US20060285786A1 - Rolling bearing unit - Google Patents

Rolling bearing unit Download PDF

Info

Publication number
US20060285786A1
US20060285786A1 US10/548,913 US54891305A US2006285786A1 US 20060285786 A1 US20060285786 A1 US 20060285786A1 US 54891305 A US54891305 A US 54891305A US 2006285786 A1 US2006285786 A1 US 2006285786A1
Authority
US
United States
Prior art keywords
cylindrical portion
peripheral surface
ring
inner peripheral
outer ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US10/548,913
Other versions
US7594758B2 (en
Inventor
Yoshifumi Shige
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
Koyo Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Seiko Co Ltd filed Critical Koyo Seiko Co Ltd
Assigned to KOYO SEIKO CO., LTD. reassignment KOYO SEIKO CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SHIGE, YOSHIFUMI
Publication of US20060285786A1 publication Critical patent/US20060285786A1/en
Assigned to JTEKT CORPORATION reassignment JTEKT CORPORATION CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: KOYO SEIKO CO., LTD.
Application granted granted Critical
Publication of US7594758B2 publication Critical patent/US7594758B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
    • F16C19/186Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement with three raceways provided integrally on parts other than race rings, e.g. third generation hubs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B27/00Hubs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/723Shaft end sealing means, e.g. cup-shaped caps or covers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/76Sealings of ball or roller bearings
    • F16C33/78Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members
    • F16C33/7816Details of the sealing or parts thereof, e.g. geometry, material
    • F16C33/783Details of the sealing or parts thereof, e.g. geometry, material of the mounting region
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/01Parts of vehicles in general
    • F16C2326/02Wheel hubs or castors

Definitions

  • the present invention relates to a rolling bearing unit for rotatably supporting the wheels of an automobile or the like on a suspension system. More specifically, the invention relates to a rolling bearing unit equipped with a cover at an opening on an outer ring edge.
  • the rolling bearing unit is structured so that a cover made of resin is attached to the outer ring edge section opening to make it difficult for muddy water or the like to enter the bearing via the opening.
  • the cover comprises a circular plate portion for covering the outer ring edge section opening and a cylindrical portion which is fitted into the inner peripheral surface of the opening with clearance.
  • the present invention is a rolling bearing unit comprising a cover at the outer ring edge section opening, wherein the cover comprises a circular plate portion for covering the outer ring edge section opening and a resin-made cylindrical portion which is fitted into the inner peripheral surface of the outer ring edge opening, and a metal ring body is provided at the inner peripheral surface of the cylindrical portion.
  • the resin-made cylindrical portion of the cover when the resin-made cylindrical portion of the cover is fitted into the inner peripheral surface of the outer ring edge section opening, deformation force acting radially inward on the cylindrical portion is stopped by the ring body, end-narrowing deformation of the cylindrical portion is suppressed, and the cylindrical portion closely contacts the inner peripheral surface of the outer ring edge section opening.
  • attachment strength of the cover to the outer ring edge section opening is increased and it is possible to effectively prevent moisture from entering the bearing.
  • the ring body strength for stopping deformation force acting radially inward on the cylindrical portion increases, and end-narrowing deformation of the cylindrical portion is suppressed more effectively.
  • FIG. 1 is a cross-sectional view of a rolling bearing unit according to a preferred embodiment of the present invention
  • FIG. 2 is a view showing a principal portion of FIG. 1 ;
  • FIG. 3 is a cross-sectional view of a principal portion of a rolling bearing unit according to another configuration of the present invention.
  • FIG. 4 is a cross-sectional view of a principal portion of a rolling bearing unit according to still another configuration of the present invention.
  • FIG. 5 is a cross-sectional view of a principal portion of a rolling bearing unit according to still another configuration of the present invention.
  • FIG. 6 is a cross-sectional view of a principal portion of a rolling bearing unit according to still another configuration of the present invention.
  • FIG. 1 is a cross-sectional view of the same rolling bearing unit.
  • the left side represents the side toward the vehicle outside and the right side represents the side toward the vehicle inside.
  • An outer ring 1 is made of metal such as high-carbon steel meeting JIS S55C or bearing steel meeting JIS SUJ-2, and is a fixed ring fixed to the body of a vehicle such as an automobile.
  • the outer ring 1 comprises a flange portion 14 for vehicle body fixing for supporting the outer ring 1 on a suspension system (not shown) at the outer peripheral surface roughly in the center thereof in the axial direction.
  • the ring 1 also comprises outer ring raceways 12 and 13 on its inner peripheral surface on the vehicle outward side and the vehicle inward side respectively.
  • a hub spindle 2 constitutes a ring that rotates with respect to the outer ring 1 .
  • the hub spindle 2 comprises a flange portion 15 for wheel fixing at the outer peripheral surface on the vehicle outward side.
  • the hub spindle 2 also comprises an inner ring raceway 16 opposite the outer ring raceway 12 at an outer peripheral surface more inward than the flange portion 15 .
  • An inner ring 3 is outwardly fitted to the outer peripheral surface of a small-diameter cylindrical portion 2 a on the side toward the vehicle inward side of the hub spindle 2 and is capable of rotating unitarily with the hub spindle 2 .
  • the inner ring 3 thus constitutes a ring that rotates together with the hub spindle 2 with respect to the outer ring 1 .
  • the inner ring 3 comprises an inner ring raceway 17 opposite the outer ring raceway 13 on the outer peripheral surface.
  • the inner ring 3 is prevented from slipping out by a bent edge section 2 b on the side of the hub spindle 2 toward the vehicle inward side, and is pre-pressured thereby.
  • a plurality of balls 4 and 5 are rotatably held between the outer ring raceways 12 and 13 and the inner ring raceways 16 and 17 by cages 6 and 7 respectively.
  • a seal 8 is interposed between the inner peripheral surface of the vehicle outward edge section of the outer ring 1 and the outer peripheral surface of the hub spindle 2 .
  • the rolling bearing unit comprises a resin-made cover 11 .
  • the cover 11 is cylindrical and has a bottom, at an opening 1 b of an edge section 1 a on the side of the outer ring 1 toward the vehicle inward side.
  • the cover 11 comprises a circular plate portion 20 which covers the opening 1 b of the vehicle inward side edge section 1 a of the outer ring 1 .
  • a cylindrical portion 21 of the cover 11 is inwardly press-fitted to the inner peripheral surface of the opening 1 b .
  • a flange portion 22 of the cover is provided at the periphery of the circular plate portion 20 and restricts the inner fitting depth of the cylindrical portion 21 with respect to the inner peripheral surface of the opening 1 b of the outer ring 1 .
  • most of the entire cover 11 is formed of a resin.
  • a metal ring body 25 is integrally provided at the inner peripheral surface of the cylindrical portion 21 .
  • the material of the ring body 25 is a cold rolled steel sheet meeting such standards as JIS SPCC.
  • only the cylindrical portion 21 may be formed of resin.
  • the structure of the cover 11 shall be described in more detail. Illustrated is the positional relationship in the axial direction between the vehicle inward side edge 1 a of the outer ring 1 and the vehicle inner side edge 2 b of the hub spindle 2 . As a result of this relationship, the axial-direction length B of the inner peripheral surface of the cylindrical portion 21 of the cover 11 is made longer than the axial-direction length A of the outer peripheral surface thereof.
  • the tip side of the cylindrical portion 21 in the press fitting direction contracts and is easily deformed into a cone shape. This is because the cylindrical portion 21 is made of resin and the outer ring 1 is metal.
  • vehicle outward side end face 25 a of the ring body 25 is positioned so as to be in the same plane radially with the vehicle outward side end face 21 a of the cylindrical portion 21 . Furthermore, the end face 25 b on the vehicle inward side is positioned more to the vehicle outside than the vehicle inward side root portion 21 b of the outer peripheral surface of the cylindrical portion 21 .
  • the ring body 25 stops force acting radially inward on the cylindrical portion 21 and prevents the cylindrical portion 21 from being deformed into a cone shape.
  • the vehicle inward side edge section 25 b on the ring body 25 is positioned more to the vehicle outward side than the vehicle inward side root portion 21 b of the cylindrical portion 21 .
  • the ring body 25 is not provided, when the temperature of the rolling bearing unit rises a gap may occur between the opening 1 b of the outer ring 1 and the cylindrical portion 21 of the cover 11 . This is because of the difference in thermal expansion between the outer ring 1 and the cover 11 , i.e., the coefficient of linear expansion of the outer ring 1 >the coefficient of linear expansion of the cover 11 .
  • the ring body 25 is provided at the inner peripheral surface of the cylindrical portion 21 . Accordingly, the diameter of the cylindrical portion 21 expands by the thermal expansion of the ring body 25 and the outer peripheral surface of the cylindrical portion 21 makes close contact with the inner peripheral surface of the outer ring 1 , thereby preventing occurrence of the gap.
  • the material of the cover 11 is preferably a resin which has a coefficient of linear expansion approximately that of the material of the outer ring 1 .
  • examples are polyamide (PA), polyphenylene sulfide (PPS), and polybutylene terephthalate (PBT).
  • PA polyamide
  • PPS polyphenylene sulfide
  • PBT polybutylene terephthalate
  • the ring body 25 may also be insert-formed at the cylindrical portion 21 so as to cross the whole inner peripheral surface of the cylindrical portion 21 of the cover 11 .
  • the resin cover 11 attached to the opening 1 b of the vehicle inward side edge section 1 a of the outer ring 1 comprises the cylindrical portion 21 .
  • the cylindrical portion 21 is fitted into the inner peripheral surface of the opening 1 b of the vehicle inward side edge section 1 a of the outer ring 1 .
  • the cover 11 also includes the flange portion 22 which contacts an end face 1 c of the vehicle inner side edge section 1 a of the outer ring 1 .
  • the metal ring body 25 is provided at the inner peripheral surface of the cylindrical portion 21 .
  • the ring body 25 is extended from an inner peripheral surface area S 1 of the cylindrical portion 21 to an inner peripheral surface area S 2 of the flange portion 22 .
  • the cover 11 is attached to the outer ring 1 so that the flange portion 22 contacts the end face 1 c of the vehicle inward side edge section 1 a of the outer ring 1 from the axial direction.
  • the cylindrical portion 21 of the cover 11 is slightly bent due to its elasticity while being inserted.
  • the ring body 25 is fixed to the area from the inner peripheral surface area S 1 of the cylindrical portion 21 of the cover 11 to the inner peripheral surface area S 2 of the flange portion 22 . Accordingly, some of the elastic bending portion of the cylindrical portion 21 is supported by the rigidity of the ring body 25 .
  • the temperature of the outer ring 1 rises and the heat is transmitted to the cylindrical portion 21 .
  • the temperature of the outer ring 1 falls and this temperature change is transmitted to the cover 11 .
  • the cylindrical portion 21 is formed only of resin, there will be difficulties in adapting to temperature changes. This is because of the resin coefficient of linear expansion, so there is the danger that the cover 11 may fall off the outer ring 1 .
  • the ring body 25 could be provided at the inner peripheral surface region of the cylindrical portion 21 of the cover 11 . This would make it difficult for the cover to fall off the outer ring even when thermal shock from heating and cooling occurs. Moreover, merely providing the ring body 25 at the inner peripheral surface area of the cylindrical portion 21 , depending on the type of resin, results in insufficient adaptation to temperature changes. In this case, there is the danger that the cylindrical portion 21 will deform, reducing the contact area with the inner peripheral surface of the outer ring 1 and degrading pullout force.
  • the ring body 25 extends from the inner diameter side area S 1 of the cylindrical portion 21 to the inner diameter side area S 2 of the flange portion 22 . Accordingly, the starting point for bending of the cylindrical portion 21 is separated from the outer ring 1 (which is a heat source), and the amount of metal at the portion where bending occurs is increased. As a result, so the resin bending amount is suppressed.
  • a knurled groove or other groove may form at the inner peripheral surface of the vehicle inward side edge section of the outer ring 1 .
  • the groove may engage the outer peripheral surface of the cylindrical portion 21 .
  • part of the cylindrical portion 21 resiliently enters the grooved portion. As a result, the cover 11 is effectively prevented from being pulled out of the outer ring 1 .
  • An opening may be provided for fitting a rotation detection device on the cover 11 , and the rotation detection device may be fitted in the opening.
  • This rotation detection device detects the rotational speed or the like of the wheel in order to control a vehicle anti-lock brake system (ABS) or a traction control system (TCS). It is advantageous to use the cover 11 as a cover equipped with such a rotation detection device. This is because the cover 11 is unlikely to fall off the outer ring 1 even when a thermal shock such as heating and cooling occurs.
  • the axial length B of the inner peripheral surface of the cylindrical portion 21 of the cover 11 is set approximately the same as the axial length A of the outer peripheral surface.
  • the axial length B of the inner peripheral surface of the cylindrical portion 21 of the cover 11 is set shorter than the axial length A of the outer peripheral surface.
  • the ring body 25 can be disposed with respect to the cylindrical portion 21 in a manner similar to that of FIG. 2 or FIG. 3 . In both configurations, screwing a nut in the hub spindle 2 prevents pullout of the inner ring 3 from the hub spindle 2 .
  • the present invention is applicable to a rolling bearing unit for rotatably supporting wheels of an automobile or the like on a suspension system.

Abstract

A rolling bearing unit includes a resin-made cover attached at the opening of the vehicle inward side edge section of an outer ring. The cover includes a cylindrical portion which is fitted into the inner peripheral surface of the opening of the vehicle inward side edge section of the outer ring. A metal ring body is provided at the inner peripheral surface of the cylindrical portion.

Description

    BACKGROUND OF THE INVENTION
  • The present invention relates to a rolling bearing unit for rotatably supporting the wheels of an automobile or the like on a suspension system. More specifically, the invention relates to a rolling bearing unit equipped with a cover at an opening on an outer ring edge.
  • As disclosed in Japanese Laid-Open Patent Application Publication No. 10-19912, the rolling bearing unit is structured so that a cover made of resin is attached to the outer ring edge section opening to make it difficult for muddy water or the like to enter the bearing via the opening. The cover comprises a circular plate portion for covering the outer ring edge section opening and a cylindrical portion which is fitted into the inner peripheral surface of the opening with clearance. In such a cover, when the cylindrical portion is fitted into the inner peripheral surface of the outer ring edge section opening, the cylindrical portion is deformed into a narrow end and a gap occurs between the inner peripheral surface of the opening and the outer peripheral surface of the cylindrical portion, so the function of preventing muddy water from entering the bearing may be degraded.
  • BRIEF SUMMARY OF THE INVENTION
  • The present invention is a rolling bearing unit comprising a cover at the outer ring edge section opening, wherein the cover comprises a circular plate portion for covering the outer ring edge section opening and a resin-made cylindrical portion which is fitted into the inner peripheral surface of the outer ring edge opening, and a metal ring body is provided at the inner peripheral surface of the cylindrical portion.
  • According to the present invention, when the resin-made cylindrical portion of the cover is fitted into the inner peripheral surface of the outer ring edge section opening, deformation force acting radially inward on the cylindrical portion is stopped by the ring body, end-narrowing deformation of the cylindrical portion is suppressed, and the cylindrical portion closely contacts the inner peripheral surface of the outer ring edge section opening. As a result, attachment strength of the cover to the outer ring edge section opening is increased and it is possible to effectively prevent moisture from entering the bearing.
  • As a preferred embodiment of the present invention, if the axial-direction length of the ring body is made shorter than the inner fitting length with respect to the inner peripheral surface of the outer ring edge opening on the cover cylindrical portion, the ring body strength for stopping deformation force acting radially inward on the cylindrical portion increases, and end-narrowing deformation of the cylindrical portion is suppressed more effectively.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Accompanying the specification are figures which assist in illustrating the embodiments of the invention, in which:
  • FIG. 1 is a cross-sectional view of a rolling bearing unit according to a preferred embodiment of the present invention;
  • FIG. 2 is a view showing a principal portion of FIG. 1;
  • FIG. 3 is a cross-sectional view of a principal portion of a rolling bearing unit according to another configuration of the present invention;
  • FIG. 4 is a cross-sectional view of a principal portion of a rolling bearing unit according to still another configuration of the present invention;
  • FIG. 5 is a cross-sectional view of a principal portion of a rolling bearing unit according to still another configuration of the present invention; and
  • FIG. 6 is a cross-sectional view of a principal portion of a rolling bearing unit according to still another configuration of the present invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Hereinafter, referring to the drawings, description will be made of a rolling bearing unit for vehicles according to a preferred embodiment of the present invention.
  • FIG. 1 is a cross-sectional view of the same rolling bearing unit. In FIG. 1 the left side represents the side toward the vehicle outside and the right side represents the side toward the vehicle inside. An outer ring 1 is made of metal such as high-carbon steel meeting JIS S55C or bearing steel meeting JIS SUJ-2, and is a fixed ring fixed to the body of a vehicle such as an automobile.
  • The outer ring 1 comprises a flange portion 14 for vehicle body fixing for supporting the outer ring 1 on a suspension system (not shown) at the outer peripheral surface roughly in the center thereof in the axial direction. The ring 1 also comprises outer ring raceways 12 and 13 on its inner peripheral surface on the vehicle outward side and the vehicle inward side respectively.
  • A hub spindle 2 constitutes a ring that rotates with respect to the outer ring 1. The hub spindle 2 comprises a flange portion 15 for wheel fixing at the outer peripheral surface on the vehicle outward side. The hub spindle 2 also comprises an inner ring raceway 16 opposite the outer ring raceway 12 at an outer peripheral surface more inward than the flange portion 15.
  • An inner ring 3 is outwardly fitted to the outer peripheral surface of a small-diameter cylindrical portion 2 a on the side toward the vehicle inward side of the hub spindle 2 and is capable of rotating unitarily with the hub spindle 2. The inner ring 3 thus constitutes a ring that rotates together with the hub spindle 2 with respect to the outer ring 1.
  • The inner ring 3 comprises an inner ring raceway 17 opposite the outer ring raceway 13 on the outer peripheral surface. The inner ring 3 is prevented from slipping out by a bent edge section 2b on the side of the hub spindle 2 toward the vehicle inward side, and is pre-pressured thereby.
  • A plurality of balls 4 and 5 are rotatably held between the outer ring raceways 12 and 13 and the inner ring raceways 16 and 17 by cages 6 and 7 respectively. A seal 8 is interposed between the inner peripheral surface of the vehicle outward edge section of the outer ring 1 and the outer peripheral surface of the hub spindle 2.
  • In order to protect the inside of the bearing from external muddy water or the like in conjunction with the seal 8, the rolling bearing unit comprises a resin-made cover 11. The cover 11 is cylindrical and has a bottom, at an opening 1 b of an edge section 1 a on the side of the outer ring 1 toward the vehicle inward side.
  • The cover 11 comprises a circular plate portion 20 which covers the opening 1 b of the vehicle inward side edge section 1 a of the outer ring 1. A cylindrical portion 21 of the cover 11 is inwardly press-fitted to the inner peripheral surface of the opening 1 b. A flange portion 22 of the cover is provided at the periphery of the circular plate portion 20 and restricts the inner fitting depth of the cylindrical portion 21 with respect to the inner peripheral surface of the opening 1 b of the outer ring 1.
  • Preferably, most of the entire cover 11 is formed of a resin. A metal ring body 25 is integrally provided at the inner peripheral surface of the cylindrical portion 21. Preferably, the material of the ring body 25 is a cold rolled steel sheet meeting such standards as JIS SPCC. Furthermore, it is not necessary to form the entire cover 11 of resin. For example, only the cylindrical portion 21 may be formed of resin.
  • Referring to FIG. 2, the structure of the cover 11 shall be described in more detail. Illustrated is the positional relationship in the axial direction between the vehicle inward side edge 1 a of the outer ring 1 and the vehicle inner side edge 2 b of the hub spindle 2. As a result of this relationship, the axial-direction length B of the inner peripheral surface of the cylindrical portion 21 of the cover 11 is made longer than the axial-direction length A of the outer peripheral surface thereof.
  • Therefore, when the cylindrical portion 21 of the cover 11 is press fitted into the inner peripheral surface of the opening 1 b of the edge section 1 a of the outer ring 1 on the vehicle inward side, the tip side of the cylindrical portion 21 in the press fitting direction contracts and is easily deformed into a cone shape. This is because the cylindrical portion 21 is made of resin and the outer ring 1 is metal.
  • In order to prevent such deformation, vehicle outward side end face 25 a of the ring body 25 is positioned so as to be in the same plane radially with the vehicle outward side end face 21 a of the cylindrical portion 21. Furthermore, the end face 25 b on the vehicle inward side is positioned more to the vehicle outside than the vehicle inward side root portion 21 b of the outer peripheral surface of the cylindrical portion 21.
  • When the cylindrical portion 21 of the cover 11 is fitted into the outer ring 1, the ring body 25 stops force acting radially inward on the cylindrical portion 21 and prevents the cylindrical portion 21 from being deformed into a cone shape. In particular, the vehicle inward side edge section 25 b on the ring body 25 is positioned more to the vehicle outward side than the vehicle inward side root portion 21 b of the cylindrical portion 21. As a result, the deformation of the tip side of the cylindrical portion 21 of the cover 11 into a cone shape is more reliably prevented when the cylindrical portion 21 of the cover 11 is fitted into the outer ring 1, and this is preferred.
  • Accordingly, as the outer peripheral surface of the cylindrical portion 21 of the cover 11 makes close contact with the inner peripheral surface of the opening 1 b of the vehicle inward side edge section 1 a of the outer ring 1, the attachment strength of the cover 11 to the outer ring 1 is increased. It is thus difficult for moisture to enter inside the bearing, thereby improving hermetically sealing of the bearing interior.
  • If the ring body 25 is not provided, when the temperature of the rolling bearing unit rises a gap may occur between the opening 1 b of the outer ring 1 and the cylindrical portion 21 of the cover 11. This is because of the difference in thermal expansion between the outer ring 1 and the cover 11, i.e., the coefficient of linear expansion of the outer ring 1>the coefficient of linear expansion of the cover 11.
  • In this embodiment, the ring body 25 thermally expands in a manner similar to the outer ring, i.e., the coefficient of linear expansion of the outer ring 1=the coefficient of linear expansion of the cylindrical portion 21. As illustrated, the ring body 25 is provided at the inner peripheral surface of the cylindrical portion 21. Accordingly, the diameter of the cylindrical portion 21 expands by the thermal expansion of the ring body 25 and the outer peripheral surface of the cylindrical portion 21 makes close contact with the inner peripheral surface of the outer ring 1, thereby preventing occurrence of the gap.
  • The material of the cover 11 is preferably a resin which has a coefficient of linear expansion approximately that of the material of the outer ring 1. Examples are polyamide (PA), polyphenylene sulfide (PPS), and polybutylene terephthalate (PBT). If a resin whose coefficient of linear expansion is approximately that of the material of the outer ring 1 is selected as the cover 11 material, the following occurs. As the temperature rises, the cover 11 also expands to the same extent as the outer ring 1, and it is possible to ensure such a fitting force that the cover 11 cannot not be pulled out of the outer ring 1. When the temperature drops, the cover 11 also shrinks to the same extent as the shrinkage of the outer ring 1, thereby preventing cracking of the cover 11.
  • As shown in FIG. 3, it is also possible to have a structure that increases the rigidity of the cylindrical portion 21 by insert-forming the ring body 25 at the cylindrical portion 21 of the cover 11 and by bending the tip side of the ring body 25 radially outward.
  • In an alternative embodiment, as shown in FIG. 4, the ring body 25 may also be insert-formed at the cylindrical portion 21 so as to cross the whole inner peripheral surface of the cylindrical portion 21 of the cover 11. More specifically, the resin cover 11 attached to the opening 1 b of the vehicle inward side edge section 1 a of the outer ring 1 comprises the cylindrical portion 21. The cylindrical portion 21 is fitted into the inner peripheral surface of the opening 1 b of the vehicle inward side edge section 1 a of the outer ring 1. The cover 11 also includes the flange portion 22 which contacts an end face 1 c of the vehicle inner side edge section 1 a of the outer ring 1. The metal ring body 25 is provided at the inner peripheral surface of the cylindrical portion 21. The ring body 25 is extended from an inner peripheral surface area S1 of the cylindrical portion 21 to an inner peripheral surface area S2 of the flange portion 22.
  • According to the configuration described above, the cover 11 is attached to the outer ring 1 so that the flange portion 22 contacts the end face 1 c of the vehicle inward side edge section 1 a of the outer ring 1 from the axial direction. In this case, the cylindrical portion 21 of the cover 11 is slightly bent due to its elasticity while being inserted. However, the ring body 25 is fixed to the area from the inner peripheral surface area S1 of the cylindrical portion 21 of the cover 11 to the inner peripheral surface area S2 of the flange portion 22. Accordingly, some of the elastic bending portion of the cylindrical portion 21 is supported by the rigidity of the ring body 25.
  • When the wheel rotates due to vehicle use, the temperature of the outer ring 1 rises and the heat is transmitted to the cylindrical portion 21. When the vehicle is stopped, the temperature of the outer ring 1 falls and this temperature change is transmitted to the cover 11. Here, if the cylindrical portion 21 is formed only of resin, there will be difficulties in adapting to temperature changes. This is because of the resin coefficient of linear expansion, so there is the danger that the cover 11 may fall off the outer ring 1.
  • In view of the danger of the cover falling off, the ring body 25 could be provided at the inner peripheral surface region of the cylindrical portion 21 of the cover 11. This would make it difficult for the cover to fall off the outer ring even when thermal shock from heating and cooling occurs. Moreover, merely providing the ring body 25 at the inner peripheral surface area of the cylindrical portion 21, depending on the type of resin, results in insufficient adaptation to temperature changes. In this case, there is the danger that the cylindrical portion 21 will deform, reducing the contact area with the inner peripheral surface of the outer ring 1 and degrading pullout force.
  • In view of the potential for deformation, in this embodiment, the ring body 25 extends from the inner diameter side area S1 of the cylindrical portion 21 to the inner diameter side area S2 of the flange portion 22. Accordingly, the starting point for bending of the cylindrical portion 21 is separated from the outer ring 1 (which is a heat source), and the amount of metal at the portion where bending occurs is increased. As a result, so the resin bending amount is suppressed.
  • Therefore, even when a thermal shock occurs as in temperature increase and decrease of the outer ring 1, because of the metal, bending of the cylindrical portion 21 is kept to a minimum. Moreover, the necessary contact area between the outer peripheral surface of the cylindrical portion 21 and the inner peripheral surface of the outer ring 1 is secured. Therefore the required pullout force is secured, thereby effectively preventing the cover 11 from falling off the outer ring 1.
  • The above structure provides the following benefit. For example, a knurled groove or other groove may form at the inner peripheral surface of the vehicle inward side edge section of the outer ring 1. The groove may engage the outer peripheral surface of the cylindrical portion 21. However, if the cover 11 is incorporated in the outer ring 1, part of the cylindrical portion 21 resiliently enters the grooved portion. As a result, the cover 11 is effectively prevented from being pulled out of the outer ring 1.
  • An opening may be provided for fitting a rotation detection device on the cover 11, and the rotation detection device may be fitted in the opening. This rotation detection device detects the rotational speed or the like of the wheel in order to control a vehicle anti-lock brake system (ABS) or a traction control system (TCS). It is advantageous to use the cover 11 as a cover equipped with such a rotation detection device. This is because the cover 11 is unlikely to fall off the outer ring 1 even when a thermal shock such as heating and cooling occurs.
  • As shown in FIG. 5, the axial length B of the inner peripheral surface of the cylindrical portion 21 of the cover 11 is set approximately the same as the axial length A of the outer peripheral surface. Alternatively, as shown in FIG. 6, the axial length B of the inner peripheral surface of the cylindrical portion 21 of the cover 11 is set shorter than the axial length A of the outer peripheral surface. In either case, the ring body 25 can be disposed with respect to the cylindrical portion 21 in a manner similar to that of FIG. 2 or FIG. 3. In both configurations, screwing a nut in the hub spindle 2 prevents pullout of the inner ring 3 from the hub spindle 2.
  • The present invention is applicable to a rolling bearing unit for rotatably supporting wheels of an automobile or the like on a suspension system.
  • The present invention may be embodied in other specific forms without departing from its spirit or essential characteristics. The described embodiments are to be considered in all respects only as illustrative and not as restrictive. The scope of the invention is, therefore, indicated by the appended claims and their combination in whole or in part rather than by the foregoing description. All changes that come within the meaning and range of equivalency of the claims are to be embraced within their scope.

Claims (14)

1-13. (canceled)
14. A rolling bearing unit comprising:
an outer ring including an edge section opening, said opening including an inner peripheral surface;
a cover connecting to said opening;
said cover comprising:
a circular plate portion covering said opening; and
a cylindrical portion including an inner peripheral surface, said cylindrical portion being resin, said cylindrical portion fitting into said inner peripheral surface of said opening; and
a ring body disposed at said inner peripheral surface of said cylindrical portion, said ring body being metal.
15. The rolling bearing unit of claim 14, wherein:
said ring body being axially shorter than said inner peripheral surface of said cylindrical portion.
16. The rolling bearing unit of claim 14, wherein said ring body and said cylindrical portion of said cover each includes an end face, said end faces being coplanar.
17. The rolling bearing unit of claim 14, wherein said ring body is integrated with said cylindrical portion by insert forming.
18. The rolling bearing unit according to claim 17, wherein said ring body includes an end face, said end face being disposed radially outward.
19. A rolling bearing unit comprising:
an outer ring including an axial inward side, said axial inward side of said outer ring including an edge section opening, said opening including an inner peripheral surface;
a cover connecting to said opening;
said cover comprising:
a circular plate portion covering said opening;
a cylindrical portion press fitting into said inner peripheral surface of said opening, said cylindrical portion having a periphery and an inner peripheral surface, said cylindrical portion being resin; and
a flange portion provided at said periphery of said cylindrical portion, said flange portion defining a depth by which said cylindrical portion extends into said outer ring opening; and
said unit further comprising a metal ring body disposed at said inner peripheral surface of said cylindrical portion.
20. The rolling bearing unit according to claim 19, wherein:
said cylindrical portion includes an outer peripheral surface, said inner peripheral surface of said cylindrical portion being axially longer than said outer peripheral surface thereof; and
said ring body and said cylindrical portion each including an end face, said end faces being coplanar; and
said cylindrical portion outer peripheral surface being axially longer than said ring.
21. The rolling bearing unit of claim 20, wherein:
said outer ring, said ring body and said cylindrical portion each having coefficients of linear expansion; and
said coefficients of linear expansion for both said outer ring and said ring body being greater than said coefficient of linear expansion of said cylindrical portion.
22. The rolling bearing unit according to claim 20, wherein said cover is a resin, said cover having a coefficient of linear expansion being essentially equal to said coefficient of linear expansion of said outer ring.
23. A rolling bearing unit comprising:
an outer ring including outer and inner peripheral surfaces, said outer ring including axially outward and axially inward edges, said outer peripheral surface comprising a flange portion and said inner peripheral surface comprising first and second outer ring raceways;
a hub spindle including an axial outward side and an axial inward side, each side having an axial edge;
said axial outward side of said spindle including an outer peripheral surface, said outer peripheral surface of said spindle including a flange portion;
said hub spindle having an inner ring raceway opposing said first outer ring raceway, both said inner ring raceway of said spindle and said first outer ring raceway being disposed axially between said axial inner edge of said outer ring and said flange of said hub spindle; and
said hub spindle including a small diameter cylindrical portion disposed axially between said axial inner edge of said hub spindle and said inner ring raceway of said hub spindle;
said bearing unit further comprising an inner ring disposed against said small diameter cylindrical portion of said hub spindle, said inner ring including an outer peripheral surface, said outer peripheral surface of said inner ring comprising an inner ring raceway, said inner ring raceway opposing said second outer ring raceway of said outer ring;
a plurality of rolling members disposed between said respective outer ring and inner ring raceways;
a seal disposed between first and second surfaces, said first surface defined by said inner peripheral surface of said outer ring, adjacent to said axial outward edge of said outer ring, and said second surface defined by said outer peripheral surface of said hub spindle; and
said axial inward edge of said outer ring defining an inward edge of an opening, said opening including an inner peripheral surface;
said unit further comprising a cover connecting to said opening, said cover being resin;
said cover comprising:
a circular plate portion for covering said opening;
a cylindrical portion press fitting to said inner peripheral surface of said opening, said cylindrical portion including an outer diameter side and an inner peripheral surface; and
a flange portion disposed on said outer diameter side of said cylindrical portion, said flange portion defining a depth by which said cylindrical portion extends into said outer ring opening; and
said unit further comprising a ring body integrally disposed at said inner peripheral surface of said cylindrical portion by insert forming, said ring body bing metal.
24. The rolling bearing unit according to claim 23, wherein:
said ring body and said cylindrical portion of said cover each includes an axially outward side end face, said inward side end faces being coplanar; and
said cylindrical portion including an outer peripheral surface, said outer peripheral surface of said cylindrical portion being axially longer than said ring body.
25. The rolling bearing unit of claim 23, wherein said ring body end face is disposed radially outward.
26. The rolling bearing unit of claim 23, wherein:
said flange portion of said cover including an inner peripheral surface, said inner peripheral surface axially extending inward of said inner peripheral surface of said cylindrical portion; and
said ring extending along said inner peripheral surfaces of both said cylindrical portion of said cover and said flange portion of said cover.
US10/548,913 2003-03-13 2004-03-12 Rolling bearing unit Active 2026-02-13 US7594758B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPP2003-067704 2003-03-13
JP2003067704 2003-03-13
PCT/JP2004/003312 WO2004081401A1 (en) 2003-03-13 2004-03-12 Rolling bearing unit

Publications (2)

Publication Number Publication Date
US20060285786A1 true US20060285786A1 (en) 2006-12-21
US7594758B2 US7594758B2 (en) 2009-09-29

Family

ID=32984568

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/548,913 Active 2026-02-13 US7594758B2 (en) 2003-03-13 2004-03-12 Rolling bearing unit

Country Status (5)

Country Link
US (1) US7594758B2 (en)
EP (1) EP1602844B1 (en)
JP (1) JPWO2004081401A1 (en)
DE (1) DE602004027994D1 (en)
WO (1) WO2004081401A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090133516A1 (en) * 2007-11-26 2009-05-28 Denso Corporation Starter motor having seal plate to seal bearing box formed in end frame
US20190093703A1 (en) * 2016-03-10 2019-03-28 Ntn Corporation Bearing device for vehicle wheel and method for manufacturing said device

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006105203A (en) * 2004-10-01 2006-04-20 Jtekt Corp Bearing device
US7758248B2 (en) 2004-10-01 2010-07-20 Jtekt Corporation Bearing assembly
JP2006112582A (en) * 2004-10-18 2006-04-27 Jtekt Corp Rolling bearing device for wheel
JP4600004B2 (en) * 2004-11-18 2010-12-15 株式会社ジェイテクト Wheel bearing device
JP2009008210A (en) * 2007-06-29 2009-01-15 Kirin Brewery Co Ltd Bearing device, and adaptor for bearing device, and cover for bearing device
JP2011149529A (en) * 2010-01-25 2011-08-04 Uchiyama Manufacturing Corp Sealing cap
JP2011121584A (en) * 2011-01-12 2011-06-23 Jtekt Corp Rolling bearing unit for wheel
JP2015113898A (en) * 2013-12-11 2015-06-22 内山工業株式会社 Cap unit
KR101696905B1 (en) * 2015-01-28 2017-01-16 주식회사 일진글로벌 Sealing cap structure and wheel bearing assembly provided the same
IT201700099283A1 (en) 2017-09-05 2019-03-05 Skf Ab SEALING DEVICE FOR HUB-WHEEL GROUP AND HUB-WHEEL GROUP EQUIPPED WITH THIS SEALING DEVICE
CN109835108B (en) * 2017-11-29 2023-06-30 斯凯孚公司 End cap for a non-drive wheel hub assembly of a vehicle

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5148104A (en) * 1990-04-09 1992-09-15 Nippon Seiko Kabushiki Kaisha Hub unit with pulse rotor and cover mounted sensor for sensing rotational speed
US5195807A (en) * 1992-04-20 1993-03-23 General Motors Corporation Venting wheel bearing end cap
US5296805A (en) * 1992-08-17 1994-03-22 General Motors Corporation Serviceable wheel speed sensor with magnet assisted retention
US5380103A (en) * 1993-10-25 1995-01-10 General Motors Corporation Self tightening venting end cap for vehicle wheel bearing
US5544962A (en) * 1994-01-13 1996-08-13 Fag Kugelfischer Georg Schafer Ag Wheel bearing unit with speed of rotation sensor
US5803617A (en) * 1996-02-23 1998-09-08 Nsk Ltd. Rolling bearing unit with seal device
US5816711A (en) * 1997-09-26 1998-10-06 The Timken Company Package bearing with retainer
US6217220B1 (en) * 1998-10-29 2001-04-17 Nsk Ltd. Rolling bearing unit for road wheel
US6218827B1 (en) * 1995-08-22 2001-04-17 Nsk Ltd. Rolling bearing unit having an improved structure for preventing foreign material from entering the unit
US20040096133A1 (en) * 2000-10-27 2004-05-20 Koyo Seiko Co., Ltd. Vehicle-use bearing apparatus
US7104695B2 (en) * 2003-10-14 2006-09-12 Aktiebolaget Skf Asymmetric hub assembly

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5217137A (en) * 1991-04-22 1993-06-08 Freudenberg-Nok General Partnership Seal for an end cap
JPH08184602A (en) * 1994-12-28 1996-07-16 Nippon Seiko Kk Rolling bearing unit with rotating speed detector
JP3687199B2 (en) * 1996-07-05 2005-08-24 日本精工株式会社 Rolling bearing unit with rotational speed detector
JP3675006B2 (en) * 1995-11-10 2005-07-27 日本精工株式会社 Rolling bearing unit with rotational speed detector
JP4578015B2 (en) * 2000-05-31 2010-11-10 株式会社ジェイテクト Sealing device and bearing device
JP4218214B2 (en) * 2001-02-01 2009-02-04 株式会社ジェイテクト Sealing device
JP2003013982A (en) * 2001-06-29 2003-01-15 Nsk Ltd Bearing unit with encoder
DE10207011A1 (en) * 2002-02-19 2003-08-28 Continental Teves Ag & Co Ohg Corner-module has a rotational velocity sensor incorporated in a motor vehicle wheel hub so that it can be easily removed and is effectively protected against environmental influences

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5148104A (en) * 1990-04-09 1992-09-15 Nippon Seiko Kabushiki Kaisha Hub unit with pulse rotor and cover mounted sensor for sensing rotational speed
US5195807A (en) * 1992-04-20 1993-03-23 General Motors Corporation Venting wheel bearing end cap
US5296805A (en) * 1992-08-17 1994-03-22 General Motors Corporation Serviceable wheel speed sensor with magnet assisted retention
US5380103A (en) * 1993-10-25 1995-01-10 General Motors Corporation Self tightening venting end cap for vehicle wheel bearing
US5544962A (en) * 1994-01-13 1996-08-13 Fag Kugelfischer Georg Schafer Ag Wheel bearing unit with speed of rotation sensor
US6218827B1 (en) * 1995-08-22 2001-04-17 Nsk Ltd. Rolling bearing unit having an improved structure for preventing foreign material from entering the unit
US5803617A (en) * 1996-02-23 1998-09-08 Nsk Ltd. Rolling bearing unit with seal device
US5816711A (en) * 1997-09-26 1998-10-06 The Timken Company Package bearing with retainer
US6217220B1 (en) * 1998-10-29 2001-04-17 Nsk Ltd. Rolling bearing unit for road wheel
US20040096133A1 (en) * 2000-10-27 2004-05-20 Koyo Seiko Co., Ltd. Vehicle-use bearing apparatus
US7104695B2 (en) * 2003-10-14 2006-09-12 Aktiebolaget Skf Asymmetric hub assembly
US7104695C1 (en) * 2003-10-14 2008-11-11
US7104695C2 (en) * 2003-10-14 2011-08-30

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090133516A1 (en) * 2007-11-26 2009-05-28 Denso Corporation Starter motor having seal plate to seal bearing box formed in end frame
US8813586B2 (en) * 2007-11-26 2014-08-26 Denso Corporation Starter motor having seal plate to seal bearing box formed in end frame
US20190093703A1 (en) * 2016-03-10 2019-03-28 Ntn Corporation Bearing device for vehicle wheel and method for manufacturing said device
US11015651B2 (en) * 2016-03-10 2021-05-25 Ntn Corporation Bearing device for vehicle wheel and method for manufacturing said device

Also Published As

Publication number Publication date
WO2004081401A1 (en) 2004-09-23
EP1602844A4 (en) 2006-10-11
US7594758B2 (en) 2009-09-29
DE602004027994D1 (en) 2010-08-19
EP1602844B1 (en) 2010-07-07
EP1602844A1 (en) 2005-12-07
JPWO2004081401A1 (en) 2006-06-15

Similar Documents

Publication Publication Date Title
EP0905394B1 (en) Package bearing with retainer
US7594758B2 (en) Rolling bearing unit
EP2103451B1 (en) Wheel supporting device
US20080031561A1 (en) Vehicular-Wheel Bearing Assembly
JP2005140320A5 (en)
JP2005140320A (en) Hub unit for driving wheel
US6457869B1 (en) Wheel mounting with axle-mounted sensor
JP5493307B2 (en) Rolling bearing device
US20090041399A1 (en) Vehicle bearing assembly
JP5251922B2 (en) Drive wheel hub unit
JP3988557B2 (en) Rolling bearing device
JP2001304285A (en) Constant velocity universal joint and bearing system for wheel using it
JP3925885B2 (en) Hub unit bearing for wheel
JP3988576B2 (en) Rolling bearing device
CN116802410A (en) Wheel bearing equipped with grooved and double-cornered sealing device
JP4333116B2 (en) Rolling bearing sealing device
JP3985617B2 (en) Rolling bearing device
JP4042528B2 (en) Rolling bearing device
JP4260055B2 (en) Wheel bearing device
JP2005282767A (en) Rolling bearing device
JP2004044664A (en) Rolling bearing unit
JP4134872B2 (en) Rolling bearing device
JP4120178B2 (en) Manufacturing method of rolling bearing unit for driving wheel and driving unit for wheel
CN117597241A (en) Bearing device for wheel
JP2009154591A (en) Bearing device for driving wheel

Legal Events

Date Code Title Description
AS Assignment

Owner name: KOYO SEIKO CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SHIGE, YOSHIFUMI;REEL/FRAME:017745/0056

Effective date: 20050610

AS Assignment

Owner name: JTEKT CORPORATION,JAPAN

Free format text: CHANGE OF NAME;ASSIGNOR:KOYO SEIKO CO., LTD.;REEL/FRAME:018992/0365

Effective date: 20060101

Owner name: JTEKT CORPORATION, JAPAN

Free format text: CHANGE OF NAME;ASSIGNOR:KOYO SEIKO CO., LTD.;REEL/FRAME:018992/0365

Effective date: 20060101

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 12