US20060281167A1 - Bacteria-based and enzyme-based mechanisms and products for viscosity reduction breaking of viscoelastic fluids - Google Patents

Bacteria-based and enzyme-based mechanisms and products for viscosity reduction breaking of viscoelastic fluids Download PDF

Info

Publication number
US20060281167A1
US20060281167A1 US11/438,856 US43885606A US2006281167A1 US 20060281167 A1 US20060281167 A1 US 20060281167A1 US 43885606 A US43885606 A US 43885606A US 2006281167 A1 US2006281167 A1 US 2006281167A1
Authority
US
United States
Prior art keywords
fluid
ves
bacteria
viscosity
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/438,856
Inventor
James Crews
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baker Hughes Holdings LLC
Original Assignee
Baker Hughes Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baker Hughes Inc filed Critical Baker Hughes Inc
Priority to US11/438,856 priority Critical patent/US20060281167A1/en
Assigned to BAKER HUGHES INCORPORATED reassignment BAKER HUGHES INCORPORATED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CREWS, JAMES B.
Publication of US20060281167A1 publication Critical patent/US20060281167A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/62Compositions for forming crevices or fractures
    • C09K8/66Compositions based on water or polar solvents
    • C09K8/68Compositions based on water or polar solvents containing organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/605Compositions for stimulating production by acting on the underground formation containing biocides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2208/00Aspects relating to compositions of drilling or well treatment fluids
    • C09K2208/24Bacteria or enzyme containing gel breakers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2208/00Aspects relating to compositions of drilling or well treatment fluids
    • C09K2208/30Viscoelastic surfactants [VES]

Definitions

  • the present invention relates to gelled treatment fluids used during hydrocarbon recovery operations, and more particularly relates, in one embodiment, to methods of “breaking” or reducing the viscosity of aqueous treatment fluids containing viscoelastic surfactant gelling agents used during hydrocarbon recovery operations.
  • Hydraulic fracturing is a method of using pump rate and hydraulic pressure to fracture or crack a subterranean formation. Once the crack or cracks are made, high permeability proppant, relative to the formation permeability, is pumped into the fracture to prop open the crack. When the applied pump rates and pressures are reduced or removed from the formation, the crack or fracture cannot close or heal completely because the high permeability proppant keeps the crack open.
  • the propped crack or fracture provides a high permeability path connecting the producing wellbore to a larger formation area to enhance the production of hydrocarbons.
  • fracturing fluids are aqueous based liquids that have either been gelled or foamed.
  • a polymeric gelling agent such as a solvatable polysaccharide
  • the thickened or gelled fluid helps keep the proppants within the fluid. Gelling can be accomplished or improved by the use of crosslinking agents or cross-linkers that promote crosslinking of the polymers together, thereby increasing the viscosity of the fluid.
  • the recovery of fracturing fluids may be accomplished by reducing the viscosity of the fluid to a low value so that it may flow naturally from the formation under the influence of formation fluids.
  • Crosslinked gels generally require viscosity breakers to be injected to reduce the viscosity or “break” the gel.
  • Enzymes, oxidizers, and acids are known polymer viscosity breakers. Enzymes are effective within a pH range, typically a 2.0 to 10.0 range, with increasing activity as the pH is lowered towards neutral from a pH of 10.0.
  • Most conventional borate crosslinked fracturing fluids and breakers are designed from a fixed high crosslinked fluid pH value at ambient temperature and/or reservoir temperature. Optimizing the pH for a borate crosslinked gel is important to achieve proper crosslink stability and controlled enzyme breaker activity.
  • polymers have been used in the past as gelling agents in fracturing fluids to carry or suspend solid particles as noted, such polymers require separate breaker compositions to be injected to reduce the viscosity. Further, such polymers tend to leave a coating on the proppant and a filter cake of dehydrated polymer on the fracture face even after the gelled fluid is broken. The coating and/or the filter cake may interfere with the functioning of the proppant. Studies have also shown that “fish-eyes” and/or “microgels” present in some polymer gelled carrier fluids will plug pore throats, leading to impaired leakoff and causing formation damage.
  • aqueous drilling and treating fluids may be gelled or have their viscosity increased by the use of non-polymeric viscoelastic surfactants (VES).
  • VES non-polymeric viscoelastic surfactants
  • These VES materials are advantageous over the use of polymer gelling agents in that they do not damage the formation, leave a filter cake on the formation face, coat the proppant or create microgels or “fish-eyes”. It is still necessary, however, to provide some mechanism that will break the viscosity of VES-gelled fluids.
  • Bacteria are primarily known to decompose reservoir hydrocarbons to produce more easily producible fluids, or to decompose hydrocarbon-based pollutants to environmentally acceptable states.
  • U.S. Pat. No. 3,612,178 discloses a flow-stimulating liquid solution and methods of used based primarily on the combination of a linear alkyl sulfonate as a detergent and penetrant, serving as a special carrier for a lauric amide emulsifier to draw oil into an emulsion and for a phosphate, as sodium phosphate, to draw water into the emulsion. A preservative is added to inhibit deterioration due to bacteria.
  • 3,800,872 relates to methods for recovery of petroleum from a subterranean formation which include injecting into the formation an aqueous flooding medium which assumes a viscosity in oil-rich portions of the formation that is significantly less than the viscosity assumed in the portions low in oil content, the flooding medium thereby preferentially driving the oil, as opposed to water, from the formation.
  • the flooding medium may include a material such as guar that imparts a high viscosity but is subject to rapid degradation by the bacteria in the formation, and a poisoning agent for the bacteria, such as orthocresol, which is preferentially soluble in oil.
  • the use of bacteria to directly digest or degrade polymeric gels used in fracturing is also known. However, it is presently unknown to use bacteria and/or enzymes to break viscosities of fluids gelled using viscoelastic surfactants.
  • VESs viscoelastic surfactants
  • Still another object of the invention is to provide additional methods and VES fluid compositions for breaking the viscosity of aqueous fluids gelled with viscoelastic surfactants.
  • Yet another object of the invention is to provide methods and compositions for breaking the viscosity of aqueous fluids gelled with viscoelastic surfactants using bio-produced compounds such as lipase enzymes.
  • Still another object of the invention is to provide methods and compositions for breaking the viscosity of aqueous fluids gelled with visoelastic surfactants using bio-produced compounds such as surfactants, solvents, or acid.
  • a method for breaking viscosity of aqueous fluids gelled with a viscoelastic surfactant involves adding to an aqueous fluid gelled with at least one viscoelastic surfactant, a viscosity-breaking biochemical agent in an amount effective to reduce the viscosity of the gelled aqueous fluid.
  • Suitable biochemical agents include bacteria, fungi, enzymes, and combinations thereof.
  • the invention involves a method for breaking viscosity of aqueous fluids gelled with viscoelastic surfactants by adding to an aqueous fluid gelled with at least one viscoelastic surfactant, at least one bacteria type in an amount effective to reduce the viscosity of the VES-gelled aqueous fluid.
  • FIG. 1 is a graph of viscosity reduction over time employing 10% by volume (bv) Enterobacter colacae in a 3% KCl fluid gelled with 2% TAPAO at 125° F. (52° C.) and ambient pressure;
  • FIG. 2 is a graph of viscosity reduction over time employing 10% by volume Pseudomonas fluorescens in a 3% KCl fluid gelled with 2% TAPAO at 75° F. (24° C.) and ambient pressure;
  • FIG. 3 is a graph of viscosity reduction over time employing 10% by volume Pseudomonas aeruginosa in a 3% KCl fluid gelled with 2% TAPAO at 75° F. (24° C.) and ambient pressure;
  • FIG. 4 is a graph of viscosity reduction over time employing 1.0% and 3.0% by volume (bv) Pseudomonas aeruginosa esmeralda X-3C (EPA X-3C) in a 3% KCl fluid gelled with 6.0% bv TAPAO at 180° F. (82° C.) and 950 psi (6.5 kPa);
  • FIGS. 5, 6 , 7 , and 8 chart the effects of various bacteria nutrients on the viscosity reduction of 6.0% TAPAO at 180° F. (82° C.) and 400 psi (2.8 kPa); and
  • FIG. 9 is a graph of viscosity reduction over time employing 1.0% bv Pseudomonas aeruginosa esmeralda X-3C (EPA X-3C) with and without 0.2% bv Limonene in a 3% KCl fluid gelled with 6.0% bv TAPAO at 180° F. (82° C.) and 950 psi (6.5 kPa).
  • VESs viscoelastic surfactants
  • enzymes could be very complex. For instance, the enzyme could remove a part of the surfactant molecule, such as the “head” and/or “tail” portions to alter its structure. Or the enzyme could “add” another material or functionality, such as ammonium or phosphate, to the “head” group that would alter its surfactant properties and disrupt the micellar structure.
  • the enzyme could remove a part of the surfactant molecule, such as the “head” and/or “tail” portions to alter its structure.
  • the enzyme could “add” another material or functionality, such as ammonium or phosphate, to the “head” group that would alter its surfactant properties and disrupt the micellar structure.
  • biochemical agent such as bacteria or fungus
  • the biotechnically engineered to serve the functions described There are several biotechnologies that can be employed. Growth challenge, selective gene expression, radiated for selective gene expression, and gene splicing (genetically modified organisms) are just a few non-limiting examples of applicable biotechnical techniques to refine the practice of this art.
  • the biochemical agent can be used to reduce the viscosity of a VES-gelled aqueous fluid regardless of how the VES is ultimately utilized.
  • the biochemical agent viscosity breaking mechanism could be used in all VES applications including, but not limited to, VES-gelled friction reducers, VES viscosifiers for loss circulation pills, fracturing fluids, gravel pack fluids, viscosifiers used as diverters in acidizing, VES viscosifiers used to clean up drilling mud filter cake, remedial clean-up of fluids after a VES treatment (post-VES treatment), and the like.
  • VES degradation mechanism One key feature to the use of bacteria as a VES degradation mechanism is that many bacteria have their own mobility, as contrasted with other VES clean-up fluids that must be transported by another means to the gel. That is, many bacteria have enhanced mobility due to the flagella propulsion characteristic that will permit them to move and contact needed VES placement sites. This is an advantage over mere chemical diffusion movement mechanisms that solvents or other agents might have.
  • a value of the invention is that a fracturing or other fluid can be designed to have enhanced breaking characteristics. Importantly, better clean-up of the VES fluid from the fracture and wellbore can be achieved thereby. Better clean-up of the VES directly influences the success of the fracture treatment, which is an enhancement of the well's hydrocarbon productivity.
  • an aqueous fracturing fluid is first prepared by blending a VES into an aqueous fluid.
  • the aqueous fluid could be, for example, water, brine, aqueous-based foams or water-alcohol mixtures. Any suitable mixing apparatus may be used for this procedure.
  • the VES and the aqueous fluid are blended for a period of time sufficient to form a gelled or viscosified solution.
  • the VES that is useful in the present invention can be any of the VES systems that are familiar to those in the well service industry, and may include, but are not limited to, amines, amine salts, quaternary ammonium salts, amidoamine oxides, amine oxides, mixtures thereof and the like. Suitable amines, amine salts, quaternary ammonium salts, amidoamine oxides, and other surfactants are described in U.S. Pat. Nos. 5,964,295; 5,979,555; and 6,239,183, incorporated herein by reference. Materials sold under U.S. Pat. No. 5,964,295 include ClearFRACTM, which may also comprise greater than 10% of a glycol.
  • One preferred VES is an amine oxide.
  • a particularly preferred amine oxide is tallow amido propylamine oxide (TAPAO), sold by Baker Oil Tools as SurFRAQTM VES.
  • TAPAO tallow amido propylamine oxide
  • SurFRAQ is a VES liquid product that is 50% TAPAO and 50% propylene glycol. These viscoelastic surfactants are capable of gelling aqueous solutions to form a gelled base fluid.
  • the amount of VES included in the fracturing fluid depends on two factors. One involves generating enough viscosity to control the rate of fluid leak off into the pores of the fracture, and the second involves creating a viscosity high enough to keep the proppant particles suspended therein during the fluid injecting step, in the non-limiting case of a fracturing fluid.
  • the VES is added to the aqueous fluid in concentrations ranging from about 0.5 to 12.0% by volume of the total aqueous fluid (5 to 120 gallons per thousand gallons (gptg)).
  • the most preferred range for the present invention is about 1.0 to about 6.0% by volume VES product.
  • Propping agents are typically added to the base fluid after the addition of the VES.
  • Propping agents include, but are not limited to, for instance, quartz sand grains, glass and ceramic beads, bauxite grains, walnut shell fragments, aluminum pellets, nylon pellets, and the like.
  • the propping agents are normally used in concentrations between about 1 to 14 pounds per gallon (120-1700 kg/m 3 ) of fracturing fluid composition, but higher or lower concentrations can be used as the fracture design required.
  • the base fluid can also contain other conventional additives common to the well service industry such as water wetting surfactants, non-emulsifiers and the like.
  • the base fluid can also contain other non-conventional additives which can contribute to the bacteria-breaking action of the VES fluid, and which are added for that purpose.
  • suitable bacteria for use in the invention that directly digest viscoelastic surfactants include, but are not necessarily limited to, those in the classes Enterobacter, Enterococcus, Pseudomonas, Bacillus, Leptospirillum, Clostridium, Arthrobacter, Rhodobacter, Rhodococcus, Micrococcus, Serratia, Thermoanaerobacter, Thiobacillus, Pyrococcus, Lactobacillus, Achromobacter, Propionibacterium, Thermomicrobium, Nitrobacter, Nitrosomonas, Sulfolobus, Methanobacterium, Methanococcus, Bacteroides, Fusobacterium, Syntrophus, Acetogenium, Actinomyces, Acetobacter, Citrobacter, Alteromonas, Acinetobacter, Flavobacterium, Corynebacterium , and the like and mixtures thereof.
  • suitable bacteria for use in the embodiment of the invention that directly digest viscoelastic surfactants include, but are not necessarily limited to, Arthrobacter globiformis, Enterobacter colacae, Lactobacillus sporogenes, Lactobacillus bulgaricus, Lactobacillus acidophillus, Pseudomonas fluorescens, Pseudomonas aeruginosa, Actinomyces israeli, Pseudomonas putida, Nitrobacter vulgaris, Arthrobactor M153B, Bacillus megaterium, Thiobacillus novellus, Bacillus subtilis, Bacillus licheniformis, Clostridium pasteurianum, Corynebacterium glucuronolyticum, Enterococcus faecalis, Pyrococcus abyssi, Rhodococcus ST-5, Rhodococcus 33, Rhodococcus H13-A, Ther
  • suitable glycol-splitting bacteria may include, but are not necessarily limited to, Pseudomonas fluorescens, Pseudomonas stutzeri, Pseudomonas aeruginosa, Pseudomonas putida, Acinetobacter anitratus, Bacillus subtilis, Bacillus licheniformis, Clostridium pasteurianum, Rhodococcus ST-5, and mixtures thereof.
  • fluid temperature, pressure, and pH can aid microbe metabolic activity.
  • Increase in temperature up to as much as 250° F. (121° C.) and fluid pH between about 4.0 and about 9.0 enhances microbe metabolic activity.
  • Increase in fluid pressure up to as much as 22,000 psi (152 kPa) can also enhance microbe metabolic activity.
  • inorganic and organic nutrients are added to aid microbe metabolic activity.
  • Inorganic nutrients may include, but are not necessarily limited to, nitrites, nitrates, sulfites, sulfates, chlorides, phosphates, and mixtures thereof.
  • Organic nutrients may include, but are not necessarily limited to, urea, amino acids, proteins, lipids, tryptic soy broth (TSB), agar, glucose, sugars, polysaccharides, turpenes, phosphonates, glycols, and mixtures thereof.
  • TTB tryptic soy broth
  • the by-products can be selectively extracted or pulled out of the microorganism solution, as is common with enzyme products. These bio-products can then be pumped or otherwise directed into the VES surfactant to reduce its viscosity.
  • the producing biochemical agent, such as bacteria or fungus would not itself be delivered to the VES-gelled fluid.
  • lipase other suitable enzymes include, but are not necessarily limited to oxidase, hydrolase, transferase, and mixtures thereof.
  • the biochemical agent may be a fungi including, but not necessarily limited to, Candida antarctica, Candida tropicalis, Candida rugosa, Candida albicans, Candida cylindralea, Trichoderma reesei, Aspergillus niger, Aspergillus oryzae, Saccharomyces cerevisiae, Saccharomyces diastaticus , and mixtures thereof.
  • any or all of the above biologically produced by-products may be provided in an extended release form such as encapsulation by polymer or otherwise, pelletization with binder compounds, absorbed on a porous substrate, and/or a combination thereof.
  • the enzymes and other bio-products may be encapsulated to permit slow or timed release thereof.
  • the coating material may slowly dissolve or be removed by any conventional mechanism, or the coating could have very small holes or perforations therein for the bio-products within to diffuse through slowly.
  • polymer encapsulation coatings such as used in fertilizer technology available from Scotts Company, specifically POLY-S® product coating technology, or polymer encapsulation coating technology from Fritz Industries could possibly be adapted to the methods of this invention.
  • the bio-produced enzymes could also be absorbed onto zeolites, such as Zeolite A, Zeolite 13X, Zeolite DB-2 (available from PQ Corporation, Valley Forge, Pa.) or Zeolites Na-SKS5, Na-SKS6, Na-SKS7, Na-SKS9, Na-SKS10, and Na-SKS13, (available from Hoechst Aktiengesellschaft, now an affiliate of Aventis S.A.), and other porous solid substrates such as MICROSPONGETM (available from Advanced Polymer Systems, Redwood, Calif.) and cationic exchange materials such as bentonite clay. Further, the bio-products may be both absorbed into and onto porous substrates and then encapsulated or coated, as described above.
  • zeolites such as Zeolite A, Zeolite 13X, Zeolite DB-2 (available from PQ Corporation, Valley Forge, Pa.) or Zeolites Na-SKS5, Na-SKS6, Na-SKS7, Na-SKS9, Na-
  • the amount of biochemical agent added may range from about 0.01 to about 20.0 volume %, based on the total weight of the fluid; preferably from about 0.1 to about 2.0 volume %.
  • the fracturing fluid of the invention is pumped at a rate sufficient to initiate and propagate a fracture in the formation and to place propping agents into the fracture.
  • a typical fracturing treatment would be conducted by mixing a 20.0 to 60.0 gallon/1000 gal water (volume/volume—the same values may be used with any SI volume unit, e.g. 60.0 liters/-1000 liters) amine oxide VES, such as SurFRAQ, in a 2% (w/v) (166 lb/1000 gal, 19.9 kg/m 3 ) KCl solution at a pH ranging from about 6.0 to about 8.0.
  • the bio-chemical agent or agents are added after the VES addition.
  • one biochemical agent such as a particular bacteria type
  • a particular bacteria type may directly digest the VES itself, while also digesting propylene glycol that may be present to produce lipase that also acts on the VES, such as by catalysis, to also break down the surfactant molecules.
  • more than one bacteria type could be used, where the different bacteria operate by the same or different mechanisms as outlined above.
  • a bacteria and an enzyme could be used together. Other mechanism combinations are expected to be useful as well.
  • the method of the invention is practiced in the absence of gel-forming polymers and/or gels or aqueous fluid having their viscosities enhanced by polymers.
  • Suitable bio-surfactants include, but are not necessarily limited to the group of glycolipid, phospholipids, lipopeptide, peptidolipids, neutral lipids, polysaccharide-fatty acid complexes, polysaccharide-protein complexes, and mixtures thereof.
  • Suitable bio-solvents include, but are not necessarily limited to the group of methanol, ethanol, butanol, acetone, and mixtures thereof.
  • Suitable bio-acids include, but are not necessarily limited to the group of formic, acetic, lactic, pyruvic, nitric acids, and mixtures thereof.
  • Viscosity reduction can be visually detected. Shaking the samples and comparing the elasticity of gel and rate of air bubbles rising out of the fluid can be used to estimate the amount of viscosity reduction observed. Measurements using a Fann 35 rheometer at 100 rpm can also be used to acquire quantitative viscosity reduction of each sample. The preferred method of measurement is by using of a Fann 50 rheometer, where increases in temperature and pressure can be applied, simulating down hole temperature. The pressure limitation of a Fann 50 rheometer is 1000 psi (6.9 kPa).
  • FIGS. 1-3 show the results of Examples 1-3, respectively, charting the effects of using the indicated bacteria at 10% by volume concentrations. It may be seen that the SurFRAQ viscosity broke most quickly with Enterobacter colacae, losing most of its viscosity in the first 2-3 hours (Ex. 1, FIG. 1 ). Viscosity reduction was also more complete in this Example 1. Pseudomonas fluorescens (Ex. 2, FIG. 2 ) and Pseudomonas aeruginosa (Ex. 3, FIG. 3 ) gave viscosity reduction as well, but more gradually than Enterobacter colacae . All Examples were run using 2% TAPAO in 3% KCl. Example 1 ( FIG. 1 ) was conducted at 125° F. (52° C.); Examples 2 and 3 ( FIGS. 2 and 3 , respectively) were conducted at 75° F. (24° C.).
  • FIGS. 4 and 9 show the results of Examples 4 and 9, respectively. Both Examples use 6.0% bv TAPAO surfactant at 180° F. (82° C.) and 950 psi (6.5 kPa) on a Fann 50 rheometer. Both compositions contained 3% KCl. The order of mixing was: DI water, KCl, NH 4 NO 3 , TSB, Limonene (if used), EPA X-3C, TAPAO.
  • the nutrient package for both Examples was 30.0 pptg (3.4 kg/m 3 ) NH 4 PO 3 , 30 pptg (3.4 kg/m 3 ) NH 4 NO 3 , and 15.0 pptg (1.7 kg/M 3 ), Tryptic Soy Broth (TSB).
  • FIG. 4 shows a highly modified strain of Pseudomonas aeruginosa esmeralda X-3C from Micro-TES, Inc., can completely degrade the TAPAO viscosity within 10 to 12 days at 1.0% to 3.0% bv addition.
  • FIG. 9 shows the EPA X-3C strain at 1.0% concentration in the 6% bv TAPAO with and without 0.2% Limonene. The data show enhanced microbe metabolic activity in the Limonene addition test.
  • FIGS. 5-8 show the results of Examples 5-8, respectively, charting the effects of various bacteria or microbe nutrients on 6% bv TAPAO surfactant at 180° F. (82° C.) and 950 psi (6.5 kPa). It may be seen that proper selection of microbe nutrient is possible that has minimal effects on the TAPAO viscosity.
  • Examples 5-8 used a Fann 50 rheometer at 180° F. (82° C.) at 400 psi (2.8 kPa).
  • Examples 5-7 used 6% TAPAO, 3% KCl, 30 pptg (3.4 kg/m 3 ) NH 4 PO 3 and NH 4 NO 3 combined, and 20.0 pptg (2.4 kg/m 3 ) TSB.
  • Example 8 used 6% TAPAO and 3% KCl with the indicated additives.
  • EGMBE in Example 6 refers to ethylene glycol monobutyl ether.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Detergent Compositions (AREA)

Abstract

It has been discovered that fluids viscosified with viscoelastic surfactants (VESs) may have their viscosities reduced (gels broken) by the direct or indirect action of a biochemical agent, such as bacteria, fungi, and/or enzymes. The biochemical agent may directly attack the VES itself, or some other component in the fluid that produces a by-product that then causes viscosity reduction. The biochemical agent may disaggregate or otherwise attack the micellar structure of the VES-gelled fluid. The biochemical agent may produce an enzyme that reduces viscosity by one of these mechanisms. A single biochemical agent may operate simultaneously by two different mechanisms, such as by degrading the VES directly, as well as another component, such as a glycol, the latter mechanism in turn producing a by-product (e.g. an alcohol) that causes viscosity reduction. Alternatively, two or more different biochemical agents may be used simultaneously. In a specific, non-limiting instance, a brine fluid gelled with an amine oxide surfactant can have its viscosity broken with bacteria such as Enterobacter colacae, Pseudomonas fluorescens, Pseudomonas aeruginosa, and the like.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This application is a divisional application of U.S. Pat. No. 7,052,091 issued May 30, 2006, which in turn claims the benefit of U.S. provisional application No. 60/244,804 filed Oct. 31, 2000.
  • FIELD OF THE INVENTION
  • The present invention relates to gelled treatment fluids used during hydrocarbon recovery operations, and more particularly relates, in one embodiment, to methods of “breaking” or reducing the viscosity of aqueous treatment fluids containing viscoelastic surfactant gelling agents used during hydrocarbon recovery operations.
  • BACKGROUND OF THE INVENTION
  • Hydraulic fracturing is a method of using pump rate and hydraulic pressure to fracture or crack a subterranean formation. Once the crack or cracks are made, high permeability proppant, relative to the formation permeability, is pumped into the fracture to prop open the crack. When the applied pump rates and pressures are reduced or removed from the formation, the crack or fracture cannot close or heal completely because the high permeability proppant keeps the crack open. The propped crack or fracture provides a high permeability path connecting the producing wellbore to a larger formation area to enhance the production of hydrocarbons.
  • The development of suitable fracturing fluids is a complex art because the fluids must simultaneously meet a number of conditions. For example, they must be stable at high temperatures and/or high pump rates and shear rates that can cause the fluids to degrade and prematurely settle out the proppant before the fracturing operation is complete. Various fluids have been developed, but most commercially used fracturing fluids are aqueous based liquids that have either been gelled or foamed. When the fluids are gelled, typically a polymeric gelling agent, such as a solvatable polysaccharide, is used. The thickened or gelled fluid helps keep the proppants within the fluid. Gelling can be accomplished or improved by the use of crosslinking agents or cross-linkers that promote crosslinking of the polymers together, thereby increasing the viscosity of the fluid.
  • The recovery of fracturing fluids may be accomplished by reducing the viscosity of the fluid to a low value so that it may flow naturally from the formation under the influence of formation fluids. Crosslinked gels generally require viscosity breakers to be injected to reduce the viscosity or “break” the gel. Enzymes, oxidizers, and acids are known polymer viscosity breakers. Enzymes are effective within a pH range, typically a 2.0 to 10.0 range, with increasing activity as the pH is lowered towards neutral from a pH of 10.0. Most conventional borate crosslinked fracturing fluids and breakers are designed from a fixed high crosslinked fluid pH value at ambient temperature and/or reservoir temperature. Optimizing the pH for a borate crosslinked gel is important to achieve proper crosslink stability and controlled enzyme breaker activity.
  • While polymers have been used in the past as gelling agents in fracturing fluids to carry or suspend solid particles as noted, such polymers require separate breaker compositions to be injected to reduce the viscosity. Further, such polymers tend to leave a coating on the proppant and a filter cake of dehydrated polymer on the fracture face even after the gelled fluid is broken. The coating and/or the filter cake may interfere with the functioning of the proppant. Studies have also shown that “fish-eyes” and/or “microgels” present in some polymer gelled carrier fluids will plug pore throats, leading to impaired leakoff and causing formation damage.
  • Recently it has been discovered that aqueous drilling and treating fluids may be gelled or have their viscosity increased by the use of non-polymeric viscoelastic surfactants (VES). These VES materials are advantageous over the use of polymer gelling agents in that they do not damage the formation, leave a filter cake on the formation face, coat the proppant or create microgels or “fish-eyes”. It is still necessary, however, to provide some mechanism that will break the viscosity of VES-gelled fluids.
  • It is known to use bacteria in biodegradation, bioremediation, or microbe enhanced oil recovery (MEOR) techniques. Bacteria are primarily known to decompose reservoir hydrocarbons to produce more easily producible fluids, or to decompose hydrocarbon-based pollutants to environmentally acceptable states.
  • It is also known that bacteria will degrade drilling fluids. U.S. Pat. No. 3,612,178 discloses a flow-stimulating liquid solution and methods of used based primarily on the combination of a linear alkyl sulfonate as a detergent and penetrant, serving as a special carrier for a lauric amide emulsifier to draw oil into an emulsion and for a phosphate, as sodium phosphate, to draw water into the emulsion. A preservative is added to inhibit deterioration due to bacteria. Similarly, U.S. Pat. No. 3,800,872 relates to methods for recovery of petroleum from a subterranean formation which include injecting into the formation an aqueous flooding medium which assumes a viscosity in oil-rich portions of the formation that is significantly less than the viscosity assumed in the portions low in oil content, the flooding medium thereby preferentially driving the oil, as opposed to water, from the formation. The flooding medium may include a material such as guar that imparts a high viscosity but is subject to rapid degradation by the bacteria in the formation, and a poisoning agent for the bacteria, such as orthocresol, which is preferentially soluble in oil. The use of bacteria to directly digest or degrade polymeric gels used in fracturing is also known. However, it is presently unknown to use bacteria and/or enzymes to break viscosities of fluids gelled using viscoelastic surfactants.
  • General background information concerning biodegrading surfactants may be found in D. R. Karsa, et al., ed., Biodegradability of Surfactants, Blackie Academic & Professional, 1995.
  • It would be desirable if a viscosity breaking system could be devised to break the viscosity of fracturing fluids gelled with viscoelastic surfactants.
  • SUMMARY OF THE INVENTION
  • Accordingly, it is an object of the present invention to provide a method for breaking the viscosity of aqueous treatment fluids gelled with viscoelastic surfactants (VESs).
  • It is another object of the present invention to provide compositions and methods for breaking VES-surfactant substrates fluids using bacteria.
  • Still another object of the invention is to provide additional methods and VES fluid compositions for breaking the viscosity of aqueous fluids gelled with viscoelastic surfactants.
  • Yet another object of the invention is to provide methods and compositions for breaking the viscosity of aqueous fluids gelled with viscoelastic surfactants using bio-produced compounds such as lipase enzymes.
  • Still another object of the invention is to provide methods and compositions for breaking the viscosity of aqueous fluids gelled with visoelastic surfactants using bio-produced compounds such as surfactants, solvents, or acid.
  • In carrying out these and other objects of the invention, there is provided, in one form, a method for breaking viscosity of aqueous fluids gelled with a viscoelastic surfactant (VES) that involves adding to an aqueous fluid gelled with at least one viscoelastic surfactant, a viscosity-breaking biochemical agent in an amount effective to reduce the viscosity of the gelled aqueous fluid. Suitable biochemical agents include bacteria, fungi, enzymes, and combinations thereof.
  • In another embodiment, the invention involves a method for breaking viscosity of aqueous fluids gelled with viscoelastic surfactants by adding to an aqueous fluid gelled with at least one viscoelastic surfactant, at least one bacteria type in an amount effective to reduce the viscosity of the VES-gelled aqueous fluid.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a graph of viscosity reduction over time employing 10% by volume (bv) Enterobacter colacae in a 3% KCl fluid gelled with 2% TAPAO at 125° F. (52° C.) and ambient pressure;
  • FIG. 2 is a graph of viscosity reduction over time employing 10% by volume Pseudomonas fluorescens in a 3% KCl fluid gelled with 2% TAPAO at 75° F. (24° C.) and ambient pressure;
  • FIG. 3 is a graph of viscosity reduction over time employing 10% by volume Pseudomonas aeruginosa in a 3% KCl fluid gelled with 2% TAPAO at 75° F. (24° C.) and ambient pressure;
  • FIG. 4 is a graph of viscosity reduction over time employing 1.0% and 3.0% by volume (bv) Pseudomonas aeruginosa esmeralda X-3C (EPA X-3C) in a 3% KCl fluid gelled with 6.0% bv TAPAO at 180° F. (82° C.) and 950 psi (6.5 kPa);
  • FIGS. 5, 6, 7, and 8 chart the effects of various bacteria nutrients on the viscosity reduction of 6.0% TAPAO at 180° F. (82° C.) and 400 psi (2.8 kPa); and
  • FIG. 9 is a graph of viscosity reduction over time employing 1.0% bv Pseudomonas aeruginosa esmeralda X-3C (EPA X-3C) with and without 0.2% bv Limonene in a 3% KCl fluid gelled with 6.0% bv TAPAO at 180° F. (82° C.) and 950 psi (6.5 kPa).
  • DETAILED DESCRIPTION OF THE INVENTION
  • It has been discovered that various biochemical agents, such as bacteria and enzymes, will directly degrade or digest the gel created by various viscoelastic surfactants (VESs) in an aqueous fluid, or the biochemical agents will degrade or digest other materials in the viscosified fluid such as alcohols, glycols, starches, potassium or other formate, and the like to produce by-products that will reduce the viscosity of the gelled aqueous fluid either directly, or by disaggregation or rearrangement of the VES micellar structure.
  • That is, in various non-limiting embodiments of the invention:
      • 1. the biochemical agent (bacteria, fungus, and/or enzyme) will attack and break down the surfactant itself, using the surfactant molecule as its carbon source;
      • 2. the biochemical agent (bacteria, fungus, and/or enzyme) will attack and break down another component in the VES-gelled aqueous fluid, whether already present or intentionally added as a carbon source for the bio-chemical agent, including, but not limited to, alcohols, monoalcohol polymers, alcohol fatty acids, alkyl fatty acids, glycols, starches, potassium or other formate, polysaccharides, sugars, sugar chelants, sugar alcohols, aliphatic alcohols, reservoir crude oils, proteins, VES stabilizers, amino acids, acetates, phosphonates, phospholipids, lactates, isocyanates, esters, turpenes, butyrates, propionates, salicylates, hexaonates, nitrilotriacetic acid, ethylenediaminetetraacetic acid, amino chelant compounds (e.g. hydroxyethyliminodiacetic acid), polyaspartates, pyrrolidone compounds, and mixtures thereof;
      • 3. the biochemical agent (bacteria, fungus, and/or enzyme) will reduce the viscosity of the VES-gelled fluid by disrupting the VES micellar structure by disaggregating the VES micelles (causing them not to be aggregated together) or rearranging the VES micellar structure (from rod- or worm-shape to spherical);
      • 4. the biochemical agent may be a bacteria and/or fungus which in turn secrets an enzyme that reduces the viscosity of the VES-gelled aqueous fluid by:
      • a. directly attacking and digesting or otherwise breaking down the viscoelastic surfactant itself or catalyzing a reaction to do so;
      • b. attacking and digesting or otherwise breaking down a component of the fluid other than the viscoelastic surfactant that in turn produces a by-product that reduces the viscosity of the VES-gelled aqueous fluid or catalyzing a reaction to do so; and
      • c. disaggregating the VES micelles or rearranging the VES micellar structure, or producing a by-product that does so, through catalysis or other mechanism.
  • The use of enzymes could be very complex. For instance, the enzyme could remove a part of the surfactant molecule, such as the “head” and/or “tail” portions to alter its structure. Or the enzyme could “add” another material or functionality, such as ammonium or phosphate, to the “head” group that would alter its surfactant properties and disrupt the micellar structure.
  • It will be also appreciated that the biochemical agent, such as bacteria or fungus, may be biotechnically engineered to serve the functions described. There are several biotechnologies that can be employed. Growth challenge, selective gene expression, radiated for selective gene expression, and gene splicing (genetically modified organisms) are just a few non-limiting examples of applicable biotechnical techniques to refine the practice of this art.
  • In particular, various combinations of these approaches may be used to be sure that the viscosity of the fluid is completely reduced through a variety of mechanisms. Indeed, a particular blend of biochemical agents may be custom designed for a particular VES fluid system.
  • It is expected that the biochemical agent can be used to reduce the viscosity of a VES-gelled aqueous fluid regardless of how the VES is ultimately utilized. For instance, the biochemical agent viscosity breaking mechanism could be used in all VES applications including, but not limited to, VES-gelled friction reducers, VES viscosifiers for loss circulation pills, fracturing fluids, gravel pack fluids, viscosifiers used as diverters in acidizing, VES viscosifiers used to clean up drilling mud filter cake, remedial clean-up of fluids after a VES treatment (post-VES treatment), and the like. One key feature to the use of bacteria as a VES degradation mechanism is that many bacteria have their own mobility, as contrasted with other VES clean-up fluids that must be transported by another means to the gel. That is, many bacteria have enhanced mobility due to the flagella propulsion characteristic that will permit them to move and contact needed VES placement sites. This is an advantage over mere chemical diffusion movement mechanisms that solvents or other agents might have.
  • A value of the invention is that a fracturing or other fluid can be designed to have enhanced breaking characteristics. Importantly, better clean-up of the VES fluid from the fracture and wellbore can be achieved thereby. Better clean-up of the VES directly influences the success of the fracture treatment, which is an enhancement of the well's hydrocarbon productivity.
  • In order to practice the method of the invention, an aqueous fracturing fluid, as a non-limiting example, is first prepared by blending a VES into an aqueous fluid. The aqueous fluid could be, for example, water, brine, aqueous-based foams or water-alcohol mixtures. Any suitable mixing apparatus may be used for this procedure. In the case of batch mixing, the VES and the aqueous fluid are blended for a period of time sufficient to form a gelled or viscosified solution. The VES that is useful in the present invention can be any of the VES systems that are familiar to those in the well service industry, and may include, but are not limited to, amines, amine salts, quaternary ammonium salts, amidoamine oxides, amine oxides, mixtures thereof and the like. Suitable amines, amine salts, quaternary ammonium salts, amidoamine oxides, and other surfactants are described in U.S. Pat. Nos. 5,964,295; 5,979,555; and 6,239,183, incorporated herein by reference. Materials sold under U.S. Pat. No. 5,964,295 include ClearFRAC™, which may also comprise greater than 10% of a glycol. One preferred VES is an amine oxide. A particularly preferred amine oxide is tallow amido propylamine oxide (TAPAO), sold by Baker Oil Tools as SurFRAQ™ VES. SurFRAQ is a VES liquid product that is 50% TAPAO and 50% propylene glycol. These viscoelastic surfactants are capable of gelling aqueous solutions to form a gelled base fluid.
  • The amount of VES included in the fracturing fluid depends on two factors. One involves generating enough viscosity to control the rate of fluid leak off into the pores of the fracture, and the second involves creating a viscosity high enough to keep the proppant particles suspended therein during the fluid injecting step, in the non-limiting case of a fracturing fluid. Thus, depending on the application, the VES is added to the aqueous fluid in concentrations ranging from about 0.5 to 12.0% by volume of the total aqueous fluid (5 to 120 gallons per thousand gallons (gptg)). The most preferred range for the present invention is about 1.0 to about 6.0% by volume VES product.
  • Propping agents are typically added to the base fluid after the addition of the VES. Propping agents include, but are not limited to, for instance, quartz sand grains, glass and ceramic beads, bauxite grains, walnut shell fragments, aluminum pellets, nylon pellets, and the like. The propping agents are normally used in concentrations between about 1 to 14 pounds per gallon (120-1700 kg/m3) of fracturing fluid composition, but higher or lower concentrations can be used as the fracture design required. The base fluid can also contain other conventional additives common to the well service industry such as water wetting surfactants, non-emulsifiers and the like. As noted, in this invention, the base fluid can also contain other non-conventional additives which can contribute to the bacteria-breaking action of the VES fluid, and which are added for that purpose.
  • In one non-limiting embodiment of the invention, suitable bacteria for use in the invention that directly digest viscoelastic surfactants include, but are not necessarily limited to, those in the classes Enterobacter, Enterococcus, Pseudomonas, Bacillus, Leptospirillum, Clostridium, Arthrobacter, Rhodobacter, Rhodococcus, Micrococcus, Serratia, Thermoanaerobacter, Thiobacillus, Pyrococcus, Lactobacillus, Achromobacter, Propionibacterium, Thermomicrobium, Nitrobacter, Nitrosomonas, Sulfolobus, Methanobacterium, Methanococcus, Bacteroides, Fusobacterium, Syntrophus, Acetogenium, Actinomyces, Acetobacter, Citrobacter, Alteromonas, Acinetobacter, Flavobacterium, Corynebacterium, and the like and mixtures thereof.
  • In one non-limiting embodiment of the invention, suitable bacteria for use in the embodiment of the invention that directly digest viscoelastic surfactants include, but are not necessarily limited to, Arthrobacter globiformis, Enterobacter colacae, Lactobacillus sporogenes, Lactobacillus bulgaricus, Lactobacillus acidophillus, Pseudomonas fluorescens, Pseudomonas aeruginosa, Actinomyces israeli, Pseudomonas putida, Nitrobacter vulgaris, Arthrobactor M153B, Bacillus megaterium, Thiobacillus novellus, Bacillus subtilis, Bacillus licheniformis, Clostridium pasteurianum, Corynebacterium glucuronolyticum, Enterococcus faecalis, Pyrococcus abyssi, Rhodococcus ST-5, Rhodococcus 33, Rhodococcus H13-A, Thermoanaerobacter ethanolicus, Thermoanaerobacter mathranii, Nitrosomonas europaea, Propionibacterium propionicus, Rhodobacter sphaeriodes, Clostridium thermocellum, Clostridium ATCC #53797, Clostridium ATCC #53793, Corynebacterium hydrocarbolastus, Acetomicrobium flavidum, Acetobacter pasteurianus, Serratia marcescens, Acetobacter aceti, Achromobacter xylosoxidans, and mixtures thereof.
  • In another non-limiting embodiment where glycol is present or added to the VES-gelled fluid, suitable glycol-splitting bacteria may include, but are not necessarily limited to, Pseudomonas fluorescens, Pseudomonas stutzeri, Pseudomonas aeruginosa, Pseudomonas putida, Acinetobacter anitratus, Bacillus subtilis, Bacillus licheniformis, Clostridium pasteurianum, Rhodococcus ST-5, and mixtures thereof.
  • In another non-limiting embodiment of the invention, fluid temperature, pressure, and pH can aid microbe metabolic activity. Increase in temperature up to as much as 250° F. (121° C.) and fluid pH between about 4.0 and about 9.0 enhances microbe metabolic activity. Increase in fluid pressure up to as much as 22,000 psi (152 kPa) can also enhance microbe metabolic activity.
  • In another non-limited embodiment inorganic and organic nutrients are added to aid microbe metabolic activity. Inorganic nutrients may include, but are not necessarily limited to, nitrites, nitrates, sulfites, sulfates, chlorides, phosphates, and mixtures thereof. Organic nutrients may include, but are not necessarily limited to, urea, amino acids, proteins, lipids, tryptic soy broth (TSB), agar, glucose, sugars, polysaccharides, turpenes, phosphonates, glycols, and mixtures thereof.
  • In the embodiments where enzymes, such as lipases, are produced by bacteria and other microorganisms, the by-products, also termed bio-products, can be selectively extracted or pulled out of the microorganism solution, as is common with enzyme products. These bio-products can then be pumped or otherwise directed into the VES surfactant to reduce its viscosity. The producing biochemical agent, such as bacteria or fungus would not itself be delivered to the VES-gelled fluid.
  • Besides lipase, other suitable enzymes include, but are not necessarily limited to oxidase, hydrolase, transferase, and mixtures thereof.
  • The biochemical agent may be a fungi including, but not necessarily limited to, Candida antarctica, Candida tropicalis, Candida rugosa, Candida albicans, Candida cylindralea, Trichoderma reesei, Aspergillus niger, Aspergillus oryzae, Saccharomyces cerevisiae, Saccharomyces diastaticus, and mixtures thereof.
  • Any or all of the above biologically produced by-products may be provided in an extended release form such as encapsulation by polymer or otherwise, pelletization with binder compounds, absorbed on a porous substrate, and/or a combination thereof. Specifically, the enzymes and other bio-products may be encapsulated to permit slow or timed release thereof. In non-limiting examples, the coating material may slowly dissolve or be removed by any conventional mechanism, or the coating could have very small holes or perforations therein for the bio-products within to diffuse through slowly. For instance, polymer encapsulation coatings such as used in fertilizer technology available from Scotts Company, specifically POLY-S® product coating technology, or polymer encapsulation coating technology from Fritz Industries could possibly be adapted to the methods of this invention. The bio-produced enzymes could also be absorbed onto zeolites, such as Zeolite A, Zeolite 13X, Zeolite DB-2 (available from PQ Corporation, Valley Forge, Pa.) or Zeolites Na-SKS5, Na-SKS6, Na-SKS7, Na-SKS9, Na-SKS10, and Na-SKS13, (available from Hoechst Aktiengesellschaft, now an affiliate of Aventis S.A.), and other porous solid substrates such as MICROSPONGE™ (available from Advanced Polymer Systems, Redwood, Calif.) and cationic exchange materials such as bentonite clay. Further, the bio-products may be both absorbed into and onto porous substrates and then encapsulated or coated, as described above.
  • It is difficult, if not impossible, to specify with accuracy the amount of the biochemical agent and/or biologically produced by-product that should be added to a particular aqueous fluid gelled with viscoelastic surfactants to sufficiently or fully break the gel, in general. For instance, a number of factors affect this proportion, including but not necessarily limited to, the particular VES used to gel the fluid; the particular biochemical agent used; the temperature of the fluid; the downhole pressure of the fluid, the starting pH of the fluid; and the complex interaction of these various factors. Nevertheless, in order to give an approximate feel for the proportions of the bacteria to be used in the method of the invention, the amount of biochemical agent added may range from about 0.01 to about 20.0 volume %, based on the total weight of the fluid; preferably from about 0.1 to about 2.0 volume %.
  • In a typical fracturing operation, the fracturing fluid of the invention is pumped at a rate sufficient to initiate and propagate a fracture in the formation and to place propping agents into the fracture. A typical fracturing treatment would be conducted by mixing a 20.0 to 60.0 gallon/1000 gal water (volume/volume—the same values may be used with any SI volume unit, e.g. 60.0 liters/-1000 liters) amine oxide VES, such as SurFRAQ, in a 2% (w/v) (166 lb/1000 gal, 19.9 kg/m3) KCl solution at a pH ranging from about 6.0 to about 8.0. The bio-chemical agent or agents are added after the VES addition.
  • The various embodiments of the invention are summarized below.
      • 1. The viscosity of the VES-gelled fluid may be reduced by the use of a biochemical agent (bacteria, fungus, enzyme, etc.) that will directly attack and break down the VES surfactant, such as by digestion, using the viscoelastic surfactant molecule as its carbon source. Suitable bacteria that can lower viscosity by this mechanism include, but are not necessarily limited to Pseudomonas fluorescens, Pseudomonas stutzeri, Enterobacter cloacae, Corynebacterium glucoronlyticum, Enterococcus faecalis, Pseudomonas aerugnosa, Pseudomonas putida, Acinetobacter anitratus, Serratia marcescens, Nitrobacter vulgaris, Clostridium thermocellum, Thermoanaerobacter ethanolicus, Clostridium pasteurianum, Rhodococcus ST-5, and mixtures thereof.
      • 2. The viscosity of the VES-gelled fluid may be reduced by a biochemical agent (bacteria, fungus, enzyme, etc.) that will directly attack and break down another component in the fluid besides the VES surfactant. This other component could be one that is normally added to the VES fluid in the normal course of operations, such as a glycol solvent for the VES surfactant itself, or it could be added solely for the purpose of providing a food source, i.e. carbon source or energy source for the biochemical agent, such as sugars and proteins. Such compounds include, but are not necessarily limited to, alcohols, monoalkyl alcohol polymers, alcohol fatty acids, alkyl fatty acids, glycols, starches, potassium formate or other formate, polysaccharides, sugars, sugar chelants, sugar alcohols, aliphatic alcohols, reservoir crude oils, proteins, VES stabilizers, amino acids, acetates, isocyanates, esters, lactates, butyrates, turpenes, propionates, salicylates, phosphonates, phospholipids, hexaonates, nitrilotriacetic acid, ethylenediaminetetraacetic acid, polyaspartates, amine chelant compounds (e.g. hydroxyethyliminodiacetic acid), pyrrolidone compounds, and mixtures thereof. In one non-limiting example, the biochemical agent could operate on the propylene glycol in SurFRAQ to produce one or more bio-alcohols or bio-surfactants that will directly degrade the VES gel. The alcohol or bio-surfactant causes the micelles to change from rod-shaped to sphere-shaped, or disperses or disaggregates the micellar structure of the VES-gelled surfactant.
      • 3. The viscosity of the VES-gelled fluid may be reduced by a biochemical agent (bacteria, fungus, enzyme, etc.) that will disaggregate, disorganize, rearrange or otherwise disrupt the VES micellar structure to the extent that the viscosity is reduced.
      • 4. The viscosity of the VES-gelled fluid may have its viscosity reduced by use of a biochemical agent, in this case a bacteria or fungus, which secrets an enzyme that in turn reduces the viscosity of the VES-gelled fluid by one of the discussed mechanisms, namely (a) directly attacking and digesting or otherwise breaking down the VES itself, or producing a by-product that does so, (b) attacking or breaking down a component of the fluid other than the VES, such as an alcohol, glycol, turpene or the like which is already present in the fluid, or is added for the specific purpose of reaction with the generated enzyme, or the enzyme produces a by-product that does so, and/or (c) disaggregating the VES micelles, or producing a by-product that does so.
      • 5. The rate of microbe metabolic activity of the bacteria, fungi, and/or enzymes can be enhanced by an increase in fluid temperature, such as up to 180° F. (82° C.); by controlling fluid pH, such as to about 7.5 pH; and by increasing fluid pressure, such as pressures greater than about 600 psi (4.1 kPa). In one non-limiting embodiment of the invention, the pH adjustment is to a range between about 2.0 and about 11.0, preferably between about 3.0 and about 9.0 pH.
  • It will be appreciated that one biochemical agent, such as a particular bacteria type, may function to reduce viscosity by more than one mechanism in a particular VES system. For instance, a particular bacteria type may directly digest the VES itself, while also digesting propylene glycol that may be present to produce lipase that also acts on the VES, such as by catalysis, to also break down the surfactant molecules. Alternatively more than one bacteria type could be used, where the different bacteria operate by the same or different mechanisms as outlined above. Further, a bacteria and an enzyme could be used together. Other mechanism combinations are expected to be useful as well.
  • In one embodiment of the invention, the method of the invention is practiced in the absence of gel-forming polymers and/or gels or aqueous fluid having their viscosities enhanced by polymers.
  • Suitable bio-surfactants include, but are not necessarily limited to the group of glycolipid, phospholipids, lipopeptide, peptidolipids, neutral lipids, polysaccharide-fatty acid complexes, polysaccharide-protein complexes, and mixtures thereof. Suitable bio-solvents include, but are not necessarily limited to the group of methanol, ethanol, butanol, acetone, and mixtures thereof. Suitable bio-acids include, but are not necessarily limited to the group of formic, acetic, lactic, pyruvic, nitric acids, and mixtures thereof.
  • The present invention will be explained in further detail in the following non-limiting Examples that are only designed to additionally illustrate the invention but not narrow the scope thereof. These particular Examples further illustrate the embodiment of the invention where bacteria are the biochemical agent used to reduce the viscosity of a VES-gelled fluid by directly digesting the VES surfactant.
  • GENERAL PROCEDURE FOR EXAMPLES 1-3
  • To a Waring blender were added 500 mls of distilled water, 10 grams of KCl, followed by 5.0 to 10.0 mis of viscoelastic surfactant (such as SurFRAQ TAPAO available from Baker Hughes, used in the Examples). The blender was used to mix the components on a very slow speed, to prevent foaming, for about 15 minutes to viscosify the VES fluid. Mixed samples were then placed into 500 ml wide mouth Nalgene plastic bottles. VES-breaking bacteria were then added to each sample, and the sample was shaken vigorously for 60 seconds. The samples were placed in a water bath at the indicated temperature and visually observed every 30 minutes for viscosity reduction difference between the samples. The sample with fast-acting bacteria such as Enterobacter colacae from Micro-TES Inc. lost viscosity noticeably quickly (Example 1; FIG. 1). Most gel breaking occurred over the first 24 hour period with additional breaking continuing during a 48 to 96 hour period.
  • Viscosity reduction can be visually detected. Shaking the samples and comparing the elasticity of gel and rate of air bubbles rising out of the fluid can be used to estimate the amount of viscosity reduction observed. Measurements using a Fann 35 rheometer at 100 rpm can also be used to acquire quantitative viscosity reduction of each sample. The preferred method of measurement is by using of a Fann 50 rheometer, where increases in temperature and pressure can be applied, simulating down hole temperature. The pressure limitation of a Fann 50 rheometer is 1000 psi (6.9 kPa).
  • Examples 1-3
  • FIGS. 1-3 show the results of Examples 1-3, respectively, charting the effects of using the indicated bacteria at 10% by volume concentrations. It may be seen that the SurFRAQ viscosity broke most quickly with Enterobacter colacae, losing most of its viscosity in the first 2-3 hours (Ex. 1, FIG. 1). Viscosity reduction was also more complete in this Example 1. Pseudomonas fluorescens (Ex. 2, FIG. 2) and Pseudomonas aeruginosa (Ex. 3, FIG. 3) gave viscosity reduction as well, but more gradually than Enterobacter colacae. All Examples were run using 2% TAPAO in 3% KCl. Example 1 (FIG. 1) was conducted at 125° F. (52° C.); Examples 2 and 3 (FIGS. 2 and 3, respectively) were conducted at 75° F. (24° C.).
  • Examples 4 AND 9
  • FIGS. 4 and 9 show the results of Examples 4 and 9, respectively. Both Examples use 6.0% bv TAPAO surfactant at 180° F. (82° C.) and 950 psi (6.5 kPa) on a Fann 50 rheometer. Both compositions contained 3% KCl. The order of mixing was: DI water, KCl, NH4NO3, TSB, Limonene (if used), EPA X-3C, TAPAO. The nutrient package for both Examples was 30.0 pptg (3.4 kg/m3) NH4PO3, 30 pptg (3.4 kg/m3) NH4NO3, and 15.0 pptg (1.7 kg/M3), Tryptic Soy Broth (TSB).
  • FIG. 4 shows a highly modified strain of Pseudomonas aeruginosa esmeralda X-3C from Micro-TES, Inc., can completely degrade the TAPAO viscosity within 10 to 12 days at 1.0% to 3.0% bv addition. FIG. 9 shows the EPA X-3C strain at 1.0% concentration in the 6% bv TAPAO with and without 0.2% Limonene. The data show enhanced microbe metabolic activity in the Limonene addition test.
  • Examples 5-8
  • FIGS. 5-8 show the results of Examples 5-8, respectively, charting the effects of various bacteria or microbe nutrients on 6% bv TAPAO surfactant at 180° F. (82° C.) and 950 psi (6.5 kPa). It may be seen that proper selection of microbe nutrient is possible that has minimal effects on the TAPAO viscosity.
  • All of Examples 5-8 used a Fann 50 rheometer at 180° F. (82° C.) at 400 psi (2.8 kPa). Examples 5-7 used 6% TAPAO, 3% KCl, 30 pptg (3.4 kg/m3) NH4PO3 and NH4NO3 combined, and 20.0 pptg (2.4 kg/m3) TSB. Example 8 used 6% TAPAO and 3% KCl with the indicated additives. EGMBE in Example 6 refers to ethylene glycol monobutyl ether.
  • In the foregoing specification, the invention has been described with reference to specific embodiments thereof, and has been demonstrated as effective in providing methods and compositions for a VES fracturing fluid breaker mechanism. However, it will be evident that various modifications and changes can be made thereto without departing from the broader spirit or scope of the invention as set forth in the appended claims. Accordingly, the specification is to be regarded in an illustrative rather than a restrictive sense. For example, specific combinations of viscoelastic surfactants, biochemical agents, and other components falling within the claimed parameters, but not specifically identified or tried in a particular composition or fluid, are anticipated to be within the scope of this invention.

Claims (24)

1-32. (canceled)
33. An aqueous fluid comprising:
water;
at least one viscoelastic surfactant (VES) in an amount effective to increase the viscosity of the aqueous fluid;
at least one biochemical agent in an amount effective to reduce the viscosity of the gelled aqueous fluid, where the biochemical agent is selected from the group consisting of bacteria, fungi, enzymes, and combinations thereof, where the biochemical agent reduces the viscosity of the gelled aqueous fluid by disaggregating or rearranging a micelle structure of the VES.
34. (canceled)
35. The fluid of claim 33 where the biochemical agent is a bacteria type that digests the VES directly.
36. The fluid of claim 33 where the biochemical agent is selected from the group consisting of bacteria, fungi, and mixtures thereof, that have been bio-technically engineered by a technique selected from the group consisting of growth challenge, culture for selective gene expression, genetic modification through gene splicing techniques, and combinations thereof.
37. The fluid of claim 33 where the biochemical agent is selected from the group consisting of bacteria and fungi that digests a component of the fluid other than the VES to produce a by-product that in turn degrades the VES surfactant.
38. The fluid of claim 33 where the component is selected from the group consisting of alcohols, monoalcohol polymers, alcohol fatty acids, alkyl fatty acids, glycols, starches, potassium formate or other formate, polysaccharides, sugars, sugar chelants, sugar alcohols, aliphatic alcohols, reservoir crude oils, proteins, VES stabilizers, amino acids, acetates, phosphonates, phospholipids, lactates, isocyanates, esters, turpenes, butyrates, propionates, salicylates, hexaonates, nitrilotriacetic acid, ethylenediaminetetra-acetic acid, amino chelant compounds, polyaspartates, pyrrolidone compounds, and mixtures thereof.
39. The fluid of claim 37 where the by-product is an enzyme selected from the group of enzymes that (a) catalyze a reaction to break down the VES directly, and (b) catalyze a reaction utilizing another component of the fluid other than VES to produce a by-product that in turn degrades the VES surfactant.
40. The fluid of claim 39 where the enzyme is lipase.
41. The fluid of claim 33 where the VES is selected from the group consisting of amines, amine salts, quaternary ammonium salts, amidoamine oxides and amine oxides.
42. The fluid of claim 33 where the VES is tallow amido propylamine oxide (TAPAO).
43. The fluid of claim 33 where the VES is erucyl bis-(2-hydroxyethyl)methyl ammonium chloride.
44. The fluid of claim 33 where the biochemical agent is bacteria selected from the group consisting of the classes Enterobacter, Enterococcus, Pseudomonas, Bacillus, Leptospirillum, Clostridium, Arthrobacter, Rhodobacter, Rhodococcus, Micrococcus, Serratia, Thermoanaerobacter, Thiobacillus, Pyrococcus, Lactobacillus, Achromobacter, Propionibacterium, Thermomicrobium, Nitrobacter, Nitrosomonas, Sulfolobus, Methanobacterium, Methanococcus, Bacteroides, Fusobacterium, Syntrophus, Acetogenium, Actinomyces, Acetobacter, Citrobacter, Alteromonas, Acinetobacter, Flavobacterium, Corynebacterium, and mixtures thereof.
45. The fluid of claim 33 where the biochemical agent is bacteria selected from the group consisting of Arthrobacter globiformis, Enterobacter colacae, Lactobacillus sporogenes, Lactobacillus bulgaricus, Lactobacillus acidophillus, Pseudomonas fluorescens, Pseudomonas aeruginosa, Actinomyces israeli, Pseudomonas putida, Nitrobacter vulgaris, Arthrobactor M153B, Bacillus megaterium, Thiobacillus novellus, Bacillus subtilis, Bacillus licheniformis, Clostridium pasteurianum, Corynebacterium glucuronolyticum, Enterococcus faecalis Pyrococcus abyssi, Rhodococcus ST-5, Rhodococcus 33, Rhodococcus H13-A, Thermoanaerobacter ethanolicus, Thermoanaerobacter mathranii, Nitrosomonas europaea, Propionibacterium propionicus, Rhodobacter sphaeriodes, Clostridium thermocellum, Clostridium ATCC #53797, Clostridium ATCC #53793, Corynebacterium hydrocarbolastus, Acetomicrobium flavidum, Acetobacter pasteurianus, Serratia marcescens, Acetobacter aceti, Achromobacter xylosoxidans, and mixtures thereof.
46. The fluid of claim 33 where the microbe metabolic activity of the biochemical agent can be enhanced by a parameter selected from the group consisting of temperature, pressure, pH adjustment of the fluid to between about 2.0 and 11.0, and combinations thereof.
47. The fluid of claim 33 where the amount of biochemical agent ranges from about 0.01 to about 20.0 percent by volume based on the total volume of fluid.
48. An aqueous fluid comprising
water;
at least one viscoelastic surfactant (VES), in an amount effective to increase the viscosity of the aqueous fluid; and
bacteria, in an amount effective to reduce the viscosity of the gelled aqueous fluid after the viscosity of the aqueous fluid has been increased, where the bacteria reduces the viscosity of the gelled aqueous fluid by disaggregating or rearranging a micelle structure of the VES.
49. The fluid of claim 48 where the VES is selected from the group consisting of amines, amine salts, quaternary ammonium salts, and amine oxides.
50. The fluid of claim 48 where the VES is tallow amido propylamine oxide (TAPAO).
51. The fluid of claim 48 where the bacteria is selected from the group consisting of Arthrobacter globiformis, Enterobacter colacae, Lactobacillus sporogenes, Lactobacillus bulgaricus, Lactobacillus acidophillus, Pseudomonas fluorescens, Pseudomonas aeruginosa, Actinomyces israeli, Pseudomonas putida, Nitrobacter vulgaris, Arthrobactor M153B, Bacillus megaterium, Thiobacillus novellus, Bacillus subtilis, Bacillus licheniformis, Clostridium pasteurianum, Corynebacterium glucuronolyticum, Enterococcus faecalis, Pyrococcus abyssi, Rhodococcus ST-5, Rhodococcus 33, Rhodococcus H13A, Thermoanaerobacter ethanolicus, Thermoanaerobacter mathranii, Nitrosomonas europaea, Propionibacterium propionicus, Rhodobacter sphaeriodes, Clostridium thermocellum, Clostridium ATCC #53797, Clostridium ATCC #53793, Corynebacterium hydrocarbolastus, Acetomicrobium flavidum, Acetobacter pasteurianus, Serratia marcescens, Acetobacter aceti, Achromobacter xylosoxidans, and mixtures thereof.
52. The fluid of claim 48 where the bacteria has been bio-technically engineered by a technique selected from the group consisting of growth challenge, culture for selective gene expression, genetic modification through gene splicing techniques, and combinations thereof.
53. The fluid of claim 48 where the bacteria is a type that attacks the VES directly.
54. The fluid of claim 48 where the amount of bacteria present ranges from about 0.01 to about 20.0 percent by volume based on the total volume of fluid.
55. The fluid of claim 48 where the microbe metabolic activity of the bacteria can be enhanced by a parameter selected from the group consisting of temperature, pressure, pH adjustment of the fluid to between about 2.0 and 11.0, and combinations thereof.
US11/438,856 2000-10-31 2006-05-23 Bacteria-based and enzyme-based mechanisms and products for viscosity reduction breaking of viscoelastic fluids Abandoned US20060281167A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/438,856 US20060281167A1 (en) 2000-10-31 2006-05-23 Bacteria-based and enzyme-based mechanisms and products for viscosity reduction breaking of viscoelastic fluids

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US24480400P 2000-10-31 2000-10-31
US10/041,528 US7052901B2 (en) 2000-10-31 2001-10-24 Bacteria-based and enzyme-based mechanisms and products for viscosity reduction breaking of viscoelastic fluids
US11/438,856 US20060281167A1 (en) 2000-10-31 2006-05-23 Bacteria-based and enzyme-based mechanisms and products for viscosity reduction breaking of viscoelastic fluids

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/041,528 Division US7052901B2 (en) 2000-10-31 2001-10-24 Bacteria-based and enzyme-based mechanisms and products for viscosity reduction breaking of viscoelastic fluids

Publications (1)

Publication Number Publication Date
US20060281167A1 true US20060281167A1 (en) 2006-12-14

Family

ID=22924168

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/041,528 Expired - Lifetime US7052901B2 (en) 2000-10-31 2001-10-24 Bacteria-based and enzyme-based mechanisms and products for viscosity reduction breaking of viscoelastic fluids
US11/438,856 Abandoned US20060281167A1 (en) 2000-10-31 2006-05-23 Bacteria-based and enzyme-based mechanisms and products for viscosity reduction breaking of viscoelastic fluids

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/041,528 Expired - Lifetime US7052901B2 (en) 2000-10-31 2001-10-24 Bacteria-based and enzyme-based mechanisms and products for viscosity reduction breaking of viscoelastic fluids

Country Status (5)

Country Link
US (2) US7052901B2 (en)
AU (1) AU785206B2 (en)
CA (1) CA2360459A1 (en)
GB (1) GB2368602B (en)
NO (1) NO20015313L (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090137429A1 (en) * 2007-11-26 2009-05-28 Rimassa Shawn Mccleskey Temperature-Extended Enzyme Systems
WO2018064320A1 (en) * 2016-09-30 2018-04-05 Baker Hughes, A Ge Company, Llc Biologically mediated precipitation of carbonates for use in oilfield applications

Families Citing this family (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU5793600A (en) * 1999-09-22 2001-03-29 Baker Hughes Incorporated Hydraulic fracturing using non-ionic surfactant gelling agent
KR100876765B1 (en) * 2002-05-10 2009-01-07 삼성전자주식회사 Apparatus for retransmitting data in mobile communication system and method thereof
GB2412391A (en) * 2004-03-27 2005-09-28 Cleansorb Ltd Process for disruption of filter cakes
US7534745B2 (en) * 2004-05-05 2009-05-19 Halliburton Energy Services, Inc. Gelled invert emulsion compositions comprising polyvalent metal salts of an organophosphonic acid ester or an organophosphinic acid and methods of use and manufacture
US8196659B2 (en) * 2004-05-13 2012-06-12 Baker Hughes Incorporated Multifunctional particles for downhole formation treatments
US9029299B2 (en) * 2004-05-13 2015-05-12 Baker Hughes Incorporated Methods and compositions for delayed release of chemicals and particles
US7723272B2 (en) * 2007-02-26 2010-05-25 Baker Hughes Incorporated Methods and compositions for fracturing subterranean formations
US7703531B2 (en) * 2004-05-13 2010-04-27 Baker Hughes Incorporated Multifunctional nanoparticles for downhole formation treatments
US8226830B2 (en) 2008-04-29 2012-07-24 Baker Hughes Incorporated Wastewater purification with nanoparticle-treated bed
US8499832B2 (en) * 2004-05-13 2013-08-06 Baker Hughes Incorporated Re-use of surfactant-containing fluids
US8567502B2 (en) * 2004-05-13 2013-10-29 Baker Hughes Incorporated Filtration of dangerous or undesirable contaminants
US7879767B2 (en) * 2004-06-03 2011-02-01 Baker Hughes Incorporated Additives for hydrate inhibition in fluids gelled with viscoelastic surfactants
US7595284B2 (en) * 2004-06-07 2009-09-29 Crews James B Metal-mediated viscosity reduction of fluids gelled with viscoelastic surfactants
US7939472B2 (en) * 2004-06-07 2011-05-10 Baker Hughes Incorporated Metal-mediated viscosity reduction of fluids gelled with viscoelastic surfactants
US7696134B2 (en) 2005-03-16 2010-04-13 Baker Hughes Incorporated Unsaturated fatty acids and mineral oils as internal breakers for VES-gelled fluids
US7696135B2 (en) 2005-03-16 2010-04-13 Baker Hughes Incorporated Use of oil-soluble surfactants as breaker enhancers for VES-gelled fluids
US7645724B2 (en) * 2005-03-16 2010-01-12 Baker Hughes Incorporated Compositions and use of mono- and polyenoic acids for breaking VES-gelled fluids
US7261160B2 (en) * 2005-09-13 2007-08-28 Halliburton Energy Services, Inc. Methods and compositions for controlling the viscosity of viscoelastic surfactant fluids
US20070060482A1 (en) * 2005-09-13 2007-03-15 Halliburton Energy Services, Inc. Methods and compositions for controlling the viscosity of viscoelastic surfactant fluids
US7543646B2 (en) * 2006-07-31 2009-06-09 Baker Hughes Incorporated Suspension of concentrated particulate additives containing oil for fracturing and other fluids
US9120964B2 (en) 2006-08-04 2015-09-01 Halliburton Energy Services, Inc. Treatment fluids containing biodegradable chelating agents and methods for use thereof
US8567503B2 (en) * 2006-08-04 2013-10-29 Halliburton Energy Services, Inc. Composition and method relating to the prevention and remediation of surfactant gel damage
US9027647B2 (en) 2006-08-04 2015-05-12 Halliburton Energy Services, Inc. Treatment fluids containing a biodegradable chelating agent and methods for use thereof
US9127194B2 (en) 2006-08-04 2015-09-08 Halliburton Energy Services, Inc. Treatment fluids containing a boron trifluoride complex and methods for use thereof
US8567504B2 (en) 2006-08-04 2013-10-29 Halliburton Energy Services, Inc. Composition and method relating to the prevention and remediation of surfactant gel damage
US7741252B2 (en) * 2006-08-07 2010-06-22 Schlumberger Technology Corporation Surfactants not toxic to bacteria
US7635028B2 (en) * 2006-09-18 2009-12-22 Schlumberger Technology Corporation Acidic internal breaker for viscoelastic surfactant fluids in brine
US8067342B2 (en) * 2006-09-18 2011-11-29 Schlumberger Technology Corporation Internal breakers for viscoelastic surfactant fluids
US7287590B1 (en) * 2006-09-18 2007-10-30 Schlumberger Technology Corporation Internal breaker for oilfield fluids
US8481462B2 (en) 2006-09-18 2013-07-09 Schlumberger Technology Corporation Oxidative internal breaker system with breaking activators for viscoelastic surfactant fluids
US8012914B2 (en) * 2006-10-27 2011-09-06 Halliburton Energy Services, Inc. Ortho ester breakers for viscoelastic surfactant gels and associated methods
US8008236B2 (en) 2006-10-27 2011-08-30 Halliburton Energy Services, Inc. Ortho ester breakers for viscoelastic surfactant gels and associated methods
US8220548B2 (en) * 2007-01-12 2012-07-17 Halliburton Energy Services Inc. Surfactant wash treatment fluids and associated methods
US20080169103A1 (en) * 2007-01-12 2008-07-17 Carbajal David L Surfactant Wash Treatment Fluids and Associated Methods
US8056630B2 (en) * 2007-03-21 2011-11-15 Baker Hughes Incorporated Methods of using viscoelastic surfactant gelled fluids to pre-saturate underground formations
US8616284B2 (en) 2007-03-21 2013-12-31 Baker Hughes Incorporated Methods for removing residual polymer from a hydraulic fracture
US7942201B2 (en) * 2007-05-11 2011-05-17 Clearwater International, Llc Apparatus, compositions, and methods of breaking fracturing fluids
GB2450204B (en) * 2007-05-11 2011-10-12 Clearwater Int Llc Apparatus, Compositions, and methods of breaking fracturing fluids
US7527103B2 (en) * 2007-05-29 2009-05-05 Baker Hughes Incorporated Procedures and compositions for reservoir protection
US7989404B2 (en) 2008-02-11 2011-08-02 Clearwater International, Llc Compositions and methods for gas well treatment
US7906464B2 (en) 2008-05-13 2011-03-15 Halliburton Energy Services, Inc. Compositions and methods for the removal of oil-based filtercakes
US7833943B2 (en) 2008-09-26 2010-11-16 Halliburton Energy Services Inc. Microemulsifiers and methods of making and using same
US8980800B2 (en) * 2008-12-08 2015-03-17 Baker Hughes Incorporated Methods for reducing fluid loss of a viscoelastic surfactant gel into a subterranean formation
US8186433B2 (en) * 2009-08-07 2012-05-29 Baker Hughes Incorporated Methods of gravel packing long interval wells
US8347960B2 (en) * 2010-01-25 2013-01-08 Water Tectonics, Inc. Method for using electrocoagulation in hydraulic fracturing
US8881823B2 (en) 2011-05-03 2014-11-11 Halliburton Energy Services, Inc. Environmentally friendly low temperature breaker systems and related methods
NO20110794A1 (en) 2011-05-31 2012-12-03 Goe Ip As Procedure for Microbial Control of Injection Fluid in a Hydrocarbon Reservoir
US8778852B2 (en) 2012-01-24 2014-07-15 Baker Hughes Incorporated Breaking viscoelastic surfactant gelled fluids using breaker nanoparticles
US9334716B2 (en) 2012-04-12 2016-05-10 Halliburton Energy Services, Inc. Treatment fluids comprising a hydroxypyridinecarboxylic acid and methods for use thereof
CA2885856A1 (en) 2012-09-25 2014-04-03 Halliburton Energy Services, Inc. Determining oil viscosity based on biodegradation
US20140090849A1 (en) * 2012-09-28 2014-04-03 Baker Hughes Incorporated Methods and Compositions for In Situ Microemulsions
US9670399B2 (en) 2013-03-15 2017-06-06 Halliburton Energy Services, Inc. Methods for acidizing a subterranean formation using a stabilized microemulsion carrier fluid
US10190038B2 (en) * 2014-04-21 2019-01-29 Baker Hughes, A Ge Company, Llc Method of using sophorolipids in well treatment operations
US9550937B2 (en) * 2014-07-31 2017-01-24 Baker Hughes Incorporated Methods and compositions for decreasing the viscosity of hydrocarbon-based fluids during refining
JP2018509516A (en) 2015-03-24 2018-04-05 テラヴィア ホールディングス, インコーポレイテッド Microalgae composition and use thereof
US10214681B2 (en) 2015-04-01 2019-02-26 Schlumberger Technology Corporation Method for treating a subterranean formation
GB201511218D0 (en) * 2015-06-25 2015-08-12 Goe Ip As Reservoir treatments
US11584915B2 (en) * 2017-07-12 2023-02-21 Mc (Us) 3 Llc Compositions and methods for remediation of sulfate reducing prokaryotes
CN110965974A (en) * 2018-09-29 2020-04-07 中国石油天然气股份有限公司 Method for modifying and displacing oil by activating microorganisms in situ in oil reservoir after polymer flooding
US11319478B2 (en) 2019-07-24 2022-05-03 Saudi Arabian Oil Company Oxidizing gasses for carbon dioxide-based fracturing fluids
WO2021138355A1 (en) 2019-12-31 2021-07-08 Saudi Arabian Oil Company Viscoelastic-surfactant fracturing fluids having oxidizer
US11352548B2 (en) 2019-12-31 2022-06-07 Saudi Arabian Oil Company Viscoelastic-surfactant treatment fluids having oxidizer
CN111621487A (en) * 2020-06-11 2020-09-04 中国石油大学(华东) Preparation and application method of microbial low-temperature gel breaking enzyme
US11542815B2 (en) 2020-11-30 2023-01-03 Saudi Arabian Oil Company Determining effect of oxidative hydraulic fracturing
US12071589B2 (en) 2021-10-07 2024-08-27 Saudi Arabian Oil Company Water-soluble graphene oxide nanosheet assisted high temperature fracturing fluid
CN116144333B (en) * 2021-11-23 2024-01-30 中国石油天然气股份有限公司 Super-thick oil biochemical viscosity reducer and preparation method thereof
US12025589B2 (en) 2021-12-06 2024-07-02 Saudi Arabian Oil Company Indentation method to measure multiple rock properties
US12012550B2 (en) 2021-12-13 2024-06-18 Saudi Arabian Oil Company Attenuated acid formulations for acid stimulation
CN114854620B (en) * 2022-03-08 2024-06-04 黄河三角洲京博化工研究院有限公司 Degradation strain of N-methylpyrrolidone and application thereof
CN117654625B (en) * 2024-01-31 2024-04-02 四川大学 Natural polysaccharide modified biological iron-based catalytic material and preparation method and application thereof
CN118291115B (en) * 2024-05-28 2024-10-29 大庆斯略油田科技有限公司 Preparation method of non-oxidative safe environment-friendly gel breaker system

Citations (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3332487A (en) * 1963-09-30 1967-07-25 Pan American Petroleum Corp Aerobic bacteria in oil recovery
US3612178A (en) * 1969-10-20 1971-10-12 Walter F Germer Jr Method of recovering oil using flow stimulating solution
US3800872A (en) * 1972-10-10 1974-04-02 Getty Oil Co Methods and compositions for recovery of oil
US4035289A (en) * 1974-11-26 1977-07-12 Societe Nationale Elf Aquitaine (Production) Purifying treatment for effluents of mineral oil drillings
US4292406A (en) * 1979-09-11 1981-09-29 The United States Of America As Represented By The United States Department Of Energy Anaerobic thermophilic culture system
US4410625A (en) * 1982-02-04 1983-10-18 The United States Of America As Represented By The Secretary Of Agriculture Salt-tolerant microbial xanthanase and method of producing same
US4434062A (en) * 1979-06-11 1984-02-28 Exxon Research And Engineering Co. Oil displacement enhanced by lyotropic liquid crystals in highly saline media
US4490471A (en) * 1981-12-11 1984-12-25 Ciba-Geigy Corporation Microorganisms of the genus Pseudomonas and process for degrading compounds which contain methyl groups in aqueous solutions
US4522261A (en) * 1983-04-05 1985-06-11 The Board Of Regents For The University Of Oklahoma Biosurfactant and enhanced oil recovery
US4735731A (en) * 1984-06-15 1988-04-05 The Dow Chemical Company Process for reversible thickening of a liquid
US4886746A (en) * 1988-05-10 1989-12-12 The United States Of America As Represented By The Secretary Of Agriculture Heat-stable, salt-tolerant microbial xanthanase
US4905761A (en) * 1988-07-29 1990-03-06 Iit Research Institute Microbial enhanced oil recovery and compositions therefor
US4996153A (en) * 1988-05-10 1991-02-26 The United States Of America As Represented By The Secretary Of Agriculture Heat-stable, salt-tolerant microbial xanthanase
US5163510A (en) * 1991-01-29 1992-11-17 Den Norske Stats Oljeselskap A.S. Method of microbial enhanced oil recovery
US5265674A (en) * 1992-02-20 1993-11-30 Battelle Memorial Institute Enhancement of in situ microbial remediation of aquifers
US5297625A (en) * 1990-08-24 1994-03-29 Associated Universities, Inc. Biochemically enhanced oil recovery and oil treatment
US5369031A (en) * 1992-07-21 1994-11-29 University Of Houston Bioremediation of polar organic compounds
US5551516A (en) * 1995-02-17 1996-09-03 Dowell, A Division Of Schlumberger Technology Corporation Hydraulic fracturing process and compositions
US5813466A (en) * 1994-06-06 1998-09-29 Cleansorb Limited Delayed acid for gel breaking
US5869325A (en) * 1996-03-22 1999-02-09 Atlantic Richfield Company Use of bacteria to break gels used in well treatment fluids
US5952208A (en) * 1997-04-07 1999-09-14 Energy Biosystems Corporation Dsz gene expression in pseudomonas hosts
US5964295A (en) * 1996-10-09 1999-10-12 Schlumberger Technology Corporation, Dowell Division Methods and compositions for testing subterranean formations
US5979555A (en) * 1997-12-02 1999-11-09 Akzo Nobel Nv Surfactants for hydraulic fractoring compositions
US6035936A (en) * 1997-11-06 2000-03-14 Whalen; Robert T. Viscoelastic surfactant fracturing fluids and a method for fracturing subterranean formations
US6110875A (en) * 1997-03-07 2000-08-29 Bj Services Company Methods and materials for degrading xanthan
US6140277A (en) * 1998-12-31 2000-10-31 Schlumberger Technology Corporation Fluids and techniques for hydrocarbon well completion
US6232274B1 (en) * 1997-12-13 2001-05-15 Schlumberger Technology Corporation Viscoelastic surfactant based gelling composition for wellbore service fluids
US6239183B1 (en) * 1997-12-19 2001-05-29 Akzo Nobel Nv Method for controlling the rheology of an aqueous fluid and gelling agent therefor
US6613720B1 (en) * 2000-10-13 2003-09-02 Schlumberger Technology Corporation Delayed blending of additives in well treatment fluids

Patent Citations (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3332487A (en) * 1963-09-30 1967-07-25 Pan American Petroleum Corp Aerobic bacteria in oil recovery
US3612178A (en) * 1969-10-20 1971-10-12 Walter F Germer Jr Method of recovering oil using flow stimulating solution
US3800872A (en) * 1972-10-10 1974-04-02 Getty Oil Co Methods and compositions for recovery of oil
US4035289A (en) * 1974-11-26 1977-07-12 Societe Nationale Elf Aquitaine (Production) Purifying treatment for effluents of mineral oil drillings
US4434062A (en) * 1979-06-11 1984-02-28 Exxon Research And Engineering Co. Oil displacement enhanced by lyotropic liquid crystals in highly saline media
US4292406A (en) * 1979-09-11 1981-09-29 The United States Of America As Represented By The United States Department Of Energy Anaerobic thermophilic culture system
US4490471A (en) * 1981-12-11 1984-12-25 Ciba-Geigy Corporation Microorganisms of the genus Pseudomonas and process for degrading compounds which contain methyl groups in aqueous solutions
US4410625A (en) * 1982-02-04 1983-10-18 The United States Of America As Represented By The Secretary Of Agriculture Salt-tolerant microbial xanthanase and method of producing same
US4522261A (en) * 1983-04-05 1985-06-11 The Board Of Regents For The University Of Oklahoma Biosurfactant and enhanced oil recovery
US4735731A (en) * 1984-06-15 1988-04-05 The Dow Chemical Company Process for reversible thickening of a liquid
US4886746A (en) * 1988-05-10 1989-12-12 The United States Of America As Represented By The Secretary Of Agriculture Heat-stable, salt-tolerant microbial xanthanase
US4996153A (en) * 1988-05-10 1991-02-26 The United States Of America As Represented By The Secretary Of Agriculture Heat-stable, salt-tolerant microbial xanthanase
US4905761A (en) * 1988-07-29 1990-03-06 Iit Research Institute Microbial enhanced oil recovery and compositions therefor
US5297625A (en) * 1990-08-24 1994-03-29 Associated Universities, Inc. Biochemically enhanced oil recovery and oil treatment
US5163510A (en) * 1991-01-29 1992-11-17 Den Norske Stats Oljeselskap A.S. Method of microbial enhanced oil recovery
US5265674A (en) * 1992-02-20 1993-11-30 Battelle Memorial Institute Enhancement of in situ microbial remediation of aquifers
US5369031A (en) * 1992-07-21 1994-11-29 University Of Houston Bioremediation of polar organic compounds
US5813466A (en) * 1994-06-06 1998-09-29 Cleansorb Limited Delayed acid for gel breaking
US5551516A (en) * 1995-02-17 1996-09-03 Dowell, A Division Of Schlumberger Technology Corporation Hydraulic fracturing process and compositions
US5869325A (en) * 1996-03-22 1999-02-09 Atlantic Richfield Company Use of bacteria to break gels used in well treatment fluids
US5964295A (en) * 1996-10-09 1999-10-12 Schlumberger Technology Corporation, Dowell Division Methods and compositions for testing subterranean formations
US6110875A (en) * 1997-03-07 2000-08-29 Bj Services Company Methods and materials for degrading xanthan
US5952208A (en) * 1997-04-07 1999-09-14 Energy Biosystems Corporation Dsz gene expression in pseudomonas hosts
US6035936A (en) * 1997-11-06 2000-03-14 Whalen; Robert T. Viscoelastic surfactant fracturing fluids and a method for fracturing subterranean formations
US5979555A (en) * 1997-12-02 1999-11-09 Akzo Nobel Nv Surfactants for hydraulic fractoring compositions
US6232274B1 (en) * 1997-12-13 2001-05-15 Schlumberger Technology Corporation Viscoelastic surfactant based gelling composition for wellbore service fluids
US6239183B1 (en) * 1997-12-19 2001-05-29 Akzo Nobel Nv Method for controlling the rheology of an aqueous fluid and gelling agent therefor
US6140277A (en) * 1998-12-31 2000-10-31 Schlumberger Technology Corporation Fluids and techniques for hydrocarbon well completion
US6613720B1 (en) * 2000-10-13 2003-09-02 Schlumberger Technology Corporation Delayed blending of additives in well treatment fluids

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090137429A1 (en) * 2007-11-26 2009-05-28 Rimassa Shawn Mccleskey Temperature-Extended Enzyme Systems
WO2018064320A1 (en) * 2016-09-30 2018-04-05 Baker Hughes, A Ge Company, Llc Biologically mediated precipitation of carbonates for use in oilfield applications
US11193054B2 (en) 2016-09-30 2021-12-07 Baker Hughes, A Ge Company, Llc Biologically mediated precipitation of carbonates for use in oilfield applications

Also Published As

Publication number Publication date
NO20015313D0 (en) 2001-10-30
US7052901B2 (en) 2006-05-30
CA2360459A1 (en) 2002-04-30
AU8552401A (en) 2002-05-23
GB0126058D0 (en) 2001-12-19
GB2368602A (en) 2002-05-08
GB2368602B (en) 2002-12-04
AU785206B2 (en) 2006-11-02
NO20015313L (en) 2002-05-02
US20020076803A1 (en) 2002-06-20

Similar Documents

Publication Publication Date Title
US7052901B2 (en) Bacteria-based and enzyme-based mechanisms and products for viscosity reduction breaking of viscoelastic fluids
US7595284B2 (en) Metal-mediated viscosity reduction of fluids gelled with viscoelastic surfactants
US7939472B2 (en) Metal-mediated viscosity reduction of fluids gelled with viscoelastic surfactants
AU784261B2 (en) Polyols for breaking borate crosslinked fracturing fluid
US9803130B2 (en) Methods of activating enzyme breakers
US8383557B2 (en) Dual-functional breaker for hybrid fluids of viscoelastic surfactant and polymer
US7615517B2 (en) Use of mineral oils to reduce fluid loss for viscoelastic surfactant gelled fluids
US20080153719A1 (en) Use of Mineral Oils, Hydrogenated Polyalphaolefin Oils and Saturated Fatty Acids for Breaking VES-Gelled Fluids
US20070277981A1 (en) Stimuli-degradable gels
EP1869139A1 (en) Saponified fatty acids as breakers for viscoelastic surfactant-gelled fluids
EP2113547A1 (en) Viscosified fluids for remediating subterranean damage background
US6706769B2 (en) Aminocarboxylic acid breaker compositions for fracturing fluids
US20090137429A1 (en) Temperature-Extended Enzyme Systems
US8833457B2 (en) Sulfates and phosphates as allosteric effectors in mannanohydrolase enzyme breakers
US7195071B2 (en) Enzyme compositions and methods of using these compositions to degrade succinoglycan
CN111925784B (en) Guanidine gum fracturing fluid microbial composite oil displacement system and preparation method thereof

Legal Events

Date Code Title Description
AS Assignment

Owner name: BAKER HUGHES INCORPORATED, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CREWS, JAMES B.;REEL/FRAME:017905/0973

Effective date: 20011023

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION