US20070003275A1 - Photographic prints having magnetically recordable media - Google Patents
Photographic prints having magnetically recordable media Download PDFInfo
- Publication number
- US20070003275A1 US20070003275A1 US10/510,094 US51009404A US2007003275A1 US 20070003275 A1 US20070003275 A1 US 20070003275A1 US 51009404 A US51009404 A US 51009404A US 2007003275 A1 US2007003275 A1 US 2007003275A1
- Authority
- US
- United States
- Prior art keywords
- ink
- actuator
- nozzle
- print media
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000007639 printing Methods 0.000 claims description 18
- 238000012545 processing Methods 0.000 claims description 17
- 239000000976 ink Substances 0.000 description 241
- 238000004519 manufacturing process Methods 0.000 description 41
- 238000000034 method Methods 0.000 description 41
- 230000033001 locomotion Effects 0.000 description 28
- 239000000463 material Substances 0.000 description 27
- 238000010276 construction Methods 0.000 description 23
- 230000008901 benefit Effects 0.000 description 16
- 230000007246 mechanism Effects 0.000 description 16
- 230000008569 process Effects 0.000 description 16
- 230000035882 stress Effects 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 11
- 239000004810 polytetrafluoroethylene Substances 0.000 description 11
- 238000005516 engineering process Methods 0.000 description 10
- 239000000049 pigment Substances 0.000 description 10
- 230000009467 reduction Effects 0.000 description 10
- 238000013461 design Methods 0.000 description 8
- 230000005684 electric field Effects 0.000 description 8
- 229920000642 polymer Polymers 0.000 description 7
- 238000000926 separation method Methods 0.000 description 7
- 239000000758 substrate Substances 0.000 description 7
- 239000004094 surface-active agent Substances 0.000 description 7
- 238000012546 transfer Methods 0.000 description 7
- 235000009899 Agrostemma githago Nutrition 0.000 description 6
- 238000000151 deposition Methods 0.000 description 6
- 238000001035 drying Methods 0.000 description 6
- 239000003921 oil Substances 0.000 description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 5
- 239000010949 copper Substances 0.000 description 5
- 230000008021 deposition Effects 0.000 description 5
- 239000000975 dye Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- 240000000254 Agrostemma githago Species 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 238000009835 boiling Methods 0.000 description 4
- 230000008878 coupling Effects 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 230000005686 electrostatic field Effects 0.000 description 4
- 238000005530 etching Methods 0.000 description 4
- 238000001465 metallisation Methods 0.000 description 4
- 229910001172 neodymium magnet Inorganic materials 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 230000002441 reversible effect Effects 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- 230000003321 amplification Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 238000010304 firing Methods 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 239000012943 hotmelt Substances 0.000 description 3
- 238000003384 imaging method Methods 0.000 description 3
- 229910052746 lanthanum Inorganic materials 0.000 description 3
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 3
- 239000000696 magnetic material Substances 0.000 description 3
- 229910000734 martensite Inorganic materials 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 238000003199 nucleic acid amplification method Methods 0.000 description 3
- 235000021251 pulses Nutrition 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- 229910003321 CoFe Inorganic materials 0.000 description 2
- -1 CoNiFe Inorganic materials 0.000 description 2
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- 229910001329 Terfenol-D Inorganic materials 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 244000178320 Vaccaria pyramidata Species 0.000 description 2
- 230000003115 biocidal effect Effects 0.000 description 2
- 239000003139 biocide Substances 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000005137 deposition process Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 230000008014 freezing Effects 0.000 description 2
- 238000007710 freezing Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000003906 humectant Substances 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000004530 micro-emulsion Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000002715 modification method Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229910001000 nickel titanium Inorganic materials 0.000 description 2
- 238000012856 packing Methods 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 230000001052 transient effect Effects 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 229910000967 As alloy Inorganic materials 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 229910052771 Terbium Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- QJVKUMXDEUEQLH-UHFFFAOYSA-N [B].[Fe].[Nd] Chemical compound [B].[Fe].[Nd] QJVKUMXDEUEQLH-UHFFFAOYSA-N 0.000 description 1
- PXAWCNYZAWMWIC-UHFFFAOYSA-N [Fe].[Nd] Chemical compound [Fe].[Nd] PXAWCNYZAWMWIC-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- ZDVYABSQRRRIOJ-UHFFFAOYSA-N boron;iron Chemical compound [Fe]#B ZDVYABSQRRRIOJ-UHFFFAOYSA-N 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- KPLQYGBQNPPQGA-UHFFFAOYSA-N cobalt samarium Chemical compound [Co].[Sm] KPLQYGBQNPPQGA-UHFFFAOYSA-N 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000881 depressing effect Effects 0.000 description 1
- 238000002059 diagnostic imaging Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- KBQHZAAAGSGFKK-UHFFFAOYSA-N dysprosium atom Chemical compound [Dy] KBQHZAAAGSGFKK-UHFFFAOYSA-N 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 229920005570 flexible polymer Polymers 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 238000007641 inkjet printing Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910001004 magnetic alloy Inorganic materials 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000005499 meniscus Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 239000002991 molded plastic Substances 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 1
- HLXZNVUGXRDIFK-UHFFFAOYSA-N nickel titanium Chemical compound [Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni] HLXZNVUGXRDIFK-UHFFFAOYSA-N 0.000 description 1
- 238000007645 offset printing Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 229920000123 polythiophene Polymers 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229910000938 samarium–cobalt magnet Inorganic materials 0.000 description 1
- 229910001285 shape-memory alloy Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 239000012899 standard injection Substances 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- GZCRRIHWUXGPOV-UHFFFAOYSA-N terbium atom Chemical compound [Tb] GZCRRIHWUXGPOV-UHFFFAOYSA-N 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
- B41J2/17—Ink jet characterised by ink handling
- B41J2/175—Ink supply systems ; Circuit parts therefor
- B41J2/17503—Ink cartridges
- B41J2/17513—Inner structure
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B17/00—Details of cameras or camera bodies; Accessories therefor
- G03B17/24—Details of cameras or camera bodies; Accessories therefor with means for separately producing marks on the film, e.g. title, time of exposure
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B31/00—Associated working of cameras or projectors with sound-recording or sound-reproducing means
- G03B31/06—Associated working of cameras or projectors with sound-recording or sound-reproducing means in which sound track is associated with successively-shown still pictures
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F21/00—Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
- G06F21/70—Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer
- G06F21/78—Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer to assure secure storage of data
- G06F21/79—Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer to assure secure storage of data in semiconductor storage media, e.g. directly-addressable memories
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F21/00—Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
- G06F21/70—Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer
- G06F21/86—Secure or tamper-resistant housings
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N1/00—Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
- H04N1/00127—Connection or combination of a still picture apparatus with another apparatus, e.g. for storage, processing or transmission of still picture signals or of information associated with a still picture
- H04N1/00278—Connection or combination of a still picture apparatus with another apparatus, e.g. for storage, processing or transmission of still picture signals or of information associated with a still picture with a printing apparatus, e.g. a laser beam printer
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N1/00—Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
- H04N1/00127—Connection or combination of a still picture apparatus with another apparatus, e.g. for storage, processing or transmission of still picture signals or of information associated with a still picture
- H04N1/00326—Connection or combination of a still picture apparatus with another apparatus, e.g. for storage, processing or transmission of still picture signals or of information associated with a still picture with a data reading, recognizing or recording apparatus, e.g. with a bar-code apparatus
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N1/00—Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
- H04N1/00127—Connection or combination of a still picture apparatus with another apparatus, e.g. for storage, processing or transmission of still picture signals or of information associated with a still picture
- H04N1/00347—Connection or combination of a still picture apparatus with another apparatus, e.g. for storage, processing or transmission of still picture signals or of information associated with a still picture with another still picture apparatus, e.g. hybrid still picture apparatus
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N1/00—Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
- H04N1/0035—User-machine interface; Control console
- H04N1/00405—Output means
- H04N1/00408—Display of information to the user, e.g. menus
- H04N1/0044—Display of information to the user, e.g. menus for image preview or review, e.g. to help the user position a sheet
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N1/00—Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
- H04N1/21—Intermediate information storage
- H04N1/2104—Intermediate information storage for one or a few pictures
- H04N1/2112—Intermediate information storage for one or a few pictures using still video cameras
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N1/00—Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
- H04N1/21—Intermediate information storage
- H04N1/2104—Intermediate information storage for one or a few pictures
- H04N1/2112—Intermediate information storage for one or a few pictures using still video cameras
- H04N1/2154—Intermediate information storage for one or a few pictures using still video cameras the still video camera incorporating a hardcopy reproducing device, e.g. a printer
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N1/00—Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
- H04N1/32—Circuits or arrangements for control or supervision between transmitter and receiver or between image input and image output device, e.g. between a still-image camera and its memory or between a still-image camera and a printer device
- H04N1/32101—Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title
- H04N1/32128—Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title attached to the image data, e.g. file header, transmitted message header, information on the same page or in the same computer file as the image
- H04N1/32133—Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title attached to the image data, e.g. file header, transmitted message header, information on the same page or in the same computer file as the image on the same paper sheet, e.g. a facsimile page header
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N1/00—Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
- H04N1/32—Circuits or arrangements for control or supervision between transmitter and receiver or between image input and image output device, e.g. between a still-image camera and its memory or between a still-image camera and a printer device
- H04N1/32101—Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title
- H04N1/32128—Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title attached to the image data, e.g. file header, transmitted message header, information on the same page or in the same computer file as the image
- H04N1/32133—Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title attached to the image data, e.g. file header, transmitted message header, information on the same page or in the same computer file as the image on the same paper sheet, e.g. a facsimile page header
- H04N1/32138—Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title attached to the image data, e.g. file header, transmitted message header, information on the same page or in the same computer file as the image on the same paper sheet, e.g. a facsimile page header in an electronic device attached to the sheet, e.g. in an RFID tag
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N5/00—Details of television systems
- H04N5/222—Studio circuitry; Studio devices; Studio equipment
- H04N5/262—Studio circuits, e.g. for mixing, switching-over, change of character of image, other special effects ; Cameras specially adapted for the electronic generation of special effects
- H04N5/2628—Alteration of picture size, shape, position or orientation, e.g. zooming, rotation, rolling, perspective, translation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
- B41J2/135—Nozzles
- B41J2/165—Prevention or detection of nozzle clogging, e.g. cleaning, capping or moistening for nozzles
- B41J2/16585—Prevention or detection of nozzle clogging, e.g. cleaning, capping or moistening for nozzles for paper-width or non-reciprocating print heads
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
- B41J2/17—Ink jet characterised by ink handling
- B41J2/175—Ink supply systems ; Circuit parts therefor
- B41J2/17596—Ink pumps, ink valves
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2221/00—Indexing scheme relating to security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
- G06F2221/21—Indexing scheme relating to G06F21/00 and subgroups addressing additional information or applications relating to security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
- G06F2221/2129—Authenticate client device independently of the user
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N1/00—Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
- H04N1/00127—Connection or combination of a still picture apparatus with another apparatus, e.g. for storage, processing or transmission of still picture signals or of information associated with a still picture
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N1/00—Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
- H04N1/32—Circuits or arrangements for control or supervision between transmitter and receiver or between image input and image output device, e.g. between a still-image camera and its memory or between a still-image camera and a printer device
- H04N1/32101—Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title
- H04N1/32106—Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title separate from the image data, e.g. in a different computer file
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N2101/00—Still video cameras
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N2201/00—Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof
- H04N2201/0077—Types of the still picture apparatus
- H04N2201/0082—Image hardcopy reproducer
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N2201/00—Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof
- H04N2201/0077—Types of the still picture apparatus
- H04N2201/0084—Digital still camera
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N2201/00—Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof
- H04N2201/32—Circuits or arrangements for control or supervision between transmitter and receiver or between image input and image output device, e.g. between a still-image camera and its memory or between a still-image camera and a printer device
- H04N2201/3201—Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title
- H04N2201/3261—Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title of multimedia information, e.g. a sound signal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N2201/00—Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof
- H04N2201/32—Circuits or arrangements for control or supervision between transmitter and receiver or between image input and image output device, e.g. between a still-image camera and its memory or between a still-image camera and a printer device
- H04N2201/3201—Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title
- H04N2201/3261—Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title of multimedia information, e.g. a sound signal
- H04N2201/3264—Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title of multimedia information, e.g. a sound signal of sound signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N2201/00—Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof
- H04N2201/32—Circuits or arrangements for control or supervision between transmitter and receiver or between image input and image output device, e.g. between a still-image camera and its memory or between a still-image camera and a printer device
- H04N2201/3201—Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title
- H04N2201/328—Processing of the additional information
- H04N2201/3284—Processing of the additional information for error correction
Definitions
- the present invention relates to the field of digital image cameras and in particular, discloses a Camera and Media for Art Prints or Photos with Magnetically Recordable Feature.
- the preferred embodiment is preferably implemented through modification of a hand held camera device such as that described in patent application U.S. Ser. No. 09/113,060, which claims priority from Australian provisional application No. PO7991 entitled “Image Processing Method and Apparatus ” (Art 01) filed 15 Jul., 1997.
- the aforementioned patent specification discloses a camera system, hereinafter known as an “Artcam” type camera, wherein sensed images can be directly printed out by an Artcam portable camera unit. Further, the aforementioned specification discloses means and methods for performing various manipulations on images captured by the camera sensing device leading to the production of various effects in any output image.
- the manipulations are disclosed to be highly flexible in nature and can be implemented through the insertion into the Artcam of cards having encoded thereon various instructions for the manipulation of images, the cards hereinafter being known as Artcards.
- the Artcam further has significant onboard processing power in an Artcam Central Processor unit (ACP) which is interconnected to a memory device for the storage of important data and images.
- ACP Artcam Central Processor unit
- the Artcam camera system which a digital camera with an inbuilt integral color printer. Additionally, the camera provides hardware and software for the increasing of the apparent resolution of the image sensing system and the conversion of the image to a wide range of “artistic styles” and a graphic enhancement.
- the Artcam camera system comprises at least one area image sensor for imaging a scene, a camera processor means for processing said imaged scene in accordance with a predetermined scene transformation requirement, a printer for printing out said processed image scene on print media, print media and printing ink stored in a single detachable module inside said camera system, said camera system comprising a portable hand held unit for the imaging of scenes by said area image sensor and printing said scenes directly out of said camera system via said printer.
- the camera system includes a print roll for the storage of print media and printing ink for utilization by the printer, the print roll being detachable from the camera system.
- the print roll can include an authentication chip containing authentication information and the camera processing means is adapted to interrogate the authentication chip so as to determine the authenticity of said print roll when inserted within said camera system.
- the printer can include a drop on demand ink jet printer and guillotine means for the separation of printed photographs.
- a camera system for the creation of images, the camera system comprising a sensor for sensing an image; a processing means for processing the sensed image in accordance with predetermined processing requirements; a printer means for printing the sensed image on the surface of print media, the print media including a magnetically sensitive surface; a magnetic recording means for recording associated information on the magnetically sensitive surface.
- the associated information can comprise audio information associated with the sensed image and the printer means preferably prints the sensed image on a first surface of the print media and the magnetic recording means records the associated information on a second surface of the print media.
- the print media can be stored on an internal detachable roll in the camera system.
- the magnetic sensitive surface can comprise a strip affixed to the back surface of the print media.
- a camera system for recording images comprising:
- an electronic image sensor for sensing an image
- a digital processing means for processing said sensed image in accordance with predetermined processing requirements
- a photo width ink jet printer means for printing said processed image on a surface of ink jet print media, said ink jet print media including a magnetic recording surface;
- a magnetic recording means for recording associated information on said magnetic recording surface.
- said associated information comprises audio information associated with said sensed image.
- the printer means prints said sensed image on a first surface of said print media and the magnetic recording means records said associated information on a second surface of said print media.
- said first and said second surfaces are on different faces of said print media.
- said ink jet print media is stored on an internal detachable roll in said camera system, said camera system comprising a hand held portable camera device, said photo width ink jet printer being built into said hand held portable camera device.
- FIG. 1 illustrates schematically the camera system constructed in accordance to the preferred embodiment
- FIG. 2 illustrates schematically a printer mechanism and recording mechanism of the preferred embodiment.
- FIG. 3 illustrates a format of the magnetic strip on the back of the photo
- FIG. 4 illustrates a reader device utilized to read data recorded on the back of a photograph
- FIG. 5 illustrates the utilization of an apparatus of the preferred embodiment.
- a magnetic sensitive print media material is utilized for the recording of an audio message on the back of an output photograph.
- the Artcam device is altered so as to include a magnetic recording device which can comprise an array of magnetic recorders covering a whole surface of the photograph or alternatively, a magnetic strip can be provided wherein, for example, a central portion of the photograph is magnetically sensitive.
- the Artcam devices are further provided with the ability to record an audio message for later playback.
- the preferred embodiment is preferably implemented through suitable programming of a hand held camera device such as that described in Australian Provisional Patent Application No. PO7991 U.S. Ser. No. 09/113,060) entitled “Image Processing Method and Apparatus (Art 01)” filed 15 Jul., 1997.
- the aforementioned patent specification discloses a camera system, hereinafter known as an “Artcam” type camera, wherein sensed images can be directly printed out by an Artcam portable camera unit. Further, the aforementioned specification discloses means and methods for performing various manipulations on images captured by the camera sensing device leading to the production of various effects in any output image. The manipulations are disclosed to be highly flexible in nature and can be implemented through the insertion into the Artcam of cards having encoded thereon various instructions for the manipulation of images, the cards hereinafter being known as Artcards.
- the Artcam further has significant onboard processing power by an Artcam Central Processor unit (ACP) which is interconnected to a memory device for the storage of important data and images.
- ACP Artcam Central Processor unit
- the Artcam device is suitably modified so as to equip it with a microphone device and associated recording technologies.
- the opportunity is provided to record either the surrounding sound environment or a message associated with the image.
- the print media or film is pretreated so as to make it magnetically sensitive in a similar manner to that provided by tape media.
- the recording can be over the whole back surface of the output photo or alternatively a magnetically sensitive strip may be provided.
- the recorded audio is stored on the back of the output photograph in an encoded format, the encoding preferably being of a highly digital resilient form.
- the recorded audio provides a permanent audio record associated with the corresponding photograph.
- a playback apparatus is provided for scanning the encoded audio and decoding this information.
- FIG. 1 there is illustrated, in schematic form the preferred embodiment 1 which includes the arrangement as described in the aforementioned patent specification wherein an image 2 is sensed via a CCD sensor 3 and forwarded to an Artcam central processor 4 which includes significant computational resources as described in the aforementioned patent specification.
- the Artcam central processor 4 can store the image in memory 5 which preferably comprises a high speed RAMBUS (Trade Mark) interfaced memory.
- the Artcam central processor 4 is also responsible for controlling the operation of a printhead 6 for the printing out of full colour photographs, eg. 7 , so as to provide for instant images on demand in addition to the magnetic recording head 16 , for recording on the back of the photo.
- the camera arrangement 1 is also supplied with a sound chip 10 which interfaces via RAMBUS bus 11 to memory 5 under the control of the ACP processor 4 .
- the sound chip 10 can be of a standard or specialised form and can, for example, comprise a DSP processor that takes an analogue input 12 from a sound microphone 13 .
- the functionality of sound chip 10 can be incorporated onto the ACP chip 4 which preferably comprises a leading edge CMOS type integrated circuit chip. It will be readily evident that many other types of arrangements can be provided which fall within the scope of the present invention.
- the sound chip 10 converts the analogue input 12 to a corresponding digital form and forwards it for storage in memory 5 .
- the recording process can be activated by means of the depressing of a button (not shown) on the camera device, the button being under the control of the ACP processor 4 otherwise it can be substantially automatic when taking a photo.
- the recorded data is stored in the memory 5 .
- the camera arrangement preferably includes a printer device 6 such as an ink jet printer which includes a printhead 6 to print an image on compatible print media 17 and a magnetic recording head 16 .
- a printer device 6 such as an ink jet printer which includes a printhead 6 to print an image on compatible print media 17 and a magnetic recording head 16 .
- a further printhead can be used to print information on the back of print media 17 .
- Similar arrangements for printing information on the back of an output photo image are described in U.S. Ser. No. 09/112,741(Art 12) the contents of which are hereby incorporated by cross reference.
- FIG. 3 there is illustrated an example of a magnetic strip 18 formed on the back of photo media 17 , the strip being recorded on by recording head 16 of FIG. 1 or FIG. 2 .
- the information recorded can include location, date and time data with the location data being provided by means of keyboard input or, alternatively, through the inclusion of a positioning systems such as GPS or the like.
- FIG. 4 shows the back of the image 17 on which is also recorded an encoded form 22 of the audio information.
- the format of the encoding can be any form within the knowledge of the person skilled in the art. However, preferably the encoding provides a highly fault tolerant form of encoding to tolerate errors that may arise due to use and handling of the print media.
- the encoding format can be, for example, Reed-Solomon encoding of the data to provide for a high degree of fault tolerance.
- the photo 17 is passed through a reader device 26 which includes pinch rollers for guiding the photo 17 past a magnetic sensor device 27 .
- FIG. 5 there is illustrated in schematic form the operation of the audio reader device 26 of FIG. 5 .
- the magnetic sensor 27 is interconnected to a second Artcam central processor (ACP) 28 which is suitably adapted to read and decode the data stored on the back of the photograph.
- ACP Artcam central processor
- the decoded audio information is stored in memory 32 for playback via a sound processing chip 35 on speaker 29 .
- the sound processing chip 35 can operate under the control of the ACP decoder 28 which in turn operates under the control of various user input controls 33 which can include volume controls, rewind, play and fast forward controls etc.
- the embodiments of the invention use an ink jet printer type device. Of course many different devices could be used. However presently popular ink jet printing technologies are unlikely to be suitable.
- thermal ink jet The most significant problem with thermal ink jet is power consumption. This is approximately 100 times that required for high speed, and stems from the energy-inefficient means of drop ejection. This involves the rapid boiling of water to produce a vapor bubble which expels the ink. Water has a very high heat capacity, and must be superheated in thermal ink jet applications. This leads to an efficiency of around 0.02%, from electricity input to drop momentum (and increased surface area) out.
- piezoelectric ink jet The most significant problem with piezoelectric ink jet is size and cost. Piezoelectric crystals have a very small deflection at reasonable drive voltages, and therefore require a large area for each nozzle. Also, each piezoelectric actuator must be connected to its drive circuit on a separate substrate. This is not a significant problem at the current limit of around 300 nozzles per print head, but is a major impediment to the fabrication of pagewide print heads with 19,200 nozzles.
- the ink jet technologies used meet the stringent requirements of in-camera digital color printing and other high quality, high speed, low cost printing applications.
- new ink jet technologies have been created.
- the target features include:
- ink jet designs shown here are suitable for a wide range of digital printing systems, from battery powered one-time use digital cameras, through to desktop and network printers, and through to commercial printing systems.
- the print head is designed to be a monolithic 0.5 micron CMOS chip with MEMS post processing.
- the print head is 100 mm long, with a width which depends upon the ink jet type.
- the smallest print head designed is IJ38, which is 0.35 mm wide, giving a chip area of 35 square mm.
- the print heads each contain 19,200 nozzles plus data and control circuitry.
- Ink is supplied to the back of the print head by injection molded plastic ink channels.
- the molding requires 50 micron features, which can be created using a lithographically micromachined insert in a standard injection molding tool.
- Ink flows through holes etched through the wafer to the nozzle chambers fabricated on the front surface of the wafer.
- the print head is connected to the camera circuitry by tape automated bonding.
- ink jet configurations can readily be derived from these 45 examples by substituting alternative configurations along one or more of the 11 axes.
- Most of the IJ01 to IJ45 examples can be made into ink jet print heads with characteristics superior to any currently available ink jet technology.
- Suitable applications for the ink jet technologies include: Home printers, Office network printers, Short run digital printers, Commercial print systems, Fabric printers, Pocket printers, Internet WWW printers, Video printers, Medical imaging, Wide format printers, Notebook PC printers, Fax machines, Industrial printing systems, Photocopiers, Photographic minilabs etc.
- Perovskite ( ⁇ 1 ⁇ s) PLZSnT are materials such as tin Relatively high required modified lead longitudinal strain Actuators require lanthanum zirconate High efficiency a large area titanate (PLZSnT) Electric field exhibit large strains of strength of around 3 V/ ⁇ m up to 1% associated can be readily with the AFE to FE provided phase transition.
- Electrostatic Conductive plates are Low power Difficult to IJ02, IJ04 plates separated by a consumption operate electrostatic compressible or fluid Many ink types devices in an dielectric (usually air). can be used aqueous Upon application of a Fast operation environment voltage, the plates The electrostatic attract each other and actuator will displace ink, causing normally need to be drop ejection.
- the separated from the conductive plates may ink be in a comb or Very large area honeycomb structure, required to achieve or stacked to increase high forces the surface area and High voltage therefore the force.
- drive transistors may be required Full pagewidth print heads are not competitive due to actuator size
- Electrostatic A strong electric field Low current High voltage 1989 Saito et al, pull is applied to the ink, consumption required U.S. Pat. No. 4,799,068 on ink whereupon Low temperature May be damaged 1989 Miura et al, electrostatic attraction by sparks due to air U.S. Pat. No. 4,810,954 accelerates the ink breakdown Tone-jet towards the print Required field medium.
- An electromagnet Low power Complex IJ07, IJ10 magnet directly attracts a consumption fabrication electromagnetic permanent magnet, Many ink types Permanent displacing ink and can be used magnetic material causing drop ejection.
- Fast operation such as Neodymium Rare earth magnets High efficiency Iron Boron (NdFeB) with a field strength Easy extension required. around 1 Tesla can be from single nozzles High local used.
- Examples are: to pagewidth print currents required Samarium Cobalt heads Copper (SaCo) and magnetic metalization should materials in the be used for long neodymium iron boron electromigration family (NdFeB, lifetime and low NdDyFeBNb, resistivity NdDyFeB, etc) Pigmented inks are usually infeasible Operating temperature limited to the Curie temperature (around 540 K) Soft A solenoid induced a Low power Complex IJ01, IJ05, IJ08, magnetic magnetic field in a soft consumption fabrication IJ10, IJ12, IJ14, core electromagnetic magnetic core or yoke Many ink types Materials not IJ15, IJ17 fabricated from a can be used usually present in a ferrous material such Fast operation CMOS fab such as as electroplated iron High efficiency NiFe, CoNiFe, or alloys such as CoNiFe Easy extension CoFe are required [1], CoFe, or NiFe from single nozzles High local alloys
- the to pagewidth print currents required soft magnetic material heads Copper is in two parts, which metalization should are normally held be used for long apart by a spring. electromigration When the solenoid is lifetime and low actuated, the two parts resistivity attract, displacing the Electroplating is ink. required High saturation flux density is required (2.0-2.1 T is achievable with CoNiFe [1]) Lorenz The Lorenz force Low power Force acts as a IJ06, IJ11, IJ13, force acting on a current consumption twisting motion IJ16 carrying wire in a Many ink types Typically, only a magnetic field is can be used quarter of the utilized.
- the surface construction separation applications tension of the ink is No unusual Requires special reduced below the materials required in ink surfactants bubble threshold, fabrication Speed may be causing the ink to High efficiency limited by surfactant egress from the Easy extension properties nozzle. from single nozzles to pagewidth print heads Viscosity
- the ink viscosity is Simple Requires Silverbrook, EP reduction locally reduced to construction supplementary force 0771 658 A2 and select which drops are No unusual to effect drop related patent to be ejected.
- a materials required in separation applications viscosity reduction can fabrication Requires special be achieved Easy extension ink viscosity electrothermally with from single nozzles properties most inks, but special to pagewidth print High speed is inks can be engineered heads difficult to achieve for a 100:1 viscosity Requires reduction.
- oscillating ink pressure A high temperature difference (typically 80 degrees) is required Acoustic An acoustic wave is Can operate Complex drive 1993 Hadimioglu generated and without a nozzle circuitry et al, EUP 550,192 focussed upon the plate Complex 1993 Elrod et al, drop ejection region.
- Simple planar Corrosion IJ29, IJ30, IJ31, fabrication prevention can be IJ32, IJ33, IJ34, Small chip area difficult IJ35, IJ36, IJ37, required for each Pigmented inks IJ38, IJ39, IJ40, actuator may be infeasible, IJ41 Fast operation as pigment particles High efficiency may jam the bend CMOS actuator compatible voltages and currents Standard MEMS processes can be used Easy extension from single nozzles to pagewidth print heads High CTE A material with a very High force can Requires special IJ09, IJ17, IJ18, thermoelastic high coefficient of be generated material (e.g.
- PTFE PTFE
- IJ20 IJ21, IJ22
- actuator thermal expansion Three methods of Requires a PTFE IJ23, IJ24, IJ27, (CTE) such as PTFE deposition are deposition process, IJ28, IJ29, IJ30, polytetrafluoroethylene under development: which is not yet IJ31, IJ42, IJ43, (PTFE) is used.
- CTE PTFE
- CVD high CTE materials deposition
- fabs are usually non- spin coating
- PTFE deposition conductive a heater evaporation cannot be followed fabricated from a PTFE is a with high conductive material is candidate for low temperature (above incorporated.
- a 50 ⁇ m dielectric constant 350° C.) processing long PTFE bend insulation in ULSI Pigmented inks actuator with Very low power may be infeasible, polysilicon heater and consumption as pigment particles 15 mW power input
- Many ink types may jam the bend can provide 180 ⁇ N can be used actuator force and 10 ⁇ m Simple planar deflection.
- Actuator fabrication motions include: Small chip area Bend required for each Push actuator Buckle Fast operation Rotate High efficiency CMOS compatible voltages and currents Easy extension from single nozzles to pagewidth print heads Conduct-ive A polymer with a high High force can Requires special IJ24 polymer coefficient of thermal be generated materials thermoelastic expansion (such as Very low power development (High actuator PTFE) is doped with consumption CTE conductive conducting substances Many ink types polymer) to increase its can be used Requires a PTFE conductivity to about 3 Simple planar deposition process, orders of magnitude fabrication which is not yet below that of copper. Small chip area standard in ULSI The conducting required for each fabs polymer expands actuator PTFE deposition when resistively Fast operation cannot be followed heated.
- IJ24 polymer coefficient of thermal be generated materials thermoelastic expansion such as Very low power development (High actuator PTFE) is doped with consumption CTE conductive conducting substances Many ink types polymer
- CMOS temperature (above conducting dopants compatible voltages 350° C.) processing include: and currents Evaporation and Carbon nanotubes Easy extension CVD deposition Metal fibers from single nozzles techniques cannot Conductive polymers to pagewidth print be used such as doped heads Pigmented inks polythiophene may be infeasible, Carbon granules as pigment particles may jam the bend actuator Shape A shape memory alloy High force is Fatigue limits IJ26 memory such as TiNi (also available (stresses maximum number alloy known as Nitinol - of hundreds of MPa) of cycles Nickel Titanium alloy Large strain is Low strain (1%) developed at the Naval available (more than is required to extend Ordnance Laboratory) 3%) fatigue resistance is thermally switched High corrosion Cycle rate between its weak resistance limited by heat martensitic state and Simple removal its high stiffness construction Requires unusual austenic state.
- IJ26 memory such as TiNi (also available (stresses maximum number alloy known as Nitinol - of hundreds of MPa
- the Easy extension materials (TiNi) shape of the actuator from single nozzles The latent heat of in its martensitic state to pagewidth print transformation must is deformed relative to heads be provided the austenic shape. Low voltage High current
- the shape change operation operation causes ejection of a Requires pre- drop. stressing to distort the martensitic state
- Linear Linear magnetic Linear Magnetic Requires unusual IJ12 Magnetic actuators include the actuators can be semiconductor Actuator Linear Induction constructed with materials such as Actuator (LIA), Linear high thrust, long soft magnetic alloys Permanent Magnet travel, and high (e.g.
- LMSA Linear planar also require Reluctance semiconductor permanent magnetic Synchronous Actuator fabrication materials such as (LRSA), Linear techniques Neodymium iron Switched Reluctance Long actuator boron (NdFeB) Actuator (LSRA), and travel is available Requires the Linear Stepper Medium force is complex multi- Actuator (LSA). available phase drive circuitry Low voltage High current operation operation
- provide the energy print heads printing Selected drops are required to separate alternate rows of the separated from the ink the drop from the image in the nozzle by nozzle Monolithic color contact with the print print heads are medium or a transfer difficult roller.
- Electrostatic The drops to be Very simple print Requires very Silverbrook, EP pull printed are selected by head fabrication can high electrostatic 0771 658 A2 and on ink some manner (e.g. be used field related patent thermally induced
- the drop Electrostatic field applications surface tension selection means for small nozzle Tone-Jet reduction of does not need to sizes is above air pressurized ink).
- the actuator moves a High speed (>50 kHz) Moving parts are IJ13, IJ17, IJ21 shutter to block ink operation can required flow to the nozzle.
- the be achieved due to Requires ink ink pressure is pulsed reduced refill time pressure modulator at a multiple of the Drop timing can Friction and wear drop ejection be very accurate must be considered frequency.
- the actuator Stiction is energy can be very possible low Shuttered
- the actuator moves a Actuators with Moving parts are IJ08, IJ15, IJ18, grill shutter to block ink small travel can be required IJ19 flow through a grill to used Requires ink the nozzle.
- the shutter Actuators with pressure modulator movement need only small force can be Friction and wear be equal to the width used must be considered of the grill holes.
- An No heat Requires special actuator controls a dissipation materials for both catch, which prevents problems the actuator and the the ink pusher from ink pusher moving when a drop is Complex not to be ejected. construction
- the allowing higher Ink pressure applications stimulation) actuator selects which operating speed phase and amplitude IJ08, IJ13, IJ15, drops are to be fired
- the actuators must be carefully IJ17, IJ18, IJ19, by selectively may operate with controlled IJ21 blocking or enabling much lower energy Acoustic nozzles.
- the ink Acoustic lenses reflections in the ink pressure oscillation can be used to focus chamber must be may be achieved by the sound on the designed for vibrating the print nozzles head, or preferably by an actuator in the ink supply.
- Media The print head is Low power Precision Silverbrook, EP proximity placed in close High accuracy assembly required 0771 658 A2 and proximity to the print Simple print head Paper fibers may related patent medium.
- a magnetic field is Low power Requires Silverbrook, EP magnetic used to accelerate Simple print head magnetic ink 0771 658 A2 and field selected drops of construction Requires strong related patent magnetic ink towards magnetic field applications the print medium.
- Cross The print head is Does not require Requires external IJ06, IJ16 magnetic placed in a constant magnetic materials magnet field magnetic field.
- the to be integrated in Current densities Lorenz force in a the print head may be high, current carrying wire manufacturing resulting in is used to move the process electromigration actuator. problems
- Pulsed A pulsed magnetic Very low power Complex print IJ10 magnetic field is used to operation is possible head construction field cyclically attract a Small print head Magnetic paddle, which pushes size materials required in on the ink.
- a small print head actuator moves a catch, which selectively prevents the paddle from moving.
- print head area Care must be IJ18, IJ19, IJ20, actuator
- the expansion may be taken that the IJ21, IJ22, IJ23, thermal, piezoelectric, materials do not IJ24, IJ27, IJ29, magnetostrictive, or delaminate IJ30, IJ31, IJ32, other mechanism.
- the Residual bend IJ33, IJ34, IJ35, bend actuator converts resulting from high IJ36, IJ37, IJ38, a high force low travel temperature or high IJ39, IJ42, IJ43, actuator mechanism to stress during IJ44 high travel, lower formation force mechanism.
- Flexure A bend actuator has a Simple means of Care must be IJ10, IJ19, IJ33 bend small region near the increasing travel of taken not to exceed actuator fixture point, which a bend actuator the elastic limit in flexes much more the flexure area readily than the Stress remainder of the distribution is very actuator.
- the actuator uneven flexing is effectively Difficult to converted from an accurately model even coiling to an with finite element angular bend, resulting analysis in greater travel of the actuator tip.
- Catch The actuator controls a Very low Complex IJ10 small catch.
- the catch actuator energy construction either enables or Very small Requires external disables movement of actuator size force an ink pusher that is Unsuitable for controlled in a bulk pigmented inks manner.
- Gears Gears can be used to Low force, low Moving parts are IJ13 increase travel at the travel actuators can required expense of duration.
- actuator Circular gears, rack Can be fabricated cycles are required and pinion, ratchets, using standard More complex and other gearing surface MEMS drive electronics methods can be used.
- Process Complex construction Friction, friction, and wear are possible Buckle plate
- a buckle plate can be Very fast Must stay within S. Hirata et al, used to change a slow movement elastic limits of the “An Ink-jet Head actuator into a fast achievable materials for long Using Diaphragm motion. It can also device life Microactuator”, convert a high force, High stresses Proc. IEEE MEMS, low travel actuator involved February 1996, pp 418-423.
- the volume of the Simple High energy is Hewlett-Packard expansion actuator changes, construction in the typically required to Thermal Ink jet pushing the ink in all case of thermal ink achieve volume Canon Bubblejet directions. jet expansion. This leads to thermal stress, cavitation, and kogation in thermal ink jet implementations Linear,
- the actuator moves in Efficient High fabrication IJ01, IJ02, IJ04, normal to a direction normal to coupling to ink complexity may be IJ07, IJ11, IJ14 chip surface the print head surface. drops ejected required to achieve The nozzle is typically normal to the perpendicular in the line of surface motion movement.
- Rotary levers Device IJ05, IJ08, IJ13 the rotation of some may be used to complexity IJ28 element, such a grill or increase travel May have impeller Small chip area friction at a pivot requirements point Bend
- the actuator bends A very small Requires the 1970 Kyser et al when energized.
- This change in actuator to be made U.S. Pat. No. 3,946,398 may be due to dimensions can be from at least two 1973 Stemme differential thermal converted to a large distinct layers, or to U.S. Pat. No. 3,747,120 expansion, motion.
- the actuator is Can be used with Requires careful IJ26, IJ32 normally bent, and shape memory balance of stresses straightens when alloys where the to ensure that the energized. austenic phase is quiescent bend is planar accurate Double
- the actuator bends in One actuator can Difficult to make IJ36, IJ37, IJ38 bend one direction when be used to power the drops ejected by one element is two nozzles. both bend directions energized, and bends Reduced chip identical. the other way when size. A small another element is Not sensitive to efficiency loss energized. ambient temperature compared to equivalent single bend actuators. Shear Energizing the Can increase the Not readily 1985 Fishbeck actuator causes a shear effective travel of applicable to other U.S. Pat. No.
- Curl A set of actuators curl Relatively simple Relatively large IJ43 outwards outwards, pressurizing construction chip area ink in a chamber surrounding the actuators, and expelling ink from a nozzle in the chamber.
- Iris Multiple vanes enclose High efficiency High fabrication IJ22 a volume of ink. These Small chip area complexity simultaneously rotate, Not suitable for reducing the volume pigmented inks between the vanes.
- NOZZLE REFILL METHOD Description Advantages Disadvantages Examples Surface This is the normal way Fabrication Low speed Thermal ink jet tension that ink jets are simplicity Surface tension Piezoelectric ink refilled.
- the Operational force relatively jet actuator is energized, simplicity small compared to IJ01-IJ07, IJ10-IJ14, it typically returns actuator force IJ16, IJ20, rapidly to its normal Long refill time IJ22-IJ45 position. This rapid usually dominates return sucks in air the total repetition through the nozzle rate opening.
- the ink surface tension at the nozzle then exerts a small force restoring the meniscus to a minimum area. This force refills the nozzle.
- the ink is under a Drop selection Requires a Silverbrook, EP pressure positive pressure, so and separation method (such as a 0771 658 A2 and that in the quiescent forces can be nozzle rim or related patent state some of the ink reduced effective applications drop already protrudes Fast refill time hydrophobizing, or Possible from the nozzle. both) to prevent operation of the This reduces the flooding of the following: IJ01-IJ07, pressure in the nozzle ejection surface of IJ09-IJ12, chamber which is the print head. IJ14, IJ16, IJ20, required to eject a IJ22, , IJ23-IJ34, certain volume of ink.
- the ink inlet channel Design simplicity Restricts refill IJ02, IJ37, IJ44 compared to the nozzle chamber rate to nozzle has a substantially May result in a smaller cross section relatively large chip than that of the nozzle, area resulting in easier ink Only partially egress out of the effective nozzle than out of the inlet.
- Inlet shutter A secondary actuator Increases speed Requires separate IJ09 controls the position of of the ink-jet print refill actuator and a shutter, closing off head operation drive circuit the ink inlet when the main actuator is energized.
- the inlet is The method avoids the Back-flow Requires careful IJ01, IJ03, IJ05, located problem of inlet back- problem is design to minimize IJ06, IJ07, IJ10, behind the flow by arranging the eliminated the negative IJ11, IJ14, IJ16, ink-pushing ink-pushing surface of pressure behind the IJ22, IJ23, IJ25, surface the actuator between paddle IJ28, IJ31, IJ32, the inlet and the IJ33, IJ34, IJ35, nozzle.
- IJ36, IJ39, IJ40, IJ41 Part of the The actuator and a Significant Small increase in IJ07, IJ20, IJ26, actuator wall of the ink reductions in back- fabrication IJ38 moves to chamber are arranged flow can be complexity shut off the so that the motion of achieved inlet the actuator closes off Compact designs the inlet.
- IJ16, IJ20, IJ22, The nozzle firing is IJ23, IJ24, IJ25, usually performed IJ26, IJ27, IJ28, during a special IJ29, IJ30, IJ31, clearing cycle, after IJ32, IJ33, IJ34, first moving the print IJ36, IJ37, IJ38, head to a cleaning IJ39, IJ40,, IJ41, station.
- IJ23, IJ24, IJ25 other situations, it may IJ27, IJ28, IJ29, cause sufficient IJ30, IJ31, IJ32, vibrations to dislodge IJ33, IJ34, IJ36, clogged nozzles.
- actuator nozzle clearing may be actuator movement IJ24, IJ25, IJ27, assisted by providing IJ29, IJ30, IJ31, an enhanced drive IJ32, IJ39, IJ40, signal to the actuator.
- An ultrasonic wave is A high nozzle High IJ08, IJ13, IJ15, resonance applied to the ink clearing capability implementation cost IJ17, IJ18, IJ19, chamber.
- This wave is can be achieved if system does not IJ21 of an appropriate May be already include an amplitude and implemented at very acoustic actuator frequency to cause low cost in systems sufficient force at the which already nozzle to clear include acoustic blockages. This is actuators easiest to achieve if the ultrasonic wave is at a resonant frequency of the ink cavity.
- Nozzle A microfabricated Can clear Accurate Silverbrook, EP clearing plate is pushed against severely clogged mechanical 0771 658 A2 and plate the nozzles.
- the plate nozzles alignment is related patent has a post for every required applications nozzle. A post moves Moving parts are through each nozzle, required displacing dried ink. There is risk of damage to the nozzles Accurate fabrication is required Ink
- the pressure of the ink May be effective Requires May be used pressure is temporarily where other pressure pump or with all IJ series ink pulse increased so that ink methods cannot be other pressure jets streams from all of the used actuator nozzles. This may be Expensive used in conjunction Wasteful of ink with actuator energizing.
- Print head A flexible ‘blade’ is Effective for Difficult to use if Many ink jet wiper wiped across the print planar print head print head surface is systems head surface.
- the surfaces non-planar or very blade is usually Low cost fragile fabricated from a Requires flexible polymer, e.g. mechanical parts rubber or synthetic Blade can wear elastomer. out in high volume print systems
- Separate A separate heater is Can be effective Fabrication Can be used with ink boiling provided at the nozzle where other nozzle complexity many IJ series ink heater although the normal clearing methods jets drop e-ection cannot be used mechanism does not Can be require it.
- the heaters implemented at no do not require additional cost in individual drive some ink jet circuits, as many configurations nozzles can be cleared simultaneously, and no imaging is required.
- Electroformed A nozzle plate is Fabrication High Hewlett Packard nickel separately fabricated simplicity temperatures and Thermal Ink jet from electroformed pressures are nickel, and bonded to required to bond the print head chip.
- nozzle plate Minimum thickness constraints Differential thermal expansion Laser Individual nozzle No masks Each hole must Canon Bubblejet ablated or holes are ablated by an required be individually 1988 Sercel et drilled intense UV laser in a Can be quite fast formed al., SPIE, Vol. 998 polymer nozzle plate, which is Some control Special Excimer Beam typically a polymer over nozzle profile equipment required Applications, pp.
- the nozzle plate is a High accuracy Requires long IJ03, IJ05, IJ06, etched buried etch stop in the ( ⁇ 1 ⁇ m) etch times IJ07, IJ08, IJ09, through wafer.
- Nozzle Monolithic Requires a IJ10, IJ13, IJ14, substrate chambers are etched in Low cost support wafer IJ15, IJ16, IJ19, the front of the wafer, No differential IJ21, IJ23, IJ25, and the wafer is expansion IJ26 thinned from the back side. Nozzles are then etched in the etch stop layer.
- Nozzle slit The elimination of No nozzles to Difficult to 1989 Saito et al instead of nozzle holes and become clogged control drop
- U.S. Pat. No. 4,799,068 individual replacement by a slit position accurately nozzles encompassing many Crosstalk actuator positions problems reduces nozzle clogging, but increases crosstalk due to ink surface waves
- Edge Ink flow is along the Simple Nozzles limited Canon Bubblejet (‘edge surface of the chip, construction to edge 1979 Endo et al GB shooter’) and ink drops are No silicon High resolution patent 2,007,162 ejected from the chip etching required is difficult Xerox heater-in- edge. Good heat Fast color pit 1990 Hawkins et sinking via substrate printing requires al U.S. Pat. No.
- Ink flow is through the High ink flow Requires wafer IJ01, IJ03, IJ05, chip, chip, and ink drops are Suitable for thinning IJ06, IJ07, IJ08, reverse ejected from the rear pagewidth print Requires special IJ09, IJ10, IJ13, (‘down surface of the chip.
- Methyl MEK is a highly Very fast drying Odorous All IJ series ink Ethyl volatile solvent used Prints on various Flammable jets Ketone for industrial printing substrates such as (MEK) on difficult surfaces metals and plastics such as aluminum cans.
- Alcohol Alcohol based inks Fast drying Slight odor All IJ series ink (ethanol, 2- can be used where the Operates at sub- Flammable jets butanol, printer must operate at freezing and others) temperatures below temperatures the freezing point of Reduced paper water.
- An example of cockle this is in-camera Low cost consumer photographic printing.
- Oil Oil based inks are High solubility High viscosity: All IJ series ink extensively used in medium for some this is a significant jets offset printing. They dyes limitation for use in have advantages in Does not cockle ink jets, which improved paper usually require a characteristics on Does not wick low viscosity. Some paper (especially no through paper short chain and wicking or cockle). multi-branched oils Oil soluble dies and have a sufficiently pigments are required. low viscosity.
- a microemulsion is a Stops ink bleed Viscosity higher All IJ series ink stable, self forming High dye than water jets emulsion of oil, water, solubility Cost is slightly and surfactant.
- the Water, oil, and higher than water characteristic drop size amphiphilic soluble based ink is less than 100 nm, dies can be used High surfactant and is determined by Can stabilize concentration the preferred curvature pigment required (around of the surfactant. suspensions 5%)
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Computer Security & Cryptography (AREA)
- Software Systems (AREA)
- Human Computer Interaction (AREA)
- Particle Formation And Scattering Control In Inkjet Printers (AREA)
- Record Information Processing For Printing (AREA)
- Studio Devices (AREA)
- Ink Jet (AREA)
- Accessory Devices And Overall Control Thereof (AREA)
Abstract
A camera provides a photo (7) printed on print media via printer device (6) under the control of a central processor (4). The photo (7) is a print of an image (5) provided by a CCD sensor (3). The photo (7) includes print media having, in addition, a magnetically recordable medium whereby sound processed by sound chip (10) received from sound microphone (13) and/or processed by central processor (4) can be recorded with magnetic recording head (16) on the photo (7). The photo (7) is printed using an ink jet printer on suitable ink jet compatible print media preferably with the magnetically recordable medium on the rear of the photo (7) and the image (2) on the front surface of the photo (7).
Description
- The present invention relates to the field of digital image cameras and in particular, discloses a Camera and Media for Art Prints or Photos with Magnetically Recordable Feature.
- The preferred embodiment is preferably implemented through modification of a hand held camera device such as that described in patent application U.S. Ser. No. 09/113,060, which claims priority from Australian provisional application No. PO7991 entitled “Image Processing Method and Apparatus ” (Art 01) filed 15 Jul., 1997.
- The aforementioned patent specification discloses a camera system, hereinafter known as an “Artcam” type camera, wherein sensed images can be directly printed out by an Artcam portable camera unit. Further, the aforementioned specification discloses means and methods for performing various manipulations on images captured by the camera sensing device leading to the production of various effects in any output image. The manipulations are disclosed to be highly flexible in nature and can be implemented through the insertion into the Artcam of cards having encoded thereon various instructions for the manipulation of images, the cards hereinafter being known as Artcards. The Artcam further has significant onboard processing power in an Artcam Central Processor unit (ACP) which is interconnected to a memory device for the storage of important data and images.
- The Artcam camera system which a digital camera with an inbuilt integral color printer. Additionally, the camera provides hardware and software for the increasing of the apparent resolution of the image sensing system and the conversion of the image to a wide range of “artistic styles” and a graphic enhancement.
- In one aspect, the Artcam camera system comprises at least one area image sensor for imaging a scene, a camera processor means for processing said imaged scene in accordance with a predetermined scene transformation requirement, a printer for printing out said processed image scene on print media, print media and printing ink stored in a single detachable module inside said camera system, said camera system comprising a portable hand held unit for the imaging of scenes by said area image sensor and printing said scenes directly out of said camera system via said printer.
- Preferably the camera system includes a print roll for the storage of print media and printing ink for utilization by the printer, the print roll being detachable from the camera system. Further, the print roll can include an authentication chip containing authentication information and the camera processing means is adapted to interrogate the authentication chip so as to determine the authenticity of said print roll when inserted within said camera system.
- Further, the printer can include a drop on demand ink jet printer and guillotine means for the separation of printed photographs.
- With such an arrangement, it would be desirable to be able to record ancillary information with each output photograph.
- It is an object of the present invention to provide for the magnetic recording of information such as audio with a photo output by an Artcam device.
- In accordance with a first aspect of the present invention, there is provided a camera system for the creation of images, the camera system comprising a sensor for sensing an image; a processing means for processing the sensed image in accordance with predetermined processing requirements; a printer means for printing the sensed image on the surface of print media, the print media including a magnetically sensitive surface; a magnetic recording means for recording associated information on the magnetically sensitive surface.
- The associated information can comprise audio information associated with the sensed image and the printer means preferably prints the sensed image on a first surface of the print media and the magnetic recording means records the associated information on a second surface of the print media. The print media can be stored on an internal detachable roll in the camera system. In one embodiment, the magnetic sensitive surface can comprise a strip affixed to the back surface of the print media.
- In accordance with a second aspect of the present invention, there is provided a camera system for recording images, said camera system comprising:
- an electronic image sensor for sensing an image;
- a digital processing means for processing said sensed image in accordance with predetermined processing requirements;
- a photo width ink jet printer means for printing said processed image on a surface of ink jet print media, said ink jet print media including a magnetic recording surface;
- a magnetic recording means for recording associated information on said magnetic recording surface.
- Preferably, said associated information comprises audio information associated with said sensed image.
- Preferably, the printer means prints said sensed image on a first surface of said print media and the magnetic recording means records said associated information on a second surface of said print media. Preferably, said first and said second surfaces are on different faces of said print media.
- Preferably, said ink jet print media is stored on an internal detachable roll in said camera system, said camera system comprising a hand held portable camera device, said photo width ink jet printer being built into said hand held portable camera device.
- Notwithstanding any other forms which may fall within the scope of the present invention, preferred forms of the invention will now be described, by way of example only, with reference to the accompanying drawings in which:
-
FIG. 1 illustrates schematically the camera system constructed in accordance to the preferred embodiment; -
FIG. 2 illustrates schematically a printer mechanism and recording mechanism of the preferred embodiment. -
FIG. 3 illustrates a format of the magnetic strip on the back of the photo; -
FIG. 4 illustrates a reader device utilized to read data recorded on the back of a photograph; and -
FIG. 5 illustrates the utilization of an apparatus of the preferred embodiment. - In the preferred embodiment a magnetic sensitive print media material is utilized for the recording of an audio message on the back of an output photograph. The Artcam device is altered so as to include a magnetic recording device which can comprise an array of magnetic recorders covering a whole surface of the photograph or alternatively, a magnetic strip can be provided wherein, for example, a central portion of the photograph is magnetically sensitive. The Artcam devices are further provided with the ability to record an audio message for later playback.
- The preferred embodiment is preferably implemented through suitable programming of a hand held camera device such as that described in Australian Provisional Patent Application No. PO7991 U.S. Ser. No. 09/113,060) entitled “Image Processing Method and Apparatus (Art 01)” filed 15 Jul., 1997.
- The aforementioned patent specification discloses a camera system, hereinafter known as an “Artcam” type camera, wherein sensed images can be directly printed out by an Artcam portable camera unit. Further, the aforementioned specification discloses means and methods for performing various manipulations on images captured by the camera sensing device leading to the production of various effects in any output image. The manipulations are disclosed to be highly flexible in nature and can be implemented through the insertion into the Artcam of cards having encoded thereon various instructions for the manipulation of images, the cards hereinafter being known as Artcards. The Artcam further has significant onboard processing power by an Artcam Central Processor unit (ACP) which is interconnected to a memory device for the storage of important data and images.
- In the preferred embodiment, the Artcam device is suitably modified so as to equip it with a microphone device and associated recording technologies. When a picture is taken, the opportunity is provided to record either the surrounding sound environment or a message associated with the image. The print media or film is pretreated so as to make it magnetically sensitive in a similar manner to that provided by tape media. The recording can be over the whole back surface of the output photo or alternatively a magnetically sensitive strip may be provided. The recorded audio is stored on the back of the output photograph in an encoded format, the encoding preferably being of a highly digital resilient form. The recorded audio provides a permanent audio record associated with the corresponding photograph. Subsequently, a playback apparatus is provided for scanning the encoded audio and decoding this information.
- Turning now to
FIG. 1 , there is illustrated, in schematic form the preferred embodiment 1 which includes the arrangement as described in the aforementioned patent specification wherein animage 2 is sensed via aCCD sensor 3 and forwarded to an Artcamcentral processor 4 which includes significant computational resources as described in the aforementioned patent specification. The Artcamcentral processor 4 can store the image inmemory 5 which preferably comprises a high speed RAMBUS (Trade Mark) interfaced memory. The Artcamcentral processor 4 is also responsible for controlling the operation of a printhead 6 for the printing out of full colour photographs, eg. 7, so as to provide for instant images on demand in addition to themagnetic recording head 16, for recording on the back of the photo. - In the preferred embodiment, the camera arrangement 1 is also supplied with a
sound chip 10 which interfaces via RAMBUSbus 11 tomemory 5 under the control of the ACPprocessor 4. Thesound chip 10 can be of a standard or specialised form and can, for example, comprise a DSP processor that takes ananalogue input 12 from asound microphone 13. Alternatively, with increasing chip complexities (Moore's Law), the functionality ofsound chip 10 can be incorporated onto theACP chip 4 which preferably comprises a leading edge CMOS type integrated circuit chip. It will be readily evident that many other types of arrangements can be provided which fall within the scope of the present invention. - The
sound chip 10 converts theanalogue input 12 to a corresponding digital form and forwards it for storage inmemory 5. The recording process can be activated by means of the depressing of a button (not shown) on the camera device, the button being under the control of theACP processor 4 otherwise it can be substantially automatic when taking a photo. The recorded data is stored in thememory 5. - Turning now to
FIG. 2 , the camera arrangement preferably includes a printer device 6 such as an ink jet printer which includes a printhead 6 to print an image oncompatible print media 17 and amagnetic recording head 16. A further printhead can be used to print information on the back ofprint media 17. Similar arrangements for printing information on the back of an output photo image are described in U.S. Ser. No. 09/112,741(Art 12) the contents of which are hereby incorporated by cross reference. - Turning now to
FIG. 3 , there is illustrated an example of a magnetic strip 18 formed on the back ofphoto media 17, the strip being recorded on by recordinghead 16 ofFIG. 1 orFIG. 2 . The information recorded can include location, date and time data with the location data being provided by means of keyboard input or, alternatively, through the inclusion of a positioning systems such as GPS or the like.FIG. 4 shows the back of theimage 17 on which is also recorded an encodedform 22 of the audio information. The format of the encoding can be any form within the knowledge of the person skilled in the art. However, preferably the encoding provides a highly fault tolerant form of encoding to tolerate errors that may arise due to use and handling of the print media. The encoding format can be, for example, Reed-Solomon encoding of the data to provide for a high degree of fault tolerance. - Turning to
FIG. 4 , when it is desired to “play back” the recorded audio, thephoto 17 is passed through areader device 26 which includes pinch rollers for guiding thephoto 17 past amagnetic sensor device 27. - Referring now to
FIG. 5 , there is illustrated in schematic form the operation of theaudio reader device 26 ofFIG. 5 . Themagnetic sensor 27 is interconnected to a second Artcam central processor (ACP) 28 which is suitably adapted to read and decode the data stored on the back of the photograph. The decoded audio information is stored inmemory 32 for playback via asound processing chip 35 onspeaker 29. Thesound processing chip 35 can operate under the control of theACP decoder 28 which in turn operates under the control of various user input controls 33 which can include volume controls, rewind, play and fast forward controls etc. - It can be seen from the foregoing description of the preferred embodiment that there is provided a system for the automatic recording of audio associated with an output image so as to provide an audio record associated with a photograph printed on ink jet media. There is also disclosed an audio reader system for reading an image recorded on the back of such a photograph.
- It would be appreciated by a person skilled in the art that numerous variations and/or modifications any be made to the present invention as shown in the specific embodiment without departing from the spirit or scope of the invention as broadly described. For example, the utilisation of more complex audio recording and playback techniques such as stereo and B-format techniques. The present embodiment is, therefore, to be considered in all respects to be illustrative and not restrictive.
- Ink Jet Technologies
- The embodiments of the invention use an ink jet printer type device. Of course many different devices could be used. However presently popular ink jet printing technologies are unlikely to be suitable.
- The most significant problem with thermal ink jet is power consumption. This is approximately 100 times that required for high speed, and stems from the energy-inefficient means of drop ejection. This involves the rapid boiling of water to produce a vapor bubble which expels the ink. Water has a very high heat capacity, and must be superheated in thermal ink jet applications. This leads to an efficiency of around 0.02%, from electricity input to drop momentum (and increased surface area) out.
- The most significant problem with piezoelectric ink jet is size and cost. Piezoelectric crystals have a very small deflection at reasonable drive voltages, and therefore require a large area for each nozzle. Also, each piezoelectric actuator must be connected to its drive circuit on a separate substrate. This is not a significant problem at the current limit of around 300 nozzles per print head, but is a major impediment to the fabrication of pagewide print heads with 19,200 nozzles.
- Ideally, the ink jet technologies used meet the stringent requirements of in-camera digital color printing and other high quality, high speed, low cost printing applications. To meet the requirements of digital photography, new ink jet technologies have been created. The target features include:
- low power (less than 10 Watts)
- high resolution capability (1,600 dpi or more)
- photographic quality output
- low manufacturing cost
- small size (pagewidth times minimum cross section)
- high speed (<2 seconds per page).
- All of these features can be met or exceeded by the ink jet systems described below with differing levels of difficulty. 45 different inkjet technologies have been developed by the Assignee to give a wide range of choices for high volume manufacture. These technologies form part of separate applications assigned to the present Assignee as set out in the table below.
- The ink jet designs shown here are suitable for a wide range of digital printing systems, from battery powered one-time use digital cameras, through to desktop and network printers, and through to commercial printing systems.
- For ease of manufacture using standard process equipment, the print head is designed to be a monolithic 0.5 micron CMOS chip with MEMS post processing. For color photographic applications, the print head is 100 mm long, with a width which depends upon the ink jet type. The smallest print head designed is IJ38, which is 0.35 mm wide, giving a chip area of 35 square mm. The print heads each contain 19,200 nozzles plus data and control circuitry.
- Ink is supplied to the back of the print head by injection molded plastic ink channels. The molding requires 50 micron features, which can be created using a lithographically micromachined insert in a standard injection molding tool. Ink flows through holes etched through the wafer to the nozzle chambers fabricated on the front surface of the wafer. The print head is connected to the camera circuitry by tape automated bonding.
- Tables of Drop-on-Demand Ink Jets
- Eleven important characteristics of the fundamental operation of individual ink jet nozzles have been identified. These characteristics are largely orthogonal, and so can be elucidated as an eleven dimensional matrix. Most of the eleven axes of this matrix include entries developed by the present assignee.
- The following tables form the axes of an eleven dimensional table of ink jet types.
- Actuator mechanism (18 types)
- Basic operation mode (7 types)
- Auxiliary mechanism (8 types)
- Actuator amplification or modification method (17 types)
- Actuator motion (19 types)
- Nozzle refill method (4 types)
- Method of restricting back-flow through inlet (10 types)
- Nozzle clearing method (9 types)
- Nozzle plate construction (9 types)
- Drop ejection direction (5 types)
- Ink type (7 types)
- The complete eleven dimensional table represented by these axes contains 36.9 billion possible configurations of ink jet nozzle. While not all of the possible combinations result in a viable ink jet technology, many million configurations are viable. It is clearly impractical to elucidate all of the possible configurations. Instead, certain ink jet types have been investigated in detail. These are designated IJ01 to IJ45 above.
- Other ink jet configurations can readily be derived from these 45 examples by substituting alternative configurations along one or more of the 11 axes. Most of the IJ01 to IJ45 examples can be made into ink jet print heads with characteristics superior to any currently available ink jet technology.
- Where there are prior art examples known to the inventor, one or more of these examples are listed in the examples column of the tables below. The IJ01 to IJ45 series are also listed in the examples column. In some cases, a printer may be listed more than once in a table, where it shares characteristics with more than one entry.
- Suitable applications for the ink jet technologies include: Home printers, Office network printers, Short run digital printers, Commercial print systems, Fabric printers, Pocket printers, Internet WWW printers, Video printers, Medical imaging, Wide format printers, Notebook PC printers, Fax machines, Industrial printing systems, Photocopiers, Photographic minilabs etc.
- The information associated with the aforementioned 11 dimensional matrix are set out in the following tables.
ACTUATOR MECHANISM (APPLIED ONLY TO SELECTED INK DROPS) Description Advantages Disadvantages Examples Thermal An electrothermal Large force High power Canon Bubblejet bubble heater heats the ink to generated Ink carrier 1979 Endo et al GB above boiling point, Simple limited to water patent 2,007,162 transferring significant construction Low efficiency Xerox heater-in- heat to the aqueous No moving parts High pit 1990 Hawkins et ink. A bubble Fast operation temperatures al U.S. Pat. No. 4,899,181 nucleates and quickly Small chip area required Hewlett-Packard forms, expelling the required for actuator High mechanical TIJ 1982 Vaught et ink. stress al U.S. Pat. No. 4,490,728 The efficiency of the Unusual process is low, with materials required typically less than Large drive 0.05% of the electrical transistors energy being Cavitation causes transformed into actuator failure kinetic energy of the Kogation reduces drop. bubble formation Large print heads are difficult to fabricate Piezoelectric A piezoelectric crystal Low power Very large area Kyser et al U.S. Pat. No. such as lead consumption required for actuator 3,946,398 lanthanum zirconate Many ink types Difficult to Zoltan U.S. Pat. No. (PZT) is electrically can be used integrate with 3,683,212 activated, and either Fast operation electronics 1973 Stemme expands, shears, or High efficiency High voltage U.S. Pat. No. 3,747,120 bends to apply drive transistors Epson Stylus pressure to the ink, required Tektronix ejecting drops. Full pagewidth IJ04 print heads impractical due to actuator size Requires electrical poling in high field strengths during manufacture Electrostrictive An electric field is Low power Low maximum Seiko Epson, used to activate consumption strain (approx. Usui et all JP electrostriction in Many ink types 0.01%) 253401/96 relaxor materials such can be used Large area IJ04 as lead lanthanum Low thermal required for actuator zirconate titanate expansion due to low strain (PLZT) or lead Electric field Response speed magnesium niobate strength required is marginal (˜10 μs) (PMN). (approx. 3.5 V/μm) High voltage can be generated drive transistors without difficulty required Does not require Full pagewidth electrical poling print heads impractical due to actuator size Ferroelectric An electric field is Low power Difficult to IJ04 used to induce a phase consumption integrate with transition between the Many ink types electronics antiferroelectric (AFE) can be used Unusual and ferroelectric (FE) Fast operation materials such as phase. Perovskite (<1 μs) PLZSnT are materials such as tin Relatively high required modified lead longitudinal strain Actuators require lanthanum zirconate High efficiency a large area titanate (PLZSnT) Electric field exhibit large strains of strength of around 3 V/μm up to 1% associated can be readily with the AFE to FE provided phase transition. Electrostatic Conductive plates are Low power Difficult to IJ02, IJ04 plates separated by a consumption operate electrostatic compressible or fluid Many ink types devices in an dielectric (usually air). can be used aqueous Upon application of a Fast operation environment voltage, the plates The electrostatic attract each other and actuator will displace ink, causing normally need to be drop ejection. The separated from the conductive plates may ink be in a comb or Very large area honeycomb structure, required to achieve or stacked to increase high forces the surface area and High voltage therefore the force. drive transistors may be required Full pagewidth print heads are not competitive due to actuator size Electrostatic A strong electric field Low current High voltage 1989 Saito et al, pull is applied to the ink, consumption required U.S. Pat. No. 4,799,068 on ink whereupon Low temperature May be damaged 1989 Miura et al, electrostatic attraction by sparks due to air U.S. Pat. No. 4,810,954 accelerates the ink breakdown Tone-jet towards the print Required field medium. strength increases as the drop size decreases High voltage drive transistors required Electrostatic field attracts dust Permanent An electromagnet Low power Complex IJ07, IJ10 magnet directly attracts a consumption fabrication electromagnetic permanent magnet, Many ink types Permanent displacing ink and can be used magnetic material causing drop ejection. Fast operation such as Neodymium Rare earth magnets High efficiency Iron Boron (NdFeB) with a field strength Easy extension required. around 1 Tesla can be from single nozzles High local used. Examples are: to pagewidth print currents required Samarium Cobalt heads Copper (SaCo) and magnetic metalization should materials in the be used for long neodymium iron boron electromigration family (NdFeB, lifetime and low NdDyFeBNb, resistivity NdDyFeB, etc) Pigmented inks are usually infeasible Operating temperature limited to the Curie temperature (around 540 K) Soft A solenoid induced a Low power Complex IJ01, IJ05, IJ08, magnetic magnetic field in a soft consumption fabrication IJ10, IJ12, IJ14, core electromagnetic magnetic core or yoke Many ink types Materials not IJ15, IJ17 fabricated from a can be used usually present in a ferrous material such Fast operation CMOS fab such as as electroplated iron High efficiency NiFe, CoNiFe, or alloys such as CoNiFe Easy extension CoFe are required [1], CoFe, or NiFe from single nozzles High local alloys. Typically, the to pagewidth print currents required soft magnetic material heads Copper is in two parts, which metalization should are normally held be used for long apart by a spring. electromigration When the solenoid is lifetime and low actuated, the two parts resistivity attract, displacing the Electroplating is ink. required High saturation flux density is required (2.0-2.1 T is achievable with CoNiFe [1]) Lorenz The Lorenz force Low power Force acts as a IJ06, IJ11, IJ13, force acting on a current consumption twisting motion IJ16 carrying wire in a Many ink types Typically, only a magnetic field is can be used quarter of the utilized. Fast operation solenoid length This allows the High efficiency provides force in a magnetic field to be Easy extension useful direction supplied externally to from single nozzles High local the print head, for to pagewidth print currents required example with rare heads Copper earth permanent metalization should magnets. be used for long Only the current electromigration carrying wire need be lifetime and low fabricated on the print- resistivity head, simplifying Pigmented inks materials are usually requirements. infeasible Magnetostriction The actuator uses the Many ink types Force acts as a Fischenbeck, giant magnetostrictive can be used twisting motion U.S. Pat. No. 4,032,929 effect of materials Fast operation Unusual IJ25 such as Terfenol-D (an Easy extension materials such as alloy of terbium, from single nozzles Terfenol-D are dysprosium and iron to pagewidth print required developed at the Naval heads High local Ordnance Laboratory, High force is currents required hence Ter-Fe-NOL). available Copper For best efficiency, the metalization should actuator should be pre- be used for long stressed to approx. 8 MPa. electromigration lifetime and low resistivity Pre-stressing may be required Surface Ink under positive Low power Requires Silverbrook, EP tension pressure is held in a consumption supplementary force 0771 658 A2 and reduction nozzle by surface Simple to effect drop related patent tension. The surface construction separation applications tension of the ink is No unusual Requires special reduced below the materials required in ink surfactants bubble threshold, fabrication Speed may be causing the ink to High efficiency limited by surfactant egress from the Easy extension properties nozzle. from single nozzles to pagewidth print heads Viscosity The ink viscosity is Simple Requires Silverbrook, EP reduction locally reduced to construction supplementary force 0771 658 A2 and select which drops are No unusual to effect drop related patent to be ejected. A materials required in separation applications viscosity reduction can fabrication Requires special be achieved Easy extension ink viscosity electrothermally with from single nozzles properties most inks, but special to pagewidth print High speed is inks can be engineered heads difficult to achieve for a 100:1 viscosity Requires reduction. oscillating ink pressure A high temperature difference (typically 80 degrees) is required Acoustic An acoustic wave is Can operate Complex drive 1993 Hadimioglu generated and without a nozzle circuitry et al, EUP 550,192 focussed upon the plate Complex 1993 Elrod et al, drop ejection region. fabrication EUP 572,220 Low efficiency Poor control of drop position Poor control of drop volume Thermoelastic An actuator which Low power Efficient aqueous IJ03, IJ09, IJ17, bend relies upon differential consumption operation requires a IJ18, IJ19, IJ20, actuator thermal expansion Many ink types thermal insulator on IJ21, IJ22, IJ23, upon Joule heating is can be used the hot side IJ24, IJ27, IJ28, used. Simple planar Corrosion IJ29, IJ30, IJ31, fabrication prevention can be IJ32, IJ33, IJ34, Small chip area difficult IJ35, IJ36, IJ37, required for each Pigmented inks IJ38, IJ39, IJ40, actuator may be infeasible, IJ41 Fast operation as pigment particles High efficiency may jam the bend CMOS actuator compatible voltages and currents Standard MEMS processes can be used Easy extension from single nozzles to pagewidth print heads High CTE A material with a very High force can Requires special IJ09, IJ17, IJ18, thermoelastic high coefficient of be generated material (e.g. PTFE) IJ20, IJ21, IJ22, actuator thermal expansion Three methods of Requires a PTFE IJ23, IJ24, IJ27, (CTE) such as PTFE deposition are deposition process, IJ28, IJ29, IJ30, polytetrafluoroethylene under development: which is not yet IJ31, IJ42, IJ43, (PTFE) is used. As chemical vapor standard in ULSI IJ44 high CTE materials deposition (CVD), fabs are usually non- spin coating, and PTFE deposition conductive, a heater evaporation cannot be followed fabricated from a PTFE is a with high conductive material is candidate for low temperature (above incorporated. A 50 μm dielectric constant 350° C.) processing long PTFE bend insulation in ULSI Pigmented inks actuator with Very low power may be infeasible, polysilicon heater and consumption as pigment particles 15 mW power input Many ink types may jam the bend can provide 180 μN can be used actuator force and 10 μm Simple planar deflection. Actuator fabrication motions include: Small chip area Bend required for each Push actuator Buckle Fast operation Rotate High efficiency CMOS compatible voltages and currents Easy extension from single nozzles to pagewidth print heads Conduct-ive A polymer with a high High force can Requires special IJ24 polymer coefficient of thermal be generated materials thermoelastic expansion (such as Very low power development (High actuator PTFE) is doped with consumption CTE conductive conducting substances Many ink types polymer) to increase its can be used Requires a PTFE conductivity to about 3 Simple planar deposition process, orders of magnitude fabrication which is not yet below that of copper. Small chip area standard in ULSI The conducting required for each fabs polymer expands actuator PTFE deposition when resistively Fast operation cannot be followed heated. High efficiency with high Examples of CMOS temperature (above conducting dopants compatible voltages 350° C.) processing include: and currents Evaporation and Carbon nanotubes Easy extension CVD deposition Metal fibers from single nozzles techniques cannot Conductive polymers to pagewidth print be used such as doped heads Pigmented inks polythiophene may be infeasible, Carbon granules as pigment particles may jam the bend actuator Shape A shape memory alloy High force is Fatigue limits IJ26 memory such as TiNi (also available (stresses maximum number alloy known as Nitinol - of hundreds of MPa) of cycles Nickel Titanium alloy Large strain is Low strain (1%) developed at the Naval available (more than is required to extend Ordnance Laboratory) 3%) fatigue resistance is thermally switched High corrosion Cycle rate between its weak resistance limited by heat martensitic state and Simple removal its high stiffness construction Requires unusual austenic state. The Easy extension materials (TiNi) shape of the actuator from single nozzles The latent heat of in its martensitic state to pagewidth print transformation must is deformed relative to heads be provided the austenic shape. Low voltage High current The shape change operation operation causes ejection of a Requires pre- drop. stressing to distort the martensitic state Linear Linear magnetic Linear Magnetic Requires unusual IJ12 Magnetic actuators include the actuators can be semiconductor Actuator Linear Induction constructed with materials such as Actuator (LIA), Linear high thrust, long soft magnetic alloys Permanent Magnet travel, and high (e.g. CoNiFe) Synchronous Actuator efficiency using Some varieties (LPMSA), Linear planar also require Reluctance semiconductor permanent magnetic Synchronous Actuator fabrication materials such as (LRSA), Linear techniques Neodymium iron Switched Reluctance Long actuator boron (NdFeB) Actuator (LSRA), and travel is available Requires the Linear Stepper Medium force is complex multi- Actuator (LSA). available phase drive circuitry Low voltage High current operation operation -
BASIC OPERATION MODE Description Advantages Disadvantages Examples Actuator This is the simplest Simple operation Drop repetition Thermal ink jet directly mode of operation: the No external rate is usually Piezoelectric ink pushes ink actuator directly fields required limited to around 10 kHz. jet supplies sufficient Satellite drops However, this IJ01, IJ02, IJ03, kinetic energy to expel can be avoided if is not fundamental IJ04, IJ05, IJ06, the drop. The drop drop velocity is less to the method, but is IJ07, IJ09, IJ11, must have a sufficient than 4 m/s related to the refill IJ12, IJ14, IJ16, velocity to overcome Can be efficient, method normally IJ20, IJ22, IJ23, the surface tension. depending upon the used IJ24, IJ25, IJ26, actuator used All of the drop IJ27, IJ28, IJ29, kinetic energy must IJ30, IJ31, IJ32, be provided by the IJ33, IJ34, IJ35, actuator IJ36, IJ37, IJ38, Satellite drops IJ39, IJ40, IJ41, usually form if drop IJ42, IJ43, IJ44 velocity is greater than 4.5 m/s Proximity The drops to be Very simple print Requires close Silverbrook, EP printed are selected by head fabrication can proximity between 0771 658 A2 and some manner (e.g. be used the print head and related patent thermally induced The drop the print media or applications surface tension selection means transfer roller reduction of does not need to May require two pressurized ink). provide the energy print heads printing Selected drops are required to separate alternate rows of the separated from the ink the drop from the image in the nozzle by nozzle Monolithic color contact with the print print heads are medium or a transfer difficult roller. Electrostatic The drops to be Very simple print Requires very Silverbrook, EP pull printed are selected by head fabrication can high electrostatic 0771 658 A2 and on ink some manner (e.g. be used field related patent thermally induced The drop Electrostatic field applications surface tension selection means for small nozzle Tone-Jet reduction of does not need to sizes is above air pressurized ink). provide the energy breakdown Selected drops are required to separate Electrostatic field separated from the ink the drop from the may attract dust in the nozzle by a nozzle strong electric field. Magnetic The drops to be Very simple print Requires Silverbrook, EP pull on ink printed are selected by head fabrication can magnetic ink 0771 658 A2 and some manner (e.g. be used Ink colors other related patent thermally induced The drop than black are applications surface tension selection means difficult reduction of does not need to Requires very pressurized ink). provide the energy high magnetic fields Selected drops are required to separate separated from the ink the drop from the in the nozzle by a nozzle strong magnetic field acting on the magnetic ink. Shutter The actuator moves a High speed (>50 kHz) Moving parts are IJ13, IJ17, IJ21 shutter to block ink operation can required flow to the nozzle. The be achieved due to Requires ink ink pressure is pulsed reduced refill time pressure modulator at a multiple of the Drop timing can Friction and wear drop ejection be very accurate must be considered frequency. The actuator Stiction is energy can be very possible low Shuttered The actuator moves a Actuators with Moving parts are IJ08, IJ15, IJ18, grill shutter to block ink small travel can be required IJ19 flow through a grill to used Requires ink the nozzle. The shutter Actuators with pressure modulator movement need only small force can be Friction and wear be equal to the width used must be considered of the grill holes. High speed (>50 kHz) Stiction is operation can possible be achieved Pulsed A pulsed magnetic Extremely low Requires an IJ10 magnetic field attracts an ‘ink energy operation is external pulsed pull on ink pusher’ at the drop possible magnetic field pusher ejection frequency. An No heat Requires special actuator controls a dissipation materials for both catch, which prevents problems the actuator and the the ink pusher from ink pusher moving when a drop is Complex not to be ejected. construction -
AUXILIARY MECHANISM (APPLIED TO ALL NOZZLES) Description Advantages Disadvantages Examples None The actuator directly Simplicity of Drop ejection Most ink jets, fires the ink drop, and construction energy must be including there is no external Simplicity of supplied by piezoelectric and field or other operation individual nozzle thermal bubble. mechanism required. Small physical actuator IJ01, IJ02, IJ03, size IJ04, IJ05, IJ07, IJ09, IJ11, IJ12, IJ14, IJ20, IJ22, IJ23, IJ24, IJ25, IJ26, IJ27, IJ28, IJ29, IJ30, IJ31, IJ32, IJ33, IJ34, IJ35, IJ36, IJ37, IJ38, IJ39, IJ40, IJ41, IJ42, IJ43, IJ44 Oscillating The ink pressure Oscillating ink Requires external Silverbrook, EP ink pressure oscillates, providing pressure can provide ink pressure 0771 658 A2 and (including much of the drop a refill pulse, oscillator related patent acoustic ejection energy. The allowing higher Ink pressure applications stimulation) actuator selects which operating speed phase and amplitude IJ08, IJ13, IJ15, drops are to be fired The actuators must be carefully IJ17, IJ18, IJ19, by selectively may operate with controlled IJ21 blocking or enabling much lower energy Acoustic nozzles. The ink Acoustic lenses reflections in the ink pressure oscillation can be used to focus chamber must be may be achieved by the sound on the designed for vibrating the print nozzles head, or preferably by an actuator in the ink supply. Media The print head is Low power Precision Silverbrook, EP proximity placed in close High accuracy assembly required 0771 658 A2 and proximity to the print Simple print head Paper fibers may related patent medium. Selected construction cause problems applications drops protrude from Cannot print on the print head further rough substrates than unselected drops, and contact the print medium. The drop soaks into the medium fast enough to cause drop separation. Transfer Drops are printed to a High accuracy Bulky Silverbrook, EP roller transfer roller instead Wide range of Expensive 0771 658 A2 and of straight to the print print substrates can Complex related patent medium. A transfer be used construction applications roller can also be used Ink can be dried Tektronix hot for proximity drop on the transfer roller melt piezoelectric separation. ink jet Any of the IJ series Electrostatic An electric field is Low power Field strength Silverbrook, EP used to accelerate Simple print head required for 0771 658 A2 and selected drops towards construction separation of small related patent the print medium. drops is near or applications above air Tone-Jet breakdown Direct A magnetic field is Low power Requires Silverbrook, EP magnetic used to accelerate Simple print head magnetic ink 0771 658 A2 and field selected drops of construction Requires strong related patent magnetic ink towards magnetic field applications the print medium. Cross The print head is Does not require Requires external IJ06, IJ16 magnetic placed in a constant magnetic materials magnet field magnetic field. The to be integrated in Current densities Lorenz force in a the print head may be high, current carrying wire manufacturing resulting in is used to move the process electromigration actuator. problems Pulsed A pulsed magnetic Very low power Complex print IJ10 magnetic field is used to operation is possible head construction field cyclically attract a Small print head Magnetic paddle, which pushes size materials required in on the ink. A small print head actuator moves a catch, which selectively prevents the paddle from moving. -
ACTUATOR AMPLIFICATION OR MODIFICATION METHOD Description Advantages Disadvantages Examples None No actuator Operational Many actuator Thermal Bubble mechanical simplicity mechanisms have Ink jet amplification is used. insufficient travel, IJ01, IJ02, IJ06, The actuator directly or insufficient force, IJ07, IJ16, IJ25, drives the drop to efficiently drive IJ26 ejection process. the drop ejection process Differential An actuator material Provides greater High stresses are Piezoelectric expansion expands more on one travel in a reduced involved IJ03, IJ09, IJ17, bend side than on the other. print head area Care must be IJ18, IJ19, IJ20, actuator The expansion may be taken that the IJ21, IJ22, IJ23, thermal, piezoelectric, materials do not IJ24, IJ27, IJ29, magnetostrictive, or delaminate IJ30, IJ31, IJ32, other mechanism. The Residual bend IJ33, IJ34, IJ35, bend actuator converts resulting from high IJ36, IJ37, IJ38, a high force low travel temperature or high IJ39, IJ42, IJ43, actuator mechanism to stress during IJ44 high travel, lower formation force mechanism. Transient A trilayer bend Very good High stresses are IJ40, IJ41 bend actuator where the two temperature stability involved actuator outside layers are High speed, as a Care must be identical. This cancels new drop can be taken that the bend due to ambient fired before heat materials do not temperature and dissipates delaminate residual stress. The Cancels residual actuator only responds stress of formation to transient heating of one side or the other. Reverse The actuator loads a Better coupling Fabrication IJ05, IJ11 spring spring. When the to the ink complexity actuator is turned off, High stress in the the spring releases. spring This can reverse the force/distance curve of the actuator to make it compatible with the force/time requirements of the drop ejection. Actuator A series of thin Increased travel Increased Some stack actuators are stacked. Reduced drive fabrication piezoelectric ink jets This can be voltage complexity IJ04 appropriate where Increased actuators require high possibility of short electric field strength, circuits due to such as electrostatic pinholes and piezoelectric actuators. Multiple Multiple smaller Increases the Actuator forces IJ12, IJ13, IJ18, actuators actuators are used force available from may not add IJ20, IJ22, IJ28, simultaneously to an actuator linearly, reducing IJ42, IJ43 move the ink. Each Multiple efficiency actuator need provide actuators can be only a portion of the positioned to control force required. ink flow accurately Linear A linear spring is used Matches low Requires print IJ15 Spring to transform a motion travel actuator with head area for the with small travel and higher travel spring high force into a requirements longer travel, lower Non-contact force motion. method of motion transformation Coiled A bend actuator is Increases travel Generally IJ17, IJ21, IJ34, actuator coiled to provide Reduces chip restricted to planar IJ35 greater travel in a area implementations reduced chip area. Planar due to extreme implementations are fabrication difficulty relatively easy to in other orientations. fabricate. Flexure A bend actuator has a Simple means of Care must be IJ10, IJ19, IJ33 bend small region near the increasing travel of taken not to exceed actuator fixture point, which a bend actuator the elastic limit in flexes much more the flexure area readily than the Stress remainder of the distribution is very actuator. The actuator uneven flexing is effectively Difficult to converted from an accurately model even coiling to an with finite element angular bend, resulting analysis in greater travel of the actuator tip. Catch The actuator controls a Very low Complex IJ10 small catch. The catch actuator energy construction either enables or Very small Requires external disables movement of actuator size force an ink pusher that is Unsuitable for controlled in a bulk pigmented inks manner. Gears Gears can be used to Low force, low Moving parts are IJ13 increase travel at the travel actuators can required expense of duration. be used Several actuator Circular gears, rack Can be fabricated cycles are required and pinion, ratchets, using standard More complex and other gearing surface MEMS drive electronics methods can be used. processes Complex construction Friction, friction, and wear are possible Buckle plate A buckle plate can be Very fast Must stay within S. Hirata et al, used to change a slow movement elastic limits of the “An Ink-jet Head actuator into a fast achievable materials for long Using Diaphragm motion. It can also device life Microactuator”, convert a high force, High stresses Proc. IEEE MEMS, low travel actuator involved February 1996, pp 418-423. into a high travel, Generally high IJ18, IJ27 medium force motion. power requirement Tapered A tapered magnetic Linearizes the Complex IJ14 magnetic pole can increase magnetic construction pole travel at the expense force/distance curve of force. Lever A lever and fulcrum is Matches low High stress IJ32, IJ36, IJ37 used to transform a travel actuator with around the fulcrum motion with small higher travel travel and high force requirements into a motion with Fulcrum area has longer travel and no linear movement, lower force. The lever and can be used for can also reverse the a fluid seal direction of travel. Rotary The actuator is High mechanical Complex IJ28 impeller connected to a rotary advantage construction impeller. A small The ratio of force Unsuitable for angular deflection of to travel of the pigmented inks the actuator results in actuator can be a rotation of the matched to the impeller vanes, which nozzle requirements push the ink against by varying the stationary vanes and number of impeller out of the nozzle. vanes Acoustic A refractive or No moving parts Large area 1993 Hadimioglu lens diffractive (e.g. zone required et al, EUP 550,192 plate) acoustic lens is Only relevant for 1993 Elrod et al, used to concentrate acoustic ink jets EUP 572,220 sound waves. Sharp A sharp point is used Simple Difficult to Tone-jet conductive to concentrate an construction fabricate using point electrostatic field. standard VLSI processes for a surface ejecting ink- jet Only relevant for electrostatic ink jets -
ACTUATOR MOTION Description Advantages Disadvantages Examples Volume The volume of the Simple High energy is Hewlett-Packard expansion actuator changes, construction in the typically required to Thermal Ink jet pushing the ink in all case of thermal ink achieve volume Canon Bubblejet directions. jet expansion. This leads to thermal stress, cavitation, and kogation in thermal ink jet implementations Linear, The actuator moves in Efficient High fabrication IJ01, IJ02, IJ04, normal to a direction normal to coupling to ink complexity may be IJ07, IJ11, IJ14 chip surface the print head surface. drops ejected required to achieve The nozzle is typically normal to the perpendicular in the line of surface motion movement. Parallel to The actuator moves Suitable for Fabrication IJ12, IJ13, IJ15, chip surface parallel to the print planar fabrication complexity IJ33,, IJ34, IJ35, head surface. Drop Friction IJ36 ejection may still be Stiction normal to the surface. Membrane An actuator with a The effective Fabrication 1982 Howkins push high force but small area of the actuator complexity U.S. Pat. No. 4,459,601 area is used to push a becomes the Actuator size stiff membrane that is membrane area Difficulty of in contact with the ink. integration in a VLSI process Rotary The actuator causes Rotary levers Device IJ05, IJ08, IJ13, the rotation of some may be used to complexity IJ28 element, such a grill or increase travel May have impeller Small chip area friction at a pivot requirements point Bend The actuator bends A very small Requires the 1970 Kyser et al when energized. This change in actuator to be made U.S. Pat. No. 3,946,398 may be due to dimensions can be from at least two 1973 Stemme differential thermal converted to a large distinct layers, or to U.S. Pat. No. 3,747,120 expansion, motion. have a thermal IJ03, IJ09, IJ10, piezoelectric difference across the IJ19, IJ23, IJ24, expansion, actuator IJ25, IJ29, IJ30, magnetostriction, or IJ31, IJ33, IJ34, other form of relative IJ35 dimensional change. Swivel The actuator swivels Allows operation Inefficient IJ06 around a central pivot. where the net linear coupling to the ink This motion is suitable force on the paddle motion where there are is zero opposite forces Small chip area applied to opposite requirements sides of the paddle, e.g. Lorenz force. Straighten The actuator is Can be used with Requires careful IJ26, IJ32 normally bent, and shape memory balance of stresses straightens when alloys where the to ensure that the energized. austenic phase is quiescent bend is planar accurate Double The actuator bends in One actuator can Difficult to make IJ36, IJ37, IJ38 bend one direction when be used to power the drops ejected by one element is two nozzles. both bend directions energized, and bends Reduced chip identical. the other way when size. A small another element is Not sensitive to efficiency loss energized. ambient temperature compared to equivalent single bend actuators. Shear Energizing the Can increase the Not readily 1985 Fishbeck actuator causes a shear effective travel of applicable to other U.S. Pat. No. 4,584,590 motion in the actuator piezoelectric actuator material. actuators mechanisms Radial constriction The actuator squeezes Relatively easy High force 1970 Zoltan U.S. Pat. No. an ink reservoir, to fabricate single required 3,683,212 forcing ink from a nozzles from glass Inefficient constricted nozzle. tubing as Difficult to macroscopic integrate with VLSI structures processes Coil/uncoil A coiled actuator Easy to fabricate Difficult to IJ17, IJ21, IJ34, uncoils or coils more as a planar VLSI fabricate for non- IJ35 tightly. The motion of process planar devices the free end of the Small area Poor out-of-plane actuator ejects the ink. required, therefore stiffness low cost Bow The actuator bows (or Can increase the Maximum travel IJ16, IJ18, IJ27 buckles) in the middle speed of travel is constrained when energized. Mechanically High force rigid required Push-Pull Two actuators control The structure is Not readily IJ18 a shutter. One actuator pinned at both ends, suitable for ink jets pulls the shutter, and so has a high out-of- which directly push the other pushes it. plane rigidity the ink Curl A set of actuators curl Good fluid flow Design IJ20, IJ42 inwards inwards to reduce the to the region behind complexity volume of ink that the actuator they enclose. increases efficiency Curl A set of actuators curl Relatively simple Relatively large IJ43 outwards outwards, pressurizing construction chip area ink in a chamber surrounding the actuators, and expelling ink from a nozzle in the chamber. Iris Multiple vanes enclose High efficiency High fabrication IJ22 a volume of ink. These Small chip area complexity simultaneously rotate, Not suitable for reducing the volume pigmented inks between the vanes. Acoustic The actuator vibrates The actuator can Large area 1993 Hadimioglu vibration at a high frequency. be physically distant required for et al, EUP 550,192 from the ink efficient operation 1993 Elrod et al, at useful frequencies EUP 572,220 Acoustic coupling and crosstalk Complex drive circuitry Poor control of drop volume and position None In various ink jet No moving parts Various other Silverbrook, EP designs the actuator tradeoffs are 0771 658 A2 and does not move. required to related patent eliminate moving applications parts Tone-jet -
NOZZLE REFILL METHOD Description Advantages Disadvantages Examples Surface This is the normal way Fabrication Low speed Thermal ink jet tension that ink jets are simplicity Surface tension Piezoelectric ink refilled. After the Operational force relatively jet actuator is energized, simplicity small compared to IJ01-IJ07, IJ10-IJ14, it typically returns actuator force IJ16, IJ20, rapidly to its normal Long refill time IJ22-IJ45 position. This rapid usually dominates return sucks in air the total repetition through the nozzle rate opening. The ink surface tension at the nozzle then exerts a small force restoring the meniscus to a minimum area. This force refills the nozzle. Shuttered Ink to the nozzle High speed Requires IJ08, IJ13, IJ15, oscillating chamber is provided at Low actuator common ink IJ17, IJ18, IJ19, ink pressure a pressure that energy, as the pressure oscillator IJ21 oscillates at twice the actuator need only May not be drop ejection open or close the suitable for frequency. When a shutter, instead of pigmented inks drop is to be ejected, ejecting the ink drop the shutter is opened for 3 half cycles: drop ejection, actuator return, and refill. The shutter is then closed to prevent the nozzle chamber emptying during the next negative pressure cycle. Refill After the main High speed, as Requires two IJ09 actuator actuator has ejected a the nozzle is independent drop a second (refill) actively refilled actuators per nozzle actuator is energized. The refill actuator pushes ink into the nozzle chamber. The refill actuator returns slowly, to prevent its return from emptying the chamber again. Positive ink The ink is held a slight High refill rate, Surface spill Silverbrook, EP pressure positive pressure. therefore a high must be prevented 0771 658 A2 and After the ink drop is drop repetition rate Highly related patent ejected, the nozzle is possible hydrophobic print applications chamber fills quickly head surfaces are Alternative for:, as surface tension and required IJ01-IJ07, IJ10-IJ14, ink pressure both IJ16, IJ20, IJ22-IJ45 operate to refill the nozzle. -
METHOD OF RESTRICTING BACK-FLOW THROUGH INLET Description Advantages Disadvantages Examples Long inlet The ink inlet channel Design simplicity Restricts refill Thermal ink jet channel to the nozzle chamber Operational rate Piezoelectric ink is made long and simplicity May result in a jet relatively narrow, Reduces relatively large chip IJ42, IJ43 relying on viscous crosstalk area drag to reduce inlet Only partially back-flow. effective Positive ink The ink is under a Drop selection Requires a Silverbrook, EP pressure positive pressure, so and separation method (such as a 0771 658 A2 and that in the quiescent forces can be nozzle rim or related patent state some of the ink reduced effective applications drop already protrudes Fast refill time hydrophobizing, or Possible from the nozzle. both) to prevent operation of the This reduces the flooding of the following: IJ01-IJ07, pressure in the nozzle ejection surface of IJ09-IJ12, chamber which is the print head. IJ14, IJ16, IJ20, required to eject a IJ22, , IJ23-IJ34, certain volume of ink. IJ36-IJ41, IJ44 The reduction in chamber pressure results in a reduction in ink pushed out through the inlet. Baffle One or more baffles The refill rate is Design HP Thermal Ink are placed in the inlet not as restricted as complexity Jet ink flow. When the the long inlet May increase Tektronix actuator is energized, method. fabrication piezoelectric ink jet the rapid ink Reduces complexity (e.g. movement creates crosstalk Tektronix hot melt eddies which restrict Piezoelectric print the flow through the heads). inlet. The slower refill process is unrestricted, and does not result in eddies. Flexible flap In this method recently Significantly Not applicable to Canon restricts disclosed by Canon, reduces back-flow most ink jet inlet the expanding actuator for edge-shooter configurations (bubble) pushes on a thermal ink jet Increased flexible flap that devices fabrication restricts the inlet. complexity Inelastic deformation of polymer flap results in creep over extended use Inlet filter A filter is located Additional Restricts refill IJ04, IJ12, IJ24, between the ink inlet advantage of ink rate IJ27, IJ29, IJ30 and the nozzle filtration May result in chamber. The filter Ink filter may be complex has a multitude of fabricated with no construction small holes or slots, additional process restricting ink flow. steps The filter also removes particles which may block the nozzle. Small inlet The ink inlet channel Design simplicity Restricts refill IJ02, IJ37, IJ44 compared to the nozzle chamber rate to nozzle has a substantially May result in a smaller cross section relatively large chip than that of the nozzle, area resulting in easier ink Only partially egress out of the effective nozzle than out of the inlet. Inlet shutter A secondary actuator Increases speed Requires separate IJ09 controls the position of of the ink-jet print refill actuator and a shutter, closing off head operation drive circuit the ink inlet when the main actuator is energized. The inlet is The method avoids the Back-flow Requires careful IJ01, IJ03, IJ05, located problem of inlet back- problem is design to minimize IJ06, IJ07, IJ10, behind the flow by arranging the eliminated the negative IJ11, IJ14, IJ16, ink-pushing ink-pushing surface of pressure behind the IJ22, IJ23, IJ25, surface the actuator between paddle IJ28, IJ31, IJ32, the inlet and the IJ33, IJ34, IJ35, nozzle. IJ36, IJ39, IJ40, IJ41 Part of the The actuator and a Significant Small increase in IJ07, IJ20, IJ26, actuator wall of the ink reductions in back- fabrication IJ38 moves to chamber are arranged flow can be complexity shut off the so that the motion of achieved inlet the actuator closes off Compact designs the inlet. possible Nozzle In some configurations Ink back-flow None related to Silverbrook, EP actuator of ink jet, there is no problem is ink back-flow on 0771 658 A2 and does not expansion or eliminated actuation related patent result in ink movement of an applications back-flow actuator which may Valve-jet cause ink back-flow Tone-jet through the inlet. -
NOZZLE CLEARING METHOD Description Advantages Disadvantages Examples Normal All of the nozzles are No added May not be Most ink jet nozzle firing fired periodically, complexity on the sufficient to systems before the ink has a print head displace dried ink IJ01, IJ02, IJ03, chance to dry. When IJ04, IJ05, IJ06, not in use the nozzles IJ07, IJ09, IJ10, are sealed (capped) IJ11, IJ12, IJ14, against air. IJ16, IJ20, IJ22, The nozzle firing is IJ23, IJ24, IJ25, usually performed IJ26, IJ27, IJ28, during a special IJ29, IJ30, IJ31, clearing cycle, after IJ32, IJ33, IJ34, first moving the print IJ36, IJ37, IJ38, head to a cleaning IJ39, IJ40,, IJ41, station. IJ42, IJ43, IJ44,, IJ45 Extra In systems which heat Can be highly Requires higher Silverbrook, EP power to the ink, but do not boil effective if the drive voltage for 0771 658 A2 and ink heater it under normal heater is adjacent to clearing related patent situations, nozzle the nozzle May require applications clearing can be larger drive achieved by over- transistors powering the heater and boiling ink at the nozzle. Rapid The actuator is fired in Does not require Effectiveness May be used success-ion rapid succession. In extra drive circuits depends with: IJ01, IJ02, of actuator some configurations, on the print head substantially upon IJ03, IJ04, IJ05, pulses this may cause heat Can be readily the configuration of IJ06, IJ07, IJ09, build-up at the nozzle controlled and the ink jet nozzle IJ10, IJ11, IJ14, which boils the ink, initiated by digital IJ16, IJ20, IJ22, clearing the nozzle. In logic IJ23, IJ24, IJ25, other situations, it may IJ27, IJ28, IJ29, cause sufficient IJ30, IJ31, IJ32, vibrations to dislodge IJ33, IJ34, IJ36, clogged nozzles. IJ37, IJ38, IJ39, IJ40, IJ41, IJ42, IJ43, IJ44, IJ45 Extra Where an actuator is A simple Not suitable May be used power to not normally driven to solution where where there is a with: IJ03, IJ09, ink pushing the limit of its motion, applicable hard limit to IJ16, IJ20, IJ23, actuator nozzle clearing may be actuator movement IJ24, IJ25, IJ27, assisted by providing IJ29, IJ30, IJ31, an enhanced drive IJ32, IJ39, IJ40, signal to the actuator. IJ41, IJ42, IJ43, IJ44, IJ45 Acoustic An ultrasonic wave is A high nozzle High IJ08, IJ13, IJ15, resonance applied to the ink clearing capability implementation cost IJ17, IJ18, IJ19, chamber. This wave is can be achieved if system does not IJ21 of an appropriate May be already include an amplitude and implemented at very acoustic actuator frequency to cause low cost in systems sufficient force at the which already nozzle to clear include acoustic blockages. This is actuators easiest to achieve if the ultrasonic wave is at a resonant frequency of the ink cavity. Nozzle A microfabricated Can clear Accurate Silverbrook, EP clearing plate is pushed against severely clogged mechanical 0771 658 A2 and plate the nozzles. The plate nozzles alignment is related patent has a post for every required applications nozzle. A post moves Moving parts are through each nozzle, required displacing dried ink. There is risk of damage to the nozzles Accurate fabrication is required Ink The pressure of the ink May be effective Requires May be used pressure is temporarily where other pressure pump or with all IJ series ink pulse increased so that ink methods cannot be other pressure jets streams from all of the used actuator nozzles. This may be Expensive used in conjunction Wasteful of ink with actuator energizing. Print head A flexible ‘blade’ is Effective for Difficult to use if Many ink jet wiper wiped across the print planar print head print head surface is systems head surface. The surfaces non-planar or very blade is usually Low cost fragile fabricated from a Requires flexible polymer, e.g. mechanical parts rubber or synthetic Blade can wear elastomer. out in high volume print systems Separate A separate heater is Can be effective Fabrication Can be used with ink boiling provided at the nozzle where other nozzle complexity many IJ series ink heater although the normal clearing methods jets drop e-ection cannot be used mechanism does not Can be require it. The heaters implemented at no do not require additional cost in individual drive some ink jet circuits, as many configurations nozzles can be cleared simultaneously, and no imaging is required. -
NOZZLE PLATE CONSTRUCTION Description Advantages Disadvantages Examples Electroformed A nozzle plate is Fabrication High Hewlett Packard nickel separately fabricated simplicity temperatures and Thermal Ink jet from electroformed pressures are nickel, and bonded to required to bond the print head chip. nozzle plate Minimum thickness constraints Differential thermal expansion Laser Individual nozzle No masks Each hole must Canon Bubblejet ablated or holes are ablated by an required be individually 1988 Sercel et drilled intense UV laser in a Can be quite fast formed al., SPIE, Vol. 998 polymer nozzle plate, which is Some control Special Excimer Beam typically a polymer over nozzle profile equipment required Applications, pp. such as polyimide or is possible Slow where there 76-83 polysulphone Equipment are many thousands 1993 Watanabe required is relatively of nozzles per print et al., U.S. Pat. No. low cost head 5,208,604 May produce thin burrs at exit holes Silicon A separate nozzle High accuracy is Two part K. Bean, IEEE micromachined plate is attainable construction Transactions on micromachined from High cost Electron Devices, single crystal silicon, Requires Vol. ED-25, No. 10, and bonded to the precision alignment 1978, pp 1185-1195 print head wafer. Nozzles may be Xerox 1990 clogged by adhesive Hawkins et al., U.S. Pat. No. 4,899,181 Glass Fine glass capillaries No expensive Very small 1970 Zoltan U.S. Pat. No. capillaries are drawn from glass equipment required nozzle sizes are 3,683,212 tubing. This method Simple to make difficult to form has been used for single nozzles Not suited for making individual mass production nozzles, but is difficult to use for bulk manufacturing of print heads with thousands of nozzles. Monolithic, The nozzle plate is High accuracy Requires Silverbrook, EP surface deposited as a layer (<1 μm) sacrificial layer 0771 658 A2 and micromachined using standard VLSI Monolithic under the nozzle related patent using VLSI deposition techniques. Low cost plate to form the applications lithographic Nozzles are etched in Existing nozzle chamber IJ01, IJ02, IJ04, processes the nozzle plate using processes can be Surface may be IJ11, IJ12, IJ17, VLSI lithography and used fragile to the touch IJ18, IJ20, IJ22, etching. IJ24, IJ27, IJ28, IJ29, IJ30, IJ31, IJ32, IJ33, IJ34, IJ36, IJ37, IJ38, IJ39, IJ40, IJ41, IJ42, IJ43, IJ44 -
NOZZLE CLEARING METHOD Description Advantages Disadvantages Examples Monolithic, The nozzle plate is a High accuracy Requires long IJ03, IJ05, IJ06, etched buried etch stop in the (<1 μm) etch times IJ07, IJ08, IJ09, through wafer. Nozzle Monolithic Requires a IJ10, IJ13, IJ14, substrate chambers are etched in Low cost support wafer IJ15, IJ16, IJ19, the front of the wafer, No differential IJ21, IJ23, IJ25, and the wafer is expansion IJ26 thinned from the back side. Nozzles are then etched in the etch stop layer. No nozzle Various methods have No nozzles to Difficult to Ricoh 1995 plate been tried to eliminate become clogged control drop Sekiya et al U.S. Pat. No. the nozzles entirely, to position accurately 5,412,413 prevent nozzle Crosstalk 1993 Hadimioglu clogging. These problems et al EUP 550,192 include thermal bubble 1993 Elrod et al mechanisms and EUP 572,220 acoustic lens mechanisms Trough Each drop ejector has Reduced Drop firing IJ35 a trough through manufacturing direction is sensitive which a paddle moves. complexity to wicking. There is no nozzle Monolithic plate. Nozzle slit The elimination of No nozzles to Difficult to 1989 Saito et al instead of nozzle holes and become clogged control drop U.S. Pat. No. 4,799,068 individual replacement by a slit position accurately nozzles encompassing many Crosstalk actuator positions problems reduces nozzle clogging, but increases crosstalk due to ink surface waves -
DROP EJECTION DIRECTION Description Advantages Disadvantages Examples Edge Ink flow is along the Simple Nozzles limited Canon Bubblejet (‘edge surface of the chip, construction to edge 1979 Endo et al GB shooter’) and ink drops are No silicon High resolution patent 2,007,162 ejected from the chip etching required is difficult Xerox heater-in- edge. Good heat Fast color pit 1990 Hawkins et sinking via substrate printing requires al U.S. Pat. No. 4,899,181 Mechanically one print head per Tone-jet strong color Ease of chip handing Surface Ink flow is along the No bulk silicon Maximum ink Hewlett-Packard (‘roof surface of the chip, etching required flow is severely TIJ 1982 Vaught et shooter’) and ink drops are Silicon can make restricted al U.S. Pat. No. 4,490,728 ejected from the chip an effective heat IJ02, IJ11, IJ12, surface, normal to the sink IJ20, IJ22 plane of the chip. Mechanical strength Through Ink flow is through the High ink flow Requires bulk Silverbrook, EP chip, chip, and ink drops are Suitable for silicon etching 0771 658 A2 and forward ejected from the front pagewidth print related patent (‘up surface of the chip. heads applications shooter’) High nozzle IJ04, IJ17, IJ18, packing density IJ24, IJ27-IJ45 therefore low manufacturing cost Through Ink flow is through the High ink flow Requires wafer IJ01, IJ03, IJ05, chip, chip, and ink drops are Suitable for thinning IJ06, IJ07, IJ08, reverse ejected from the rear pagewidth print Requires special IJ09, IJ10, IJ13, (‘down surface of the chip. heads handling during IJ14, IJ15, IJ16, shooter’) High nozzle manufacture IJ19, IJ21, IJ23, packing density IJ25, IJ26 therefore low manufacturing cost Through Ink flow is through the Suitable for Pagewidth print Epson Stylus actuator actuator, which is not piezoelectric print heads require Tektronix hot fabricated as part of heads several thousand melt piezoelectric the same substrate as connections to drive ink jets the drive transistors. circuits Cannot be manufactured in standard CMOS fabs Complex assembly required -
INK TYPE Description Advantages Disadvantages Examples Aqueous, Water based ink which Environmentally Slow drying Most existing ink dye typically contains: friendly Corrosive jets water, dye, surfactant, No odor Bleeds on paper All IJ series ink humectant, and May jets biocide. strikethrough Silverbrook, EP Modern ink dyes have Cockles paper 0771 658 A2 and high water-fastness, related patent light fastness applications Aqueous, Water based ink which Environmentally Slow drying IJ02, IJ04, IJ21, pigment typically contains: friendly Corrosive IJ26, IJ27, IJ30 water, pigment, No odor Pigment may Silverbrook, EP surfactant, humectant, Reduced bleed clog nozzles 0771 658 A2 and and biocide. Reduced wicking Pigment may related patent Pigments have an Reduced clog actuator applications advantage in reduced strikethrough mechanisms Piezoelectric ink- bleed, wicking and Cockles paper jets strikethrough. Thermal ink jets (with significant restrictions) Methyl MEK is a highly Very fast drying Odorous All IJ series ink Ethyl volatile solvent used Prints on various Flammable jets Ketone for industrial printing substrates such as (MEK) on difficult surfaces metals and plastics such as aluminum cans. Alcohol Alcohol based inks Fast drying Slight odor All IJ series ink (ethanol, 2- can be used where the Operates at sub- Flammable jets butanol, printer must operate at freezing and others) temperatures below temperatures the freezing point of Reduced paper water. An example of cockle this is in-camera Low cost consumer photographic printing. Phase The ink is solid at No drying time- High viscosity Tektronix hot change room temperature, and ink instantly freezes Printed ink melt piezoelectric (hot melt) is melted in the print on the print medium typically has a ink jets head before jetting. Almost any print ‘waxy’ feel 1989 Nowak Hot melt inks are medium can be used Printed pages U.S. Pat. No. 4,820,346 usually wax based, No paper cockle may ‘block’ All IJ series ink with a melting point occurs Ink temperature jets around 80° C. After No wicking may be above the jetting the ink freezes occurs curie point of almost instantly upon No bleed occurs permanent magnets contacting the print No strikethrough Ink heaters medium or a transfer occurs consume power roller. Long warm-up time Oil Oil based inks are High solubility High viscosity: All IJ series ink extensively used in medium for some this is a significant jets offset printing. They dyes limitation for use in have advantages in Does not cockle ink jets, which improved paper usually require a characteristics on Does not wick low viscosity. Some paper (especially no through paper short chain and wicking or cockle). multi-branched oils Oil soluble dies and have a sufficiently pigments are required. low viscosity. Slow drying Microemulsion A microemulsion is a Stops ink bleed Viscosity higher All IJ series ink stable, self forming High dye than water jets emulsion of oil, water, solubility Cost is slightly and surfactant. The Water, oil, and higher than water characteristic drop size amphiphilic soluble based ink is less than 100 nm, dies can be used High surfactant and is determined by Can stabilize concentration the preferred curvature pigment required (around of the surfactant. suspensions 5%)
Claims (5)
1. A camera system for recording images, said camera system comprising:
an electronic image sensor for sensing an image;
a digital processing means for processing said sensed image in accordance with predetermined processing requirements;
a photo width ink jet printer means for printing said processed image on a surface of ink jet print media, said print media including a magnetic recording surface;
a magnetic recording means for recording associated information on said magnetic recording surface.
2. A camera system as claimed in claim 1 wherein said associated information comprises audio information associated with said sensed image.
3. A camera system as claimed in claim 1 wherein the printer means prints said sensed image on a first surface of said print media and the magnetic recording means records said associated information on a second surface of said print media.
4. A camera system as claimed in claim 1 wherein said print media is stored on an internal detachable roll in said camera system, said camera system comprising a hand held portable camera device, said photo width ink jet printer being built into said hand held portable camera device.
5. A camera system as claimed in claim 3 wherein said first and said second surfaces are on different faces of said print media.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/510,094 US20070003275A1 (en) | 2002-06-24 | 2002-08-29 | Photographic prints having magnetically recordable media |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/176,680 US6985207B2 (en) | 1997-07-15 | 2002-06-24 | Photographic prints having magnetically recordable media |
PCT/AU2002/001161 WO2004001501A1 (en) | 2002-06-24 | 2002-08-29 | Photographic prints having magnetically recordable media |
US10/510,094 US20070003275A1 (en) | 2002-06-24 | 2002-08-29 | Photographic prints having magnetically recordable media |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/176,680 Continuation-In-Part US6985207B2 (en) | 1997-07-15 | 2002-06-24 | Photographic prints having magnetically recordable media |
Publications (1)
Publication Number | Publication Date |
---|---|
US20070003275A1 true US20070003275A1 (en) | 2007-01-04 |
Family
ID=29999070
Family Applications (7)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/176,680 Expired - Fee Related US6985207B2 (en) | 1997-07-15 | 2002-06-24 | Photographic prints having magnetically recordable media |
US10/510,094 Abandoned US20070003275A1 (en) | 2002-06-24 | 2002-08-29 | Photographic prints having magnetically recordable media |
US11/190,902 Expired - Fee Related US7558476B2 (en) | 1997-07-15 | 2005-07-28 | Digital camera with ancillary data capture |
US11/951,960 Expired - Fee Related US7590347B2 (en) | 1997-07-15 | 2007-12-06 | Photographic prints having magnetically recordable media |
US12/542,606 Expired - Fee Related US7742696B2 (en) | 1997-07-15 | 2009-08-17 | Digital camera having printhead and magnetic recorder |
US12/818,138 Expired - Fee Related US7970275B2 (en) | 1997-07-15 | 2010-06-17 | Digital camera system for simultaneous printing and magnetic recording |
US13/117,099 Expired - Fee Related US8285137B2 (en) | 1997-07-15 | 2011-05-26 | Digital camera system for simultaneous printing and magnetic recording |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/176,680 Expired - Fee Related US6985207B2 (en) | 1997-07-15 | 2002-06-24 | Photographic prints having magnetically recordable media |
Family Applications After (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/190,902 Expired - Fee Related US7558476B2 (en) | 1997-07-15 | 2005-07-28 | Digital camera with ancillary data capture |
US11/951,960 Expired - Fee Related US7590347B2 (en) | 1997-07-15 | 2007-12-06 | Photographic prints having magnetically recordable media |
US12/542,606 Expired - Fee Related US7742696B2 (en) | 1997-07-15 | 2009-08-17 | Digital camera having printhead and magnetic recorder |
US12/818,138 Expired - Fee Related US7970275B2 (en) | 1997-07-15 | 2010-06-17 | Digital camera system for simultaneous printing and magnetic recording |
US13/117,099 Expired - Fee Related US8285137B2 (en) | 1997-07-15 | 2011-05-26 | Digital camera system for simultaneous printing and magnetic recording |
Country Status (7)
Country | Link |
---|---|
US (7) | US6985207B2 (en) |
EP (1) | EP1516225A4 (en) |
CN (1) | CN1630834A (en) |
AU (1) | AU2002325078B2 (en) |
IL (1) | IL164833A0 (en) |
WO (1) | WO2004001501A1 (en) |
ZA (1) | ZA200408137B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050265713A1 (en) * | 2004-05-26 | 2005-12-01 | Seiko Epson Corporation | Image processing system, projector, program, information storage medium, and image processing method |
Families Citing this family (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6786420B1 (en) | 1997-07-15 | 2004-09-07 | Silverbrook Research Pty. Ltd. | Data distribution mechanism in the form of ink dots on cards |
US6547364B2 (en) | 1997-07-12 | 2003-04-15 | Silverbrook Research Pty Ltd | Printing cartridge with an integrated circuit device |
US6803989B2 (en) * | 1997-07-15 | 2004-10-12 | Silverbrook Research Pty Ltd | Image printing apparatus including a microcontroller |
US6702417B2 (en) * | 1997-07-12 | 2004-03-09 | Silverbrook Research Pty Ltd | Printing cartridge with capacitive sensor identification |
US6618117B2 (en) | 1997-07-12 | 2003-09-09 | Silverbrook Research Pty Ltd | Image sensing apparatus including a microcontroller |
US6820968B2 (en) * | 1997-07-15 | 2004-11-23 | Silverbrook Research Pty Ltd | Fluid-dispensing chip |
AUPO802797A0 (en) * | 1997-07-15 | 1997-08-07 | Silverbrook Research Pty Ltd | Image processing method and apparatus (ART54) |
AUPO798697A0 (en) * | 1997-07-15 | 1997-08-07 | Silverbrook Research Pty Ltd | Data processing method and apparatus (ART51) |
US7110024B1 (en) * | 1997-07-15 | 2006-09-19 | Silverbrook Research Pty Ltd | Digital camera system having motion deblurring means |
AUPO797897A0 (en) * | 1997-07-15 | 1997-08-07 | Silverbrook Research Pty Ltd | Media device (ART18) |
US7050143B1 (en) * | 1998-07-10 | 2006-05-23 | Silverbrook Research Pty Ltd | Camera system with computer language interpreter |
US6985207B2 (en) * | 1997-07-15 | 2006-01-10 | Silverbrook Research Pty Ltd | Photographic prints having magnetically recordable media |
AUPO801997A0 (en) * | 1997-07-15 | 1997-08-07 | Silverbrook Research Pty Ltd | Media processing method and apparatus (ART21) |
US7724282B2 (en) | 1997-07-15 | 2010-05-25 | Silverbrook Research Pty Ltd | Method of processing digital image to correct for flash effects |
US6624848B1 (en) * | 1997-07-15 | 2003-09-23 | Silverbrook Research Pty Ltd | Cascading image modification using multiple digital cameras incorporating image processing |
AUPO850597A0 (en) | 1997-08-11 | 1997-09-04 | Silverbrook Research Pty Ltd | Image processing method and apparatus (art01a) |
US6879341B1 (en) | 1997-07-15 | 2005-04-12 | Silverbrook Research Pty Ltd | Digital camera system containing a VLIW vector processor |
US6690419B1 (en) * | 1997-07-15 | 2004-02-10 | Silverbrook Research Pty Ltd | Utilising eye detection methods for image processing in a digital image camera |
US7044589B2 (en) * | 1997-07-15 | 2006-05-16 | Silverbrook Res Pty Ltd | Printing cartridge with barcode identification |
US7551201B2 (en) | 1997-07-15 | 2009-06-23 | Silverbrook Research Pty Ltd | Image capture and processing device for a print on demand digital camera system |
AUPP702098A0 (en) | 1998-11-09 | 1998-12-03 | Silverbrook Research Pty Ltd | Image creation method and apparatus (ART73) |
AUPP702198A0 (en) * | 1998-11-09 | 1998-12-03 | Silverbrook Research Pty Ltd | Image creation method and apparatus (ART79) |
AUPQ056099A0 (en) | 1999-05-25 | 1999-06-17 | Silverbrook Research Pty Ltd | A method and apparatus (pprint01) |
US20050093979A1 (en) * | 2004-01-14 | 2005-05-05 | Tsai John C. | System for creating and storing digital images |
US20060127872A1 (en) | 2004-03-17 | 2006-06-15 | James Marggraff | Method and device for associating a user writing with a user-writable element |
US7302048B2 (en) * | 2004-07-23 | 2007-11-27 | Marvell International Technologies Ltd. | Printer with speech transcription of a recorded voice message |
EP2070233A4 (en) * | 2006-08-29 | 2011-03-09 | Visa Int Service Ass | Method and system for processing internet purchase transactions |
BRPI0813156A2 (en) * | 2007-06-22 | 2014-12-23 | Anthem Orthopaedics Van Llc | INTRAMEDULAR STEM WITH PIVOT HOLDER AND METHOD FOR USE |
CN104057698B (en) * | 2014-06-24 | 2016-02-03 | 珠海艾派克微电子有限公司 | Control sound production prompt chip, printed material container and tape deck |
CN110458769B (en) * | 2019-07-22 | 2023-04-07 | 天津大学 | Color polarization image restoration method based on elimination of inter-channel crosstalk |
Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US30692A (en) * | 1860-11-20 | Hatchet | ||
US135266A (en) * | 1873-01-28 | Improvement in leather-cutting machines | ||
US4270693A (en) * | 1979-08-13 | 1981-06-02 | Johnson Controls, Inc. | Electronic thermostat with heat anticipation and control method incorporating same |
US4270853A (en) * | 1979-03-21 | 1981-06-02 | West Electric Company, Ltd. | Sound-recording instant-printing film and camera therefor |
US4905029A (en) * | 1988-09-28 | 1990-02-27 | Kelley Scott A | Audio still camera system |
US4937676A (en) * | 1989-02-10 | 1990-06-26 | Polariod Corporation | Electronic camera system with detachable printer |
US5194892A (en) * | 1988-10-07 | 1993-03-16 | Eastman Kodak Company | Film information exchange system with virtual identification codes |
US5347403A (en) * | 1991-09-20 | 1994-09-13 | Fuji Photo Film Co., Ltd. | Apparatus and method for recording and reading information |
US5398131A (en) * | 1992-08-13 | 1995-03-14 | Hall; Dennis R. | Stereoscopic hardcopy methods |
US5726693A (en) * | 1996-07-22 | 1998-03-10 | Eastman Kodak Company | Ink printing apparatus using ink surfactants |
US5847836A (en) * | 1995-08-29 | 1998-12-08 | Canon Kabushiki Kaisha | Printer-built-in image-sensing apparatus and using strobe-light means electric-consumption control method thereof |
US5896155A (en) * | 1997-02-28 | 1999-04-20 | Eastman Kodak Company | Ink transfer printing apparatus with drop volume adjustment |
US6136212A (en) * | 1996-08-12 | 2000-10-24 | The Regents Of The University Of Michigan | Polymer-based micromachining for microfluidic devices |
US6363239B1 (en) * | 1999-08-11 | 2002-03-26 | Eastman Kodak Company | Print having attached audio data storage and method of providing same |
US6381418B1 (en) * | 1999-08-11 | 2002-04-30 | Eastman Kodak Company | Print having information associated with the print stored in a memory coupled to the print |
US6727953B1 (en) * | 1999-03-23 | 2004-04-27 | Eastman Kodak Company | Digital camera including printer for printing on an authenticated receiver |
Family Cites Families (700)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4991205A (en) | 1962-08-27 | 1991-02-05 | Lemelson Jerome H | Personal identification system and method |
US3943563A (en) | 1969-03-17 | 1976-03-09 | Lemelson Jerome H | System and method for recording and reproducing video information on a card |
US3735350A (en) | 1966-02-10 | 1973-05-22 | J Lemelson | Code scanning system |
US3573437A (en) | 1968-06-04 | 1971-04-06 | Wyle Laboratories | Bi-directional card reading system |
CH495017A (en) | 1968-07-16 | 1970-08-15 | Ciba Geigy | Method for scanning color codes and converting them into binary codes, as well as means for carrying out this method |
US3760162A (en) | 1969-11-13 | 1973-09-18 | Smiths Industries Ltd | Photoelectric readers |
US3731062A (en) | 1971-05-21 | 1973-05-01 | Binary Systems Inc | Optical card reader drive |
US3737629A (en) | 1971-06-09 | 1973-06-05 | Addressograph Multigraph | Optical code reader |
US3701098A (en) | 1971-06-15 | 1972-10-24 | Scanner | Device for machine reading of information without manipulation of the information carrier |
US3748939A (en) | 1971-08-11 | 1973-07-31 | Borden Inc | Traversing film cutter |
US3778541A (en) | 1971-09-03 | 1973-12-11 | Itek Corp | System for analyzing multicolored scenes |
US4000239A (en) * | 1971-12-13 | 1976-12-28 | Teijin Limited | Process for spinning naphthalate polyester fibers |
CH556068A (en) | 1972-01-03 | 1974-11-15 | Sodeco Compteurs De Geneve | IDENTIFICATION CARD READER. |
OA04528A (en) | 1972-04-27 | 1980-03-30 | Granger Maurice | Device for the simultaneous distribution and cutting of coiled material bands. |
US3866217A (en) | 1972-12-26 | 1975-02-11 | Currier Smith Corp | Monitoring transmission link by comparing pseudorandom signals |
US3970803A (en) | 1973-01-11 | 1976-07-20 | Cbs Inc. | Printed sound track system |
US3857019A (en) | 1973-03-05 | 1974-12-24 | Honeywell Inf Systems | Card reader data logic with position indication and error detection |
US3976973A (en) | 1974-01-07 | 1976-08-24 | Recognition Equipment Incorporated | Horizontal scan vertical simulation character reading |
US3893173A (en) | 1974-01-11 | 1975-07-01 | Hewlett Packard Co | Miniaturized magnetic card reader/recorder for use in hand-held calculator |
JPS595273B2 (en) * | 1974-03-08 | 1984-02-03 | サトウ シゲオ | An inexpensive mouthpiece that completely precipitates and cools smoke impurities in the holes and spaces, making the cigarette sweet and enjoyable. |
US3916420A (en) | 1974-05-06 | 1975-10-28 | Ncr Co | Printer and display system |
US4034211A (en) | 1975-06-20 | 1977-07-05 | Ncr Corporation | System and method for providing a security check on a credit card |
US4123782A (en) | 1975-07-18 | 1978-10-31 | Canon Kabushiki Kaisha | Control device for television camera |
US4088981A (en) | 1975-11-12 | 1978-05-09 | Citibank N.A. | Automated data entry and display system |
US4092654A (en) | 1976-09-13 | 1978-05-30 | Alasia Alfred Victor | Encoding system |
US4213694A (en) | 1977-05-31 | 1980-07-22 | International Business Machines Corporation | Copy production machines |
GB1580553A (en) | 1977-08-22 | 1980-12-03 | Bank Of England | Document carrying a legible code and method and apparatus for producing same |
US4494864A (en) | 1977-12-27 | 1985-01-22 | The Three Dimensional Photography Corp. | Apparatus for stereoscopic photography |
US4161749A (en) | 1978-03-30 | 1979-07-17 | Polaroid Corporation | Printer for producing print of an electronically recorded image |
US4200867A (en) | 1978-04-03 | 1980-04-29 | Hill Elmer D | System and method for painting images by synthetic color signal generation and control |
GB1595797A (en) | 1978-04-21 | 1981-08-19 | Pushman Hugh John | Security systems |
US4173401A (en) | 1978-05-15 | 1979-11-06 | Eastman Kodak Company | Apparatus for displaying alphanumeric information coded on a film cartridge |
US4262284A (en) | 1978-06-26 | 1981-04-14 | Stieff Lorin R | Self-monitoring seal |
US4463359A (en) | 1979-04-02 | 1984-07-31 | Canon Kabushiki Kaisha | Droplet generating method and apparatus thereof |
US4429320A (en) | 1979-09-21 | 1984-01-31 | Canon Kabushiki Kaisha | Ink jet recording apparatus |
US4546434C1 (en) | 1979-10-03 | 2002-09-17 | Debbie A Gioello | Method for designing apparel |
JPS56154720A (en) | 1980-05-02 | 1981-11-30 | Olympus Optical Co Ltd | Film cassette |
DE3024672A1 (en) * | 1980-06-30 | 1982-01-28 | Jens Ing.(grad.) 6458 Rodenbach Drefahl | ROOF COVER |
US4414316A (en) | 1980-09-05 | 1983-11-08 | Rexham Corporation | Composite lenticular screen sheet |
JPS5752967A (en) | 1980-09-17 | 1982-03-29 | Nec Corp | Device for immediately calculating and displaying dose distribution |
US4494862A (en) * | 1980-09-30 | 1985-01-22 | Minolta Camera Kabushiki Kaisha | Computerized information processing system equipped with copying apparatus |
US4580721A (en) | 1981-02-12 | 1986-04-08 | Imperial Chemical Industries Plc | Fluid container |
US5241165A (en) | 1981-02-27 | 1993-08-31 | Drexler Technology Corporation | Erasable optical wallet-size data card |
US4503135A (en) | 1981-02-27 | 1985-03-05 | Drexler Technology Corporation | Medium for recording visual images and laser written data |
US4402150A (en) | 1981-05-11 | 1983-09-06 | Polaroid Corporation | Verification device |
JPS57210878A (en) | 1981-05-29 | 1982-12-24 | Toshiba Corp | Transfer printer |
DE3238509A1 (en) | 1981-10-19 | 1983-05-05 | Canon K.K., Tokyo | IMAGE RECORDING DEVICE |
US4488563A (en) * | 1982-04-29 | 1984-12-18 | Mitsubishi Acetate Co., Ltd. | Filter plug |
US4500919A (en) | 1982-05-04 | 1985-02-19 | Massachusetts Institute Of Technology | Color reproduction system |
EP0096079B1 (en) | 1982-05-24 | 1986-08-20 | Ibm Deutschland Gmbh | Process for preparing dot screen data for character and/or picture representations |
US4558326A (en) | 1982-09-07 | 1985-12-10 | Konishiroku Photo Industry Co., Ltd. | Purging system for ink jet recording apparatus |
JPS5971865A (en) | 1982-10-19 | 1984-04-23 | Nec Corp | Color ink jet printer |
JPH0778825B2 (en) | 1983-02-09 | 1995-08-23 | 株式会社日立製作所 | Image processing processor |
JPS60136480A (en) | 1983-12-24 | 1985-07-19 | Sony Corp | Controller for image pickup light quantity |
US4596039A (en) | 1983-12-30 | 1986-06-17 | International Business Machines Corporation | Method for converting an image from a run end or run length representation to a bit map |
US4518235A (en) | 1984-02-06 | 1985-05-21 | James D. Sorg | Collapsible disposable camera |
JPS60192668A (en) | 1984-03-14 | 1985-10-01 | Toshiba Corp | Image former |
JPS60204366A (en) | 1984-03-30 | 1985-10-15 | Canon Inc | Ink jet recording head and preservation thereof |
US5031049A (en) | 1984-05-25 | 1991-07-09 | Canon Kabushiki Kaisha | Automatic object image follow-up device |
US4853967A (en) | 1984-06-29 | 1989-08-01 | International Business Machines Corporation | Method for automatic optical inspection analysis of integrated circuits |
DE3583378D1 (en) | 1984-10-02 | 1991-08-08 | Fujitsu Ltd | PRINTER WITH A PAPER FEED INSERTIBLE FROM THE FRONT. |
JPS625779A (en) | 1985-03-04 | 1987-01-12 | Kokusai Denshin Denwa Co Ltd <Kdd> | Encoding system for gradation facsimile picture signal |
WO1986005641A1 (en) | 1985-03-11 | 1986-09-25 | Eastman Kodak Company | Apparatus and method for forming digital images |
US4592938A (en) | 1985-03-25 | 1986-06-03 | Mobil Oil Corporation | Method of producing an internally reinforced thermoplastic film and film and articles produced therefrom |
US4639738A (en) | 1985-04-12 | 1987-01-27 | Eastman Kodak Company | Ink level detection system for ink jet printing apparatus |
US4771342A (en) | 1985-05-01 | 1988-09-13 | Emf Partners, Ltd. | Method and apparatus for enhancing video-recorded images to film grade quality |
US4688105A (en) | 1985-05-10 | 1987-08-18 | Bloch Arthur R | Video recording system |
US4796038A (en) | 1985-07-24 | 1989-01-03 | Ateq Corporation | Laser pattern generation apparatus |
US4783823A (en) * | 1985-09-16 | 1988-11-08 | Omron Tateisi Electronics, Co. | Card identifying method and apparatus |
US4640529A (en) | 1985-09-16 | 1987-02-03 | Katz Marcella M | Flexible non-distortable handcraft sheet material and method of applying printed designs thereto |
AT386159B (en) | 1985-10-11 | 1988-07-11 | Oesterr Nationalbank | METHOD AND DEVICE FOR PRODUCING REALITY (CODING) CHARACTERISTICS ON SECURITIES |
IT1182682B (en) | 1985-11-14 | 1987-10-05 | Olivetti & Co Spa | ELECTRICALLY CONDUCTIVE INK JET PRINT AND RELATED PRINTING DEVICE |
DE3687345T2 (en) * | 1985-12-26 | 1993-07-29 | Asahi Glass Matex Co Ltd | CONCRETE REINFORCEMENT UNIT. |
US4728978A (en) | 1986-03-07 | 1988-03-01 | Minolta Camera Kabushiki Kaisha | Photographic camera |
US4860375A (en) | 1986-03-10 | 1989-08-22 | Environmental Research Inst. Of Michigan | High speed cellular processing system |
US4762986A (en) | 1986-03-10 | 1988-08-09 | Canon Kabushiki Kaisha | Automatic focussing system including in-focus position prediction means |
US4689683B1 (en) | 1986-03-18 | 1996-02-27 | Edward Efron | Computerized studio for motion picture film and television production |
EP0237940B1 (en) * | 1986-03-19 | 1993-09-08 | Sharp Kabushiki Kaisha | Manual copying apparatus |
EP0244636A1 (en) | 1986-04-04 | 1987-11-11 | Marcella M. Katz | Personalized dolls and toy animals and method of manufacturing them |
US4724307A (en) | 1986-04-29 | 1988-02-09 | Gtech Corporation | Marked card reader |
US4788563A (en) | 1986-05-19 | 1988-11-29 | Canon Kabushiki Kaisha | Recording apparatus |
US4754487A (en) | 1986-05-27 | 1988-06-28 | Image Recall Systems, Inc. | Picture storage and retrieval system for various limited storage mediums |
US4783700A (en) | 1986-06-10 | 1988-11-08 | Canon Kabushiki Kaisha | Image sensor unit and image reading apparatus having the unit |
GB8614212D0 (en) | 1986-06-11 | 1986-07-16 | Kodak Ltd | Image processing method |
US4837628A (en) | 1986-07-14 | 1989-06-06 | Kabushiki Kaisha Toshiba | Electronic still camera for recording still picture on memory card with mode selecting shutter release |
US4683477A (en) | 1986-08-29 | 1987-07-28 | Eastman Kodak Company | Ink jet print head |
JP2733220B2 (en) | 1986-09-30 | 1998-03-30 | シャープ株式会社 | Composite image processing device |
US5148534A (en) | 1986-11-05 | 1992-09-15 | International Business Machines Corp. | Hardware cartridge representing verifiable, use-once authorization |
US5260735A (en) | 1986-11-19 | 1993-11-09 | Minolta Camera Kabushiki Kaisha | Camera system |
US4845770A (en) * | 1986-11-20 | 1989-07-04 | Oki Electric Industry Co., Ltd. | Method and apparatus for processing embossed card |
US5053814A (en) | 1986-12-24 | 1991-10-01 | Minolta Camera Kabushiki Kaisha | Image forming apparatus |
US5280160A (en) | 1987-02-27 | 1994-01-18 | Canon Kabushiki Kaisha | Recording and reproducing method and apparatus compensating for predicted deviation based on detected relative skewing of recording medium |
US4897719A (en) | 1987-03-19 | 1990-01-30 | Hugh Griffin | Image pre-processing sub-system |
US4835388A (en) | 1987-04-07 | 1989-05-30 | The Harshaw Chemical Company | Thermoluminescence dosimetry card reader heating assembly |
US4833599A (en) | 1987-04-20 | 1989-05-23 | Multiflow Computer, Inc. | Hierarchical priority branch handling for parallel execution in a parallel processor |
US4914452A (en) | 1987-05-08 | 1990-04-03 | Ricoh Company, Ltd. | Ink sheet/recording paper cassette |
US5151726A (en) | 1987-05-09 | 1992-09-29 | Canon Kabushiki Kaisha | Camera or printer capable of automatically changing print size |
US4791443A (en) * | 1987-06-12 | 1988-12-13 | Eastman Kodak Company | Photographic processor with auxiliary power supply |
JPH07118755B2 (en) * | 1987-08-19 | 1995-12-18 | 株式会社日立製作所 | Mail system |
US4861031A (en) | 1987-09-28 | 1989-08-29 | Simms Cosmian E | Card wrestling game |
JPH0193254A (en) | 1987-10-02 | 1989-04-12 | Canon Inc | Recorder |
US4987030A (en) * | 1987-10-07 | 1991-01-22 | Toray Industries, Inc. | High-tenacity conjugated fiber and process for preparation thereof |
US4975969A (en) * | 1987-10-22 | 1990-12-04 | Peter Tal | Method and apparatus for uniquely identifying individuals by particular physical characteristics and security system utilizing the same |
DE3880961T2 (en) | 1987-11-06 | 1993-09-09 | Victor Company Of Japan | CASSETTE FOR PRINTER ARRANGEMENT. |
JPH01128859A (en) | 1987-11-16 | 1989-05-22 | Canon Inc | Recorder |
US5066984A (en) | 1987-11-17 | 1991-11-19 | Gradco Systems, Inc. | Decurler |
US4924078A (en) | 1987-11-25 | 1990-05-08 | Sant Anselmo Carl | Identification symbol, system and method |
NL8800053A (en) * | 1988-01-11 | 1989-08-01 | Philips Nv | VIDEO PROCESSOR SYSTEM, IMAGE SYSTEM AND IMAGE STORAGE SYSTEM, PROVIDED WITH SUCH A VIDEO PROCESSOR SYSTEM. |
US5216490A (en) | 1988-01-13 | 1993-06-01 | Charles Stark Draper Laboratory, Inc. | Bridge electrodes for microelectromechanical devices |
US4965596A (en) | 1988-02-09 | 1990-10-23 | Canon Kabushiki Kaisha | Ink jet recording apparatus with waste ink distribution paths to plural cartridges |
US5161233A (en) | 1988-05-17 | 1992-11-03 | Dai Nippon Printing Co., Ltd. | Method for recording and reproducing information, apparatus therefor and recording medium |
US5111288A (en) | 1988-03-02 | 1992-05-05 | Diamond Electronics, Inc. | Surveillance camera system |
EP0332787A1 (en) | 1988-03-15 | 1989-09-20 | Françis Milliasseau Flaunet | Device for printing and computer-controlled cutting for the production of wall-paper |
JP2973420B2 (en) | 1988-03-30 | 1999-11-08 | キヤノン株式会社 | Video camera |
JP2669532B2 (en) | 1988-05-20 | 1997-10-29 | 株式会社日立製作所 | Optical disk drive |
NL8801440A (en) | 1988-06-06 | 1990-01-02 | Philips Nv | DEVICE FOR REPRODUCING DIGITALIZED VIDEO IMAGES WITH SLOPE FLAT ERROR. |
JP2728436B2 (en) | 1988-06-23 | 1998-03-18 | キヤノン株式会社 | Ink jet recording device |
EP0433280B1 (en) | 1988-07-25 | 1993-04-28 | Siemens Aktiengesellschaft | Arrangement for printing devices for monitoring printing medium containers |
US5042079A (en) | 1988-08-12 | 1991-08-20 | Casio Computer Co., Ltd. | Method of recording/reproducing data of mesh pattern, and apparatus therefor |
JP2653118B2 (en) | 1988-08-23 | 1997-09-10 | ソニー株式会社 | Camera-integrated video recorder |
US5243370A (en) | 1988-08-30 | 1993-09-07 | Dan Slater | Camera stabilizer |
JPH0236825U (en) | 1988-09-02 | 1990-03-09 | ||
US4902880A (en) * | 1988-09-30 | 1990-02-20 | Peripheral Dynamics, Inc. | Card reader system and method with printing and verification capability |
US5239292A (en) | 1988-10-04 | 1993-08-24 | Crosfield Electronics Ltd. | Computer graphics system electronically simulating painting on canvas |
JPH02105333A (en) | 1988-10-14 | 1990-04-17 | Hitachi Ltd | Optical recording sheet, method and device for reproducing such recording sheet |
US4904100A (en) | 1988-12-05 | 1990-02-27 | Eastman Kodak Company | Cartridge and printer system for using roll print media |
DE68927820T2 (en) | 1988-12-06 | 1997-07-10 | Canon Kk | Imaging system |
US5561604A (en) | 1988-12-08 | 1996-10-01 | Hallmark Cards, Incorporated | Computer controlled system for vending personalized products |
US5036472A (en) | 1988-12-08 | 1991-07-30 | Hallmark Cards, Inc. | Computer controlled machine for vending personalized products or the like |
US5224179A (en) | 1988-12-20 | 1993-06-29 | At&T Bell Laboratories | Image skeletonization method |
JP2675851B2 (en) | 1989-01-28 | 1997-11-12 | キヤノン株式会社 | INKJET RECORDING METHOD AND DEVICE USED FOR THE METHOD |
GB2228579A (en) | 1989-02-23 | 1990-08-29 | Marnic Uk Limited | A method and apparatus for producing instant photographs |
US5049898A (en) | 1989-03-20 | 1991-09-17 | Hewlett-Packard Company | Printhead having memory element |
US5515101A (en) | 1989-04-28 | 1996-05-07 | Minolta Co., Ltd. | Title generator for a video camera |
JPH02291764A (en) | 1989-05-02 | 1990-12-03 | Eastman Kodatsuku Japan Kk | Both sides scanner |
US4993405A (en) | 1989-05-15 | 1991-02-19 | Olympus Optical Co., Ltd. | Imaging apparatus |
DE69028038T2 (en) | 1989-05-17 | 1997-01-30 | Minolta Camera Kk | Recording and repro camera |
US5153532A (en) | 1989-05-24 | 1992-10-06 | Honeywell Inc. | Noise generator using combined outputs of two pseudo-random sequence generators |
US5107290A (en) | 1989-06-06 | 1992-04-21 | Canon Kabushiki Kaisha | Camera |
US5035929A (en) | 1989-06-13 | 1991-07-30 | Dimensional Images, Inc. | Three dimensional picture |
IT1232551B (en) | 1989-07-13 | 1992-02-19 | Olivetti & Co Spa | PRINT HEAD FOR A INK-JET THERMAL PRINTER |
US5035325A (en) | 1989-07-18 | 1991-07-30 | Dai Nippon Insatsu Kabushiki Kaisha | Cassette for thermal transfer printing film |
US5204944A (en) | 1989-07-28 | 1993-04-20 | The Trustees Of Columbia University In The City Of New York | Separable image warping methods and systems using spatial lookup tables |
JPH07101840B2 (en) | 1989-08-01 | 1995-11-01 | 三菱電機株式会社 | Digital noise signal generator |
ES2252908T3 (en) | 1989-08-05 | 2006-05-16 | Canon Kabushiki Kaisha | PRINTING DEVICE FOR INK JETS AND INK CARTRIDGE FOR THE APPLIANCE. |
WO1991001879A1 (en) | 1989-08-10 | 1991-02-21 | University Of Akron | Self reinforced thermoplastic composite laminate |
GB2235347B (en) | 1989-08-21 | 1994-06-08 | Barber Pamela L | Apparatus for making electronically-produced postcards and method of operating same |
US5412402A (en) | 1989-09-01 | 1995-05-02 | Quantel Limited | Electronic graphic systems |
US5175808A (en) | 1989-09-12 | 1992-12-29 | Pixar | Method and apparatus for non-affine image warping |
US5247611A (en) | 1989-09-15 | 1993-09-21 | Emtek Health Care Systems, Inc. | Spreadsheet cell having multiple data fields |
DE69025692T2 (en) | 1989-10-11 | 1996-07-18 | Fuji Photo Film Co Ltd | Image reader |
EP0424133B1 (en) | 1989-10-20 | 1995-03-22 | Canon Kabushiki Kaisha | Ink jet apparatus and ink jet cartridge and ink container mountable thereto |
US6070003A (en) * | 1989-11-17 | 2000-05-30 | Texas Instruments Incorporated | System and method of memory access in apparatus having plural processors and plural memories |
US4985710A (en) | 1989-11-29 | 1991-01-15 | Xerox Corporation | Buttable subunits for pagewidth "Roofshooter" printheads |
US5402504A (en) | 1989-12-08 | 1995-03-28 | Xerox Corporation | Segmentation of text styles |
US4999647A (en) | 1989-12-28 | 1991-03-12 | Eastman Kodak Company | Synchronous stimulation for long array continuous ink jet printer |
US5182548A (en) | 1990-01-10 | 1993-01-26 | Silicon Graphics, Inc. | Method and apparatus for painting on a computer |
US5154956A (en) | 1990-01-11 | 1992-10-13 | Lamco Ltd., Inc. | Non-curling pressure-sensitive adhesive labels with release liners |
US5235428A (en) | 1990-02-21 | 1993-08-10 | Sony Corporation | Auto-focus system for video camera |
US5245365A (en) | 1990-02-28 | 1993-09-14 | Compaq Computer Corporation | Ink-jet printer with user replaceable printing system cartridge |
DE69132222T2 (en) | 1990-03-09 | 2000-10-26 | Canon K.K., Tokio/Tokyo | Arrangement for recording signals |
JPH03261276A (en) * | 1990-03-12 | 1991-11-21 | Seiko Epson Corp | Print camera |
US5124692A (en) | 1990-04-13 | 1992-06-23 | Eastman Kodak Company | Method and apparatus for providing rotation of digital image data |
JP2567492B2 (en) | 1990-04-19 | 1996-12-25 | 富士写真フイルム株式会社 | Shooting mode input device |
US5644431A (en) | 1990-05-18 | 1997-07-01 | University Of Arkansas, N.A. | Directional image transmission sheet and method of making same |
GB2244622B (en) | 1990-05-30 | 1994-06-15 | Sony Corp | Image signal processing |
US5220400A (en) | 1990-06-01 | 1993-06-15 | Texas Instruments Incorporated | Container inspection system |
US5537144A (en) | 1990-06-11 | 1996-07-16 | Revfo, Inc. | Electro-optical display system for visually displaying polarized spatially multiplexed images of 3-D objects for use in stereoscopically viewing the same with high image quality and resolution |
US5495568A (en) | 1990-07-09 | 1996-02-27 | Beavin; William C. | Computerized clothing designer |
US5091966A (en) | 1990-07-31 | 1992-02-25 | Xerox Corporation | Adaptive scaling for decoding spatially periodic self-clocking glyph shape codes |
JPH0490354A (en) | 1990-08-02 | 1992-03-24 | Canon Inc | Ink jet recorder |
US6736321B2 (en) | 1995-12-18 | 2004-05-18 | Metrologic Instruments, Inc. | Planar laser illumination and imaging (PLIIM) system employing wavefront control methods for reducing the power of speckle-pattern noise digital images acquired by said system |
GB9020082D0 (en) | 1990-09-14 | 1990-10-24 | Crosfield Electronics Ltd | Methods and apparatus for defining contours in coloured images |
DE69129521T2 (en) | 1990-09-17 | 1998-11-26 | Canon K.K., Tokio/Tokyo | Data transmission device |
JPH0771203B2 (en) | 1990-09-18 | 1995-07-31 | キヤノン株式会社 | Signal recording device and signal processing device |
US6278486B1 (en) | 1990-09-18 | 2001-08-21 | Canon Kabushiki Kaisha | Information signal controlling system |
US5534900A (en) | 1990-09-21 | 1996-07-09 | Seiko Epson Corporation | Ink-jet recording apparatus |
JP2803072B2 (en) | 1990-10-18 | 1998-09-24 | 富士写真フイルム株式会社 | Image stabilization device |
US5559714A (en) | 1990-10-22 | 1996-09-24 | Hallmark Cards, Incorporated | Method and apparatus for display sequencing personalized social occasion products |
JP3038880B2 (en) | 1990-10-29 | 2000-05-08 | ミノルタ株式会社 | Thermal transfer recording device |
US5134495A (en) | 1990-11-07 | 1992-07-28 | Dp-Tek, Inc. | Resolution transforming raster-based imaging system |
EP0485293B1 (en) | 1990-11-08 | 1999-04-21 | Canon Kabushiki Kaisha | Image processing system |
JP3093781B2 (en) * | 1990-11-09 | 2000-10-03 | オリンパス光学工業株式会社 | Focus position detection device |
US5809292A (en) | 1990-11-13 | 1998-09-15 | International Business Machines Corporation | Floating point for simid array machine |
EP0485690B1 (en) | 1990-11-13 | 1999-05-26 | International Business Machines Corporation | Parallel associative processor system |
US5138459A (en) | 1990-11-20 | 1992-08-11 | Personal Computer Cameras, Inc. | Electronic still video camera with direct personal computer (pc) compatible digital format output |
US5493409A (en) | 1990-11-29 | 1996-02-20 | Minolta Camera Kabushiki Kaisha | Still video camera having a printer capable of printing a photographed image in a plurality of printing modes |
JP2956213B2 (en) | 1990-11-30 | 1999-10-04 | ソニー株式会社 | Image processing device |
US5191640A (en) | 1990-12-26 | 1993-03-02 | Xerox Corporation | Method for optimal discrete rendering of images |
US5293236A (en) | 1991-01-11 | 1994-03-08 | Fuji Photo Film Co., Ltd. | Electronic still camera including an EEPROM memory card and having a continuous shoot mode |
US5432896A (en) | 1991-01-31 | 1995-07-11 | Axa Corporation | Watercolor simulation in computer graphics |
US5115888A (en) | 1991-02-04 | 1992-05-26 | Howard Schneider | Self-serve checkout system |
US5204900A (en) | 1991-03-04 | 1993-04-20 | Pires H George | Coding system for descrambling video |
US5243174A (en) | 1991-03-05 | 1993-09-07 | The Gift Certificate Center, Inc. | Method and apparatus for generating gift certificates |
US5615123A (en) | 1991-04-02 | 1997-03-25 | Creatacard, Inc. | System for creating and producing custom card products |
US5384899A (en) | 1991-04-16 | 1995-01-24 | Scitex Corporation Ltd. | Apparatus and method for emulating a substrate |
JPH04321183A (en) | 1991-04-20 | 1992-11-11 | Ricoh Co Ltd | Document register method for filing device |
US5121139A (en) | 1991-04-29 | 1992-06-09 | Tektronix, Inc. | Compact ink jet printer having a drum drive mechanism |
US5058856A (en) | 1991-05-08 | 1991-10-22 | Hewlett-Packard Company | Thermally-actuated microminiature valve |
US5160945A (en) | 1991-05-10 | 1992-11-03 | Xerox Corporation | Pagewidth thermal ink jet printhead |
SE468414B (en) | 1991-05-14 | 1993-01-11 | Sune Svanberg | FILTER PICTURE REGISTRATION IN POOR LIGHT |
JP3256982B2 (en) | 1991-05-14 | 2002-02-18 | 富士ゼロックス株式会社 | Image processing device |
JP2990306B2 (en) | 1991-05-14 | 1999-12-13 | 富士ゼロックス株式会社 | Marker dot detection method for color image recording device |
JPH04358291A (en) * | 1991-06-04 | 1992-12-11 | Hitachi Ltd | Color image changing method |
EP0543955A1 (en) | 1991-06-12 | 1993-06-02 | LEE, Sung | Recording and reproducing a 3-dimensional image |
JP3181073B2 (en) | 1991-07-01 | 2001-07-03 | キヤノン株式会社 | Ink jet recording device |
US5282051A (en) | 1991-07-29 | 1994-01-25 | Xerox Corporation | Apparatus and method for performing resolution conversion on image data with auto correlation |
US5160577A (en) | 1991-07-30 | 1992-11-03 | Deshpande Narayan V | Method of fabricating an aperture plate for a roof-shooter type printhead |
US5208610A (en) | 1991-07-31 | 1993-05-04 | Hewlett-Packard Company | Pen carriage for an ink-jet printer |
CA2075097C (en) | 1991-08-02 | 2000-03-28 | Hiroyuki Ishinaga | Recording apparatus, recording head and substrate therefor |
WO1993004425A1 (en) | 1991-08-13 | 1993-03-04 | Universal Photonix, Inc. | System for remotely validating the identity of indivuals and determining their locations |
US5266781A (en) | 1991-08-15 | 1993-11-30 | Datacard Corporation | Modular card processing system |
US5164827A (en) | 1991-08-22 | 1992-11-17 | Sensormatic Electronics Corporation | Surveillance system with master camera control of slave cameras |
US5410225A (en) | 1991-08-30 | 1995-04-25 | Aiwa Co., Ltd. | Video camera and camera system employing aperture control |
US5420635A (en) | 1991-08-30 | 1995-05-30 | Fuji Photo Film Co., Ltd. | Video camera, imaging method using video camera, method of operating video camera, image processing apparatus and method, and solid-state electronic imaging device |
FR2681967B1 (en) | 1991-10-01 | 1994-11-25 | Electronics For Imaging Inc | METHOD AND APPARATUS FOR CHANGING THE COLORS OF AN IMAGE USING A COMPUTER. |
US5463470A (en) * | 1991-10-09 | 1995-10-31 | Fuji Photo Film Co., Ltd. | Methods of collecting photometric image data and determining light exposure by extracting feature image data from an original image |
US5356971A (en) | 1991-10-11 | 1994-10-18 | Nof Corporation | Thermosetting powder coating material |
US5594500A (en) | 1991-10-17 | 1997-01-14 | Canon Kabushiki Kaisha | Image pickup apparatus |
US5315316A (en) | 1991-10-29 | 1994-05-24 | Hewlett-Packard Company | Method and apparatus for summing temperature changes to detect ink flow |
JP2696025B2 (en) | 1991-11-18 | 1998-01-14 | 沖電気工業株式会社 | Read head |
US5276472A (en) | 1991-11-19 | 1994-01-04 | Eastman Kodak Company | Photographic film still camera system with audio recording |
US5428423A (en) | 1991-11-26 | 1995-06-27 | Clark; John R. | Photographic printed cards and apparatus and method of making same |
JP3375158B2 (en) | 1991-11-28 | 2003-02-10 | 株式会社リコー | Image data processing method and apparatus |
EP0547899A1 (en) | 1991-12-18 | 1993-06-23 | Sony Corporation | Indication of abnormal states of a video camera or a video tape recorder |
US5392365A (en) | 1991-12-23 | 1995-02-21 | Eastman Kodak Company | Apparatus for detecting text edges in digital image processing |
US5221833A (en) | 1991-12-27 | 1993-06-22 | Xerox Corporation | Methods and means for reducing bit error rates in reading self-clocking glyph codes |
JP2746790B2 (en) | 1992-03-02 | 1998-05-06 | 富士写真フイルム株式会社 | Stereoscopic image recording method and stereoscopic image recording apparatus |
US5369261A (en) | 1992-02-12 | 1994-11-29 | Shamir; Harry | Multi-color information encoding system |
US5563722A (en) | 1992-02-26 | 1996-10-08 | Norris; Christopher | Method and apparatus for assembling a photographic album |
US5752114A (en) | 1992-03-17 | 1998-05-12 | Sony Corporation | Photographic and video image system |
US5467118A (en) | 1993-12-21 | 1995-11-14 | Hewlett-Packard Company | Ink cartridge for a hard copy printing or plotting apparatus |
US5771245A (en) | 1992-03-20 | 1998-06-23 | Xerox Corporation | Process for independently protecting two dimensional codes from one or more burst errors patterns |
US5442188A (en) | 1992-04-22 | 1995-08-15 | Gould Instruments Systems, Inc. | Strip chart recorder paper attribute detector and monitor |
JP3571735B2 (en) | 1992-04-29 | 2004-09-29 | キヤノン株式会社 | Display graphic system for color laser copy machine |
US5581773A (en) * | 1992-05-12 | 1996-12-03 | Glover; Michael A. | Massively parallel SIMD processor which selectively transfers individual contiguously disposed serial memory elements |
US5278608A (en) | 1992-05-19 | 1994-01-11 | Eastman Kodak Company | Electronically printed depth photography system with improved viewing range |
US6118484A (en) | 1992-05-22 | 2000-09-12 | Canon Kabushiki Kaisha | Imaging apparatus |
JPH05328094A (en) | 1992-05-27 | 1993-12-10 | Ricoh Co Ltd | Method and device for picture processing |
JPH0630319A (en) | 1992-06-02 | 1994-02-04 | Sony Corp | Autofocus device |
KR950008698B1 (en) | 1992-06-09 | 1995-08-04 | 현대전자산업 주식회사 | Manufacturing method of field oxide of semiconductor device |
US5710948A (en) | 1992-06-09 | 1998-01-20 | Nikon Corporation | Camera system with color temperature meter |
EP0573984B1 (en) | 1992-06-11 | 1999-04-14 | Canon Kabushiki Kaisha | Contact type image sensor, producing method of the same, and information processing apparatus |
JP3110872B2 (en) | 1992-06-24 | 2000-11-20 | キヤノン株式会社 | Ink jet recording device |
US5288980A (en) | 1992-06-25 | 1994-02-22 | Kingsley Library Equipment Company | Library check out/check in system |
US5359387A (en) | 1992-07-06 | 1994-10-25 | Ray Hicks | Photographic process utilizing combined print and order form |
JPH07325934A (en) | 1992-07-10 | 1995-12-12 | Walt Disney Co:The | Method and equipment for provision of graphics enhanced to virtual world |
US6020898A (en) | 1992-07-27 | 2000-02-01 | Olympus Optical Co., Ltd. | Information display system for displaying time-series numerical values and graph simultaneously |
US5559930A (en) | 1992-08-03 | 1996-09-24 | Hewlett-Packard Company | Method for reducing pixel density along a plurality of axes of a multiple dimension image representation |
JPH0662309A (en) | 1992-08-10 | 1994-03-04 | Olympus Optical Co Ltd | Film picture reproducing device |
US5420607A (en) | 1992-09-02 | 1995-05-30 | Miller; Robert F. | Electronic paintbrush and color palette |
US5489935A (en) | 1992-09-04 | 1996-02-06 | Consilium Overseas Limited | Laser printer power saver |
US5604537A (en) * | 1992-09-10 | 1997-02-18 | Canon Kabushiki Kaisha | Imaging apparatus having an automatic focusing means |
US5330799A (en) | 1992-09-15 | 1994-07-19 | The Phscologram Venture, Inc. | Press polymerization of lenticular images |
JPH06105271A (en) | 1992-09-16 | 1994-04-15 | Asahi Optical Co Ltd | Ic memory card camera system |
JP3249200B2 (en) | 1992-09-16 | 2002-01-21 | 株式会社リコー | Curl straightener |
US5600563A (en) | 1992-09-23 | 1997-02-04 | Onkor Ltd. | System for printing social expression cards |
US5438430A (en) | 1992-09-25 | 1995-08-01 | Xerox Corporation | Paper user interface for image manipulations such as cut and paste |
AU668987B2 (en) | 1992-09-28 | 1996-05-23 | Olympus Optical Co., Ltd. | Dot code and information recording/reproducing system for recording/reproducing dot code |
KR0147572B1 (en) | 1992-10-09 | 1998-09-15 | 김광호 | Method & apparatus for object tracing |
US5835641A (en) | 1992-10-14 | 1998-11-10 | Mitsubishi Denki Kabushiki Kaisha | Image pick-up apparatus for detecting and enlarging registered objects |
US5318370A (en) | 1992-11-17 | 1994-06-07 | Varitronic Systems, Inc. | Cartridge with data memory system and method regarding same |
FR2698195B1 (en) * | 1992-11-19 | 1994-12-16 | Gemplus Card Int | Encryption and authentication method and circuit for synchronous memory card. |
GB2273377A (en) | 1992-12-11 | 1994-06-15 | Hughes Aircraft Co | Multiple masks for array processors |
US5933179A (en) | 1992-12-21 | 1999-08-03 | Pitney Bowes Inc. | Method of insuring print quality of a thermal printer |
US5625411A (en) | 1992-12-22 | 1997-04-29 | Fuji Photo Film, Ltd. | Video camera printer apparatus and method of controlling same and apparatus and method for detecting print inhibit signal |
US6000791A (en) | 1992-12-23 | 1999-12-14 | Hewlett-Packard Company | Printer having a removable print cartridge with handle incorporating an ink inlet value |
JP3314195B2 (en) | 1992-12-28 | 2002-08-12 | ミノルタ株式会社 | Image processing device |
US5398315A (en) * | 1992-12-30 | 1995-03-14 | North American Philips Corporation | Multi-processor video display apparatus |
US5243381A (en) | 1993-01-04 | 1993-09-07 | Xerox Corporation | Method for compiling multiple jobs with job reference sheets |
EP0679276A4 (en) | 1993-01-06 | 1998-12-16 | Image Technology Int | A filmless method and apparatus for producing 3-d photographs. |
TW305035B (en) | 1993-01-19 | 1997-05-11 | Canon Kk | |
JPH06222414A (en) | 1993-01-22 | 1994-08-12 | Canon Inc | Vibrationproofing system |
US5412197A (en) | 1993-01-29 | 1995-05-02 | United Parcel Service Of America, Inc. | Method and apparatus for decoding bar code symbols using gradient signals |
US5461440A (en) | 1993-02-10 | 1995-10-24 | Olympus Optical Co., Ltd. | Photographing image correction system |
DE4309255A1 (en) | 1993-03-16 | 1994-09-22 | Francotyp Postalia Gmbh | Modular inkjet print head |
US5402527A (en) | 1993-04-23 | 1995-03-28 | Xerox Corporation | Apparatus and method for determining the page description language in which a print job is written |
US5457554A (en) | 1993-04-26 | 1995-10-10 | Faris; Sadeg M. | 3-D printing technology based on selective reflecting polarizing media |
US5513117A (en) | 1993-04-30 | 1996-04-30 | Small; Maynard E. | Apparatus and method for electronically dispensing personalized greeting cards and gifts |
US5442567A (en) | 1993-04-30 | 1995-08-15 | Small; Maynard E. | Apparatus and method for electronically dispensing personalized greeting cards and gifts |
JPH06332085A (en) | 1993-05-10 | 1994-12-02 | Quad Tech Inc | Formation method of wound belt body of graphic image |
JPH06320832A (en) | 1993-05-17 | 1994-11-22 | Oki Electric Ind Co Ltd | Printer |
JP3686684B2 (en) | 1993-05-19 | 2005-08-24 | 富士通株式会社 | Airbrush method |
JP3085824B2 (en) | 1993-05-20 | 2000-09-11 | 富士写真フイルム株式会社 | Memory controller |
GB2278480A (en) * | 1993-05-25 | 1994-11-30 | Sharp Kk | Optical apparatus |
US5438739A (en) | 1993-05-25 | 1995-08-08 | Compaq Computer Corporation | Method of making an elongated ink jet printhead |
US6199874B1 (en) | 1993-05-26 | 2001-03-13 | Cornell Research Foundation Inc. | Microelectromechanical accelerometer for automotive applications |
US6236431B1 (en) | 1993-05-27 | 2001-05-22 | Canon Kabushiki Kaisha | Video camera apparatus with distance measurement area adjusted based on electronic magnification |
JPH06350907A (en) | 1993-06-07 | 1994-12-22 | Fuji Photo Film Co Ltd | Electronic still camera |
FR2706655B1 (en) | 1993-06-17 | 1995-08-25 | Gemplus Card Int | Method of controlling a printer to obtain postage. |
US5708900A (en) | 1993-06-18 | 1998-01-13 | Olympus Optical Co., Ltd. | Camera |
US5502485A (en) | 1993-06-23 | 1996-03-26 | Nikon Corporation | Camera which compresses digital image data in correspondence with the focus control or the stop value of the camera |
CA2127198A1 (en) | 1993-07-01 | 1995-01-02 | Darald R. Schultz | Portable compact multi-function printer with cartridge paper supply |
JP3097014B2 (en) | 1993-07-08 | 2000-10-10 | 株式会社リコー | Electronic still camera |
US5644341A (en) | 1993-07-14 | 1997-07-01 | Seiko Epson Corporation | Ink jet head drive apparatus and drive method, and a printer using these |
EP0635373B1 (en) | 1993-07-20 | 1998-03-11 | Canon Kabushiki Kaisha | Ink jet recording apparatus using recording unit with ink cartridge having ink inducing element |
KR950003362A (en) * | 1993-07-21 | 1995-02-16 | 마에다 가츠노스케 | Fiber Reinforced Thermoplastic Structures, Manufacturing Method and Extruder |
JPH0738830A (en) | 1993-07-22 | 1995-02-07 | Fuji Photo Film Co Ltd | Video printer |
US5986706A (en) | 1993-07-22 | 1999-11-16 | Canon Kabushiki Kaisha | Electronic apparatus |
JPH0776080A (en) | 1993-09-08 | 1995-03-20 | Canon Inc | Substrate for recording head, recording head, recording head cartridge, recording apparatus and production of substrate for recording head |
US5530793A (en) | 1993-09-24 | 1996-06-25 | Eastman Kodak Company | System for custom imprinting a variety of articles with images obtained from a variety of different sources |
JP2610386B2 (en) | 1993-09-28 | 1997-05-14 | 株式会社ハドソン | Camera with monitor |
JPH07123317A (en) * | 1993-10-21 | 1995-05-12 | Canon Inc | Photographing device with vibration proofing function |
US5466918A (en) | 1993-10-29 | 1995-11-14 | Eastman Kodak Company | Method and apparatus for image compression, storage, and retrieval on magnetic transaction cards |
US5475318A (en) | 1993-10-29 | 1995-12-12 | Robert B. Marcus | Microprobe |
US5742860A (en) | 1993-11-04 | 1998-04-21 | Olympus Optical Co., Ltd | Instant camera |
US5956058A (en) | 1993-11-05 | 1999-09-21 | Seiko Epson Corporation | Ink jet print head with improved spacer made from silicon single-crystal substrate |
US6122403A (en) | 1995-07-27 | 2000-09-19 | Digimarc Corporation | Computer system linked by using information in data objects |
US5444230A (en) | 1993-11-30 | 1995-08-22 | Minnesota Mining And Manufacturing Company | Solid state optical reader with bi-directional protocol |
US6116768A (en) * | 1993-11-30 | 2000-09-12 | Texas Instruments Incorporated | Three input arithmetic logic unit with barrel rotator |
US5748326A (en) * | 1993-12-07 | 1998-05-05 | Fisher-Price Inc. | Instant special effects electronic camera |
GB9325076D0 (en) | 1993-12-07 | 1994-02-02 | The Technology Partnership Plc | Electronic camera |
US5621545A (en) | 1993-12-08 | 1997-04-15 | Motta; Ricardo J. | Image production using color error diffusion |
US5533172A (en) | 1993-12-16 | 1996-07-02 | Xerox Corporation | Method of printing a print job with a print file |
US5579445A (en) | 1993-12-17 | 1996-11-26 | Xerox Corporation | Image resolution conversion method that employs statistically generated multiple morphological filters |
JP3244371B2 (en) | 1993-12-22 | 2002-01-07 | オリンパス光学工業株式会社 | Audio information processing system and audio information processing method |
US5560799A (en) | 1993-12-22 | 1996-10-01 | Jacobsen; Gary A. | In-line printing production of three dimensional image products incorporating lenticular transparent material |
JPH07220035A (en) | 1993-12-22 | 1995-08-18 | Xerox Corp | Optically readable record |
US6182901B1 (en) | 1993-12-22 | 2001-02-06 | Xerox Corporation | Orientational disambiguation for self-clocking glyph codes |
JPH07199030A (en) | 1993-12-28 | 1995-08-04 | Minolta Co Ltd | Telescope |
US5563643A (en) | 1994-01-03 | 1996-10-08 | Xerox Corporation | Ink jet printhead and ink supply manifold assembly having ink passageway sealed therebetween |
US5666411A (en) | 1994-01-13 | 1997-09-09 | Mccarty; Johnnie C. | System for computer software protection |
US5682191A (en) | 1994-01-24 | 1997-10-28 | Iris Graphics Inc. | Ink jet printing apparatus having modular components |
JPH07219689A (en) | 1994-01-31 | 1995-08-18 | Hitachi Ltd | Printer and system used therefor |
JP3127341B2 (en) | 1994-02-03 | 2001-01-22 | キヤノン株式会社 | Electrode substrate, method of manufacturing the same, recording medium, and information processing device |
US5565900A (en) | 1994-02-04 | 1996-10-15 | Hewlett-Packard Company | Unit print head assembly for ink-jet printing |
US5592597A (en) | 1994-02-14 | 1997-01-07 | Parametric Technology Corporation | Real-time image generation system for simulating physical paint, drawing media, and feature modeling with 3-D graphics |
JPH07226911A (en) | 1994-02-15 | 1995-08-22 | Eastman Kodak Japan Kk | Electronic still camera |
US5835616A (en) | 1994-02-18 | 1998-11-10 | University Of Central Florida | Face detection using templates |
US5726435A (en) * | 1994-03-14 | 1998-03-10 | Nippondenso Co., Ltd. | Optically readable two-dimensional code and method and apparatus using the same |
US5477264A (en) | 1994-03-29 | 1995-12-19 | Eastman Kodak Company | Electronic imaging system using a removable software-enhanced storage device |
US5854882A (en) | 1994-04-08 | 1998-12-29 | The University Of Rochester | Halftone correction systems |
US5521710A (en) | 1994-04-12 | 1996-05-28 | Xerox Corporation | Method of applying electronically stored labels from a source job to a destination job in a printing system |
US5621868A (en) | 1994-04-15 | 1997-04-15 | Sony Corporation | Generating imitation custom artwork by simulating brush strokes and enhancing edges |
JPH07298307A (en) | 1994-04-28 | 1995-11-10 | Canon Inc | Image recording and reproducing device |
US5555496A (en) | 1994-05-06 | 1996-09-10 | Mary T. Tackbary | Method and apparatus for communicating with a card distribution center for management, selection, and delivery of social expression cards |
US6133951A (en) | 1994-05-10 | 2000-10-17 | Asahi Kogaku Kogyo Kabushiki Kaisha | Still-video camera with function setting operation |
JPH07322012A (en) | 1994-05-27 | 1995-12-08 | Fuji Xerox Co Ltd | Picture input/output device |
US5537294A (en) | 1994-06-01 | 1996-07-16 | The Whitaker Corporation | Printed circuit card having a contact clip for grounding a printed circuit board found therein |
US5452033A (en) | 1994-06-06 | 1995-09-19 | Eastman Kodak Company | Single use photographic film package and camera |
US6046768A (en) | 1994-06-15 | 2000-04-04 | Canon Kabushiki Kaisha | Apparatus used for image blur prevention |
WO1995035549A1 (en) | 1994-06-21 | 1995-12-28 | Soltesz John A | Modular optical memory card image display point of sale terminal |
US5719970A (en) | 1994-07-08 | 1998-02-17 | Seiko Epson Corporation | Image processing method and device |
US5549740A (en) | 1994-07-11 | 1996-08-27 | Canon Kabushiki Kaisha | Liquid composition, ink set and image forming method and apparatus using the composition and ink set |
US5621524A (en) | 1994-07-14 | 1997-04-15 | Hitachi Koki Co., Ltd. | Method for testing ink-jet recording heads |
JPH0845246A (en) | 1994-07-29 | 1996-02-16 | Sony Corp | Recording medium, reproducing method, recording device and reproducing device |
JPH0846846A (en) | 1994-07-29 | 1996-02-16 | Canon Inc | Image pickup device |
WO1996005061A1 (en) | 1994-08-09 | 1996-02-22 | Encad, Inc. | Printer ink cartridge |
US5602412A (en) | 1994-08-15 | 1997-02-11 | Nikon Corporation | Imaging device which adjusts the ratio of color excitation values produced by an image pickup element in accordance with an exit pupil position and the size of an aperture |
US5479015A (en) | 1994-08-18 | 1995-12-26 | Grumman Aerospace Corporation | Multi-image detector assembly |
US5529279A (en) | 1994-08-24 | 1996-06-25 | Hewlett-Packard Company | Thermal isolation structures for microactuators |
US5528339A (en) | 1994-08-26 | 1996-06-18 | Eastman Kodak Company | Color image reproduction of scenes with color enhancement and preferential tone mapping |
US5692225A (en) * | 1994-08-30 | 1997-11-25 | Eastman Kodak Company | Voice recognition of recorded messages for photographic printers |
US5572596A (en) | 1994-09-02 | 1996-11-05 | David Sarnoff Research Center, Inc. | Automated, non-invasive iris recognition system and method |
JP3823328B2 (en) | 1994-09-05 | 2006-09-20 | 株式会社ニコン | Focus detection device |
JP3368066B2 (en) | 1994-09-06 | 2003-01-20 | キヤノン株式会社 | Image recording apparatus and image recording method |
JP3504738B2 (en) | 1994-09-09 | 2004-03-08 | オリンパス株式会社 | Electronic imaging apparatus and electronic imaging system |
US5781708A (en) | 1994-09-13 | 1998-07-14 | Intermec Technology, Inc. | Integral bar code printer and reader system and method of operation |
US5488223A (en) | 1994-09-13 | 1996-01-30 | Intermec Corporation | System and method for automatic selection of printer control parameters |
US5872594A (en) | 1994-09-20 | 1999-02-16 | Thompson; Paul A. | Method for open loop camera control using a motion model to control camera movement |
US6670985B2 (en) | 1994-09-28 | 2003-12-30 | Canon Kabushiki Kaisha | Image sensing apparatus including a card device connectable to an information processing device |
JP3893480B2 (en) | 1994-09-28 | 2007-03-14 | 株式会社リコー | Digital electronic camera |
JP3009539U (en) | 1994-09-28 | 1995-04-04 | 明和グラビア株式会社 | Printed sheet with glitter |
JP3525353B2 (en) | 1994-09-28 | 2004-05-10 | 株式会社リコー | Digital electronic still camera |
US5678081A (en) | 1994-10-05 | 1997-10-14 | Fuji Photo Optical Co., Ltd. | Photographic camera having a picture size switching device |
JPH08116490A (en) | 1994-10-14 | 1996-05-07 | Olympus Optical Co Ltd | Image processing unit |
JPH08118727A (en) | 1994-10-28 | 1996-05-14 | Canon Inc | Method and apparatus for correcting recorder head, recording head corrected by the same apparatus and recorder using the same head |
KR0156449B1 (en) | 1994-10-31 | 1998-12-01 | 미따라이 후지오 | Manufacturing method of ink jet head, ink jet head manufactured by the same and ink jet device having ink jet head |
US5592237A (en) | 1994-11-04 | 1997-01-07 | Infimed, Inc. | High resolution image processor with multiple bus architecture |
US5751303A (en) | 1994-11-10 | 1998-05-12 | Lasermaster Corporation | Printing medium management apparatus |
US5482389A (en) | 1994-11-25 | 1996-01-09 | Westerex International, Division Of Capitol Circuits | Paper feed driven cutter mechanism of an electronic printer |
US5619622A (en) | 1994-12-16 | 1997-04-08 | Xerox Corporation | Raster output interface for a printbar |
JPH08169110A (en) | 1994-12-20 | 1996-07-02 | Sharp Corp | Ink jet head |
US5812156A (en) | 1997-01-21 | 1998-09-22 | Hewlett-Packard Company | Apparatus controlled by data from consumable parts with incorporated memory devices |
US6203147B1 (en) | 1994-12-22 | 2001-03-20 | Hewlett-Packard Company | Electrical and fluidic interface for an ink supply |
CA2158384C (en) | 1994-12-27 | 1999-09-28 | Alexander Gibson Fraser | Multimedia program editing system and method |
JPH08186757A (en) * | 1994-12-28 | 1996-07-16 | Canon Inc | Electronic camera |
US5703961A (en) | 1994-12-29 | 1997-12-30 | Worldscape L.L.C. | Image transformation and synthesis methods |
US5534962A (en) | 1995-01-09 | 1996-07-09 | Eastman Kodak Company | Method and apparatus for preventing unauthorized recycling of single-use camera and permitting authorized reuse of the camera |
US5642226A (en) | 1995-01-18 | 1997-06-24 | Rosenthal; Bruce A. | Lenticular optical system |
US5742305A (en) | 1995-01-20 | 1998-04-21 | Hewlett-Packard | PWA inkjet printer element with resident memory |
US5792249A (en) | 1995-01-25 | 1998-08-11 | Canon Kabushiki Kaisha | Liquid composition, ink set, image-forming method and apparatus using the same |
DE69636695T2 (en) | 1995-02-02 | 2007-03-01 | Matsushita Electric Industrial Co., Ltd., Kadoma | Image processing device |
US5978609A (en) | 1995-02-13 | 1999-11-02 | Asahi Kogaku Kogyo Kabushiki Kaisha | Electronic still video camera having electro-developing recording medium |
US5502529A (en) | 1995-02-14 | 1996-03-26 | Eastman Kodak Company | Method of recycling single-use camera |
AUPN113395A0 (en) | 1995-02-14 | 1995-03-09 | Canon Information Systems Research Australia Pty Ltd | Colour conversion method |
US5552837A (en) | 1995-03-01 | 1996-09-03 | Gemstar Development Corporation | Remote controller for scanning data and controlling a video system |
US5602377A (en) | 1995-03-01 | 1997-02-11 | Metanetics Corporation | Bar code dataform scanning and labeling apparatus and method |
WO1996027169A1 (en) | 1995-03-02 | 1996-09-06 | Parametric Technology Corporation | Computer graphics system for creating and enhancing texture maps |
DE19549376A1 (en) | 1995-03-07 | 1996-09-26 | Francotyp Postalia Gmbh | System for thermotransfer printing procedure |
US5598202A (en) | 1995-03-13 | 1997-01-28 | Gerber Scientific Products, Inc. | Method and apparatus for printing a graphic on fabric |
JP3542397B2 (en) * | 1995-03-20 | 2004-07-14 | キヤノン株式会社 | Imaging device |
US6163340A (en) | 1995-03-27 | 2000-12-19 | Canon Kabushiki Kaisha | Automatic focus adjusting device |
TW360853B (en) | 1995-03-29 | 1999-06-11 | Seiko Epson Corp | A paper guiding device for a printer |
US5729471A (en) | 1995-03-31 | 1998-03-17 | The Regents Of The University Of California | Machine dynamic selection of one video camera/image of a scene from multiple video cameras/images of the scene in accordance with a particular perspective on the scene, an object in the scene, or an event in the scene |
US6493031B1 (en) | 1995-03-31 | 2002-12-10 | Canon Kabushiki Kaisha | Visual information processing method and apparatus for extracting feature quantities from a two-dimensional image signal |
US5909227A (en) | 1995-04-12 | 1999-06-01 | Eastman Kodak Company | Photograph processing and copying system using coincident force drop-on-demand ink jet printing |
WO1996032265A1 (en) | 1995-04-12 | 1996-10-17 | Eastman Kodak Company | A color video printer and a photocd system with integrated printer |
EP0765568A1 (en) | 1995-04-12 | 1997-04-02 | Eastman Kodak Company | Fax machine with concurrent drop selection and drop separation ink jet printing |
AUPN230795A0 (en) | 1995-04-12 | 1995-05-04 | Eastman Kodak Company | Nozzle placement in monolithic drop-on-demand print heads |
US5750974A (en) | 1995-04-13 | 1998-05-12 | Keyence Corporation | Lighting apparatus having light emitting diodes arranged in a plurality of planes on a printed circuit board |
JPH08336069A (en) | 1995-04-13 | 1996-12-17 | Eastman Kodak Co | Electronic still camera |
US6053598A (en) | 1995-04-13 | 2000-04-25 | Pitney Bowes Inc. | Multiple print head packaging for ink jet printer |
US6172706B1 (en) | 1995-04-19 | 2001-01-09 | Canon Kabushiki Kaisha | Video camera with automatic zoom adjustment based on distance between user's eyes |
US6047130A (en) | 1995-04-24 | 2000-04-04 | Environmental Protection Systems, Inc. | Apparatus and method for portrait photography |
US6363164B1 (en) | 1996-05-13 | 2002-03-26 | Cummins-Allison Corp. | Automated document processing system using full image scanning |
US5600402A (en) | 1995-05-04 | 1997-02-04 | Kainen; Daniel B. | Method and apparatus for producing three-dimensional graphic images using a lenticular sheet |
JP3452685B2 (en) | 1995-05-10 | 2003-09-29 | 三菱電機株式会社 | Face image processing device |
JPH08317293A (en) | 1995-05-17 | 1996-11-29 | Minolta Co Ltd | Image pickup device |
US5754700A (en) | 1995-06-09 | 1998-05-19 | Intel Corporation | Method and apparatus for improving the quality of images for non-real time sensitive applications |
US5768482A (en) * | 1995-06-14 | 1998-06-16 | Hewlett-Packard Company | Resolution-triggered sharpening for scaling of a digital-matrix image |
US20040201764A1 (en) | 1995-06-21 | 2004-10-14 | Tsutomu Honda | Dual mode image shooting apparatus with still image and motion video image recording and reproduction |
KR200154398Y1 (en) | 1995-07-13 | 1999-08-02 | 윤종용 | Paper unrolling apparatus |
US5999697A (en) | 1995-07-21 | 1999-12-07 | Sony Corporation | Apparatus for recording and/or reproducing still images |
WO1997005738A1 (en) | 1995-07-27 | 1997-02-13 | Forever Yours, Inc. | Digital camera system for photographing infants |
US6640004B2 (en) | 1995-07-28 | 2003-10-28 | Canon Kabushiki Kaisha | Image sensing and image processing apparatuses |
US6005582A (en) | 1995-08-04 | 1999-12-21 | Microsoft Corporation | Method and system for texture mapping images with anisotropic filtering |
JP3567540B2 (en) | 1995-08-11 | 2004-09-22 | ブラザー工業株式会社 | Scanning optical device |
US5587740A (en) | 1995-08-17 | 1996-12-24 | Brennan; James M. | Digital photo kiosk |
US5999203A (en) | 1995-08-18 | 1999-12-07 | Ttp Group, Plc | Printer assembly with easily loaded paper cartridge |
US5923882A (en) | 1995-08-29 | 1999-07-13 | Silicon Graphics, Inc. | Cross-module optimization for dynamically-shared programs and libraries |
US5715325A (en) | 1995-08-30 | 1998-02-03 | Siemens Corporate Research, Inc. | Apparatus and method for detecting a face in a video image |
US5613175A (en) * | 1995-08-31 | 1997-03-18 | Xerox Corporation | Anisotropic imaging member |
JP3676443B2 (en) | 1995-09-01 | 2005-07-27 | オリンパス株式会社 | Information reproducing apparatus and information reproducing method |
JP3313952B2 (en) * | 1995-09-14 | 2002-08-12 | キヤノン株式会社 | Ink jet recording device |
JP3286804B2 (en) | 1995-09-14 | 2002-05-27 | キヤノン株式会社 | Imaging device |
EP0763930B1 (en) | 1995-09-15 | 2002-10-16 | Agfa-Gevaert | Method for calculating color gamuts |
US5917963A (en) * | 1995-09-21 | 1999-06-29 | Canon Kabushiki Kaisha | Image processing apparatus and image processing method |
US5940095A (en) | 1995-09-27 | 1999-08-17 | Lexmark International, Inc. | Ink jet print head identification circuit with serial out, dynamic shift registers |
US5745175A (en) * | 1995-10-02 | 1998-04-28 | Flashpoint Technologies, Inc. | Method and system for providing automatic focus control for a still digital camera |
US5819240A (en) | 1995-10-11 | 1998-10-06 | E-Stamp Corporation | System and method for generating personalized postage indica |
US5790699A (en) | 1995-10-27 | 1998-08-04 | Xerox Corporation | Macrodetector based image conversion system |
US5896176A (en) | 1995-10-27 | 1999-04-20 | Texas Instruments Incorporated | Content-based video compression |
US5754690A (en) | 1995-10-27 | 1998-05-19 | Xerox Corporation | Position sensitive detector based image conversion system capable of preserving subpixel information |
EP0772350A3 (en) | 1995-10-30 | 1997-07-23 | Photron Kk | Keying system and composite image producing method |
US6135586A (en) | 1995-10-31 | 2000-10-24 | Hewlett-Packard Company | Large area inkjet printhead |
US5740343A (en) | 1995-11-03 | 1998-04-14 | 3Dfx Interactive, Incorporated | Texture compositing apparatus and method |
US6111605A (en) | 1995-11-06 | 2000-08-29 | Ricoh Company Limited | Digital still video camera, image data output system for digital still video camera, frame for data relay for digital still video camera, data transfer system for digital still video camera, and image regenerating apparatus |
US5634730A (en) | 1995-11-06 | 1997-06-03 | Bobry; Howard H. | Hand-held electronic printer |
JP3490559B2 (en) | 1995-11-14 | 2004-01-26 | 富士写真フイルム株式会社 | Method for determining main part of image and method for determining copy conditions |
US5884013A (en) | 1995-11-17 | 1999-03-16 | Agfa-Gevaert | Autotypical screening with optimised dotshape |
US5790193A (en) | 1995-11-22 | 1998-08-04 | Eastman Kodak Company | Accessory module for an electronic camera |
US5715228A (en) | 1995-11-24 | 1998-02-03 | Sony Corporation | Optical recording apparatus |
US5706049A (en) | 1995-11-30 | 1998-01-06 | Eastman Kodak Company | Camera that records an active image area identifier with an image |
US6489990B1 (en) | 1995-11-30 | 2002-12-03 | Koninklijke Philips Electronics N.V. | Highlight compensation apparatus for monochrome cameras |
US5710582A (en) | 1995-12-07 | 1998-01-20 | Xerox Corporation | Hybrid ink jet printer |
US6870566B1 (en) | 1995-12-07 | 2005-03-22 | Canon Kabushiki Kaisha | Image sensing system for sensing an image and converting the image into image signals with a controlled operating rate |
US5805213A (en) | 1995-12-08 | 1998-09-08 | Eastman Kodak Company | Method and apparatus for color-correcting multi-channel signals of a digital camera |
JP3436851B2 (en) | 1995-12-11 | 2003-08-18 | 大日本スクリーン製造株式会社 | How to change the data conversion table |
JP3376194B2 (en) | 1995-12-15 | 2003-02-10 | キヤノン株式会社 | Image processing apparatus and method |
US5633678A (en) | 1995-12-20 | 1997-05-27 | Eastman Kodak Company | Electronic still camera for capturing and categorizing images |
JPH09171220A (en) | 1995-12-20 | 1997-06-30 | Fuji Photo Film Co Ltd | Exposure deciding method |
US5717197A (en) | 1995-12-21 | 1998-02-10 | Xerox Corporation | Tiled embedded data block-types for generic embedded data block systems |
US5731062A (en) | 1995-12-22 | 1998-03-24 | Hoechst Celanese Corp | Thermoplastic three-dimensional fiber network |
WO1997023991A1 (en) | 1995-12-26 | 1997-07-03 | Rohm Co., Ltd. | Contact-type image sensor |
JP3459714B2 (en) | 1996-01-05 | 2003-10-27 | キヤノン株式会社 | Image reading device |
US5822606A (en) | 1996-01-11 | 1998-10-13 | Morton; Steven G. | DSP having a plurality of like processors controlled in parallel by an instruction word, and a control processor also controlled by the instruction word |
US5841441A (en) | 1996-01-19 | 1998-11-24 | Virtus Corporation | High-speed three-dimensional texture mapping systems and methods |
US6011585A (en) | 1996-01-19 | 2000-01-04 | Apple Computer, Inc. | Apparatus and method for rotating the display orientation of a captured image |
US6061179A (en) | 1996-01-23 | 2000-05-09 | Canon Kabushiki Kaisha | Stereoscopic image display apparatus with two-/three-dimensional image display switching function |
US5572310A (en) | 1996-01-24 | 1996-11-05 | Hewlett-Packard Company | Universal media size dial |
US5992994A (en) | 1996-01-31 | 1999-11-30 | Hewlett-Packard Company | Large inkjet print swath media support system |
JP3623840B2 (en) | 1996-01-31 | 2005-02-23 | 株式会社ルネサステクノロジ | Data processing apparatus and microprocessor |
US5619737A (en) | 1996-02-07 | 1997-04-08 | Eastman Kodak Company | Encodement-on-film recording apparatus utilizes flash components in a camera |
WO1997030375A1 (en) | 1996-02-13 | 1997-08-21 | Obsidian Imaging, Inc. | Method and apparatus for configuring a camera through external means |
US6009188A (en) * | 1996-02-16 | 1999-12-28 | Microsoft Corporation | Method and system for digital plenoptic imaging |
US5995772A (en) | 1996-02-16 | 1999-11-30 | Lexmark International Inc. | Imaging apparatus cartridge including an encoded device |
US6188431B1 (en) | 1996-02-17 | 2001-02-13 | Casio Computers Co., Ltd. | Electronic still camera and method for communication between electronic still cameras |
JP3745067B2 (en) | 1996-02-20 | 2006-02-15 | キヤノン株式会社 | Imaging apparatus and control method thereof |
JPH09232435A (en) | 1996-02-22 | 1997-09-05 | Oki Electric Ind Co Ltd | Semiconductor integrated circuit |
US5767945A (en) | 1996-02-28 | 1998-06-16 | Eastman Kodak Company | Methods of changing the visibility of some characteristic or information to be included in a hard copy of a recorded image |
US5867394A (en) | 1996-03-01 | 1999-02-02 | The Standard Register Company | Document dispenser operational program downloading |
US5818023A (en) | 1996-03-05 | 1998-10-06 | Metanetics Corporation | Portable ID card verification apparatus |
JPH09252429A (en) | 1996-03-18 | 1997-09-22 | Nippon Television Network Corp | Picture replacement system and picture replacement method |
US5852673A (en) | 1996-03-27 | 1998-12-22 | Chroma Graphics, Inc. | Method for general image manipulation and composition |
US6052648A (en) | 1996-04-12 | 2000-04-18 | Earthwatch Communications, Inc. | Method and system for display of weather-related information |
US5963104A (en) | 1996-04-15 | 1999-10-05 | Vlsi Technology, Inc. | Standard cell ring oscillator of a non-deterministic randomizer circuit |
US6020931A (en) | 1996-04-25 | 2000-02-01 | George S. Sheng | Video composition and position system and media signal communication system |
US5815186A (en) | 1996-04-29 | 1998-09-29 | Hewlett-Packard Company | Removable roll-feed apparatus and method |
US5907354A (en) | 1996-05-23 | 1999-05-25 | Eastman Kodak Company | Memory card housing with a center-actuated ejector |
JP3423532B2 (en) * | 1996-05-24 | 2003-07-07 | キヤノン株式会社 | Image reading device |
JP2907120B2 (en) | 1996-05-29 | 1999-06-21 | 日本電気株式会社 | Red-eye detection correction device |
US5852502A (en) * | 1996-05-31 | 1998-12-22 | American Digital Imaging, Inc. | Apparatus and method for digital camera and recorder having a high resolution color composite image output |
JP3037140B2 (en) | 1996-06-13 | 2000-04-24 | 日本電気オフィスシステム株式会社 | Digital camera |
FR2749948B1 (en) | 1996-06-13 | 1998-08-14 | Sagem | PRINTER ASSEMBLY AND CONSUMPTION TANK FOR OFFICE MACHINE |
JPH103509A (en) | 1996-06-17 | 1998-01-06 | Olympus Optical Co Ltd | Device for recording information and method therefor |
JPH1011289A (en) | 1996-06-19 | 1998-01-16 | Mitsubishi Electric Corp | Instruction number expansion method in parallel processor, and parallel processors |
US5989678A (en) | 1996-06-25 | 1999-11-23 | Jacobson; Laurence | Method of simultaneously printing a portion of a hook and loop fabric and attaching the fabric to another fabric and the fabric or garment resulting therefrom |
JP3308815B2 (en) | 1996-06-28 | 2002-07-29 | キヤノン株式会社 | Ink jet recording method and apparatus |
US5977982A (en) | 1996-06-28 | 1999-11-02 | Avid Technology Inc. | System and method for modification of the visual characteristics of digital 3D objects |
US5966134A (en) | 1996-06-28 | 1999-10-12 | Softimage | Simulating cel animation and shading |
US6074042A (en) | 1997-06-04 | 2000-06-13 | Hewlett-Packard Company | Ink container having a guide feature for insuring reliable fluid, air and electrical connections to a printing system |
US5969322A (en) | 1996-07-29 | 1999-10-19 | Minolta Co., Ltd. | Apparatus having a film condition judging device |
US6257703B1 (en) | 1996-07-31 | 2001-07-10 | Canon Kabushiki Kaisha | Ink jet recording head |
US5982378A (en) | 1996-08-02 | 1999-11-09 | Spatial Technology Inc. | System and method for modeling a three dimensional object |
US5974238A (en) | 1996-08-07 | 1999-10-26 | Compaq Computer Corporation | Automatic data synchronization between a handheld and a host computer using pseudo cache including tags and logical data elements |
JPH1056604A (en) | 1996-08-07 | 1998-02-24 | Olympus Optical Co Ltd | Electronic camera with built-in printer and medium to be recorded |
US5812071A (en) | 1996-08-13 | 1998-09-22 | Northern Telecom Limited | Apparatus and method for lossy compression using dynamic domain quantization |
US5866253A (en) * | 1996-08-19 | 1999-02-02 | Isorca, Inc. | Synthetic reinforcing strands with spaced filaments |
KR100196333B1 (en) | 1996-08-20 | 1999-06-15 | 윤종용 | Dma data transferring method using free loading of dma instruction |
US5894326A (en) | 1996-08-26 | 1999-04-13 | Eastman Kodak Company | Electronic camera having a printer |
US5878292A (en) | 1996-08-29 | 1999-03-02 | Eastman Kodak Company | Image-audio print, method of making and player for using |
US6028611A (en) | 1996-08-29 | 2000-02-22 | Apple Computer, Inc. | Modular digital image processing via an image processing chain |
US6157394A (en) | 1996-08-29 | 2000-12-05 | Apple Computer, Inc. | Flexible digital image processing via an image processing chain with modular image processors |
US5914748A (en) | 1996-08-30 | 1999-06-22 | Eastman Kodak Company | Method and apparatus for generating a composite image using the difference of two images |
US5734154A (en) | 1996-09-03 | 1998-03-31 | Motorola, Inc. | Smart card with Iintegrated reader and visual image display |
US6097431A (en) | 1996-09-04 | 2000-08-01 | Flashpoint Technology, Inc. | Method and system for reviewing and navigating among images on an image capture unit |
US5874836A (en) | 1996-09-06 | 1999-02-23 | International Business Machines Corporation | High reliability I/O stacked fets |
GB9708020D0 (en) | 1996-09-07 | 1997-06-11 | Philips Electronics Nv | Image sensor |
WO1998009819A1 (en) | 1996-09-09 | 1998-03-12 | Philips Electronics N.V. | Ink jet printer |
EP1366919B1 (en) | 1996-09-09 | 2009-03-25 | Seiko Epson Corporation | Ink jet printer and ink jet printing method |
US5986718A (en) | 1996-09-19 | 1999-11-16 | Video Magic, Inc. | Photographic method using chroma-key and a photobooth employing the same |
US5914801A (en) | 1996-09-27 | 1999-06-22 | Mcnc | Microelectromechanical devices including rotating plates and related methods |
US5787193A (en) | 1996-09-27 | 1998-07-28 | Xerox Corporation | System for converting color image signals from RGB to CMY color spaces through look-up tables |
US5781924A (en) | 1996-09-30 | 1998-07-14 | Sun Microsystems, Inc. | Computer caching methods and apparatus |
US20020024603A1 (en) | 1996-10-02 | 2002-02-28 | Nikon Corporation | Image processing apparatus, method and recording medium for controlling same |
US6278481B1 (en) | 1996-10-03 | 2001-08-21 | Airify Communications, Inc. | Photocard that is inserted into a non-digital camera to enable the non-digital camera to take digital photographic images |
JPH10178557A (en) | 1996-10-14 | 1998-06-30 | Oki Data:Kk | Color image processing method |
EP0840252B1 (en) | 1996-10-16 | 2003-09-17 | Koninklijke Philips Electronics N.V. | Digital image-processing method for the automatic extraction of ribbon-like objects |
JP3031613B2 (en) | 1996-11-12 | 2000-04-10 | 株式会社つくばソフト研究所 | Color / shade image input / output device and input / output method |
JPH10150514A (en) | 1996-11-18 | 1998-06-02 | Brother Ind Ltd | Image reader and adjustment device for photoelectric conversion section provided for the image reader |
US5864630A (en) | 1996-11-20 | 1999-01-26 | At&T Corp | Multi-modal method for locating objects in images |
US5884118A (en) | 1996-11-26 | 1999-03-16 | Xerox Corporation | Printer having print output linked to scanner input for automated image quality adjustment |
US5755519A (en) | 1996-12-04 | 1998-05-26 | Fargo Electronics, Inc. | Printer ribbon identification sensor |
US5991429A (en) | 1996-12-06 | 1999-11-23 | Coffin; Jeffrey S. | Facial recognition system for security access and identification |
US5924737A (en) | 1996-12-12 | 1999-07-20 | Young America Corporation | Postcard check |
US6222452B1 (en) | 1996-12-16 | 2001-04-24 | Confidence International Ab | Electronic identification tag |
US5757388A (en) * | 1996-12-16 | 1998-05-26 | Eastman Kodak Company | Electronic camera and integral ink jet printer |
US5994816A (en) | 1996-12-16 | 1999-11-30 | Mcnc | Thermal arched beam microelectromechanical devices and associated fabrication methods |
DE19653814A1 (en) | 1996-12-21 | 1998-06-25 | Koenig & Bauer Albert Ag | Supply roll |
TW352415B (en) | 1996-12-26 | 1999-02-11 | Fuji Photo Film Co Ltd | Still camera |
US5916358A (en) | 1996-12-30 | 1999-06-29 | Eastman Kodak Company | Ink compositions containing surfactant sols comprising mixtures of solid surfactants |
US5991865A (en) | 1996-12-31 | 1999-11-23 | Compaq Computer Corporation | MPEG motion compensation using operand routing and performing add and divide in a single instruction |
US6094221A (en) | 1997-01-02 | 2000-07-25 | Andersion; Eric C. | System and method for using a scripting language to set digital camera device features |
US5818032A (en) | 1997-01-03 | 1998-10-06 | Sun; Tsu-Hung Tom | Encoded color halftone micro-dots for high density digital information storage |
US5921686A (en) | 1997-01-16 | 1999-07-13 | Telpar, Inc. | Kiosk printer |
US5850234A (en) | 1997-01-21 | 1998-12-15 | Xerox Corporation | Ink jet printhead with improved operation |
US6375301B1 (en) | 1997-01-21 | 2002-04-23 | Hewlett-Packard Company | Replaceable cartridge, kit and method for flushing ink from an inkjet printer |
US6022099A (en) | 1997-01-21 | 2000-02-08 | Eastman Kodak Company | Ink printing with drop separation |
US5860363A (en) | 1997-01-21 | 1999-01-19 | Hewlett-Packard Company | Ink jet cartridge with separately replaceable ink reservoir |
US5788388A (en) | 1997-01-21 | 1998-08-04 | Hewlett-Packard Company | Ink jet cartridge with ink level detection |
US5949426A (en) | 1997-01-28 | 1999-09-07 | Integrated Device Technology, Inc. | Non-linear texture map blending |
US5909248A (en) | 1997-01-31 | 1999-06-01 | Eastman Kodak Company | Exposure control of camera attached to printer electronic camera |
US6014165A (en) | 1997-02-07 | 2000-01-11 | Eastman Kodak Company | Apparatus and method of producing digital image with improved performance characteristic |
JPH10226139A (en) | 1997-02-14 | 1998-08-25 | Canon Inc | Image forming system, image forming apparatus, and medium |
US5917542A (en) | 1997-02-18 | 1999-06-29 | Eastman Kodak Company | System and method for digital image capture and transmission |
US6441854B2 (en) | 1997-02-20 | 2002-08-27 | Eastman Kodak Company | Electronic camera with quick review of last captured image |
US5845166A (en) | 1997-02-20 | 1998-12-01 | Eastman Kodak Company | Hybrid camera with identification matching of film and electronic images |
US6573927B2 (en) * | 1997-02-20 | 2003-06-03 | Eastman Kodak Company | Electronic still camera for capturing digital image and creating a print order |
US6198489B1 (en) | 1997-02-21 | 2001-03-06 | University Of Washington | Computer generated watercolor |
JP3101580B2 (en) | 1997-02-26 | 2000-10-23 | 三洋電機株式会社 | Image recording and playback device |
US6421050B1 (en) * | 1997-02-27 | 2002-07-16 | Mitsubishi Electric Research Laboratories, Inc. | User interface for creation of image generation and transformation functions |
US5894309A (en) * | 1997-02-27 | 1999-04-13 | Mitsubishi Electric Information Technology Center America, Inc. | System for modifying lighting in photographs |
US5997124A (en) | 1997-03-12 | 1999-12-07 | Raster Graphics Inc. | Method and apparatus for drop volume normalization in an ink jet printing operation |
AUPO799197A0 (en) | 1997-07-15 | 1997-08-07 | Silverbrook Research Pty Ltd | Image processing method and apparatus (ART01) |
US6786420B1 (en) | 1997-07-15 | 2004-09-07 | Silverbrook Research Pty. Ltd. | Data distribution mechanism in the form of ink dots on cards |
US5938766A (en) | 1997-03-21 | 1999-08-17 | Apple Computer, Inc. | System for extending functionality of a digital ROM using RAM/ROM jump tables and patch manager for updating the tables |
US5999190A (en) | 1997-04-04 | 1999-12-07 | Avid Technology, Inc. | Computer imaging using graphics components |
US5986671A (en) | 1997-04-10 | 1999-11-16 | Eastman Kodak Company | Method of combining two digitally generated images |
US5974234A (en) | 1997-04-15 | 1999-10-26 | Xerox Corporation | Centralized print server for interfacing one or more network clients with a plurality of printing devices |
US5917937A (en) | 1997-04-15 | 1999-06-29 | Microsoft Corporation | Method for performing stereo matching to recover depths, colors and opacities of surface elements |
JPH10294918A (en) | 1997-04-18 | 1998-11-04 | Canon Inc | Digital camera and ink jet recorder |
US5982424A (en) | 1997-04-23 | 1999-11-09 | Scientific-Atlanta, Inc. | CCD camera with adaptive compression control mechanism |
US5909562A (en) | 1997-05-01 | 1999-06-01 | Hewlett-Packard Co. | Backup FIFO in-line storage |
US5911056A (en) | 1997-05-01 | 1999-06-08 | Hewlett-Packard Co. | High speed interconnect bus |
US6227643B1 (en) | 1997-05-20 | 2001-05-08 | Encad, Inc. | Intelligent printer components and printing system |
US5949459A (en) | 1997-06-04 | 1999-09-07 | Hewlett-Packard Company | Method and apparatus for securing an ink container |
US5964156A (en) | 1997-06-04 | 1999-10-12 | Agfa Corporation | Optimizing workflow in a prepress printing system |
US6234608B1 (en) | 1997-06-05 | 2001-05-22 | Xerox Corporation | Magnetically actuated ink jet printing device |
US5860036A (en) | 1997-06-10 | 1999-01-12 | Eastman Kodak Company | Controlling display useable in printers |
US5933137A (en) | 1997-06-10 | 1999-08-03 | Flashpoint Technology, Inc. | Method and system for acclerating a user interface of an image capture unit during play mode |
US6014170A (en) | 1997-06-20 | 2000-01-11 | Nikon Corporation | Information processing apparatus and method |
US5923406A (en) | 1997-06-27 | 1999-07-13 | Pitney Bowes Inc. | Personal postage stamp vending machine |
US6043821A (en) | 1997-06-30 | 2000-03-28 | Ati Technologies, Inc. | Method and apparatus for rendering pixel information from blended texture maps |
US5980010A (en) | 1997-06-30 | 1999-11-09 | Eastman Kodak Company | Scanning ink jet printer for electronic displays |
US6618117B2 (en) | 1997-07-12 | 2003-09-09 | Silverbrook Research Pty Ltd | Image sensing apparatus including a microcontroller |
US6565181B2 (en) | 1997-07-12 | 2003-05-20 | Silverbrook Research Pty Ltd | Printing cartridge with switch array identification |
US6702417B2 (en) | 1997-07-12 | 2004-03-09 | Silverbrook Research Pty Ltd | Printing cartridge with capacitive sensor identification |
US6416154B1 (en) | 1997-07-12 | 2002-07-09 | Silverbrook Research Pty Ltd | Printing cartridge with two dimensional code identification |
US6803989B2 (en) | 1997-07-15 | 2004-10-12 | Silverbrook Research Pty Ltd | Image printing apparatus including a microcontroller |
US6547364B2 (en) | 1997-07-12 | 2003-04-15 | Silverbrook Research Pty Ltd | Printing cartridge with an integrated circuit device |
US6317192B1 (en) | 1997-07-15 | 2001-11-13 | Silverbrook Research Pty Ltd | Utilization of image tiling effects in photographs |
US6196541B1 (en) | 1997-07-15 | 2001-03-06 | Silverbrook Research Pty Ltd | De-curling print media in a digital instant printing camera |
US6665454B1 (en) * | 1997-07-15 | 2003-12-16 | Silverbrook Research Pty Ltd | Dot adjacency compensation in optical storage systems using ink dots |
US7284843B2 (en) * | 1997-07-15 | 2007-10-23 | Silverbrook Research Pty Ltd | Ink distribution assembly for an ink jet printhead |
US7110024B1 (en) * | 1997-07-15 | 2006-09-19 | Silverbrook Research Pty Ltd | Digital camera system having motion deblurring means |
AUPP398798A0 (en) * | 1998-06-09 | 1998-07-02 | Silverbrook Research Pty Ltd | Image creation method and apparatus (ij43) |
US6857719B2 (en) | 1997-07-15 | 2005-02-22 | Silverbrook Research Pty Ltd | Printing cartridge with pressure sensor array identification |
US6195150B1 (en) | 1997-07-15 | 2001-02-27 | Silverbrook Research Pty Ltd | Pseudo-3D stereoscopic images and output device |
US7246897B2 (en) | 1997-07-15 | 2007-07-24 | Silverbrook Research Pty Ltd | Media cartridge for inkjet printhead |
US6294101B1 (en) | 1997-07-15 | 2001-09-25 | Silverbrook Research Pty Ltd | Method of manufacture of a thermoelastic bend actuator ink jet printer |
US7410243B2 (en) | 1997-07-15 | 2008-08-12 | Silverbrook Research Pty Ltd | Inkjet nozzle with resiliently biased ejection actuator |
US6879341B1 (en) | 1997-07-15 | 2005-04-12 | Silverbrook Research Pty Ltd | Digital camera system containing a VLIW vector processor |
US7593058B2 (en) | 1997-07-15 | 2009-09-22 | Silverbrook Research Pty Ltd | Digital camera with integrated inkjet printer having removable cartridge containing ink and media substrate |
US6431669B1 (en) | 1997-07-15 | 2002-08-13 | Silverbrook Research Pty Ltd | Method and apparatus for information storage in a portable print roll |
US7724282B2 (en) | 1997-07-15 | 2010-05-25 | Silverbrook Research Pty Ltd | Method of processing digital image to correct for flash effects |
US6918654B2 (en) * | 1997-07-15 | 2005-07-19 | Silverbrook Research Pty Ltd | Ink distribution assembly for an ink jet printhead |
US7578582B2 (en) | 1997-07-15 | 2009-08-25 | Silverbrook Research Pty Ltd | Inkjet nozzle chamber holding two fluids |
AUPO850597A0 (en) * | 1997-08-11 | 1997-09-04 | Silverbrook Research Pty Ltd | Image processing method and apparatus (art01a) |
US6459495B1 (en) * | 1997-07-15 | 2002-10-01 | Silverbrook Research Pty Ltd | Dot center tracking in optical storage systems using ink dots |
US6738096B1 (en) | 1998-07-10 | 2004-05-18 | Silverbrook Research Pty Ltd | Low-cost disposable camera including print media carrying indication of postage paid |
US6985207B2 (en) * | 1997-07-15 | 2006-01-10 | Silverbrook Research Pty Ltd | Photographic prints having magnetically recordable media |
US7050143B1 (en) * | 1998-07-10 | 2006-05-23 | Silverbrook Research Pty Ltd | Camera system with computer language interpreter |
AUPO939997A0 (en) | 1997-09-23 | 1997-10-16 | Silverbrook Research Pty Ltd | Data processing method and apparatus (ART61) |
AUPO802797A0 (en) * | 1997-07-15 | 1997-08-07 | Silverbrook Research Pty Ltd | Image processing method and apparatus (ART54) |
US7077515B2 (en) | 1997-07-15 | 2006-07-18 | Silverbrook Research Pty Ltd | Media cartridge for inkjet printhead |
US6820968B2 (en) | 1997-07-15 | 2004-11-23 | Silverbrook Research Pty Ltd | Fluid-dispensing chip |
US6213588B1 (en) | 1997-07-15 | 2001-04-10 | Silverbrook Research Pty Ltd | Electrostatic ink jet printing mechanism |
AUPO802597A0 (en) | 1997-07-15 | 1997-08-07 | Silverbrook Research Pty Ltd | Image processing method and apparatus (ART08) |
AUPO850097A0 (en) | 1997-08-11 | 1997-09-04 | Silverbrook Research Pty Ltd | Image processing method and apparatus (art31) |
US7044589B2 (en) | 1997-07-15 | 2006-05-16 | Silverbrook Res Pty Ltd | Printing cartridge with barcode identification |
US6304291B1 (en) | 1997-07-15 | 2001-10-16 | Silverbrook Research Pty Ltd | Artcard for the administration of the operation of a camera device |
US6057850A (en) | 1997-07-15 | 2000-05-02 | Silicon Graphics, Inc. | Blended texture illumination mapping |
AUPO801997A0 (en) * | 1997-07-15 | 1997-08-07 | Silverbrook Research Pty Ltd | Media processing method and apparatus (ART21) |
US6727948B1 (en) * | 1997-07-15 | 2004-04-27 | Silverbrook Research Pty Ltd | Utilizing autofocus information for image processing in a digital camera |
AUPO797897A0 (en) | 1997-07-15 | 1997-08-07 | Silverbrook Research Pty Ltd | Media device (ART18) |
AUPO799997A0 (en) | 1997-07-15 | 1997-08-07 | Silverbrook Research Pty Ltd | Image processing method and apparatus (ART10) |
AUPO798697A0 (en) | 1997-07-15 | 1997-08-07 | Silverbrook Research Pty Ltd | Data processing method and apparatus (ART51) |
US6217165B1 (en) | 1997-07-15 | 2001-04-17 | Silverbrook Research Pty. Ltd. | Ink and media cartridge with axial ink chambers |
US6608297B2 (en) | 1997-07-23 | 2003-08-19 | Xeros, Inc. | Scanner document speed encoder |
US6262769B1 (en) | 1997-07-31 | 2001-07-17 | Flashpoint Technology, Inc. | Method and system for auto rotating a graphical user interface for managing portrait and landscape images in an image capture unit |
EP0999935B1 (en) | 1997-08-01 | 2003-11-05 | Encad, Inc. | Ink jet printer, method and system compensating for nonfunctional print elements |
US6229565B1 (en) | 1997-08-15 | 2001-05-08 | Howard H. Bobry | Hand-held electronic camera with integral printer |
US6252976B1 (en) | 1997-08-29 | 2001-06-26 | Eastman Kodak Company | Computer program product for redeye detection |
US6292574B1 (en) | 1997-08-29 | 2001-09-18 | Eastman Kodak Company | Computer program product for redeye detection |
US6260137B1 (en) | 1997-09-12 | 2001-07-10 | Siemens Aktiengesellschaft | Data processing unit with digital signal processing capabilities |
US5896169A (en) | 1997-09-16 | 1999-04-20 | Philips Electronics North America Corporation | Video level measuring apparatus for X-ray imaging systems |
US5802413A (en) | 1997-09-18 | 1998-09-01 | Eastman Kodak Company | Printer receiving electronic camera |
JP4093618B2 (en) | 1997-10-08 | 2008-06-04 | 富士通株式会社 | Issuing / reading device for record carrier recording digital code signal and record carrier |
US6606171B1 (en) | 1997-10-09 | 2003-08-12 | Howtek, Inc. | Digitizing scanner |
US6407777B1 (en) | 1997-10-09 | 2002-06-18 | Deluca Michael Joseph | Red-eye filter method and apparatus |
US5996893A (en) | 1997-10-28 | 1999-12-07 | Eastman Kodak Company | Method and apparatus for visually identifying an area on a photograph or image where digital data is stored |
US6628333B1 (en) | 1997-11-12 | 2003-09-30 | International Business Machines Corporation | Digital instant camera having a printer |
JP3924878B2 (en) | 1997-11-14 | 2007-06-06 | ブラザー工業株式会社 | Automatic paper feeder |
US6597394B1 (en) | 1997-11-16 | 2003-07-22 | Pictos Technologies, Inc. | Programmable image transform processor for digital image processing |
US6388758B2 (en) | 1997-11-17 | 2002-05-14 | Canon Kabushiki Kaisha | System for scheduling an event in a device based on elapsed time or device event |
US6323912B1 (en) | 1997-11-20 | 2001-11-27 | Eastman Kodak Company | Electronic camera with microfluidic printer that prints scented images |
JP2997924B2 (en) | 1997-11-26 | 2000-01-11 | 株式会社東京機械製作所 | Tower type multi-color printing device |
US6038491A (en) | 1997-11-26 | 2000-03-14 | Mars, Incorporated | Monitoring and reporting system using cellular carriers |
US5949967A (en) | 1997-12-12 | 1999-09-07 | Eastman Kodak Company | Transforming input color values to device control signals |
US6102505A (en) | 1997-12-18 | 2000-08-15 | Eastman Kodak Company | Recording audio and electronic images |
JP4412749B2 (en) | 1997-12-26 | 2010-02-10 | 富士フイルム株式会社 | Digital camera and image processing method in digital camera |
JPH11196359A (en) | 1997-12-27 | 1999-07-21 | Konica Corp | Image forming device |
US6441820B2 (en) | 1998-01-23 | 2002-08-27 | Pixar Animation Studios | Pseudo area lights |
US6278491B1 (en) | 1998-01-29 | 2001-08-21 | Hewlett-Packard Company | Apparatus and a method for automatically detecting and reducing red-eye in a digital image |
US6226015B1 (en) | 1998-02-25 | 2001-05-01 | Intel Corporation | Method of automatically producing sketches and cartoon images from movies |
US6078758A (en) * | 1998-02-26 | 2000-06-20 | Eastman Kodak Company | Printing and decoding 3-D sound data that has been optically recorded onto the film at the time the image is captured |
JPH11254700A (en) | 1998-03-10 | 1999-09-21 | Canon Inc | Ink jet recorder and media cartridge |
FR2775930B1 (en) | 1998-03-11 | 2000-06-02 | Heidelberger Druckmasch Ag | DEVICE FOR CONTROLLING THE PRINTING OF MATERIAL TAPE IN A ROTARY PRINTING MACHINE |
US7083108B2 (en) | 1998-07-10 | 2006-08-01 | Silverbrook Research Pty Ltd | Redundantly encoded data structure for encoding a surface |
US5974168A (en) | 1998-04-16 | 1999-10-26 | International Business Machines Corporation | Acquiring bump maps from curved objects |
US6011536A (en) | 1998-04-17 | 2000-01-04 | New York University | Method and system for generating an image having a hand-painted appearance |
ES2247760T3 (en) | 1998-05-13 | 2006-03-01 | Seiko Epson Corporation | INK CARTRIDGE FOR INK INJECTION PRINTER. |
US6019449A (en) | 1998-06-05 | 2000-02-01 | Hewlett-Packard Company | Apparatus controlled by data from consumable parts with incorporated memory devices |
US6161915A (en) | 1998-06-19 | 2000-12-19 | Lexmark International, Inc | Identification of thermal inkjet printer cartridges |
EP0971260A1 (en) * | 1998-07-08 | 2000-01-12 | Hewlett-Packard Company | Printed image with related sound |
US6816968B1 (en) | 1998-07-10 | 2004-11-09 | Silverbrook Research Pty Ltd | Consumable authentication protocol and system |
CA2277194A1 (en) | 1998-08-12 | 2000-02-12 | Robert W. Spurr | A printer media supply spool adapted to allow the printer to sense type of media, and method of assembling same |
US6494562B1 (en) | 1998-09-03 | 2002-12-17 | Hewlett-Packard Company | Method and apparatus for identifying a sales channel |
US6285410B1 (en) | 1998-09-11 | 2001-09-04 | Mgi Software Corporation | Method and system for removal of flash artifacts from digital images |
US6134339A (en) | 1998-09-17 | 2000-10-17 | Eastman Kodak Company | Method and apparatus for determining the position of eyes and for correcting eye-defects in a captured frame |
JP3776243B2 (en) | 1998-10-06 | 2006-05-17 | 株式会社沖データ | Ink ribbon, printing paper cassette and printer using the same |
US6357865B1 (en) | 1998-10-15 | 2002-03-19 | Xerox Corporation | Micro-electro-mechanical fluid ejector and method of operating same |
JP3586119B2 (en) | 1998-10-27 | 2004-11-10 | キヤノン株式会社 | Head substrate, inkjet head, inkjet printer |
AUPP702698A0 (en) | 1998-11-09 | 1998-12-03 | Silverbrook Research Pty Ltd | Image creation method and apparatus(ART78) |
US6149256A (en) | 1998-11-24 | 2000-11-21 | Eastman Kodak Company | Insertable cartridge for digital camera with ink jet printer |
US6304825B1 (en) | 1999-01-19 | 2001-10-16 | Xerox Corporation | Rotary encoder error compensation system and method for photoreceptor surface motion sensing and control |
AU3349400A (en) | 1999-01-25 | 2000-08-07 | Fargo Electronics, Inc. | Method and apparatus for communicating between printer or laminator and supplies |
EP1029694B1 (en) | 1999-02-19 | 2005-05-04 | Hewlett-Packard Company, A Delaware Corporation | Print media feed apparatus |
EP1034938A1 (en) | 1999-03-08 | 2000-09-13 | Hewlett-Packard Company | Inkjet apparatus and method for controlling undulating on media |
US6163361A (en) | 1999-04-23 | 2000-12-19 | Eastman Kodak Company | Digital camera including a printer for receiving a cartridge having security control circuitry |
US6791605B1 (en) | 1999-05-07 | 2004-09-14 | Eastman Kodak Company | Image capture and printing device |
US6633332B1 (en) | 1999-05-13 | 2003-10-14 | Hewlett-Packard Development Company, L.P. | Digital camera system and method capable of performing document scans |
DE29908918U1 (en) | 1999-05-20 | 1999-07-29 | Feodor Burgmann Dichtungswerke GmbH & Co, 82515 Wolfratshausen | Mechanical seal arrangement |
AUPQ056099A0 (en) | 1999-05-25 | 1999-06-17 | Silverbrook Research Pty Ltd | A method and apparatus (pprint01) |
AUPQ363299A0 (en) | 1999-10-25 | 1999-11-18 | Silverbrook Research Pty Ltd | Paper based information inter face |
AUPQ289099A0 (en) | 1999-09-16 | 1999-10-07 | Silverbrook Research Pty Ltd | Method and apparatus for manipulating a bayer image |
JP4106156B2 (en) | 1999-07-07 | 2008-06-25 | 理想科学工業株式会社 | Stencil printing machine |
JP3802997B2 (en) | 1999-07-14 | 2006-08-02 | 富士写真フイルム株式会社 | Electronic still camera |
US7095433B1 (en) | 1999-11-18 | 2006-08-22 | Fuji Photo Film Co., Ltd. | Optical printer and driving method therefor |
US6304684B1 (en) * | 2000-02-15 | 2001-10-16 | Cyberecord, Inc. | Information processing system and method of using same |
JP2001298694A (en) * | 2000-04-13 | 2001-10-26 | Konica Corp | Image pickup device, image recording system, image recorder and output characteristic correcting method |
US6425661B1 (en) | 2000-06-30 | 2002-07-30 | Silverbrook Research Pty Ltd | Ink cartridge |
WO2002002333A1 (en) | 2000-06-30 | 2002-01-10 | Silverbrook Research Pty Ltd | Print cartridge with air filtering means |
KR100532796B1 (en) * | 2000-07-13 | 2005-12-02 | 시게이트 테크놀로지 엘엘씨 | Method for topographical patterning of a device and mems device manufactured thereby |
US6375314B1 (en) | 2000-08-04 | 2002-04-23 | Lexmark International Inc. | Removable cassette having integrated supply of consumables |
US6543880B1 (en) | 2000-08-25 | 2003-04-08 | Hewlett-Packard Company | Inkjet printhead assembly having planarized mounting layer for printhead dies |
JP4432233B2 (en) | 2000-08-25 | 2010-03-17 | 株式会社ニコン | Electronic camera |
US6924835B1 (en) | 2000-10-20 | 2005-08-02 | Silverbrook Research Pty Ltd | Method and apparatus for fault tolerant data storage on photographs |
US20020063760A1 (en) | 2000-11-29 | 2002-05-30 | Dietl Steven J. | Remotely-powered ink cartridge identification system for an inkjet printer |
US6744526B2 (en) | 2001-02-09 | 2004-06-01 | Eastman Kodak Company | Image sensor having black pixels disposed in a spaced-apart relationship from the active pixels |
US20020141750A1 (en) * | 2001-03-30 | 2002-10-03 | Ludtke Harold A. | Photographic prints carrying meta data and methods therefor |
US6655776B2 (en) | 2001-05-15 | 2003-12-02 | Eastman Kodak Company | Media pack for combination image acquisition and printing device |
AUPS048802A0 (en) * | 2002-02-13 | 2002-03-07 | Silverbrook Research Pty. Ltd. | Methods and systems (ap48) |
HRPK20020407B3 (en) | 2002-05-10 | 2005-04-30 | Gideon D.O.O. | Interactive cd rom post card |
WO2004012075A1 (en) * | 2002-07-26 | 2004-02-05 | Seiko Epson Corporation | Print system |
US6958207B1 (en) * | 2002-12-07 | 2005-10-25 | Niyaz Khusnatdinov | Method for producing large area antireflective microtextured surfaces |
US7127164B1 (en) | 2003-08-06 | 2006-10-24 | Eastman Kodak Company | Method for rating images to facilitate image retrieval |
JP2005193384A (en) * | 2003-12-26 | 2005-07-21 | Ricoh Co Ltd | Image processing method, apparatus, and image forming apparatus |
US7999969B2 (en) | 2005-04-08 | 2011-08-16 | Panasonic Corporation | Imaging device, printing system, printing device, image printing method, and storage medium having stored thereon program controlling the image printing method |
-
2002
- 2002-06-24 US US10/176,680 patent/US6985207B2/en not_active Expired - Fee Related
- 2002-08-29 WO PCT/AU2002/001161 patent/WO2004001501A1/en not_active Application Discontinuation
- 2002-08-29 AU AU2002325078A patent/AU2002325078B2/en not_active Ceased
- 2002-08-29 US US10/510,094 patent/US20070003275A1/en not_active Abandoned
- 2002-08-29 EP EP02757968A patent/EP1516225A4/en not_active Withdrawn
- 2002-08-29 IL IL16483302A patent/IL164833A0/en unknown
- 2002-08-29 CN CNA028292014A patent/CN1630834A/en active Pending
-
2004
- 2004-10-08 ZA ZA2004/08137A patent/ZA200408137B/en unknown
-
2005
- 2005-07-28 US US11/190,902 patent/US7558476B2/en not_active Expired - Fee Related
-
2007
- 2007-12-06 US US11/951,960 patent/US7590347B2/en not_active Expired - Fee Related
-
2009
- 2009-08-17 US US12/542,606 patent/US7742696B2/en not_active Expired - Fee Related
-
2010
- 2010-06-17 US US12/818,138 patent/US7970275B2/en not_active Expired - Fee Related
-
2011
- 2011-05-26 US US13/117,099 patent/US8285137B2/en not_active Expired - Fee Related
Patent Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US30692A (en) * | 1860-11-20 | Hatchet | ||
US135266A (en) * | 1873-01-28 | Improvement in leather-cutting machines | ||
US4270853A (en) * | 1979-03-21 | 1981-06-02 | West Electric Company, Ltd. | Sound-recording instant-printing film and camera therefor |
US4270693A (en) * | 1979-08-13 | 1981-06-02 | Johnson Controls, Inc. | Electronic thermostat with heat anticipation and control method incorporating same |
US4905029A (en) * | 1988-09-28 | 1990-02-27 | Kelley Scott A | Audio still camera system |
US5194892A (en) * | 1988-10-07 | 1993-03-16 | Eastman Kodak Company | Film information exchange system with virtual identification codes |
US4937676A (en) * | 1989-02-10 | 1990-06-26 | Polariod Corporation | Electronic camera system with detachable printer |
US5347403A (en) * | 1991-09-20 | 1994-09-13 | Fuji Photo Film Co., Ltd. | Apparatus and method for recording and reading information |
US5398131A (en) * | 1992-08-13 | 1995-03-14 | Hall; Dennis R. | Stereoscopic hardcopy methods |
US5847836A (en) * | 1995-08-29 | 1998-12-08 | Canon Kabushiki Kaisha | Printer-built-in image-sensing apparatus and using strobe-light means electric-consumption control method thereof |
US5726693A (en) * | 1996-07-22 | 1998-03-10 | Eastman Kodak Company | Ink printing apparatus using ink surfactants |
US6136212A (en) * | 1996-08-12 | 2000-10-24 | The Regents Of The University Of Michigan | Polymer-based micromachining for microfluidic devices |
US5896155A (en) * | 1997-02-28 | 1999-04-20 | Eastman Kodak Company | Ink transfer printing apparatus with drop volume adjustment |
US6727953B1 (en) * | 1999-03-23 | 2004-04-27 | Eastman Kodak Company | Digital camera including printer for printing on an authenticated receiver |
US6363239B1 (en) * | 1999-08-11 | 2002-03-26 | Eastman Kodak Company | Print having attached audio data storage and method of providing same |
US6381418B1 (en) * | 1999-08-11 | 2002-04-30 | Eastman Kodak Company | Print having information associated with the print stored in a memory coupled to the print |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050265713A1 (en) * | 2004-05-26 | 2005-12-01 | Seiko Epson Corporation | Image processing system, projector, program, information storage medium, and image processing method |
US7233707B2 (en) * | 2004-05-26 | 2007-06-19 | Seiko Epson Corporation | Image processing system, projector, program, information storage medium, and image processing method |
Also Published As
Publication number | Publication date |
---|---|
US8285137B2 (en) | 2012-10-09 |
US7558476B2 (en) | 2009-07-07 |
US20100254694A1 (en) | 2010-10-07 |
EP1516225A1 (en) | 2005-03-23 |
US6985207B2 (en) | 2006-01-10 |
US20030058418A1 (en) | 2003-03-27 |
US7970275B2 (en) | 2011-06-28 |
WO2004001501A1 (en) | 2003-12-31 |
US7742696B2 (en) | 2010-06-22 |
US7590347B2 (en) | 2009-09-15 |
US20090304376A1 (en) | 2009-12-10 |
AU2002325078B2 (en) | 2006-03-02 |
US20110228026A1 (en) | 2011-09-22 |
ZA200408137B (en) | 2005-09-28 |
CN1630834A (en) | 2005-06-22 |
US20050270503A1 (en) | 2005-12-08 |
IL164833A0 (en) | 2005-12-18 |
AU2002325078A1 (en) | 2004-01-06 |
US20080075443A1 (en) | 2008-03-27 |
EP1516225A4 (en) | 2007-01-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7590347B2 (en) | Photographic prints having magnetically recordable media | |
US8029101B2 (en) | Ink ejection mechanism with thermal actuator coil | |
EP1508449B1 (en) | Inkjet nozzle with magnetic actuator chamber | |
US20010043253A1 (en) | Ink jet with coiled actuator | |
US7594713B2 (en) | Inkjet printer with unit cells having suspended heater elements | |
US20010045969A1 (en) | Shutter ink jet | |
US7984975B2 (en) | Printhead nozzle cell having photoresist chamber | |
US7753484B2 (en) | Printhead provided with individual nozzle enclosures | |
US8029686B2 (en) | Method of fabricating an ink jet nozzle with a heater element | |
US6137500A (en) | Utilizing of brush stroking techniques in the generation of computer images | |
US7771015B2 (en) | Printhead nozzle arrangement having a looped heater element | |
US6225138B1 (en) | Method of manufacture of a pulsed magnetic field ink jet printer | |
CA2592267C (en) | Inkjet printhead having isolated nozzles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SILVERBROOK RESEARCH PTY LTD, AUSTRALIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SILVERBROOK, KIA;REEL/FRAME:018646/0472 Effective date: 20040831 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |