENTION
  • The present invention has been made to overcome the above problems and has an object of providing an organic EL device which exhibits an excellent purity of color and a high efficiency of light emission, has a long life and emits reddish light and a novel compound having these characteristics.
  • As the result of extensive studies by the present inventors to develop an organic electroluminescence device (referred to as an organic EL device, hereinafter) having the above advantageous properties, it was found that the object can be achieved by using a compound having a fluoranthene skeleton structure substituted at least with an amine group or an alkenyl group as the light emitting material.
  • The organic electroluminescence device of the present invention comprises an organic layer disposed between at least one pair of electrodes, wherein the organic layer comprises a compound having a fluoranthene skeleton structure substituted at least with an amine group or an alkenyl group.
  • It is preferable that the above compound is a compound selected from compounds represented by the following general formulae [1] to [18]:
    Figure US20070003788A1-20070104-C00001
    Figure US20070003788A1-20070104-C00002

    wherein X1 to X20 each independently represents hydrogen atom, a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, a linear, branched or cyclic alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted aryl group having 6 to 30 carbon atoms, a substituted or unsubstituted aryloxy group having 6 to 30 carbon groups, a substituted or unsubstituted arylamino group having 6 to 30 carbon atoms, a substituted or unsubstituted alkylamino group having 1 to 30 carbon atoms, a substituted or unsubstituted arylalkylamino group having 7 to 30 carbon atoms or a substituted or unsubstituted alkenyl groups having 8 to 30 carbon atoms; a pair of adjacent groups represented by X1 to X20 and a pair of adjacent substituents to groups represented by X1 to X20 may form a cyclic structure in combination; when a pair of adjacent substituents are aryl groups, the pair of substituents may be a single group; and at least one of substituents represented by X1 to Xi, i representing a number of 12 to 20, comprises an amine group or an alkenyl group;
    Figure US20070003788A1-20070104-C00003

    wherein R1 to R4 each independently represent an alkyl group having 1 to 20 carbon atoms or a substituted or unsubstituted aryl group having 6 to 30 carbon atoms; in one or both of a pair of groups represented by R1 and R2 and a pair of groups represented by R3 and R4, the groups forming the pair may be bonded through —O— or —S—; R5 to R16 represents hydrogen atom, a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, a linear, branched or cyclic alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted aryl group having 6 to 30 carbon atoms, a substituted or unsubstituted aryloxy group having 6 to 30 carbon groups, a substituted or unsubstituted arylamino group having 6 to 30 carbon atoms, a substituted or unsubstituted alkylamino group having 1 to 30 carbon atoms, a substituted or unsubstituted arylalkylamino group having 7 to 30 carbon atoms or a substituted or unsubstituted alkenyl groups having 8 to 30 carbon atoms; a pair of adjacent groups represented by R5 to R16 and a pair of adjacent substituents to groups represented by R5 to R16 may form a cyclic structure in combination; and at least one of substituents represented by R5 to R16 comprises an amine group or an alkenyl group.
  • The novel compound of the present invention is a compound represented by any of the above general formulae [1] to [18].
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows the 1H-NMR spectrum of an example of the novel compound of the present invention.
  • FIG. 2 shows the 1H-NMR spectrum of another example of the novel compound of the present invention.
  • FIG. 3 shows the 1H-NMR spectrum of still another example of the novel compound of the present invention.
  • THE MOST PREFERRED EMBODIMENT TO CARRY OUT THE INVENTION
  • The organic electroluminescence device of the present invention comprises an organic layer disposed between at least one pair of electrodes, wherein the organic layer comprises compounds having a fluoranthene skeleton structure substituted at least with an amine group or an alkenyl group.
  • This compound is a novel compound and is represented by any of the above general formulae [1] to [18].
  • In general formulae [1] to [16], X1 to X20 each independently represents hydrogen atom, a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, a linear, branched or cyclic alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted aryl group having 6 to 30 carbon atoms, a substituted or unsubstituted aryloxy group having 6 to 30 carbon groups, a substituted or unsubstituted arylamino group having 6 to 30 carbon atoms, a substituted or unsubstituted alkylamino group having 1 to 30 carbon atoms, a substituted or unsubstituted arylalkylamino group having 7 to 30 carbon atoms or a substituted or unsubstituted alkenyl groups having 8 to 30 carbon atoms; a pair of adjacent groups represented by X1 to X20 and a pair of adjacent substituents to groups represented by X1 to X20 may form a cyclic structure in combination; when a pair of adjacent substituents are aryl groups, the pair of substituents may be a single group; and at least one of substituents represented by X1 to Xi, i representing a number of 12 to 20, comprises an amine group or an alkenyl group. That a pair of adjacent substituents may be a single group when the pair of adjacent substituents are aryl groups means that the adjacent bonds for the pair of substituents are bonded to the same single divalent aromatic ring group.
  • In general formulae [17] and [18], R1 to R4 each independently represent an alkyl group having 1 to 20 carbon atoms or a substituted or unsubstituted aryl group having 6 to 30 carbon atoms; in one or both of a pair of groups represented by R1 and R2 and a pair of groups represented by R3 and R4, the groups forming the pair may be bonded through —O— or —S—; R5 to R16 represents hydrogen atom, a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, a linear, branched or cyclic alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted aryl group having 6 to 30 carbon atoms, a substituted or unsubstituted aryloxy group having 6 to 30 carbon groups, a substituted or unsubstituted arylamino group having 6 to 30 carbon atoms, a substituted or unsubstituted alkylamino group having 1 to 30 carbon atoms, a substituted or unsubstituted arylalkylamino group having 7 to 30 carbon atoms or a substituted or unsubstituted alkenyl groups having 8 to 30 carbon atoms; a pair of adjacent groups represented by R5 to R16 and a pair of adjacent substituents to groups represented by R5 to R16 may form a cyclic structure in combination; and at least one of substituents represented by R5 to R16 comprises an amine group or an alkenyl group.
  • Preferable compounds among the compounds represented by general formulae [1] to [18] are shown in the following.
  • It is preferable that the fluoranthene skeleton structure comprises at least 5 condensed rings and more preferably at least 6 condensed rings. By using the compounds having this structure, light having a longer wave length such as yellowish to reddish light can be emitted.
  • It is preferable that the fluoranthene skeleton structure is substituted with an amino group. By using the compound having this structure, a light emitting material having a longer life can be obtained.
  • It is preferable that the amino group is a substituted or unsubstituted arylamino group and more preferably a substituted or unsubstituted diarylamino group. By using the compound having this structure, a device showing a smaller decrease in the light emission at increased concentrations of the compound and exhibiting a high efficiency can be obtained even when the above compound is added to the light emitting layer in a concentration as high as 2% or higher.
  • It is preferable that the above compound has a symmetric structure having an axial symmetry or a symmetry with respect to plane. By using the compound having this structure, durability of the device is improved and the quantum efficiency of fluorescence is enhanced.
  • It is preferable that the above compound has at least ten six-membered rings or five-membered rings. The compound has a glass transition temperature of 100° C. or higher due to this structure and heat stability of a layer composed of or comprising this compound is improved. It is preferable that the above compound has an aryl group, a cyclic alkyl group, an aryloxy group, an arylthio group or an arylalkyl group each having 4 or more carbon atoms. Since these groups exhibit steric hindrance and the decrease in the light emission at increased concentrations of the compound can be prevented.
  • It is preferable that, in general formulae [17] and [18], R15 and R9 each represent a group having a substituent. When the compound represented by general formula [17] or [18] has this structure, the compound has an improved stability against oxidation and reduction and the life of the device can be extended.
  • When the fluoranthene skeleton structure is substituted with two amino groups, two alkenyl groups or a combination of an amino group and an alkenyl group, the compound having this fluoranthene skeleton structure has isomers.
  • Examples of the isomers are described in the case where the fluoranthene skeleton structure is 7,14-diphenylacenaphtho[1,2-k]fluoranthene.
  • Dibromo-substituted acenaphtho[1,2-k]fluoranthene has two isomers, i.e., 3,10-dibromo-7,14-diphenylacenaphtho[1,2-k]fluoranthene (isomer A) and 3,11-dibromo-7,14-diphenylacenaphtho[1,2-k]fluoranthene (isomer B).
  • The final product obtained from isomer A and isomer B as the intermediates contains an amino-substituted compound derived from isomer A and an amino-substituted compound derived from isomer B. When the final product is prepared, the relative amounts of isomer A and isomer B contained in the final product is different depending on the process of the preparation. (1) The dibromo-substituted compounds may be obtained from a solution portion of a reaction mixture in which the dibromo-substituted compounds are dissolved. (2) The dibromo-substituted compounds may also be obtained from precipitates formed by recrystallization from a solution which is obtained by dissolving the product obtained above from the solution portion of the reaction mixture. (3) The dibromo-substituted compounds may also be obtained from the solution left after the above recrystallization. By suitably selecting the process and the type of the solvent used for the treatment, the object compound containing various amounts of isomer A and isomer B and, specifically, having a ratio of the amount by mole of isomer A to the amount in mole of isomer B in the range of 10:90 to 90:10, can be obtained.
  • It is preferable that the error in the ratio of the amounts by mole of the isomers is: (i) isomer A:isomer B=x±10:y±10 (x+y=100) and more preferably (ii) isomer A:isomer B=x±5:y±5 (x+y=100). When the relation (i) is satisfied, the ratio of the amounts of the isomers will be described as approximately constant and, when the relation (ii) is satisfied, the ratio of the amounts of the isomers will be described as constant, hereinafter.
  • When the above compound of the present invention has isomers, a plurality of isomers can be comprised in the organic layer. It is preferable that the device is prepared under the condition that the ratio of the amounts of the isomers is kept approximately constant or constant. By preparing the device in this manner, the spectrum of the light emitted from the device can be kept the same. In other words, the color of the emitted light can be kept the same. Moreover, the color of the emitted light can be changed by changing the ratio of the amounts of the isomers. Naturally, the organic layer may comprise a single compound with exclusion of any other isomers.
  • When a compound contains isomers as described above, one of the isomers can emit light having a longer wavelength than that of light emitted from other isomers. Therefore, light having a longer wavelength such red light can be emitted when the ratio of the amount by mole of the isomer which can emit light having a longer wavelength to the amount by mole of the isomer which can emit light having a shorter wavelength is preferably in the range of 90:10 to 60:40 and more preferably in the range of 99:1 to 70:30.
  • Taking advantage of the difference in the chemical shift in 1H-NMR between the isomers, the ratio of the amounts of the isomers can be calculated from the ratio of the areas of peak signals assigned to each isomer.
  • It is preferable that the organic layer is at least one of a hole transportation layer and a light emitting layer.
  • A layer of an inorganic compound may be disposed between the organic layer and the electrode.
  • The organic EL device of the present invention emits reddish light.
  • Examples of the compounds represented by general formulae [1] to [18] of the present invention include (A-1) to (A-18) and (B-1) to (B-17) which are shown in the following. However, the present invention is not limited to these compounds shown as the examples. In the formulae shown in the following, Me means methyl group and Et means ethyl group.
    Figure US20070003788A1-20070104-C00004
    Figure US20070003788A1-20070104-C00005
    Figure US20070003788A1-20070104-C00006
    Figure US20070003788A1-20070104-C00007
    Figure US20070003788A1-20070104-C00008
    Figure US20070003788A1-20070104-C00009
    Figure US20070003788A1-20070104-C00010
    Figure US20070003788A1-20070104-C00011
    Figure US20070003788A1-20070104-C00012
    Figure US20070003788A1-20070104-C00013
    Figure US20070003788A1-20070104-C00014
    Figure US20070003788A1-20070104-C00015
  • Since the compound used for the organic EL device of the present invention has the fluoranthene skeleton structure substituted with an amine group or an alkenyl group, the compound exhibits a high yield of fluorescence and emits reddish or yellowish light. Therefore, the organic EL device using this compound emits reddish to yellowish light, exhibits a high efficiency of light emission and has a long life.
  • The organic EL device of the present invention is a device in which one or a plurality of organic thin films are disposed between an anode and a cathode. When the device has a single organic layer, a light emitting layer is disposed between an anode and a cathode. The light emitting layer contains a light emitting material and may also contain a hole injecting material to transport holes injected at the anode to the light emitting material or an electron injecting material to transport electrons injected at the cathode to the light emitting material. It is preferable that the light emitting layer is formed with a light emitting material having a very high quantum efficiency of fluorescence emission and excellent ability to transfer holes and electrons and a uniform thin film is formed. The organic EL device having a multi-layer structure has a laminate structure such as: (an anode/a hole injecting layer/a light emitting layer/a cathode), (an anode/a light emitting layer/an electron injecting layer/a cathode) and (an anode/a hole injecting layer/a light emitting layer/an electron injecting layer/a cathode).
  • In the light emitting layer, where necessary, conventional light emitting materials, doping materials, hole injecting materials and electron injecting materials may be used in addition to the compound represented by any of general formulae [1] to [18] of the present invention. It is preferable that these compounds are added to any of the light emitting layer, the electron injecting layer, the hole transporting layer or the hole injecting layer in a concentration of 1 to 70% by weight and more preferably in a concentration of 1 to 20% by weight. In particular, it is preferable that the compound of the present invention is used as the doping material.
  • Deterioration in the luminance and the life caused by quenching can be prevented by the multi-layer structure of the organic EL. Where necessary, light emitting materials, other doping materials, hole injecting materials and electron injecting materials may be used in combination. By using other doping materials, the luminance and the efficiency of light emission can be improved and red light and white light can be emitted. The hole injecting layer, the light emitting layer and the electron injecting layer may each have a multi-layer structure having two or more layers. When the hole injecting layer has a multi-layer structure, the layer into which holes are injected from the electrode is referred to as the hole injecting layer and the layer which receives holes from the hole injecting layer and transports holes from the hole injecting layer to the light emitting layer is referred to as the hole transporting layer. When the electron injecting layer has a multi-layer structure, the layer into which electrons are injected from the electrode is referred to as the electron injecting layer and the layer which receives electrons from the electron injecting layer and transports electrons from the electron injecting layer to the light emitting layer is referred to as the electron transporting layer. These layers are each selected and used in accordance with factors such as the energy level, heat resistance and adhesion with the organic layers or the metal electrodes of the material.
  • Examples of the material which can be used in the organic layer as the light emitting material or the host material in combination with the compound represented by any of general formulae [1], [2] and [4] to [16] include anthracene derivatives, naphthalene derivatives, phenanthrene derivatives, pyrene derivatives, tetracene derivatives, coronene derivatives, chrysene derivatives, perylene derivatives, phthaloperylene derivatives, naphthaloperylene derivatives, perynone derivatives, phthaloperynone derivatives, naphthaloperynone derivatives, and rubrene derivatives, and fluorescent pigments. However, the above material is not limited to the compounds described above as the examples.
  • As the hole injecting material, a compound which has the ability to transfer holes, exhibits an excellent effect of hole injection from the anode and an excellent effect of hole injection to the light emitting layer or the light emitting material, prevents transfer of excited components formed in the light emitting layer into the electron injecting layer or the electron injecting material and has excellent ability to form a thin film is preferable. Examples of the above compound include phthalocyanine derivatives, naphthalocyanine derivatives, porphyrin derivatives, oxazole, oxadiazole, triazole, imidazole, imidazolone, imdazolethione, pyrazoline, pyrazolone, tetrahydroimidazole, oxazole, oxadiazole, hydrazone, acylhydrazone, polyarylalkanes, stilbene, butadiene, triphenylamines of the benzidine-type, triphenylamines of the styrylamine type, triphenylamines of the diamine type, derivatives of these compounds and macromolecular compounds such as polyvinylcarbazole, polysilane and conductive macromolecules. However, the above compound is not limited to the compounds described above as the examples.
  • Among the hole injection materials which can be used in the organic EL device of the present invention, aromatic tertiary amine derivatives and phthalocyanine derivatives are more effective.
  • Examples of the aromatic tertiary amine derivative include triphenylamine, tritolylamine, tolyldiphenylamine, N,N′-diphenyl-N,N′-(3-methylphenyl)-1,1′-biphenyl-4,4′-diamine, N,N,N′,N′-(4-methylphenyl)-1,1′-phenyl-4,4′-diamine, N,N,N′,N′-(4-methylphenyl)-1,1′-biphenyl-4,4′-diamine, N,N′-diphenyl-N,N′-dinaphthyl-1,1′-biphenyl-4,4′-diamine, N,N′-(methylphenyl)-N,N′-(4-n-butylphenyl)phenanthrene-9,10-diamine, N,N-bis(4-di-4-tolylaminophenyl)-4-phenylcyclohexane and oligomers and polymers having a skeleton structure of these aromatic tertiary amines. However, the aromatic tertiary amine derivative is not limited to the compounds described above as the examples.
  • Examples of the phthalocyanine (Pc) derivative include H2Pc, CuPc, CoPc, NiPc, ZnPc, PdPc, FePc, MnPc, ClAlPc, ClGaPc, ClInPc, ClSnPc, Cl2SiPc, (HO)AlPc, (HO)GaPc, VOPc, TiOPc, MoOPc, GaPc-O—GaPc and corresponding derivatives of naphthalocyanine. However, the derivatives of phthalocyanine and naphthalocyanine are not limited to the compounds described above as the examples.
  • As the electron injecting material, a compound which has the ability to transport electrons, exhibits an excellent effect of electron injection from the cathode and an excellent effect of electron injection to the light emitting layer or the light emitting material, prevents transfer of excited components formed in the light emitting layer into the hole injecting layer and has excellent ability to form a thin film is preferable. Examples of the above compound include fluorenone, anthraquinodimethane, diphenoquinone, thiopyrane dioxide, oxazole, oxadiazole, triazole, imidazole, peryleneteteracarboxylic acid, fluorenylidenemethane, anthraquinodimethane, anthrone and derivatives of these compounds. However, the above compound is not limited to the compounds described above as the examples. The charge injecting property can be improved by adding an electron accepting material to the hole injecting material or by adding an electron donating material to the electron injecting material.
  • In the organic EL device of the present invention, more effective electron injecting materials are metal complex compounds and five-membered derivatives containing nitrogen.
  • Examples of the metal complex compound include 8-hydroxy quinolinatolithium, bis(8-hydroxyquinolinato)zinc, bis(8-hydroxyquinolinato)copper, bis(8-hydroxyquinolinato)manganese, tris(8-hydroxy quinolinato)aluminum, tris(2-methyl-8-hydroxyquinolinato)aluminum, tris(8-hydroxyquinilinato)gallium, bis(10-hydroxybenzo[h]quinolinato)beryllium, bis(10-hydroxybenzo[h]quinolinato)zinc, bis(2-methyl-8-quinolinato)chlorogallium, bis(2-methyl-8-quinolinato)(o-cresolato)gallium, bis(2-methyl-8-quinolinato)(1-naphtholato)aluminum and bis(2-methyl-8-quinolinato)(2-naphtholato)gallium. However, the metal complex compound is not limited to the compounds described above as the examples.
  • Preferable examples of the five-membered derivative containing nitrogen include derivatives of oxazoles, thiazoles, thiadiazoles and triazoles. Specific examples include 2,5-bis(1-phenyl)-1,3,4-oxazole, dimethylPOPOP, 2,5-bis(1-phenyl)-1,3,4-thiazole, 2,5-bis(1-phenyl)-1,3,4-oxadiazole, 2-(4′-tert-butylphenyl)-5-(4″-biphenyl)-1,3,4-oxadiazole, 2,5-bis(1-naphthyl)-1,3,4-oxadiazole, 1,4-bis[2-(5-phenyloxadiazolyl)]benzene, 1,4-bis[2-(5-phenyloxadiazolyl)-4-tert-butylbenzene], 2-(4′-tert-butylphenyl)-5-(4″-biphenyl)-1,3,4-thiadiazole, 2,5-bis(1-naphthyl)-1,3,4-thiadiazole, 1,4-bis[2-(5-phenylthiadiazolyl)]benzene, 2-(4′tert-butylphenyl)-5-(4″-biphenyl)-1,3,4-triazole, 2,5-bis(1-naphthyl)-1,3,4-triazole and 1,4-bis[2-(5-phenyltriazolyl)]benzene. However, the five-membered derivative containing nitrogen is not limited to the compounds described above as the examples.
  • In the organic EL device of the present invention, the organic layer may contain at least one of light emitting materials, doping materials, hole injecting materials and electron injecting materials in the same layer in addition to the compound represented by any of general formulae [1] to [18]. In order to improve stability of the organic EL device of the present invention with respect to the temperature, the humidity and the atmosphere, a protecting layer may be formed on the surface of the device or the entire device may be protected with silicon oil or a resin.
  • As the conductive material used for the anode of the organic EL device, a material having a work function of 4 eV or greater is suitable. Examples of such a material include carbon, aluminum, vanadium, iron, cobalt, nickel, tungsten, silver, gold, platinum, palladium, alloys of these metals, metal oxides used for ITO substrates and NESA substrates such as tin oxide and indium oxide and organic conductive resins such as polythiophene and polypyrrol. As the conductive material used for the cathode, a material having a work function smaller than 4 eV is suitable. Examples of such a material include magnesium, calcium, tin, lead, titanium, yttrium, lithium, ruthenium, manganese, aluminum and alloys of these metals. However, the materials used for the anode and the cathode are not limited to the materials described above as the examples. Typical examples of the alloy include alloys of magnesium and silver, alloys of magnesium and indium and alloys of lithium and aluminum. However, the alloy is not limited to these alloys described as the examples. The composition of the alloy is controlled by the temperature of the source of vapor deposition, the atmosphere and the degree of vacuum and can be adjusted suitably. The anode and the cathode may have a multi-layer structure having two or more layers, where necessary.
  • In the organic EL device of the present invention, it is preferable that a layer of a chalcogenide, a metal halide or a metal oxide (this layer may occasionally be referred to as a surface layer) is disposed on the surface of at least one of the pair of electrodes prepared as described above. Specifically, it is preferable that a layer of a chalcogenide (including an oxide) of a metal such as silicon and aluminum is disposed on the surface of the anode at the side of the layer of the light emitting medium and a layer of a metal halide or a metal oxide is disposed on the surface of the cathode at the side of the layer of the light emitting medium. Due to the above layers, stability in driving can be improved.
  • Preferable examples of the chalcogenide include SiOx (1≦x≦2), AlOx (1≦x≦1.5), SiON and SiAlON. Preferable examples of the metal halide include LiF, MgF2, CaF2 and fluorides of rare earth metals. Preferable examples of the metal oxide include Cs2O, Li2O, MgO, SrO, BaO and CaO.
  • In the organic EL device of the present invention, it is preferable that a mixed region of an electron transmitting compound and a reducing dopant or a mixed region of a hole transmitting compound and an oxidizing dopant is disposed on the surface of at least one of the pair of electrodes prepared as described above. Due to the mixed region disposed on the surface of the pair of electrodes, the electron transmitting compound is reduced to form an anion and injection and transportation of electrons from the mixed region into the light emitting medium can be facilitated. The hole transmitting compound is oxidized to form a cation and injection and transportation of holes from the mixed region into the light emitting medium is facilitated. Preferable examples of the oxidizing dopant include various types of Lewis acid and acceptor compounds. Preferable examples of the reducing dopant include alkali metals, compounds of alkali metals, alkaline earth metals, rare earth metals and compounds of these metals.
  • In the organic EL device, to achieve efficient light emission, it is preferable that at least one face of the device is sufficiently transparent in the wave length region of the emitted light. It is preferable that the substrate is also transparent. The transparent electrode is disposed in accordance with vapor deposition or sputtering using the above conductive material in a manner such that the prescribed transparency is surly obtained. It is preferable that the electrode disposed on the light emitting face has a transmittance of light of 10% or greater. The substrate is not particularly limited as long as the substrate has sufficient mechanical strength and strength at high temperatures and is transparent. Glass substrates or transparent films of resins may be used. Example of the transparent films of resins include films of polyethylene, ethylene-vinyl acetate copolymers, ethylene-vinyl alcohol copolymers, polypropylene, polystyrene, polymethyl methacrylate, polyvinyl chloride, polyvinyl alcohol, polyvinyl butyral, nylon, polyether ether ketones, polsulfones, polyether sulfones, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymers, polyvinyl fluoride, tetrafluoroethylene-ethylene copolymers, tetrafluoroethylene-hexafluoropropylene copolymers, polychlorotrifluoro-ethylene, polyvinylidene fluoride, polyesters, polycarbonates, polyurethanes, polyimides, polyether imides, polyimides and polypropylene.
  • Each layer of the organic EL device of the present invention can be formed suitably in accordance with a dry process of film formation such as vacuum vapor deposition, sputtering, plasma plating and ion plating or a wet process of film formation such as spin coating, dipping and flow coating. The thickness of the film is not particularly limited. However, it is necessary that the thickness be set at a suitable value. When the thickness is greater than the suitable value, a high voltage must be applied to obtain a prescribed output of light and the efficiency decreases. When the thickness is smaller than the suitable value, pin holes are formed and a sufficient luminance cannot be obtained even when the electric field is applied. In general, the suitable range of the thickness is 5 nm to 10 μm. A thickness in the range of 10 nm to 0.2 μm is preferable.
  • When the device is produced in accordance with a wet process, materials forming each layer are dissolved or dispersed in a suitable solvent such as ethanol, chloroform, tetrahydrofuran and dioxane and a film is formed from the solution or the suspension. The solvent is not particularly limited. In any organic thin layer, suitable resins and additives may be used to improve the property to form a film and to prevent formation of pin holes. Examples of the resin which can be used include insulating resins such as polystyrene, polycarbonates, polyarylates, polyesters, polyamides, polyurethanes, polysulfones, polymethyl methacrylate, polymethyl acrylate and cellulose, copolymers derived from these resins, photoconductive resins such as poly-N-vinylcarbazole and polysilane and conductive resins such as polythiophene and polypyrrol. Examples of the additive include antioxidants, ultraviolet light absorbents and plasticizers.
  • As described above, when the compound of the present invention is used for the organic layer of the organic EL device, the organic EL device exhibiting an excellent purity of color and a high efficiency of light emission, having a long life and emitting red light can be obtained.
  • The organic EL device of the present invention can be used for a planar light emitting member such as a flat panel display of wall televisions, a back light for copiers, printers and liquid crystal displays, a light source of instruments, display panels and a marker light.
  • The present invention will be described more specifically with reference to Synthesis Examples and Examples in the following.
  • SYNTHESIS EXAMPLE 1 Compound A-1
  • 3,10- and 3,11-Bisdiphenylamino-7,14-diphenylacenaphtho[1,2-k]fluoranthene was synthesized via the reaction route shown in the following:
    Figure US20070003788A1-20070104-C00016
    Figure US20070003788A1-20070104-C00017
  • (A) Synthesis of 3,10- and 3,11-dibromo-7,14-diphenylacenaphtho[1,2-k]fluoranthenes
  • In accordance with the J. B. Allen's process, 3,10- and 3,11-dibromo-7,14-diphenylacenaphtho[1,2-k]fluoranthenes (7) were synthesized using acenaphthenequinone (1) as the starting material via 7,14-diphenylacenaphtho[1,2-k]fluoranthene (6). The structures of 3,10- and 3,11-dibromo-7,14-diphenylacenaphtho[1,2-k]fluoranthenes were identified from FD-MS (the field desorption mass spectra) and the 1H-NMR spectra. The chemical shifts in 1H-NMR agreed with the measured values reported by Allen (J. D. Debad, A. I. Bard, J. Chem. Soc., Vol. 120, 2476 (1998)).
  • (B) Synthesis of 3,10- and 3,11-diphenylamino-7,14-diphenylacenaphthofluoranthenes (Compound A-1)
  • Into 150 ml of toluene, 3.56 g (5.6 mmole) of 3,10- and 3,11-dibromo-7,14-diphenylacenaphtho[1,2-k]fluoranthenes (7), 1.89 g (11.2 mmole) of diphenylamine, 0.06 g (0.3 mmole) of palladium acetate, 0.22 g (1.1 mmole) of tri-tert-butylphosphine and 1.51 g (14.0 mmole) of sodium tert-butoxide were dissolved at the room temperature and the reaction was allowed to proceed for 6 hours while the mixture was refluxed under heating. The resultant reaction mixture was filtered. The filtrate was concentrated and 4.8 g of a red orange powdery solid was obtained. After the solid was dissolved in toluene, the solution was fractionated in accordance with the column chromatography using a column packed with silica gel and 4.1 g of the main component was obtained. The main component was confirmed to be 3,10- and 3,11-diphenylamino-7,14-diphenylacenaphthofluoranthenes (Compound A-1) from FD-MS (812) and the structure of Compound (7). Precipitates in the reaction mixture separated by the filtration was washed with acetone and water and dried and 0.6 g of a powdery solid was obtained. The obtained solid was confirmed to have the same structure as that of the product obtained from the filtrate from FD-MS (812) and the 1H-NMR spectrum.
  • Similarly, Compound A-16 (Synthesis Example 2), Compound B-15 (Synthesis Example 3), Compound A-8 (Synthesis Example 4), Compound B-18 (Synthesis Example 5) and Compound B-17 (Synthesis Example 6) which are compounds of 3,10- and 3,11-diamino-7,14-diphenylacenaphtho-[1,2-k]fluoranthenes were synthesized via the reaction routes shown in the following:
    Figure US20070003788A1-20070104-C00018
    Figure US20070003788A1-20070104-C00019
  • SYNTHESIS EXAMPLE 2 Compound A-16
  • The reaction was conducted in accordance with the same procedures as those conducted in Synthesis Example 1 (B) except that 2.31 g (11.7 mmole) of p,p′-ditolylamine was used in place of diphenylamine. After the reaction was completed, the reaction mixture was filtered. The filtrate was washed with water and concentrated and a red powdery solid was obtained. The obtained solid was fractionated in accordance with the column chromatography using a column packed with silica gel and 2.9 g of the main component having a high purity was obtained. The main component was confirmed to be Compound A-16 from FD-MS (868).
  • SYNTHESIS EXAMPLE 3 Compound B-15
  • The reaction was conducted in accordance with the same procedures as those conducted in Synthesis Example 1 (B) except that 2.27 g (11.7 mmole) of iminostilbene was used in place of diphenylamine. After the reaction was completed, the product precipitated in the reaction mixture was separated, repeatedly washed with acetone and water and dried and 3.4 g of a red orange powdery solid was obtained. The obtained solid was dissolved in tetrahydrofuran and fractionated in accordance with the thin layer chromatography using a thin layer of silica gel and 2.3 g of the main component having a high purity was obtained. The main component was confirmed to be Compound B-15 from FD-MS (862).
  • SYNTHESIS EXAMPLE 4 Compound A-8
  • The reaction was conducted in accordance with the same procedures as those conducted in Synthesis Example 1 (B) except that 1.0 g (11.7 mmole) of piperidine was used in place of diphenylamine. After the reaction was completed, the reaction mixture was filtered. The filtrate was washed with water and concentrated and a red powdery solid was obtained. The obtained solid was dissolved in toluene and fractionated in accordance with the column chromatography using a column packed with silica gel and 2.1 g of the main component having a high purity was obtained. The main component was confirmed to be Compound A-8 from FD-MS (644).
  • SYNTHESIS EXAMPLE 5 Compound B-18
  • The reaction was conducted in accordance with the same procedures as those conducted in Synthesis Example 1 (B) except that 1.96 g (11.7 mmole) of carbazole was used in place of diphenylamine. After the reaction was completed, the product precipitated in the reaction mixture was separated, repeatedly washed with acetone and water and dried and 3.8 g of a red orange powdery solid was obtained. The obtained solid was dissolved in tetrahydrofuran and fractionated in accordance with the thin layer chromatography using a thin layer of silica gel and 2.0 g of the main component having a high purity was obtained. The main component was confirmed to be Compound B-18 from FD-MS (808).
  • SYNTHESIS EXAMPLE 6 Compound B-17
  • The reaction was conducted in accordance with the same procedures as those conducted in Synthesis Example 1 (B) except that 2.33 g (11.7 mmole) of phenothiazine was used in place of diphenylamine. After the reaction was completed, the reaction mixture was filtered. The filtrate was washed with water, concentrated and dried and 4.2 g of a orange powdery solid was obtained. The obtained solid was dissolved in toluene and fractionated in accordance with the thin layer chromatography using a layer of silica gel and 2.6 g of the main component having a high purity was obtained. The main component was confirmed to be Compound B-17 from FD-MS (872).
  • SYNTHESIS EXAMPLE 7 Compound A-4
  • Compound A-4 was synthesized via the reaction route shown in the following:
    Figure US20070003788A1-20070104-C00020
  • In the synthesis of Compound (8), the reaction mixture was examined in accordance with the thin layer chromatography and the reaction was allowed to continue until the spot of Compound (6) disappeared. After the reaction was completed, the reaction mixture was washed with a 0.1N aqueous solution of sodium hydroxide, concentrated and fractionated in accordance with the column chromatography using a column packed with silica gel and Compound (8) was obtained.
  • The reaction was conducted in accordance with the same procedures as those conducted in Synthesis Example 1 (B) except that 3.12 g (5.6 mmole) of Compound (8) was used in place of Compound (7) and 0.51 g (11.5 mmole) of piperidine was used in place of diphenylamine. The solid obtained by the reaction was dissolved in toluene and fractionated in accordance with the column chromatography using a column packed with silica gel and 2.2 g of Compound (9) having a high purity was obtained.
  • Compound (9) in an amount of 5.61 g (10.0 mmole) was dissolved into 30 ml of dimethylformamide. To the obtained solution, 1.68 g (11.0 mmole) of phosphorus oxychloride was added and the mixture was refluxed under heating. After the reaction was completed, the reaction mixture was filtered and the filtrate was fractionated in accordance with the column chromatography using a column packed with silica gel and 4.0 g of the main component having a high purity was obtained. The main component was confirmed to be Compound (10) from FD-MS (589).
  • Compound (10) in an amount of 4.7 g (8.0 mmole) was reacted with 0.7 g (10.6 mmole) of malonitrile. The reaction product precipitated in the reaction mixture was separated and dissolved in tetrahydrofuran. The obtained solution was fractionated in accordance with the thin layer chromatography using a thin layer of silica gel and 3.6 g of red orange crystals having a high purity were obtained. The crystals were confirmed to be Compound A-4 from FD-MS (637).
  • SYNTHESIS EXAMPLE 8 Compound A-14
  • Compound A-14 was synthesized via the reaction route shown in the following (S. H. Tucker, J. Chem. Soc., 1462 (1958)):
    Figure US20070003788A1-20070104-C00021
    Figure US20070003788A1-20070104-C00022
  • SYNTHESIS EXAMPLE 9 Compound A-6
  • Compound A-6 was synthesized via the reaction route shown in the following:
    Figure US20070003788A1-20070104-C00023
  • SYNTHESIS EXAMPLE 10 Compound B-5
  • Compound B-5 was synthesized via the reaction route shown in the following (Beil. 5(3) 2278):
    Figure US20070003788A1-20070104-C00024
  • SYNTHESIS EXAMPLE 11 Compound A-12
  • Compound A-12 was synthesized via the reaction route shown in the following:
    Figure US20070003788A1-20070104-C00025
  • SYNTHESIS EXAMPLE 12
  • A composition containing 3,10-bisdiphenylamino-7,14-diphenylacenaphtho[1,2-k]fluoranthene and 3,11-bisdiphenylamino-7,14-diphenylacenaphtho[1,2-k]fluoranthene in a ratio of the amounts by mole in the range of 20:80 to 30:70 was synthesized via the reaction route shown in the following:
    Figure US20070003788A1-20070104-C00026
  • (A) Synthesis of a composition (18) containing 3,10- and 3,11-dibromo-7,14-diphenylacenaphtho[1,2-k]fluoranthenes in a ratio of the amounts by mole of 22:78
  • The solution portion of the reaction mixture obtained in Synthesis Example 1 (A) was concentrated, dissolved in tetrahydrofuran and recrystallized and the formed precipitates were removed. The solution portion was concentrated and a dibromo compound was obtained. This dibromo compound was confirmed to be a composition containing 3,10- and 3,11-dibromo-7,14-diphenylacenaphtho[1,2-k]fluoranthenes in a ratio of the amounts by mole of 22:78 from the 1H-NMR spectrum.
  • (B) Synthesis of a composition containing 3,10- and 3,11-bisdiphenylamino-7,14-diphenylacenaphtho[1,2-k]fluoranthenes in a ratio by the amounts by mole in the range of 20:80 to 30:70
  • Into 100 ml of toluene, 5.00 g (7.9 mmole) of the composition containing 3,10- and 3,11-dibromo-7,14-diphenylacenaphtho[1,2-k]fluoranthenes in a ratio of the amounts by mole of 22:78 (18), 2.78 g (1.6.5 mmole) of diphenylamine, 0.09 g (0.09 mmole) of palladium acetate, 0.44 g (2.2 mmole) of tri-tert-butylphosphine and 2.12 g (19.6 mmole) of sodium tert-butoxide were dissolved and the reaction was allowed to proceed for 6 hours while the mixture was refluxed under heating. After the reaction was completed, the reaction mixture was filtered. The filtrate was concentrated and fractionated in accordance with the column chromatography using a column packed with silica gel and 6.20 g of a red orange powdery solid was obtained. This solid was confirmed to be a composition containing 3,10-bisdiphenylamino-7,14-diphenylacenaphtho [1,2-k]fluoranthene and 3,11-bisdiphenylamino-7,14-diphenylacenaphtho-[1,2-k]fluoranthene in a ratio of the amounts by mole in the range of 20:80 to 30:70 from FD-MS (812) and the 1H-NMR spectrum (H: 400 MHz; the solvent of the measurement: DMSO (120° C.); shown in FIG. 1).
  • SYNTHESIS EXAMPLE 13
  • 5,12- and/or 5,13-Bisdiphenylamino-9,16-diphenylfluorantheno[8,9-a]aceanthrylenes were synthesized via the reaction route shown in the following:
    Figure US20070003788A1-20070104-C00027
  • (A) Synthesis of 9,1,6-diphenylfluorantheno[8,9-a]aceanthrylene (19)
  • With reference to the Bandyopadhyai's process, 9,16-diphenylfluorantheno[8,9-a]aceanthrylene was synthesized by the reaction of 1,3-diphenylcyclopenta[a]aceanthrylen-2-one and acenaphthylene using aceanthrylenequinone as the starting material [Indian J. Chem., Vol. 21B, 91 (1982)].
  • (B) Synthesis of 5,12- and/or 5,13-dibromo-9,16-diphenylfluorantheno[8,9-a]aceanthrylene (20)
  • Into 240 ml of methylene chloride, 4.00 g (7.6 mmole) of 9,16-diphenylfluorantheno[8,9-a]aceanthrylene (19) was dissolved. While the obtained mixture was refluxed under heating, 18.0 ml of a 1M methylene chloride solution of bromine was added dropwise and the reaction was allowed to proceed for 2 hours. The resultant reaction mixture was washed with an aqueous solution of sodium hydroxide and pure water and concentrated and 5.06 g of a yellow brown powdery solid was obtained. The solid was confirmed to be 5,12-dibromo-9,16-diphenylfluorantheno[8,9-a]aceanthrylene and/or 5,13-dibromo-9,16-diphenylfluorantheno[8,9-a]aceanthrylene from FD-MS (686) and the 1H-NMR spectrum.
  • (C) Synthesis of 5,12- and/or 5,13-bisdiphenylamino-9,16-diphenylfluorantheno[8,9-a]aceanthrylene
  • Into 200 ml of toluene, 5.00 g (7.4 mmole) of 5,12- and/or 5,13-dibromo-9,16-diphenylfluorantheno[8,9-a]aceanthrylene (20), 2.75 g (16.2 mmole) of diphenylamine, 0.09 g (0.4 mmole) of palladium acetate, 0.43 g (2.2 mmole) of tri-tert-butylphosphine and 2.05 g (20.6 mmole) of sodium tert-butoxide were dissolved and the reaction was allowed to proceed for 5 hours while the mixture was refluxed under heating. After the reaction was completed, the reaction mixture was filtered. The filtrate was concentrated and fractionated in accordance with the column chromatography using a column packed with silica gel and 4.27 g of a black purple powdery solid of the main component was obtained. The main component was confirmed to be 5,12- and/or 5,13-bisdiphenylamino-9,16-diphenylfluorantheno[8,9-a]aceanthrylene from FD-MS (862) and the 1H-NMR spectrum (H: 400 MHz; the solvent of the measurement: DMSO (120° C.); shown in FIG. 2).
  • SYNTHESIS EXAMPLE 14
  • 3,11- and/or 3,12-Bisdiphenylamino-7,16-diphenylfluorantheno[8,9-k]fluoranthene was synthesized via the reaction route shown in the following:
    Figure US20070003788A1-20070104-C00028
    Figure US20070003788A1-20070104-C00029
  • (A) Synthesis of 2,5-diphenylfluorantheno[11′,12′-3,4]furan (21)
  • In accordance with the N. Campbell's process [J. Chem. Soc., 1555 (1949)], 2,5-diphenylfluorantheno[11′,12′-3,4]furan (21) was synthesized by the reaction of 7,8-dimethylacenaphthene-7,8-diol which was synthesized in accordance with the S. H. Tucker's process [J. Chem. Soc., 1462 (1958)] and trans-1,2-dibenzoylethylene.
  • (B) Synthesis of 7,16-diphenylfluorantheno[8,9-k]fluoranthene (22)
  • Into a mixed solvent containing 500 ml of xylene and 660 ml of methylene chloride, 5.00 g (12.7 mmole) of 2,5-diphenylfluorantheno[11′,12′-3,4]furan (21) and 3.86 g (19.0 mmole) of acenaphthylene were added and the mixture was refluxed under heating for 3 hours. The solution was cooled and 16.0 ml of a 1M methylene chloride solution of BBr3 was added dropwise to the cooled solution. The obtained solution was heated at 60° C. for 4 hours. The resultant reaction mixture was washed with an aqueous solution of sodium hydrogencarbonate and pure water, concentrated and purified in accordance with the column chromatography using a column packed with silica gel and 3.20 g of yellow crystals were obtained. The crystals were confirmed to be 7,16-diphenylfluorantheno[8,9-k]fluoranthene (22) from FD-MS (528) and the 1H-NMR spectrum.
  • (C) Synthesis of 3,11- and/or 3,12-dibromo-7,16-diphenylfluorantheno[8,9-k]fluoranthene (23)
  • Into 230 ml of methylene chloride, 2.30 g (4.3 mmole) of 7,16-diphenylfluorantheno[8,9-k]fluoranthene (22) was dissolved. While the obtained solution was refluxed under heating, 9.0 ml of a 1M methylene chloride solution of bromine was added dropwise to the solution and then the reaction was allowed to proceed for 2 hours. The resultant reaction mixture was washed with an aqueous solution of sodium hydroxide and pure water and concentrated and 3.06 g of a light yellow brown crystals were obtained. The crystals were confirmed to be 3,11- and/or 3,12-dibromo-7,16-diphenylfluorantheno[8,9-k]fluoranthene (23) from FD-MS (686) and the 1H-NMR spectrum.
  • (D) Synthesis of 3,11- and/or 3,12-bisdiphenylamino-7,16-diphenylfluorantheno[8,9-k]fluoranthene
  • Into 120 ml of toluene, 3.92 g (5.7 mmole) of 3,11- and/or 3,12-dibromo-7,16-diphenylfluorantheno[8,9-k]fluoranthene (23), 2.03 g (12.0 mmole) of diphenylamine, 0.07 g (0.07 mmole) of palladium acetate, 0.33 g (1.7 mmole) of tri-tert-butylphosphine and 1.56 g (14.4 mmole) of sodium tert-butoxide were dissolved and the reaction was allowed to proceed for 6 hours while the mixture was refluxed under heating. After the reaction was completed, the reaction mixture was filtered. The filtrate was purified in accordance with the column chromatography using a column packed with silica gel and 4.27 g of a orange powdery crystals were obtained. The crystals were confirmed to be 3,11- and/or 3,12-bisdiphenylamino-7,16-diphenylfluorantheno[8,9-k]fluoranthene from FD-MS (862) and the 1H-NMR spectrum (H: 400 MHz; the solvent of the measurement: DMSO (120° C.); shown in FIG. 3).
  • SYNTHESIS EXAMPLE 15
  • A composition containing 3,10-bisditolylamino-7,14-diphenylacenaphtho[1,2-k]fluoranthene and 3,11-bisditolylamino-7,14-diphenylacenaphtho[1,2-k]fluoranthene in a ratio of the amounts by mole in the range of 80:20 to 90:10 was synthesized.
  • (A) Synthesis of a composition (18) containing 3,10- and 3,11-dibromo-7,14-diphenylacenaphtho[1,2-k]fluoranthenes
  • The solution portion of the reaction mixture obtained in Synthesis Example 1 (A) was concentrated, dissolved entirely in tetrahydrofuran and recrystallized and the formed precipitates were removed. The solution portion was concentrated and a dibromo compound was obtained. This dibromo compound was confirmed to be a composition containing 3,10- and 3,11-dibromo-7,14-diphenylacenaphtho [1,2-k]fluoranthenes containing in a ratio of the amounts by mole in the range of 80:20 to 90:10 from the 1H-NMR spectrum.
  • (B) Synthesis of a composition containing 3,10- and 3,11-bisditolylamino-7,14-diphenylacenaphtho[1,2-k]fluoranthenes in a ratio of the amounts by mole in the range of 80:20 to 90:10
  • In accordance with the same procedures as those conducted in Synthesis Example 12 (B) except that di-p,p-tolylamine was used in place of diphenylamine, a composition (A-16) containing 3,10- and 3,11-bisditolylamino-7,14-diphenylacenaphtho[1,2-k]fluoranthenes in a ratio of the amounts by mole in the range of 80:20 to 90:10 was synthesized.
  • SYNTHESIS EXAMPLE 16
  • A composition containing 3,10-bisdiphenylamino-7,14-diphenylacenaphtho[1,2-k]fluoranthene and 3,11-bisdiphenylamino-7,14-diphenylacenaphtho[1,2-k]fluoranthene in a ratio of the amounts by mole in the range of 80:20 to 90:10 was synthesized.
  • (A) Synthesis of a composition (18) containing 3,10- and 3,11-dibromo-7,14-diphenylacenaphtho[1,2-k]fluoranthenes
  • The composition containing the dibromo compounds was obtained in accordance with the same procedures as those conducted in Synthesis Example 15 (A).
  • (B) Synthesis of a composition (A-1) containing 3,10- and 3,11-bisdiphenylamino-7,14-diphenyloacenaphtho[1,2-k]fluoranthenes in a ratio of the amounts by mole in the range of 80:20 to 90:10
  • In accordance with the same procedures as those conducted in Synthesis Example 12 (B) using the composition obtained above in (A), a composition containing 3,10-bisdiphenylamino-7,14-diphenylacenaphtho-[1,2-k]fluoranthene and 3,11-bisdiphenylamino-7,14-diphenylacenaphtho[1,2-k]fluoranthene in a ratio of the amounts in mole in the range of 80:20 to 90:10 was synthesized.
  • EXAMPLE 1
  • On a cleaned glass plate having an ITO electrode, the following compound (H232) as the hole injecting material was vapor deposited so that a film having a thickness of 60 nm was formed.
    Figure US20070003788A1-20070104-C00030

    Then, the following compound (NPD) as the hole transporting material was vapor deposited so that a film having a thickness of 20 nm was formed.
    Figure US20070003788A1-20070104-C00031
  • Subsequently, an aluminum complex of 8-hydroxyquinoline (Alq) and 3,10- and 3,11-diphenylamino-7,14-diphenylacenaphthofluoranthenes (Compound A-1) as the materials for the light emitting layer were vapor deposited so that a film containing 2.1% by mole of Compound A-1 and having a thickness of 50 nm was formed. The structure of Alq is shown in the following:
    Figure US20070003788A1-20070104-C00032

    An electron injecting layer was formed by vapor deposition of Alq alone so that the formed film had a thickness of 10 nm. A layer of an inorganic compound was formed on the electron injecting layer by vapor deposition of LiF so that the formed film had a thickness of 0.2 nm. On the thus formed layer, aluminum was vapor deposited so that an electrode having a thickness of 170 nm was formed and an organic EL device was obtained. The vapor depositions for forming the above layers were conducted under 10−6 Torr while the substrate was kept at the room temperature.
  • The light emitting property of this device was as follows: the luminance under application of a direct current of 5.5 V: 103 cd/m2; the efficiency of light emission: as high as 6.2 cd/A. The emitted light was orange light having chromaticity coordinates of (0.56, 0.44). When the device was driven under a constant current at an initial luminance of 500 cd/m2, the half-life was as long as 2600 hours.
  • This example shows that an organic EL device exhibiting a high performance can be obtained by using Compound A-1 as the doping material. The spectrum of the light emitted by the device was obtained and found to be the same as the fluorescence spectrum of the doping material. Thus, it is shown that the doping material worked as the center of light emission.
  • COMPARATIVE EXAMPLE 1
  • An organic EL device was obtained in accordance with the same procedures as those conducted in Example 1 except that rubrene was vapor deposited in place of Compound A-1 so that a film containing 4.0% by mole of rubrene was formed.
  • The light emitting property of this device was as follows: the luminance under application of a direct current of 5.5 V: 105 cd/m2; the efficiency of light emission: 7.6 cd/A. However, the emitted light was yellow light having chromaticity coordinates of (0.50, 0.50). The half-life was 1000 hours when the device was driven under a constant current at an initial luminance of 500 cd/m2 and shorter than that of the device of Example 1.
  • COMPARATIVE EXAMPLE 2
  • An organic EL device was obtained in accordance with the same procedures as those conducted in Example 1 except that fluorantheno[8,9-k]fluoranthene described in Japanese Patent Application Laid-Open No. Heisei 11(1999)-40360 was vapor deposited in place of Compound A-1 so that a film containing 2% by mole of this fluoranthene was formed.
  • The light emitting property of this device was as follows: the luminance under application of a direct current of 5.5 V: 35 cd/m2; the efficiency of light emission: 3.0 cd/A. The emitted light was yellow green light. The half-life was as short as 300 hours when the device was driven under a constant current at an initial luminance of 500 cd/m2.
  • COMPARATIVE EXAMPLE 3
  • An organic EL device was obtained in accordance with the same procedures as those conducted in Example 1 except that 7,14-diphenylacenaphtho[1,2-k]fluoranthene described in Japanese Patent Application Laid-Open No. Heisei 10(1998)-168445 was vapor deposited on place of Compound A-1 so that a film containing 2% by mole of this fluoroanthene was formed.
  • The light emitting property of this device was as follows: the luminance under application of a direct current of 6 V: 69 cd/m2; the efficiency of light emission: 1.3 cd/A. The emitted light was yellow green light. The efficiency was smaller than that of a device in which Alq alone was used as the light emitting material. The half-life was as short as 400 hours when the device was driven under a constant current at an initial luminance of 500 cd/m2. When the spectrum of the light emitted by the device was obtained, the spectrum did not agree with the fluorescence spectrum of the doping material. Thus, it was found that the above compound did not emit light and the yellow green light was emitted from Alq. The doping material did not work as the light emitting material.
  • EXAMPLES 2 TO 11
  • Organic EL devices were obtained in accordance with the same procedures as those conducted in Example 1 except that compounds shown in Table 1 were vapor deposited in place of Compound A-1.
  • The light emitting properties of these devices were obtained in accordance with the same methods as those used in Example 1. The voltage applied in the measurements, the luminance, the efficiency of light emission, the color of the emitted light and the half-life when the device was driven under a constant current at an initial luminance of 500 cd/m2 are shown in Table 1.
  • EXAMPLE 12
  • An organic EL device was obtained in accordance with the same procedures as those conducted in Example 1 except that the composition containing the prescribed relative amounts of the isomers which was obtained in Synthesis Example 12 (Compound A-1) was used for the light emitting layer in a concentration of 100% and Alq was not used.
  • The light emitting property of this device was as follows: the luminance under application of a direct current of 4.5 V: 80 cd/m2; the efficiency of light emission: 3.5 cd/A. The half-life was as long as 2100 hours when the device was driven under a constant current at an initial luminance of 500 cd/m2. The device had a longer life than that of the device of Example 1 and can be used also as the main light emitting material.
  • EXAMPLE 13
  • An organic EL device was obtained in accordance with the same procedures as those conducted in Example 1 except that the composition containing the prescribed relative amounts of the isomers which was obtained in Synthesis Example 15 (Compound A-16) was used for the light emitting layer in place of Compound A-1.
  • The light emitting property of this device was as follows: the luminance under application of a direct current of 5.5 V: 94 cd/m2; the efficiency of light emission: 5.94 cd/A. The emitted light was reddish orange light having chromaticity coordinates of (0.60, 0.39). The half-life was as long as 3200 hours when the device was driven under a constant current at an initial luminance of 500 cd/m2.
  • EXAMPLE 14
  • An organic EL device was obtained in accordance with the same procedures as those conducted in Example 1 except that the composition containing the prescribed relative amounts of the isomers which was obtained in Synthesis Example 16 (Compound A-1) was used for the light emitting layer in place of Compound A-1.
  • The light emitting property of this device was as follows: the luminance under application of a direct current of 6 V: 100 cd/m2; the efficiency of light emission: 4.75 cd/A. The emitted light had chromaticity coordinates of (0.58, 0.42). The half-life was as long as 1800 hours when the device was driven under a constant current at an initial luminance of 500 cd/m2. The light having more reddish color than that of the light emitted in Example 1 could be emitted by using the above compound. This result was obtained because the composition contained a greater amount of the isomer 3,11-bisdiphenylamino-7,14-diphenylacenaphtho[12-k]fluoranthene which could emit light having a longer wavelength.
    TABLE 1
    Efficiency
    of light Color of
    Voltage Luminance emission emitted Half-life
    Compound (V) (cd/m2) (cd/A) light (hour)
    Example 2 A-2  5.5 140 5.7 reddish 2800
    orange
    Example 3 A-8  5.8 120 3.6 orange 2100
    Example 4 A-14 5.2 120 6.1 red 2700
    Example 5 A-16 6.0 170 4.7 reddish 3100
    orange
    Example 6 B-3  6.0 160 3.2 reddish 1900
    orange
    Example 7 B-15 5.5 130 2.8 orange 1800
    Example 8 B-17 5.8 110 2.0 reddish 1700
    orange
    Example 9 B-18 6.1 120 2.8 reddish 2000
    orange
    Example 10 A-4  7.2 110 3.7 red 1000
    Example 11 B-5  6.0 120 6.7 yellowish 1800
    green
  • INDUSTRIAL APPLICABILITY
  • As described above in detail, the organic electroluminescence device of the present invention which utilizes the compound selected from the compounds represented by general formulae [1] to [18] emits yellowish to reddish light, exhibits an excellent purity of color and a high efficiency of light emission and has a long life.
  • Therefore, the organic electroluminescence device of the present invention is advantageously used as a light source such as a planar light emitting member of televisions and a back light of displays.

Claims (22)

1-10. (canceled)
11. An organic electroluminescence device which comprises an organic layer disposed between at least one pair of electrodes, wherein the organic layer comprises a host material and a compound selected from compounds represented by the following general formula [1], [2], and [4] to [16]:
Figure US20070003788A1-20070104-C00033
Figure US20070003788A1-20070104-C00034
wherein X1 to X20 each independently represents hydrogen atom, a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, a linear, branched or cyclic alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted aryl group having 6 to 30 carbon atoms, a substituted or unsubstituted aryloxy group having 6 to 30 carbon groups, a substituted or unsubstituted arylamino group having 6 to 30 carbon atoms, a substituted or unsubstituted alkylamino group having 1 to 30 carbon atoms, a substituted or unsubstituted arylalkylamino group having 7 to 30 carbon atoms or a substituted or unsubstituted alkenyl group having 8 to 30 carbon atoms; a pair of adjacent groups represented by X1 to X20 and a pair of adjacent substituents to groups represented by X1 to X20 may form a cyclic structure in combination; when a pair of adjacent substituents are aryl groups, the pair of substituents may be a single group; and at least one of substituents represented by X1 to Xi, i representing a number of 12 to 20, comprises an amine group or an alkenyl group.
12. The organic electroluminescence device according to claim 11, wherein the organic layer is at least one of a hole transporting layer and a light emitting layer.
13. The organic electroluminescence device according to claim 11, wherein the organic layer comprises 1 to 70% by weight of said compound.
14. The organic electroluminescence device according to claim 11, wherein a layer of an inorganic compound is disposed between the organic layer and any of the electrodes.
15. The organic electroluminescence device according to claim 12, wherein a layer of an inorganic compound is disposed between the organic layer and any of the electrodes.
16. The organic electroluminescence device according to claim 13, wherein a layer of an inorganic compound is disposed between the organic layer and any of the electrodes.
17. The organic electroluminescence device according to claim 11, which emits reddish light.
18. The organic electroluminescence device according to claim 12, which emits reddish light.
19. The organic electroluminescence device according to claim 13, which emits reddish light.
20. The organic electroluminescence device according to claim 14, which emits reddish light.
21. The organic electroluminescence device according to claim 15, which emits reddish light.
22. The organic electroluminescence device according to claim 16, which emits reddish light.
23. The organic electroluminescence device according to claim 11, wherein the organic layer comprises said compound and isomers thereof.
24. The organic electroluminescence device according to claim 12, wherein the organic layer comprises said compound and isomers thereof.
25. The organic electroluminescence device according to claim 13, wherein the organic layer comprises said compound and isomers thereof.
26. The organic electroluminescence device according to claim 14, wherein the organic layer comprises said compound and isomers thereof.
27. The organic electroluminescence device according to claim 17, wherein the organic layer comprises said compound and isomers thereof.
28. The organic electroluminescence device according to claim 23, wherein, among said compound and the isomers thereof, a ratio of an amount by mole of an isomer which can emit light having a longer wavelength to an amount by mole of an isomer which can emit light having a shorter wave is in a range of 90:10 to 60:40.
29. The organic electroluminescence device according to claim 24, wherein, among said compound and the isomers thereof, a ratio of an amount by mole of an isomer which can emit light having a longer wavelength to an amount by mole of an isomer which can emit light having a shorter wave is in a range of 90:10 to 60:40.
30. The organic electroluminescence device according to claim 25, wherein, among said compound and the isomers thereof, a ratio of an amount by mole of an isomer which can emit light having a longer wavelength to an amount by mole of an isomer which can emit light having a shorter wave is in a range of 90:10 to 60:40.
31. The organic electroluminescence device according to claim 11, wherein said host material is selected from the group consisting of derivatives of anthracene, naphthalene, phenanthrene, pyrene, tetracene, coronene, chrysene, perylene, phthaloperylene, naphthaloperylene, perynone, phthaloperynone, naphthaloperynone, and rubrene.
US11/397,561 1999-09-20 2006-04-05 Organic electroluminescence device Abandoned US20070003788A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/397,561 US20070003788A1 (en) 1999-09-30 2006-04-05 Organic electroluminescence device
US11/947,899 US20080074045A1 (en) 1999-09-20 2007-11-30 Organic electroluminescence device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP279462/1999 1999-09-30
JP27946299 1999-09-30
US09/675,201 US6815090B1 (en) 1999-09-30 2000-09-29 Organic electroluminescence device
US10/847,307 US20040214043A1 (en) 1999-09-30 2004-05-18 Organic electroluminescence device
US11/159,390 US20060024523A1 (en) 1999-09-30 2005-06-23 Organic electroluminescence device
US11/397,561 US20070003788A1 (en) 1999-09-30 2006-04-05 Organic electroluminescence device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/159,390 Continuation US20060024523A1 (en) 1999-09-20 2005-06-23 Organic electroluminescence device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/947,899 Continuation US20080074045A1 (en) 1999-09-20 2007-11-30 Organic electroluminescence device

Publications (1)

Publication Number Publication Date
US20070003788A1 true US20070003788A1 (en) 2007-01-04

Family

ID=17611415

Family Applications (6)

Application Number Title Priority Date Filing Date
US09/675,201 Expired - Lifetime US6815090B1 (en) 1999-09-20 2000-09-29 Organic electroluminescence device
US10/244,164 Expired - Lifetime US6818327B2 (en) 1999-09-30 2002-09-16 Organic electroluminescence device
US10/847,307 Abandoned US20040214043A1 (en) 1999-09-20 2004-05-18 Organic electroluminescence device
US11/159,390 Abandoned US20060024523A1 (en) 1999-09-20 2005-06-23 Organic electroluminescence device
US11/397,561 Abandoned US20070003788A1 (en) 1999-09-20 2006-04-05 Organic electroluminescence device
US11/947,899 Abandoned US20080074045A1 (en) 1999-09-20 2007-11-30 Organic electroluminescence device

Family Applications Before (4)

Application Number Title Priority Date Filing Date
US09/675,201 Expired - Lifetime US6815090B1 (en) 1999-09-20 2000-09-29 Organic electroluminescence device
US10/244,164 Expired - Lifetime US6818327B2 (en) 1999-09-30 2002-09-16 Organic electroluminescence device
US10/847,307 Abandoned US20040214043A1 (en) 1999-09-20 2004-05-18 Organic electroluminescence device
US11/159,390 Abandoned US20060024523A1 (en) 1999-09-20 2005-06-23 Organic electroluminescence device

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/947,899 Abandoned US20080074045A1 (en) 1999-09-20 2007-11-30 Organic electroluminescence device

Country Status (9)

Country Link
US (6) US6815090B1 (en)
EP (2) EP1138745B1 (en)
JP (1) JP4601234B2 (en)
KR (1) KR100842989B1 (en)
CN (2) CN1271167C (en)
AT (1) ATE358169T1 (en)
DE (1) DE60034105T2 (en)
TW (1) TW490990B (en)
WO (1) WO2001023497A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050064233A1 (en) * 2002-07-19 2005-03-24 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and organic light emitting medium
US20110024737A1 (en) * 2008-05-22 2011-02-03 Canon Kabushiki Kaisha Fused polycyclic compound and organic light emitting device having the compound
US20110127908A1 (en) * 2008-08-04 2011-06-02 Canon Kabushiki Kaisha Fused polycyclic compound and organic light-emitting device using the compound
US20110215307A1 (en) * 2010-03-08 2011-09-08 Semiconductor Energy Laboratory Co., Ltd. Light-Emitting Element, Light-Emitting Device, Electronic Device, and Lighting Device
US20110240971A1 (en) * 2010-03-31 2011-10-06 Semiconductor Energy Laboratory Co., Ltd. Light-Emitting Element, Light-Emitting Device, Electronic Device, and Lighting Device
US8759590B2 (en) 2008-07-30 2014-06-24 Idemitsu Kosan Co., Ltd. Indenopyrene compound, organic thin film solar cell material using the same, and organic thin film solar cell
US9023491B2 (en) 2010-03-23 2015-05-05 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
US9048439B2 (en) 2010-03-31 2015-06-02 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device comprising a metal complex having a metal-oxygen bond and an aromatic ligand

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4601234B2 (en) * 1999-09-30 2010-12-22 出光興産株式会社 Organic electroluminescence device
EP1388180A2 (en) * 2001-05-18 2004-02-11 Cambridge University Technical Services Limited Electroluminescent device
JP4885381B2 (en) * 2001-07-23 2012-02-29 一般財団法人石油エネルギー技術センター Novel aromatic compound and organic electroluminescence device using the same
JP4860849B2 (en) * 2001-09-14 2012-01-25 一般財団法人石油エネルギー技術センター Novel aromatic compound having amino group and organic electroluminescence device using the same
JP4293592B2 (en) * 2003-03-28 2009-07-08 Tdk株式会社 Organic EL device and organic EL display
CN1820548A (en) * 2003-07-28 2006-08-16 出光兴产株式会社 White organic electroluminescent element
DE10342340A1 (en) * 2003-09-11 2005-04-14 Basf Ag Compounds based on fluoranthene and their use
JP4325336B2 (en) * 2003-09-19 2009-09-02 東洋インキ製造株式会社 Material for organic electroluminescence device and organic electroluminescence device
DE10345583A1 (en) 2003-09-29 2005-05-19 Basf Ag Synthesis of phenyl-substituted fluoranthenes by Diels-Alder reaction and their use
WO2005081587A1 (en) * 2004-02-19 2005-09-01 Idemitsu Kosan Co., Ltd. White color organic electroluminescence device
JP2005272805A (en) * 2004-02-24 2005-10-06 Sony Corp Organic material and organic electroluminescent element
US7372070B2 (en) * 2004-05-12 2008-05-13 Matsushita Electric Industrial Co., Ltd. Organic field effect transistor and method of manufacturing the same
WO2005117500A1 (en) * 2004-05-27 2005-12-08 Idemitsu Kosan Co., Ltd. White organic electroluminescent device
WO2006103916A1 (en) * 2005-03-25 2006-10-05 Idemitsu Kosan Co., Ltd. Organic electroluminescent device
DE102005040285A1 (en) * 2005-08-25 2007-03-01 Basf Ag Organic LED for emitting white light comprises fluoranthene derivatives for emitting blue light as A component, and arylamine derivatives for emitting blue light as B component, useful in stationary screens such as computer screen
US20070104977A1 (en) 2005-11-07 2007-05-10 Idemitsu Kosan Co., Ltd. Organic electroluminescent device
JP4946013B2 (en) * 2005-11-18 2012-06-06 Tdk株式会社 Organic EL device
CN100555708C (en) * 2005-12-20 2009-10-28 佳能株式会社 Organic luminescent device
TW200740290A (en) 2006-02-28 2007-10-16 Idemitsu Kosan Co Organic electroluminescent device using fluoranthene derivative and indenoperylene derivative
US9214636B2 (en) * 2006-02-28 2015-12-15 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
KR20080103975A (en) * 2006-02-28 2008-11-28 이데미쓰 고산 가부시키가이샤 Naphthacene derivative and organic electroluminescent device using same
US8277955B2 (en) * 2006-10-17 2012-10-02 Seiko Epson Corporation Compound for organic EL device and organic EL device
US8278819B2 (en) 2007-03-09 2012-10-02 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and display
JP4811314B2 (en) * 2007-03-27 2011-11-09 セイコーエプソン株式会社 Organic EL device
JP2008280331A (en) * 2007-04-11 2008-11-20 Chisso Corp Dibenzophenalene compound, material for light emitting element and organic electroluminescent element using the same
CN101679206B (en) * 2007-04-12 2016-05-11 日产化学工业株式会社 oligoaniline compound
JP5361237B2 (en) * 2007-05-16 2013-12-04 キヤノン株式会社 Benzo [a] fluoranthene compound and organic light-emitting device using the same
JP5441348B2 (en) * 2007-05-16 2014-03-12 キヤノン株式会社 Benzo [a] fluoranthene compound and organic light-emitting device using the same
JP2009132674A (en) * 2007-10-31 2009-06-18 Idemitsu Kosan Co Ltd Photoelectric converter material composed of acenaphthofluoranthene compound and photoelectric converter using the same
WO2009057430A1 (en) * 2007-10-31 2009-05-07 Idemitsu Kosan Co., Ltd. Photoelectric converter material composed of acenaphthofluoranthene and photoelectric converter using the same
US8877350B2 (en) * 2007-12-11 2014-11-04 Global Oled Technology Llc White OLED with two blue light-emitting layers
JP2009188136A (en) * 2008-02-05 2009-08-20 Idemitsu Kosan Co Ltd Organic el element and display device
JP5452881B2 (en) * 2008-04-23 2014-03-26 出光興産株式会社 Organic thin film solar cell material and organic thin film solar cell using the same
JP5452888B2 (en) * 2008-05-30 2014-03-26 出光興産株式会社 Organic thin film solar cell
WO2010041701A1 (en) * 2008-10-09 2010-04-15 日産化学工業株式会社 Charge-transporting varnishes
JP5580976B2 (en) * 2008-10-30 2014-08-27 出光興産株式会社 Organic thin film solar cell
US8283054B2 (en) 2009-04-03 2012-10-09 Global Oled Technology Llc Tandem white OLED with efficient electron transfer
TWI448534B (en) * 2009-09-28 2014-08-11 Ritdisplay Corp Organic electroluminescence device
CN102473857A (en) 2010-01-15 2012-05-23 出光兴产株式会社 Organic electroluminescent element
JP4750893B1 (en) 2010-03-30 2011-08-17 キヤノン株式会社 Novel organic compounds and organic light emitting devices
JP5618647B2 (en) * 2010-06-18 2014-11-05 キヤノン株式会社 Novel organic compound and organic light emitting device having the same
JP5658937B2 (en) * 2010-07-27 2015-01-28 出光興産株式会社 Indenoperylene compound and organic thin film solar cell using the same
CN103097337A (en) 2010-07-27 2013-05-08 出光兴产株式会社 Indenoperylene compound, material for organic thin-film solar cell comprising indenoperylene derivative, and organic thin-film solar cell using same
JP2012028687A (en) * 2010-07-27 2012-02-09 Idemitsu Kosan Co Ltd Organic thin film solar cell material including indenoperylene derivative and organic thin film solar cell using the same
CN102082230B (en) * 2010-09-16 2012-09-26 昆山维信诺显示技术有限公司 Infrared organic electroluminescent device
JP5713699B2 (en) * 2011-01-20 2015-05-07 キヤノン株式会社 Organic compound, organic light emitting device and image display device
JP5911377B2 (en) * 2011-08-04 2016-04-27 キヤノン株式会社 Organic compound and organic light emitting device having the same
JP5946264B2 (en) * 2011-11-16 2016-07-06 ユー・ディー・シー アイルランド リミテッド ORGANIC ELECTROLUMINESCENT ELEMENT, ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, LIGHT EMITTING DEVICE, DISPLAY DEVICE AND LIGHTING DEVICE USING THE ELEMENT
US9678560B2 (en) 2011-11-28 2017-06-13 Intel Corporation Methods and apparatuses to wake computer systems from sleep states
JP6084001B2 (en) * 2011-12-06 2017-02-22 キヤノン株式会社 Novel organic compound, organic light emitting device and image display device
CN102790184B (en) * 2012-07-31 2016-12-21 昆山维信诺显示技术有限公司 A kind of Amber organic electroluminescent device
US20140197378A1 (en) * 2013-01-14 2014-07-17 E I Du Pont De Nemours And Company Deuterated compounds for luminescent applications
CN104073246A (en) * 2013-03-29 2014-10-01 海洋王照明科技股份有限公司 Organic electrophosphorescent main body material as well as preparation method thereof and organic electroluminescence device
WO2017086645A2 (en) * 2015-11-18 2017-05-26 에스에프씨 주식회사 Organic light emitting diode having long - life characteristics
CN108675941B (en) * 2018-04-13 2020-07-10 华中科技大学 Non-doped hole transport material based on dicyano fluoranthene

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5219692A (en) * 1989-03-29 1993-06-15 Ricoh Company, Ltd. Electrophotographic photoconductors and tertiary amine compounds having condensed polycyclic group for use in the same
US6121727A (en) * 1997-04-04 2000-09-19 Mitsubishi Chemical Corporation Organic electroluminescent device
US6127516A (en) * 1997-12-30 2000-10-03 Board Of Regents, The University Of Texas System Electrochromic material based on a conducting ladder polymer
US6803120B2 (en) * 1999-12-28 2004-10-12 Idemitsu Kosan Co., Ltd. Organic electroluminescence device emitting white light
US6818327B2 (en) * 1999-09-30 2004-11-16 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
US6866947B1 (en) * 1999-12-28 2005-03-15 Idemitsu Kosan Co., Ltd. Organic electroluminescence device emitting white light
US20070243411A1 (en) * 2006-02-28 2007-10-18 Idemitsu Kosan Co., Ltd. Organic electroluminescence device

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0378757A (en) * 1989-08-23 1991-04-03 Canon Inc Electrophotographic sensitive body
JP2886218B2 (en) * 1989-11-20 1999-04-26 パイオニア株式会社 EL device
US5061569A (en) * 1990-07-26 1991-10-29 Eastman Kodak Company Electroluminescent device with organic electroluminescent medium
JP2793383B2 (en) * 1991-06-24 1998-09-03 出光興産株式会社 Organic electroluminescence device
US5710799A (en) 1992-06-01 1998-01-20 Fujitsu Limited Cross polarization interference canceler and cross polarization interference eliminating apparatus using the same
JPH06100553A (en) * 1992-09-18 1994-04-12 Nippon Oil & Fats Co Ltd Trioxane derivative and method for chemiluminescence of the same
JP3044142B2 (en) * 1992-10-29 2000-05-22 キヤノン株式会社 EL device
JP3858951B2 (en) * 1996-08-30 2006-12-20 三井化学株式会社 Organic electroluminescence device
JP4070274B2 (en) * 1996-11-07 2008-04-02 三井化学株式会社 Organic electroluminescence device
JP3570832B2 (en) * 1996-12-13 2004-09-29 三井化学株式会社 Organic electroluminescent device
JP3824417B2 (en) * 1997-04-04 2006-09-20 三井化学株式会社 Hydrocarbon compounds and organic electroluminescent devices
JP3731971B2 (en) * 1997-04-17 2006-01-05 三井化学株式会社 Organic electroluminescence device
JP3794819B2 (en) * 1997-04-18 2006-07-12 三井化学株式会社 Fluoranthene derivatives and organic electroluminescent devices
JP3748671B2 (en) * 1997-06-05 2006-02-22 三井化学株式会社 Organic electroluminescence device
JP3801308B2 (en) * 1997-06-06 2006-07-26 三井化学株式会社 Organic electroluminescence device
JP3727139B2 (en) * 1997-06-06 2005-12-14 三井化学株式会社 Organic electroluminescence device
JP3855372B2 (en) * 1997-06-09 2006-12-06 東洋インキ製造株式会社 Organic electroluminescent element material and organic electroluminescent element using the same
JP3781517B2 (en) * 1997-07-22 2006-05-31 三井化学株式会社 Organic electroluminescence device
JP3801326B2 (en) * 1997-11-18 2006-07-26 三井化学株式会社 Organic electroluminescence device
JP3662104B2 (en) * 1997-12-10 2005-06-22 三井化学株式会社 Organic electroluminescence device
JP3659783B2 (en) * 1997-12-12 2005-06-15 三井化学株式会社 Organic electroluminescence device
JP3794827B2 (en) * 1998-07-02 2006-07-12 三井化学株式会社 Hydrocarbon compounds and organic electroluminescent devices
JP3792052B2 (en) * 1998-07-15 2006-06-28 三井化学株式会社 Hydrocarbon compounds and organic electroluminescent devices
KR101018547B1 (en) * 2002-07-19 2011-03-03 이데미쓰 고산 가부시키가이샤 Organic electroluminescent devices and organic luminescent medium

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5219692A (en) * 1989-03-29 1993-06-15 Ricoh Company, Ltd. Electrophotographic photoconductors and tertiary amine compounds having condensed polycyclic group for use in the same
US6121727A (en) * 1997-04-04 2000-09-19 Mitsubishi Chemical Corporation Organic electroluminescent device
US6127516A (en) * 1997-12-30 2000-10-03 Board Of Regents, The University Of Texas System Electrochromic material based on a conducting ladder polymer
US20080074045A1 (en) * 1999-09-20 2008-03-27 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
US6818327B2 (en) * 1999-09-30 2004-11-16 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
US6803120B2 (en) * 1999-12-28 2004-10-12 Idemitsu Kosan Co., Ltd. Organic electroluminescence device emitting white light
US20050019606A1 (en) * 1999-12-28 2005-01-27 Idemitsu Kosan Co., Ltd. Organic electroluminescence device emitting white light
US6866947B1 (en) * 1999-12-28 2005-03-15 Idemitsu Kosan Co., Ltd. Organic electroluminescence device emitting white light
US20050129982A1 (en) * 1999-12-28 2005-06-16 Idemitsu Kosan Co., Ltd. Organic electroluminescence device emitting white light
US20070243411A1 (en) * 2006-02-28 2007-10-18 Idemitsu Kosan Co., Ltd. Organic electroluminescence device

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7927716B2 (en) 2002-07-19 2011-04-19 Idemitsu Kosan, Co., Ltd. Organic electroluminescence device and organic light emitting medium
US7732063B2 (en) 2002-07-19 2010-06-08 Idemitsu Kosan, Co., Ltd. Organic electroluminescence device and organic light emitting medium
US9343682B2 (en) 2002-07-19 2016-05-17 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and organic light emitting medium
US7651786B2 (en) 2002-07-19 2010-01-26 Idemitsu Kosan, Co., Ltd. Organic electroluminescence device and organic light emitting medium
US10243145B2 (en) 2002-07-19 2019-03-26 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and organic light emitting medium
US20100270913A1 (en) * 2002-07-19 2010-10-28 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and organic light emitting medium
US20100277061A1 (en) * 2002-07-19 2010-11-04 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and organic light emitting medium
US9960358B2 (en) 2002-07-19 2018-05-01 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and organic light emitting medium
US20070237984A1 (en) * 2002-07-19 2007-10-11 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and organic light emitting medium
US20060033421A1 (en) * 2002-07-19 2006-02-16 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and organic light emitting medium
US8334648B2 (en) 2002-07-19 2012-12-18 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and organic light emitting medium
US9728727B2 (en) 2002-07-19 2017-08-08 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and organic light emitting medium
US20050064233A1 (en) * 2002-07-19 2005-03-24 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and organic light emitting medium
US8324802B2 (en) 2002-07-19 2012-12-04 Idemitsu Kosan, Co., Ltd. Organic electroluminescence device and organic light emitting medium
US20110024737A1 (en) * 2008-05-22 2011-02-03 Canon Kabushiki Kaisha Fused polycyclic compound and organic light emitting device having the compound
US8586207B2 (en) 2008-05-22 2013-11-19 Canon Kabushiki Kaisha Fused polycyclic compound and organic light emitting device having the compound
US8759590B2 (en) 2008-07-30 2014-06-24 Idemitsu Kosan Co., Ltd. Indenopyrene compound, organic thin film solar cell material using the same, and organic thin film solar cell
US8288016B2 (en) 2008-08-04 2012-10-16 Canon Kabushiki Kaisha Fused polycyclic compound and organic light-emitting device using the compound
US20110127908A1 (en) * 2008-08-04 2011-06-02 Canon Kabushiki Kaisha Fused polycyclic compound and organic light-emitting device using the compound
US9012041B2 (en) 2010-03-08 2015-04-21 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
US20110215307A1 (en) * 2010-03-08 2011-09-08 Semiconductor Energy Laboratory Co., Ltd. Light-Emitting Element, Light-Emitting Device, Electronic Device, and Lighting Device
US9023491B2 (en) 2010-03-23 2015-05-05 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
US9048439B2 (en) 2010-03-31 2015-06-02 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device comprising a metal complex having a metal-oxygen bond and an aromatic ligand
US9276221B2 (en) * 2010-03-31 2016-03-01 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device comprising a phthalocyanine-based material
US20110240971A1 (en) * 2010-03-31 2011-10-06 Semiconductor Energy Laboratory Co., Ltd. Light-Emitting Element, Light-Emitting Device, Electronic Device, and Lighting Device

Also Published As

Publication number Publication date
US20060024523A1 (en) 2006-02-02
ATE358169T1 (en) 2007-04-15
EP1138745A1 (en) 2001-10-04
TW490990B (en) 2002-06-11
CN1271167C (en) 2006-08-23
KR100842989B1 (en) 2008-07-01
JP4601234B2 (en) 2010-12-22
US6815090B1 (en) 2004-11-09
WO2001023497A1 (en) 2001-04-05
EP1138745B1 (en) 2007-03-28
CN1827733A (en) 2006-09-06
EP1757670A3 (en) 2007-03-21
KR20010099809A (en) 2001-11-09
US20040214043A1 (en) 2004-10-28
EP1757670A2 (en) 2007-02-28
US20030054200A1 (en) 2003-03-20
DE60034105D1 (en) 2007-05-10
US20080074045A1 (en) 2008-03-27
CN1327468A (en) 2001-12-19
EP1138745A4 (en) 2005-04-20
US6818327B2 (en) 2004-11-16
DE60034105T2 (en) 2007-07-12

Similar Documents

Publication Publication Date Title
US6818327B2 (en) Organic electroluminescence device
US7053255B2 (en) Substituted diphenylanthracene compounds for organic electroluminescence devices
US6515182B2 (en) Arylamine compound and organic electroluminescence device
US6489046B1 (en) Organic electroluminescence device
US7122256B2 (en) Styryl compound and organic electroluminescence device
US7235312B2 (en) Aromatic compounds and organic electroluminescent devices made by using the same
JP3985895B2 (en) Material for organic electroluminescence device and organic electroluminescence device using the same
JP4028996B2 (en) Material for organic electroluminescence device and organic electroluminescence device using the same
JP4630378B2 (en) Material for organic electroluminescence device and organic electroluminescence device using the same
JP4521105B2 (en) Novel hydrocarbon compounds and organic electroluminescence devices

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION