US20060281167A1 - Bacteria-based and enzyme-based mechanisms and products for viscosity reduction breaking of viscoelastic fluids - Google Patents
Bacteria-based and enzyme-based mechanisms and products for viscosity reduction breaking of viscoelastic fluids Download PDFInfo
- Publication number
- US20060281167A1 US20060281167A1 US11/438,856 US43885606A US2006281167A1 US 20060281167 A1 US20060281167 A1 US 20060281167A1 US 43885606 A US43885606 A US 43885606A US 2006281167 A1 US2006281167 A1 US 2006281167A1
- Authority
- US
- United States
- Prior art keywords
- fluid
- ves
- bacteria
- viscosity
- group
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000012530 fluid Substances 0.000 title claims abstract description 145
- 241000894006 Bacteria Species 0.000 title claims abstract description 59
- 102000004190 Enzymes Human genes 0.000 title claims abstract description 33
- 108090000790 Enzymes Proteins 0.000 title claims abstract description 33
- 230000007246 mechanism Effects 0.000 title abstract description 17
- 230000009467 reduction Effects 0.000 title abstract description 15
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 48
- 239000004094 surface-active agent Substances 0.000 claims abstract description 47
- 241000233866 Fungi Species 0.000 claims abstract description 17
- 239000006227 byproduct Substances 0.000 claims abstract description 14
- 150000001412 amines Chemical class 0.000 claims abstract description 12
- 241000588914 Enterobacter Species 0.000 claims abstract description 10
- 241000589517 Pseudomonas aeruginosa Species 0.000 claims abstract description 10
- 241000589540 Pseudomonas fluorescens Species 0.000 claims abstract description 8
- 239000000203 mixture Substances 0.000 claims description 30
- 238000000034 method Methods 0.000 claims description 25
- -1 alcohol fatty acids Chemical class 0.000 claims description 19
- 229920000642 polymer Polymers 0.000 claims description 17
- 241000316848 Rhodococcus <scale insect> Species 0.000 claims description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 10
- 241000193403 Clostridium Species 0.000 claims description 8
- 230000002503 metabolic effect Effects 0.000 claims description 8
- 108090000623 proteins and genes Proteins 0.000 claims description 8
- 235000000346 sugar Nutrition 0.000 claims description 8
- 150000001875 compounds Chemical class 0.000 claims description 7
- 239000000194 fatty acid Substances 0.000 claims description 7
- 241000186216 Corynebacterium Species 0.000 claims description 6
- 235000014113 dietary fatty acids Nutrition 0.000 claims description 6
- 229930195729 fatty acid Natural products 0.000 claims description 6
- 239000000693 micelle Substances 0.000 claims description 6
- 241000193469 Clostridium pasteurianum Species 0.000 claims description 5
- 241000186660 Lactobacillus Species 0.000 claims description 5
- 102000004882 Lipase Human genes 0.000 claims description 5
- 108090001060 Lipase Proteins 0.000 claims description 5
- 241000589776 Pseudomonas putida Species 0.000 claims description 5
- 241000191025 Rhodobacter Species 0.000 claims description 5
- 238000006243 chemical reaction Methods 0.000 claims description 5
- 150000004676 glycans Chemical class 0.000 claims description 5
- 150000002334 glycols Chemical class 0.000 claims description 5
- 230000001965 increasing effect Effects 0.000 claims description 5
- 229940039696 lactobacillus Drugs 0.000 claims description 5
- 229920001282 polysaccharide Polymers 0.000 claims description 5
- 239000005017 polysaccharide Substances 0.000 claims description 5
- 102000004169 proteins and genes Human genes 0.000 claims description 5
- 150000008163 sugars Chemical class 0.000 claims description 5
- 241000194108 Bacillus licheniformis Species 0.000 claims description 4
- 244000063299 Bacillus subtilis Species 0.000 claims description 4
- 235000014469 Bacillus subtilis Nutrition 0.000 claims description 4
- 241000194032 Enterococcus faecalis Species 0.000 claims description 4
- BDAGIHXWWSANSR-UHFFFAOYSA-M Formate Chemical compound [O-]C=O BDAGIHXWWSANSR-UHFFFAOYSA-M 0.000 claims description 4
- 239000004367 Lipase Substances 0.000 claims description 4
- 241001148220 Nitrobacter vulgaris Species 0.000 claims description 4
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical class OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 claims description 4
- 241000193448 Ruminiclostridium thermocellum Species 0.000 claims description 4
- 241000607715 Serratia marcescens Species 0.000 claims description 4
- 229920002472 Starch Polymers 0.000 claims description 4
- 241000186339 Thermoanaerobacter Species 0.000 claims description 4
- 241000186337 Thermoanaerobacter ethanolicus Species 0.000 claims description 4
- 150000001298 alcohols Chemical class 0.000 claims description 4
- 150000001413 amino acids Chemical class 0.000 claims description 4
- 229940032049 enterococcus faecalis Drugs 0.000 claims description 4
- 230000014509 gene expression Effects 0.000 claims description 4
- 235000019421 lipase Nutrition 0.000 claims description 4
- 150000003904 phospholipids Chemical class 0.000 claims description 4
- 150000003242 quaternary ammonium salts Chemical class 0.000 claims description 4
- 235000019698 starch Nutrition 0.000 claims description 4
- 244000283763 Acetobacter aceti Species 0.000 claims description 3
- 235000007847 Acetobacter aceti Nutrition 0.000 claims description 3
- 241000589212 Acetobacter pasteurianus Species 0.000 claims description 3
- 241000245947 Acetomicrobium flavidum Species 0.000 claims description 3
- 241001673062 Achromobacter xylosoxidans Species 0.000 claims description 3
- 241000186041 Actinomyces israelii Species 0.000 claims description 3
- 241000186074 Arthrobacter globiformis Species 0.000 claims description 3
- 241000194107 Bacillus megaterium Species 0.000 claims description 3
- 241001533284 Corynebacterium glucuronolyticum Species 0.000 claims description 3
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 claims description 3
- 244000199885 Lactobacillus bulgaricus Species 0.000 claims description 3
- 235000013960 Lactobacillus bulgaricus Nutrition 0.000 claims description 3
- 241000605121 Nitrosomonas europaea Species 0.000 claims description 3
- XBDQKXXYIPTUBI-UHFFFAOYSA-N Propionic acid Chemical class CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 claims description 3
- 241000589516 Pseudomonas Species 0.000 claims description 3
- 241000186336 Pseudopropionibacterium propionicum Species 0.000 claims description 3
- 241001148023 Pyrococcus abyssi Species 0.000 claims description 3
- 241000605219 Starkeya novella Species 0.000 claims description 3
- 241001603561 Thermoanaerobacter mathranii Species 0.000 claims description 3
- 150000001242 acetic acid derivatives Chemical class 0.000 claims description 3
- 150000004648 butanoic acid derivatives Chemical class 0.000 claims description 3
- 239000013522 chelant Substances 0.000 claims description 3
- 239000010779 crude oil Substances 0.000 claims description 3
- 150000002148 esters Chemical class 0.000 claims description 3
- 239000012948 isocyanate Substances 0.000 claims description 3
- 150000002513 isocyanates Chemical class 0.000 claims description 3
- 150000003893 lactate salts Chemical class 0.000 claims description 3
- 229940004208 lactobacillus bulgaricus Drugs 0.000 claims description 3
- 229940066544 lactobacillus sporogenes Drugs 0.000 claims description 3
- MGFYIUFZLHCRTH-UHFFFAOYSA-N nitrilotriacetic acid Chemical compound OC(=O)CN(CC(O)=O)CC(O)=O MGFYIUFZLHCRTH-UHFFFAOYSA-N 0.000 claims description 3
- 238000010979 pH adjustment Methods 0.000 claims description 3
- 150000004040 pyrrolidinones Chemical class 0.000 claims description 3
- 150000003873 salicylate salts Chemical class 0.000 claims description 3
- 239000003381 stabilizer Substances 0.000 claims description 3
- 150000005846 sugar alcohols Chemical class 0.000 claims description 3
- 239000003760 tallow Substances 0.000 claims description 3
- 241000589220 Acetobacter Species 0.000 claims description 2
- 241000590020 Achromobacter Species 0.000 claims description 2
- 241000589291 Acinetobacter Species 0.000 claims description 2
- 241000186046 Actinomyces Species 0.000 claims description 2
- 241000590031 Alteromonas Species 0.000 claims description 2
- 241000186063 Arthrobacter Species 0.000 claims description 2
- 241000193830 Bacillus <bacterium> Species 0.000 claims description 2
- 241000606125 Bacteroides Species 0.000 claims description 2
- 241000588923 Citrobacter Species 0.000 claims description 2
- 241000194033 Enterococcus Species 0.000 claims description 2
- 241000589565 Flavobacterium Species 0.000 claims description 2
- 241000605909 Fusobacterium Species 0.000 claims description 2
- 241000589925 Leptospirillum Species 0.000 claims description 2
- 241000202974 Methanobacterium Species 0.000 claims description 2
- 241000203353 Methanococcus Species 0.000 claims description 2
- 241000192041 Micrococcus Species 0.000 claims description 2
- 241000605159 Nitrobacter Species 0.000 claims description 2
- 241000605122 Nitrosomonas Species 0.000 claims description 2
- 241000186429 Propionibacterium Species 0.000 claims description 2
- 241000205160 Pyrococcus Species 0.000 claims description 2
- 241000607720 Serratia Species 0.000 claims description 2
- 241000205101 Sulfolobus Species 0.000 claims description 2
- 241000158541 Syntrophus <bacteria> Species 0.000 claims description 2
- 241000588679 Thermomicrobium Species 0.000 claims description 2
- 241000605118 Thiobacillus Species 0.000 claims description 2
- WFIZEGIEIOHZCP-UHFFFAOYSA-M potassium formate Chemical compound [K+].[O-]C=O WFIZEGIEIOHZCP-UHFFFAOYSA-M 0.000 claims description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims description 2
- 238000012239 gene modification Methods 0.000 claims 2
- 230000005017 genetic modification Effects 0.000 claims 2
- 235000013617 genetically modified food Nutrition 0.000 claims 2
- 102220475870 Keratin, type I cytoskeletal 10_H13A_mutation Human genes 0.000 claims 1
- CMPOVQUVPYXEBN-UHFFFAOYSA-N bis(2-hydroxyethyl)-methylazanium;chloride Chemical compound Cl.OCCN(C)CCO CMPOVQUVPYXEBN-UHFFFAOYSA-N 0.000 claims 1
- 229960001484 edetic acid Drugs 0.000 claims 1
- 239000000499 gel Substances 0.000 abstract description 13
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 abstract description 10
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 abstract description 7
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 abstract description 5
- 230000009471 action Effects 0.000 abstract description 2
- 239000012267 brine Substances 0.000 abstract description 2
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 abstract description 2
- 230000000593 degrading effect Effects 0.000 abstract 1
- 230000015572 biosynthetic process Effects 0.000 description 15
- 208000010392 Bone Fractures Diseases 0.000 description 11
- 206010017076 Fracture Diseases 0.000 description 11
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 9
- XMGQYMWWDOXHJM-UHFFFAOYSA-N limonene Chemical compound CC(=C)C1CCC(C)=CC1 XMGQYMWWDOXHJM-UHFFFAOYSA-N 0.000 description 8
- 239000000047 product Substances 0.000 description 8
- 238000000576 coating method Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 235000015097 nutrients Nutrition 0.000 description 7
- 239000003921 oil Substances 0.000 description 7
- 239000011248 coating agent Substances 0.000 description 6
- 229930195733 hydrocarbon Natural products 0.000 description 6
- 150000002430 hydrocarbons Chemical class 0.000 description 6
- 239000001974 tryptic soy broth Substances 0.000 description 6
- 108010050327 trypticase-soy broth Proteins 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 238000011084 recovery Methods 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 239000004215 Carbon black (E152) Substances 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 239000012065 filter cake Substances 0.000 description 4
- 239000003349 gelling agent Substances 0.000 description 4
- 229940087305 limonene Drugs 0.000 description 4
- 235000001510 limonene Nutrition 0.000 description 4
- 230000035699 permeability Effects 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 239000010457 zeolite Substances 0.000 description 4
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- 241000413261 Esmeralda Species 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 229910019142 PO4 Inorganic materials 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 239000003876 biosurfactant Substances 0.000 description 3
- 239000013043 chemical agent Substances 0.000 description 3
- 238000005553 drilling Methods 0.000 description 3
- 238000005538 encapsulation Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000002609 medium Substances 0.000 description 3
- 235000021317 phosphate Nutrition 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 2
- 241001541756 Acinetobacter calcoaceticus subsp. anitratus Species 0.000 description 2
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 2
- JYXGIOKAKDAARW-UHFFFAOYSA-N N-(2-hydroxyethyl)iminodiacetic acid Chemical compound OCCN(CC(O)=O)CC(O)=O JYXGIOKAKDAARW-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- 241000589614 Pseudomonas stutzeri Species 0.000 description 2
- 229910021536 Zeolite Inorganic materials 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000006555 catalytic reaction Methods 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 2
- 239000003995 emulsifying agent Substances 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 150000002632 lipids Chemical class 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 244000005700 microbiome Species 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- QWVGKYWNOKOFNN-UHFFFAOYSA-N o-cresol Chemical compound CC1=CC=CC=C1O QWVGKYWNOKOFNN-UHFFFAOYSA-N 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- HVCOBJNICQPDBP-UHFFFAOYSA-N 3-[3-[3,5-dihydroxy-6-methyl-4-(3,4,5-trihydroxy-6-methyloxan-2-yl)oxyoxan-2-yl]oxydecanoyloxy]decanoic acid;hydrate Chemical compound O.OC1C(OC(CC(=O)OC(CCCCCCC)CC(O)=O)CCCCCCC)OC(C)C(O)C1OC1C(O)C(O)C(O)C(C)O1 HVCOBJNICQPDBP-UHFFFAOYSA-N 0.000 description 1
- 240000005020 Acaciella glauca Species 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 241000228245 Aspergillus niger Species 0.000 description 1
- 240000006439 Aspergillus oryzae Species 0.000 description 1
- 235000002247 Aspergillus oryzae Nutrition 0.000 description 1
- 241000222120 Candida <Saccharomycetales> Species 0.000 description 1
- 241000222122 Candida albicans Species 0.000 description 1
- 241000222178 Candida tropicalis Species 0.000 description 1
- 241000169624 Casearia sylvestris Species 0.000 description 1
- 239000004971 Cross linker Substances 0.000 description 1
- 244000303965 Cyamopsis psoralioides Species 0.000 description 1
- 241000222175 Diutina rugosa Species 0.000 description 1
- 241000588697 Enterobacter cloacae Species 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 229930186217 Glycolipid Natural products 0.000 description 1
- 102000004157 Hydrolases Human genes 0.000 description 1
- 108090000604 Hydrolases Proteins 0.000 description 1
- 240000007049 Juglans regia Species 0.000 description 1
- 235000009496 Juglans regia Nutrition 0.000 description 1
- 108010028921 Lipopeptides Proteins 0.000 description 1
- 241001661345 Moesziomyces antarcticus Species 0.000 description 1
- 229920002274 Nalgene Polymers 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical class O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 102000004316 Oxidoreductases Human genes 0.000 description 1
- 108090000854 Oxidoreductases Proteins 0.000 description 1
- 239000006004 Quartz sand Substances 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 1
- 235000001006 Saccharomyces cerevisiae var diastaticus Nutrition 0.000 description 1
- 244000206963 Saccharomyces cerevisiae var. diastaticus Species 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 102000004357 Transferases Human genes 0.000 description 1
- 108090000992 Transferases Proteins 0.000 description 1
- 241000499912 Trichoderma reesei Species 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 150000008052 alkyl sulfonates Chemical class 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910001570 bauxite Inorganic materials 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 238000006065 biodegradation reaction Methods 0.000 description 1
- 229940095731 candida albicans Drugs 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 150000003841 chloride salts Chemical class 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- ILRSCQWREDREME-UHFFFAOYSA-N dodecanamide Chemical compound CCCCCCCCCCCC(N)=O ILRSCQWREDREME-UHFFFAOYSA-N 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 238000013265 extended release Methods 0.000 description 1
- 239000003337 fertilizer Substances 0.000 description 1
- 210000003495 flagella Anatomy 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 235000003869 genetically modified organism Nutrition 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000012263 liquid product Substances 0.000 description 1
- 239000006193 liquid solution Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 150000002826 nitrites Chemical class 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 238000005453 pelletization Methods 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 239000006187 pill Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 231100000572 poisoning Toxicity 0.000 description 1
- 230000000607 poisoning effect Effects 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 235000003499 redwood Nutrition 0.000 description 1
- 230000000246 remedial effect Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 229910000162 sodium phosphate Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-L sulfite Chemical class [O-]S([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-L 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- 235000020234 walnut Nutrition 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/60—Compositions for stimulating production by acting on the underground formation
- C09K8/62—Compositions for forming crevices or fractures
- C09K8/66—Compositions based on water or polar solvents
- C09K8/68—Compositions based on water or polar solvents containing organic compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/60—Compositions for stimulating production by acting on the underground formation
- C09K8/605—Compositions for stimulating production by acting on the underground formation containing biocides
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2208/00—Aspects relating to compositions of drilling or well treatment fluids
- C09K2208/24—Bacteria or enzyme containing gel breakers
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2208/00—Aspects relating to compositions of drilling or well treatment fluids
- C09K2208/30—Viscoelastic surfactants [VES]
Definitions
- the present invention relates to gelled treatment fluids used during hydrocarbon recovery operations, and more particularly relates, in one embodiment, to methods of “breaking” or reducing the viscosity of aqueous treatment fluids containing viscoelastic surfactant gelling agents used during hydrocarbon recovery operations.
- Hydraulic fracturing is a method of using pump rate and hydraulic pressure to fracture or crack a subterranean formation. Once the crack or cracks are made, high permeability proppant, relative to the formation permeability, is pumped into the fracture to prop open the crack. When the applied pump rates and pressures are reduced or removed from the formation, the crack or fracture cannot close or heal completely because the high permeability proppant keeps the crack open.
- the propped crack or fracture provides a high permeability path connecting the producing wellbore to a larger formation area to enhance the production of hydrocarbons.
- fracturing fluids are aqueous based liquids that have either been gelled or foamed.
- a polymeric gelling agent such as a solvatable polysaccharide
- the thickened or gelled fluid helps keep the proppants within the fluid. Gelling can be accomplished or improved by the use of crosslinking agents or cross-linkers that promote crosslinking of the polymers together, thereby increasing the viscosity of the fluid.
- the recovery of fracturing fluids may be accomplished by reducing the viscosity of the fluid to a low value so that it may flow naturally from the formation under the influence of formation fluids.
- Crosslinked gels generally require viscosity breakers to be injected to reduce the viscosity or “break” the gel.
- Enzymes, oxidizers, and acids are known polymer viscosity breakers. Enzymes are effective within a pH range, typically a 2.0 to 10.0 range, with increasing activity as the pH is lowered towards neutral from a pH of 10.0.
- Most conventional borate crosslinked fracturing fluids and breakers are designed from a fixed high crosslinked fluid pH value at ambient temperature and/or reservoir temperature. Optimizing the pH for a borate crosslinked gel is important to achieve proper crosslink stability and controlled enzyme breaker activity.
- polymers have been used in the past as gelling agents in fracturing fluids to carry or suspend solid particles as noted, such polymers require separate breaker compositions to be injected to reduce the viscosity. Further, such polymers tend to leave a coating on the proppant and a filter cake of dehydrated polymer on the fracture face even after the gelled fluid is broken. The coating and/or the filter cake may interfere with the functioning of the proppant. Studies have also shown that “fish-eyes” and/or “microgels” present in some polymer gelled carrier fluids will plug pore throats, leading to impaired leakoff and causing formation damage.
- aqueous drilling and treating fluids may be gelled or have their viscosity increased by the use of non-polymeric viscoelastic surfactants (VES).
- VES non-polymeric viscoelastic surfactants
- These VES materials are advantageous over the use of polymer gelling agents in that they do not damage the formation, leave a filter cake on the formation face, coat the proppant or create microgels or “fish-eyes”. It is still necessary, however, to provide some mechanism that will break the viscosity of VES-gelled fluids.
- Bacteria are primarily known to decompose reservoir hydrocarbons to produce more easily producible fluids, or to decompose hydrocarbon-based pollutants to environmentally acceptable states.
- U.S. Pat. No. 3,612,178 discloses a flow-stimulating liquid solution and methods of used based primarily on the combination of a linear alkyl sulfonate as a detergent and penetrant, serving as a special carrier for a lauric amide emulsifier to draw oil into an emulsion and for a phosphate, as sodium phosphate, to draw water into the emulsion. A preservative is added to inhibit deterioration due to bacteria.
- 3,800,872 relates to methods for recovery of petroleum from a subterranean formation which include injecting into the formation an aqueous flooding medium which assumes a viscosity in oil-rich portions of the formation that is significantly less than the viscosity assumed in the portions low in oil content, the flooding medium thereby preferentially driving the oil, as opposed to water, from the formation.
- the flooding medium may include a material such as guar that imparts a high viscosity but is subject to rapid degradation by the bacteria in the formation, and a poisoning agent for the bacteria, such as orthocresol, which is preferentially soluble in oil.
- the use of bacteria to directly digest or degrade polymeric gels used in fracturing is also known. However, it is presently unknown to use bacteria and/or enzymes to break viscosities of fluids gelled using viscoelastic surfactants.
- VESs viscoelastic surfactants
- Still another object of the invention is to provide additional methods and VES fluid compositions for breaking the viscosity of aqueous fluids gelled with viscoelastic surfactants.
- Yet another object of the invention is to provide methods and compositions for breaking the viscosity of aqueous fluids gelled with viscoelastic surfactants using bio-produced compounds such as lipase enzymes.
- Still another object of the invention is to provide methods and compositions for breaking the viscosity of aqueous fluids gelled with visoelastic surfactants using bio-produced compounds such as surfactants, solvents, or acid.
- a method for breaking viscosity of aqueous fluids gelled with a viscoelastic surfactant involves adding to an aqueous fluid gelled with at least one viscoelastic surfactant, a viscosity-breaking biochemical agent in an amount effective to reduce the viscosity of the gelled aqueous fluid.
- Suitable biochemical agents include bacteria, fungi, enzymes, and combinations thereof.
- the invention involves a method for breaking viscosity of aqueous fluids gelled with viscoelastic surfactants by adding to an aqueous fluid gelled with at least one viscoelastic surfactant, at least one bacteria type in an amount effective to reduce the viscosity of the VES-gelled aqueous fluid.
- FIG. 1 is a graph of viscosity reduction over time employing 10% by volume (bv) Enterobacter colacae in a 3% KCl fluid gelled with 2% TAPAO at 125° F. (52° C.) and ambient pressure;
- FIG. 2 is a graph of viscosity reduction over time employing 10% by volume Pseudomonas fluorescens in a 3% KCl fluid gelled with 2% TAPAO at 75° F. (24° C.) and ambient pressure;
- FIG. 3 is a graph of viscosity reduction over time employing 10% by volume Pseudomonas aeruginosa in a 3% KCl fluid gelled with 2% TAPAO at 75° F. (24° C.) and ambient pressure;
- FIG. 4 is a graph of viscosity reduction over time employing 1.0% and 3.0% by volume (bv) Pseudomonas aeruginosa esmeralda X-3C (EPA X-3C) in a 3% KCl fluid gelled with 6.0% bv TAPAO at 180° F. (82° C.) and 950 psi (6.5 kPa);
- FIGS. 5, 6 , 7 , and 8 chart the effects of various bacteria nutrients on the viscosity reduction of 6.0% TAPAO at 180° F. (82° C.) and 400 psi (2.8 kPa); and
- FIG. 9 is a graph of viscosity reduction over time employing 1.0% bv Pseudomonas aeruginosa esmeralda X-3C (EPA X-3C) with and without 0.2% bv Limonene in a 3% KCl fluid gelled with 6.0% bv TAPAO at 180° F. (82° C.) and 950 psi (6.5 kPa).
- VESs viscoelastic surfactants
- enzymes could be very complex. For instance, the enzyme could remove a part of the surfactant molecule, such as the “head” and/or “tail” portions to alter its structure. Or the enzyme could “add” another material or functionality, such as ammonium or phosphate, to the “head” group that would alter its surfactant properties and disrupt the micellar structure.
- the enzyme could remove a part of the surfactant molecule, such as the “head” and/or “tail” portions to alter its structure.
- the enzyme could “add” another material or functionality, such as ammonium or phosphate, to the “head” group that would alter its surfactant properties and disrupt the micellar structure.
- biochemical agent such as bacteria or fungus
- the biotechnically engineered to serve the functions described There are several biotechnologies that can be employed. Growth challenge, selective gene expression, radiated for selective gene expression, and gene splicing (genetically modified organisms) are just a few non-limiting examples of applicable biotechnical techniques to refine the practice of this art.
- the biochemical agent can be used to reduce the viscosity of a VES-gelled aqueous fluid regardless of how the VES is ultimately utilized.
- the biochemical agent viscosity breaking mechanism could be used in all VES applications including, but not limited to, VES-gelled friction reducers, VES viscosifiers for loss circulation pills, fracturing fluids, gravel pack fluids, viscosifiers used as diverters in acidizing, VES viscosifiers used to clean up drilling mud filter cake, remedial clean-up of fluids after a VES treatment (post-VES treatment), and the like.
- VES degradation mechanism One key feature to the use of bacteria as a VES degradation mechanism is that many bacteria have their own mobility, as contrasted with other VES clean-up fluids that must be transported by another means to the gel. That is, many bacteria have enhanced mobility due to the flagella propulsion characteristic that will permit them to move and contact needed VES placement sites. This is an advantage over mere chemical diffusion movement mechanisms that solvents or other agents might have.
- a value of the invention is that a fracturing or other fluid can be designed to have enhanced breaking characteristics. Importantly, better clean-up of the VES fluid from the fracture and wellbore can be achieved thereby. Better clean-up of the VES directly influences the success of the fracture treatment, which is an enhancement of the well's hydrocarbon productivity.
- an aqueous fracturing fluid is first prepared by blending a VES into an aqueous fluid.
- the aqueous fluid could be, for example, water, brine, aqueous-based foams or water-alcohol mixtures. Any suitable mixing apparatus may be used for this procedure.
- the VES and the aqueous fluid are blended for a period of time sufficient to form a gelled or viscosified solution.
- the VES that is useful in the present invention can be any of the VES systems that are familiar to those in the well service industry, and may include, but are not limited to, amines, amine salts, quaternary ammonium salts, amidoamine oxides, amine oxides, mixtures thereof and the like. Suitable amines, amine salts, quaternary ammonium salts, amidoamine oxides, and other surfactants are described in U.S. Pat. Nos. 5,964,295; 5,979,555; and 6,239,183, incorporated herein by reference. Materials sold under U.S. Pat. No. 5,964,295 include ClearFRACTM, which may also comprise greater than 10% of a glycol.
- One preferred VES is an amine oxide.
- a particularly preferred amine oxide is tallow amido propylamine oxide (TAPAO), sold by Baker Oil Tools as SurFRAQTM VES.
- TAPAO tallow amido propylamine oxide
- SurFRAQ is a VES liquid product that is 50% TAPAO and 50% propylene glycol. These viscoelastic surfactants are capable of gelling aqueous solutions to form a gelled base fluid.
- the amount of VES included in the fracturing fluid depends on two factors. One involves generating enough viscosity to control the rate of fluid leak off into the pores of the fracture, and the second involves creating a viscosity high enough to keep the proppant particles suspended therein during the fluid injecting step, in the non-limiting case of a fracturing fluid.
- the VES is added to the aqueous fluid in concentrations ranging from about 0.5 to 12.0% by volume of the total aqueous fluid (5 to 120 gallons per thousand gallons (gptg)).
- the most preferred range for the present invention is about 1.0 to about 6.0% by volume VES product.
- Propping agents are typically added to the base fluid after the addition of the VES.
- Propping agents include, but are not limited to, for instance, quartz sand grains, glass and ceramic beads, bauxite grains, walnut shell fragments, aluminum pellets, nylon pellets, and the like.
- the propping agents are normally used in concentrations between about 1 to 14 pounds per gallon (120-1700 kg/m 3 ) of fracturing fluid composition, but higher or lower concentrations can be used as the fracture design required.
- the base fluid can also contain other conventional additives common to the well service industry such as water wetting surfactants, non-emulsifiers and the like.
- the base fluid can also contain other non-conventional additives which can contribute to the bacteria-breaking action of the VES fluid, and which are added for that purpose.
- suitable bacteria for use in the invention that directly digest viscoelastic surfactants include, but are not necessarily limited to, those in the classes Enterobacter, Enterococcus, Pseudomonas, Bacillus, Leptospirillum, Clostridium, Arthrobacter, Rhodobacter, Rhodococcus, Micrococcus, Serratia, Thermoanaerobacter, Thiobacillus, Pyrococcus, Lactobacillus, Achromobacter, Propionibacterium, Thermomicrobium, Nitrobacter, Nitrosomonas, Sulfolobus, Methanobacterium, Methanococcus, Bacteroides, Fusobacterium, Syntrophus, Acetogenium, Actinomyces, Acetobacter, Citrobacter, Alteromonas, Acinetobacter, Flavobacterium, Corynebacterium , and the like and mixtures thereof.
- suitable bacteria for use in the embodiment of the invention that directly digest viscoelastic surfactants include, but are not necessarily limited to, Arthrobacter globiformis, Enterobacter colacae, Lactobacillus sporogenes, Lactobacillus bulgaricus, Lactobacillus acidophillus, Pseudomonas fluorescens, Pseudomonas aeruginosa, Actinomyces israeli, Pseudomonas putida, Nitrobacter vulgaris, Arthrobactor M153B, Bacillus megaterium, Thiobacillus novellus, Bacillus subtilis, Bacillus licheniformis, Clostridium pasteurianum, Corynebacterium glucuronolyticum, Enterococcus faecalis, Pyrococcus abyssi, Rhodococcus ST-5, Rhodococcus 33, Rhodococcus H13-A, Ther
- suitable glycol-splitting bacteria may include, but are not necessarily limited to, Pseudomonas fluorescens, Pseudomonas stutzeri, Pseudomonas aeruginosa, Pseudomonas putida, Acinetobacter anitratus, Bacillus subtilis, Bacillus licheniformis, Clostridium pasteurianum, Rhodococcus ST-5, and mixtures thereof.
- fluid temperature, pressure, and pH can aid microbe metabolic activity.
- Increase in temperature up to as much as 250° F. (121° C.) and fluid pH between about 4.0 and about 9.0 enhances microbe metabolic activity.
- Increase in fluid pressure up to as much as 22,000 psi (152 kPa) can also enhance microbe metabolic activity.
- inorganic and organic nutrients are added to aid microbe metabolic activity.
- Inorganic nutrients may include, but are not necessarily limited to, nitrites, nitrates, sulfites, sulfates, chlorides, phosphates, and mixtures thereof.
- Organic nutrients may include, but are not necessarily limited to, urea, amino acids, proteins, lipids, tryptic soy broth (TSB), agar, glucose, sugars, polysaccharides, turpenes, phosphonates, glycols, and mixtures thereof.
- TTB tryptic soy broth
- the by-products can be selectively extracted or pulled out of the microorganism solution, as is common with enzyme products. These bio-products can then be pumped or otherwise directed into the VES surfactant to reduce its viscosity.
- the producing biochemical agent, such as bacteria or fungus would not itself be delivered to the VES-gelled fluid.
- lipase other suitable enzymes include, but are not necessarily limited to oxidase, hydrolase, transferase, and mixtures thereof.
- the biochemical agent may be a fungi including, but not necessarily limited to, Candida antarctica, Candida tropicalis, Candida rugosa, Candida albicans, Candida cylindralea, Trichoderma reesei, Aspergillus niger, Aspergillus oryzae, Saccharomyces cerevisiae, Saccharomyces diastaticus , and mixtures thereof.
- any or all of the above biologically produced by-products may be provided in an extended release form such as encapsulation by polymer or otherwise, pelletization with binder compounds, absorbed on a porous substrate, and/or a combination thereof.
- the enzymes and other bio-products may be encapsulated to permit slow or timed release thereof.
- the coating material may slowly dissolve or be removed by any conventional mechanism, or the coating could have very small holes or perforations therein for the bio-products within to diffuse through slowly.
- polymer encapsulation coatings such as used in fertilizer technology available from Scotts Company, specifically POLY-S® product coating technology, or polymer encapsulation coating technology from Fritz Industries could possibly be adapted to the methods of this invention.
- the bio-produced enzymes could also be absorbed onto zeolites, such as Zeolite A, Zeolite 13X, Zeolite DB-2 (available from PQ Corporation, Valley Forge, Pa.) or Zeolites Na-SKS5, Na-SKS6, Na-SKS7, Na-SKS9, Na-SKS10, and Na-SKS13, (available from Hoechst Aktiengesellschaft, now an affiliate of Aventis S.A.), and other porous solid substrates such as MICROSPONGETM (available from Advanced Polymer Systems, Redwood, Calif.) and cationic exchange materials such as bentonite clay. Further, the bio-products may be both absorbed into and onto porous substrates and then encapsulated or coated, as described above.
- zeolites such as Zeolite A, Zeolite 13X, Zeolite DB-2 (available from PQ Corporation, Valley Forge, Pa.) or Zeolites Na-SKS5, Na-SKS6, Na-SKS7, Na-SKS9, Na-
- the amount of biochemical agent added may range from about 0.01 to about 20.0 volume %, based on the total weight of the fluid; preferably from about 0.1 to about 2.0 volume %.
- the fracturing fluid of the invention is pumped at a rate sufficient to initiate and propagate a fracture in the formation and to place propping agents into the fracture.
- a typical fracturing treatment would be conducted by mixing a 20.0 to 60.0 gallon/1000 gal water (volume/volume—the same values may be used with any SI volume unit, e.g. 60.0 liters/-1000 liters) amine oxide VES, such as SurFRAQ, in a 2% (w/v) (166 lb/1000 gal, 19.9 kg/m 3 ) KCl solution at a pH ranging from about 6.0 to about 8.0.
- the bio-chemical agent or agents are added after the VES addition.
- one biochemical agent such as a particular bacteria type
- a particular bacteria type may directly digest the VES itself, while also digesting propylene glycol that may be present to produce lipase that also acts on the VES, such as by catalysis, to also break down the surfactant molecules.
- more than one bacteria type could be used, where the different bacteria operate by the same or different mechanisms as outlined above.
- a bacteria and an enzyme could be used together. Other mechanism combinations are expected to be useful as well.
- the method of the invention is practiced in the absence of gel-forming polymers and/or gels or aqueous fluid having their viscosities enhanced by polymers.
- Suitable bio-surfactants include, but are not necessarily limited to the group of glycolipid, phospholipids, lipopeptide, peptidolipids, neutral lipids, polysaccharide-fatty acid complexes, polysaccharide-protein complexes, and mixtures thereof.
- Suitable bio-solvents include, but are not necessarily limited to the group of methanol, ethanol, butanol, acetone, and mixtures thereof.
- Suitable bio-acids include, but are not necessarily limited to the group of formic, acetic, lactic, pyruvic, nitric acids, and mixtures thereof.
- Viscosity reduction can be visually detected. Shaking the samples and comparing the elasticity of gel and rate of air bubbles rising out of the fluid can be used to estimate the amount of viscosity reduction observed. Measurements using a Fann 35 rheometer at 100 rpm can also be used to acquire quantitative viscosity reduction of each sample. The preferred method of measurement is by using of a Fann 50 rheometer, where increases in temperature and pressure can be applied, simulating down hole temperature. The pressure limitation of a Fann 50 rheometer is 1000 psi (6.9 kPa).
- FIGS. 1-3 show the results of Examples 1-3, respectively, charting the effects of using the indicated bacteria at 10% by volume concentrations. It may be seen that the SurFRAQ viscosity broke most quickly with Enterobacter colacae, losing most of its viscosity in the first 2-3 hours (Ex. 1, FIG. 1 ). Viscosity reduction was also more complete in this Example 1. Pseudomonas fluorescens (Ex. 2, FIG. 2 ) and Pseudomonas aeruginosa (Ex. 3, FIG. 3 ) gave viscosity reduction as well, but more gradually than Enterobacter colacae . All Examples were run using 2% TAPAO in 3% KCl. Example 1 ( FIG. 1 ) was conducted at 125° F. (52° C.); Examples 2 and 3 ( FIGS. 2 and 3 , respectively) were conducted at 75° F. (24° C.).
- FIGS. 4 and 9 show the results of Examples 4 and 9, respectively. Both Examples use 6.0% bv TAPAO surfactant at 180° F. (82° C.) and 950 psi (6.5 kPa) on a Fann 50 rheometer. Both compositions contained 3% KCl. The order of mixing was: DI water, KCl, NH 4 NO 3 , TSB, Limonene (if used), EPA X-3C, TAPAO.
- the nutrient package for both Examples was 30.0 pptg (3.4 kg/m 3 ) NH 4 PO 3 , 30 pptg (3.4 kg/m 3 ) NH 4 NO 3 , and 15.0 pptg (1.7 kg/M 3 ), Tryptic Soy Broth (TSB).
- FIG. 4 shows a highly modified strain of Pseudomonas aeruginosa esmeralda X-3C from Micro-TES, Inc., can completely degrade the TAPAO viscosity within 10 to 12 days at 1.0% to 3.0% bv addition.
- FIG. 9 shows the EPA X-3C strain at 1.0% concentration in the 6% bv TAPAO with and without 0.2% Limonene. The data show enhanced microbe metabolic activity in the Limonene addition test.
- FIGS. 5-8 show the results of Examples 5-8, respectively, charting the effects of various bacteria or microbe nutrients on 6% bv TAPAO surfactant at 180° F. (82° C.) and 950 psi (6.5 kPa). It may be seen that proper selection of microbe nutrient is possible that has minimal effects on the TAPAO viscosity.
- Examples 5-8 used a Fann 50 rheometer at 180° F. (82° C.) at 400 psi (2.8 kPa).
- Examples 5-7 used 6% TAPAO, 3% KCl, 30 pptg (3.4 kg/m 3 ) NH 4 PO 3 and NH 4 NO 3 combined, and 20.0 pptg (2.4 kg/m 3 ) TSB.
- Example 8 used 6% TAPAO and 3% KCl with the indicated additives.
- EGMBE in Example 6 refers to ethylene glycol monobutyl ether.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Detergent Compositions (AREA)
Abstract
It has been discovered that fluids viscosified with viscoelastic surfactants (VESs) may have their viscosities reduced (gels broken) by the direct or indirect action of a biochemical agent, such as bacteria, fungi, and/or enzymes. The biochemical agent may directly attack the VES itself, or some other component in the fluid that produces a by-product that then causes viscosity reduction. The biochemical agent may disaggregate or otherwise attack the micellar structure of the VES-gelled fluid. The biochemical agent may produce an enzyme that reduces viscosity by one of these mechanisms. A single biochemical agent may operate simultaneously by two different mechanisms, such as by degrading the VES directly, as well as another component, such as a glycol, the latter mechanism in turn producing a by-product (e.g. an alcohol) that causes viscosity reduction. Alternatively, two or more different biochemical agents may be used simultaneously. In a specific, non-limiting instance, a brine fluid gelled with an amine oxide surfactant can have its viscosity broken with bacteria such as Enterobacter colacae, Pseudomonas fluorescens, Pseudomonas aeruginosa, and the like.
Description
- This application is a divisional application of U.S. Pat. No. 7,052,091 issued May 30, 2006, which in turn claims the benefit of U.S. provisional application No. 60/244,804 filed Oct. 31, 2000.
- The present invention relates to gelled treatment fluids used during hydrocarbon recovery operations, and more particularly relates, in one embodiment, to methods of “breaking” or reducing the viscosity of aqueous treatment fluids containing viscoelastic surfactant gelling agents used during hydrocarbon recovery operations.
- Hydraulic fracturing is a method of using pump rate and hydraulic pressure to fracture or crack a subterranean formation. Once the crack or cracks are made, high permeability proppant, relative to the formation permeability, is pumped into the fracture to prop open the crack. When the applied pump rates and pressures are reduced or removed from the formation, the crack or fracture cannot close or heal completely because the high permeability proppant keeps the crack open. The propped crack or fracture provides a high permeability path connecting the producing wellbore to a larger formation area to enhance the production of hydrocarbons.
- The development of suitable fracturing fluids is a complex art because the fluids must simultaneously meet a number of conditions. For example, they must be stable at high temperatures and/or high pump rates and shear rates that can cause the fluids to degrade and prematurely settle out the proppant before the fracturing operation is complete. Various fluids have been developed, but most commercially used fracturing fluids are aqueous based liquids that have either been gelled or foamed. When the fluids are gelled, typically a polymeric gelling agent, such as a solvatable polysaccharide, is used. The thickened or gelled fluid helps keep the proppants within the fluid. Gelling can be accomplished or improved by the use of crosslinking agents or cross-linkers that promote crosslinking of the polymers together, thereby increasing the viscosity of the fluid.
- The recovery of fracturing fluids may be accomplished by reducing the viscosity of the fluid to a low value so that it may flow naturally from the formation under the influence of formation fluids. Crosslinked gels generally require viscosity breakers to be injected to reduce the viscosity or “break” the gel. Enzymes, oxidizers, and acids are known polymer viscosity breakers. Enzymes are effective within a pH range, typically a 2.0 to 10.0 range, with increasing activity as the pH is lowered towards neutral from a pH of 10.0. Most conventional borate crosslinked fracturing fluids and breakers are designed from a fixed high crosslinked fluid pH value at ambient temperature and/or reservoir temperature. Optimizing the pH for a borate crosslinked gel is important to achieve proper crosslink stability and controlled enzyme breaker activity.
- While polymers have been used in the past as gelling agents in fracturing fluids to carry or suspend solid particles as noted, such polymers require separate breaker compositions to be injected to reduce the viscosity. Further, such polymers tend to leave a coating on the proppant and a filter cake of dehydrated polymer on the fracture face even after the gelled fluid is broken. The coating and/or the filter cake may interfere with the functioning of the proppant. Studies have also shown that “fish-eyes” and/or “microgels” present in some polymer gelled carrier fluids will plug pore throats, leading to impaired leakoff and causing formation damage.
- Recently it has been discovered that aqueous drilling and treating fluids may be gelled or have their viscosity increased by the use of non-polymeric viscoelastic surfactants (VES). These VES materials are advantageous over the use of polymer gelling agents in that they do not damage the formation, leave a filter cake on the formation face, coat the proppant or create microgels or “fish-eyes”. It is still necessary, however, to provide some mechanism that will break the viscosity of VES-gelled fluids.
- It is known to use bacteria in biodegradation, bioremediation, or microbe enhanced oil recovery (MEOR) techniques. Bacteria are primarily known to decompose reservoir hydrocarbons to produce more easily producible fluids, or to decompose hydrocarbon-based pollutants to environmentally acceptable states.
- It is also known that bacteria will degrade drilling fluids. U.S. Pat. No. 3,612,178 discloses a flow-stimulating liquid solution and methods of used based primarily on the combination of a linear alkyl sulfonate as a detergent and penetrant, serving as a special carrier for a lauric amide emulsifier to draw oil into an emulsion and for a phosphate, as sodium phosphate, to draw water into the emulsion. A preservative is added to inhibit deterioration due to bacteria. Similarly, U.S. Pat. No. 3,800,872 relates to methods for recovery of petroleum from a subterranean formation which include injecting into the formation an aqueous flooding medium which assumes a viscosity in oil-rich portions of the formation that is significantly less than the viscosity assumed in the portions low in oil content, the flooding medium thereby preferentially driving the oil, as opposed to water, from the formation. The flooding medium may include a material such as guar that imparts a high viscosity but is subject to rapid degradation by the bacteria in the formation, and a poisoning agent for the bacteria, such as orthocresol, which is preferentially soluble in oil. The use of bacteria to directly digest or degrade polymeric gels used in fracturing is also known. However, it is presently unknown to use bacteria and/or enzymes to break viscosities of fluids gelled using viscoelastic surfactants.
- General background information concerning biodegrading surfactants may be found in D. R. Karsa, et al., ed., Biodegradability of Surfactants, Blackie Academic & Professional, 1995.
- It would be desirable if a viscosity breaking system could be devised to break the viscosity of fracturing fluids gelled with viscoelastic surfactants.
- Accordingly, it is an object of the present invention to provide a method for breaking the viscosity of aqueous treatment fluids gelled with viscoelastic surfactants (VESs).
- It is another object of the present invention to provide compositions and methods for breaking VES-surfactant substrates fluids using bacteria.
- Still another object of the invention is to provide additional methods and VES fluid compositions for breaking the viscosity of aqueous fluids gelled with viscoelastic surfactants.
- Yet another object of the invention is to provide methods and compositions for breaking the viscosity of aqueous fluids gelled with viscoelastic surfactants using bio-produced compounds such as lipase enzymes.
- Still another object of the invention is to provide methods and compositions for breaking the viscosity of aqueous fluids gelled with visoelastic surfactants using bio-produced compounds such as surfactants, solvents, or acid.
- In carrying out these and other objects of the invention, there is provided, in one form, a method for breaking viscosity of aqueous fluids gelled with a viscoelastic surfactant (VES) that involves adding to an aqueous fluid gelled with at least one viscoelastic surfactant, a viscosity-breaking biochemical agent in an amount effective to reduce the viscosity of the gelled aqueous fluid. Suitable biochemical agents include bacteria, fungi, enzymes, and combinations thereof.
- In another embodiment, the invention involves a method for breaking viscosity of aqueous fluids gelled with viscoelastic surfactants by adding to an aqueous fluid gelled with at least one viscoelastic surfactant, at least one bacteria type in an amount effective to reduce the viscosity of the VES-gelled aqueous fluid.
-
FIG. 1 is a graph of viscosity reduction over time employing 10% by volume (bv) Enterobacter colacae in a 3% KCl fluid gelled with 2% TAPAO at 125° F. (52° C.) and ambient pressure; -
FIG. 2 is a graph of viscosity reduction over time employing 10% by volume Pseudomonas fluorescens in a 3% KCl fluid gelled with 2% TAPAO at 75° F. (24° C.) and ambient pressure; -
FIG. 3 is a graph of viscosity reduction over time employing 10% by volume Pseudomonas aeruginosa in a 3% KCl fluid gelled with 2% TAPAO at 75° F. (24° C.) and ambient pressure; -
FIG. 4 is a graph of viscosity reduction over time employing 1.0% and 3.0% by volume (bv) Pseudomonas aeruginosa esmeralda X-3C (EPA X-3C) in a 3% KCl fluid gelled with 6.0% bv TAPAO at 180° F. (82° C.) and 950 psi (6.5 kPa); -
FIGS. 5, 6 , 7, and 8 chart the effects of various bacteria nutrients on the viscosity reduction of 6.0% TAPAO at 180° F. (82° C.) and 400 psi (2.8 kPa); and -
FIG. 9 is a graph of viscosity reduction over time employing 1.0% bv Pseudomonas aeruginosa esmeralda X-3C (EPA X-3C) with and without 0.2% bv Limonene in a 3% KCl fluid gelled with 6.0% bv TAPAO at 180° F. (82° C.) and 950 psi (6.5 kPa). - It has been discovered that various biochemical agents, such as bacteria and enzymes, will directly degrade or digest the gel created by various viscoelastic surfactants (VESs) in an aqueous fluid, or the biochemical agents will degrade or digest other materials in the viscosified fluid such as alcohols, glycols, starches, potassium or other formate, and the like to produce by-products that will reduce the viscosity of the gelled aqueous fluid either directly, or by disaggregation or rearrangement of the VES micellar structure.
- That is, in various non-limiting embodiments of the invention:
-
- 1. the biochemical agent (bacteria, fungus, and/or enzyme) will attack and break down the surfactant itself, using the surfactant molecule as its carbon source;
- 2. the biochemical agent (bacteria, fungus, and/or enzyme) will attack and break down another component in the VES-gelled aqueous fluid, whether already present or intentionally added as a carbon source for the bio-chemical agent, including, but not limited to, alcohols, monoalcohol polymers, alcohol fatty acids, alkyl fatty acids, glycols, starches, potassium or other formate, polysaccharides, sugars, sugar chelants, sugar alcohols, aliphatic alcohols, reservoir crude oils, proteins, VES stabilizers, amino acids, acetates, phosphonates, phospholipids, lactates, isocyanates, esters, turpenes, butyrates, propionates, salicylates, hexaonates, nitrilotriacetic acid, ethylenediaminetetraacetic acid, amino chelant compounds (e.g. hydroxyethyliminodiacetic acid), polyaspartates, pyrrolidone compounds, and mixtures thereof;
- 3. the biochemical agent (bacteria, fungus, and/or enzyme) will reduce the viscosity of the VES-gelled fluid by disrupting the VES micellar structure by disaggregating the VES micelles (causing them not to be aggregated together) or rearranging the VES micellar structure (from rod- or worm-shape to spherical);
- 4. the biochemical agent may be a bacteria and/or fungus which in turn secrets an enzyme that reduces the viscosity of the VES-gelled aqueous fluid by:
- a. directly attacking and digesting or otherwise breaking down the viscoelastic surfactant itself or catalyzing a reaction to do so;
- b. attacking and digesting or otherwise breaking down a component of the fluid other than the viscoelastic surfactant that in turn produces a by-product that reduces the viscosity of the VES-gelled aqueous fluid or catalyzing a reaction to do so; and
- c. disaggregating the VES micelles or rearranging the VES micellar structure, or producing a by-product that does so, through catalysis or other mechanism.
- The use of enzymes could be very complex. For instance, the enzyme could remove a part of the surfactant molecule, such as the “head” and/or “tail” portions to alter its structure. Or the enzyme could “add” another material or functionality, such as ammonium or phosphate, to the “head” group that would alter its surfactant properties and disrupt the micellar structure.
- It will be also appreciated that the biochemical agent, such as bacteria or fungus, may be biotechnically engineered to serve the functions described. There are several biotechnologies that can be employed. Growth challenge, selective gene expression, radiated for selective gene expression, and gene splicing (genetically modified organisms) are just a few non-limiting examples of applicable biotechnical techniques to refine the practice of this art.
- In particular, various combinations of these approaches may be used to be sure that the viscosity of the fluid is completely reduced through a variety of mechanisms. Indeed, a particular blend of biochemical agents may be custom designed for a particular VES fluid system.
- It is expected that the biochemical agent can be used to reduce the viscosity of a VES-gelled aqueous fluid regardless of how the VES is ultimately utilized. For instance, the biochemical agent viscosity breaking mechanism could be used in all VES applications including, but not limited to, VES-gelled friction reducers, VES viscosifiers for loss circulation pills, fracturing fluids, gravel pack fluids, viscosifiers used as diverters in acidizing, VES viscosifiers used to clean up drilling mud filter cake, remedial clean-up of fluids after a VES treatment (post-VES treatment), and the like. One key feature to the use of bacteria as a VES degradation mechanism is that many bacteria have their own mobility, as contrasted with other VES clean-up fluids that must be transported by another means to the gel. That is, many bacteria have enhanced mobility due to the flagella propulsion characteristic that will permit them to move and contact needed VES placement sites. This is an advantage over mere chemical diffusion movement mechanisms that solvents or other agents might have.
- A value of the invention is that a fracturing or other fluid can be designed to have enhanced breaking characteristics. Importantly, better clean-up of the VES fluid from the fracture and wellbore can be achieved thereby. Better clean-up of the VES directly influences the success of the fracture treatment, which is an enhancement of the well's hydrocarbon productivity.
- In order to practice the method of the invention, an aqueous fracturing fluid, as a non-limiting example, is first prepared by blending a VES into an aqueous fluid. The aqueous fluid could be, for example, water, brine, aqueous-based foams or water-alcohol mixtures. Any suitable mixing apparatus may be used for this procedure. In the case of batch mixing, the VES and the aqueous fluid are blended for a period of time sufficient to form a gelled or viscosified solution. The VES that is useful in the present invention can be any of the VES systems that are familiar to those in the well service industry, and may include, but are not limited to, amines, amine salts, quaternary ammonium salts, amidoamine oxides, amine oxides, mixtures thereof and the like. Suitable amines, amine salts, quaternary ammonium salts, amidoamine oxides, and other surfactants are described in U.S. Pat. Nos. 5,964,295; 5,979,555; and 6,239,183, incorporated herein by reference. Materials sold under U.S. Pat. No. 5,964,295 include ClearFRAC™, which may also comprise greater than 10% of a glycol. One preferred VES is an amine oxide. A particularly preferred amine oxide is tallow amido propylamine oxide (TAPAO), sold by Baker Oil Tools as SurFRAQ™ VES. SurFRAQ is a VES liquid product that is 50% TAPAO and 50% propylene glycol. These viscoelastic surfactants are capable of gelling aqueous solutions to form a gelled base fluid.
- The amount of VES included in the fracturing fluid depends on two factors. One involves generating enough viscosity to control the rate of fluid leak off into the pores of the fracture, and the second involves creating a viscosity high enough to keep the proppant particles suspended therein during the fluid injecting step, in the non-limiting case of a fracturing fluid. Thus, depending on the application, the VES is added to the aqueous fluid in concentrations ranging from about 0.5 to 12.0% by volume of the total aqueous fluid (5 to 120 gallons per thousand gallons (gptg)). The most preferred range for the present invention is about 1.0 to about 6.0% by volume VES product.
- Propping agents are typically added to the base fluid after the addition of the VES. Propping agents include, but are not limited to, for instance, quartz sand grains, glass and ceramic beads, bauxite grains, walnut shell fragments, aluminum pellets, nylon pellets, and the like. The propping agents are normally used in concentrations between about 1 to 14 pounds per gallon (120-1700 kg/m3) of fracturing fluid composition, but higher or lower concentrations can be used as the fracture design required. The base fluid can also contain other conventional additives common to the well service industry such as water wetting surfactants, non-emulsifiers and the like. As noted, in this invention, the base fluid can also contain other non-conventional additives which can contribute to the bacteria-breaking action of the VES fluid, and which are added for that purpose.
- In one non-limiting embodiment of the invention, suitable bacteria for use in the invention that directly digest viscoelastic surfactants include, but are not necessarily limited to, those in the classes Enterobacter, Enterococcus, Pseudomonas, Bacillus, Leptospirillum, Clostridium, Arthrobacter, Rhodobacter, Rhodococcus, Micrococcus, Serratia, Thermoanaerobacter, Thiobacillus, Pyrococcus, Lactobacillus, Achromobacter, Propionibacterium, Thermomicrobium, Nitrobacter, Nitrosomonas, Sulfolobus, Methanobacterium, Methanococcus, Bacteroides, Fusobacterium, Syntrophus, Acetogenium, Actinomyces, Acetobacter, Citrobacter, Alteromonas, Acinetobacter, Flavobacterium, Corynebacterium, and the like and mixtures thereof.
- In one non-limiting embodiment of the invention, suitable bacteria for use in the embodiment of the invention that directly digest viscoelastic surfactants include, but are not necessarily limited to, Arthrobacter globiformis, Enterobacter colacae, Lactobacillus sporogenes, Lactobacillus bulgaricus, Lactobacillus acidophillus, Pseudomonas fluorescens, Pseudomonas aeruginosa, Actinomyces israeli, Pseudomonas putida, Nitrobacter vulgaris, Arthrobactor M153B, Bacillus megaterium, Thiobacillus novellus, Bacillus subtilis, Bacillus licheniformis, Clostridium pasteurianum, Corynebacterium glucuronolyticum, Enterococcus faecalis, Pyrococcus abyssi, Rhodococcus ST-5, Rhodococcus 33, Rhodococcus H13-A, Thermoanaerobacter ethanolicus, Thermoanaerobacter mathranii, Nitrosomonas europaea, Propionibacterium propionicus, Rhodobacter sphaeriodes, Clostridium thermocellum, Clostridium ATCC #53797, Clostridium ATCC #53793, Corynebacterium hydrocarbolastus, Acetomicrobium flavidum, Acetobacter pasteurianus, Serratia marcescens, Acetobacter aceti, Achromobacter xylosoxidans, and mixtures thereof.
- In another non-limiting embodiment where glycol is present or added to the VES-gelled fluid, suitable glycol-splitting bacteria may include, but are not necessarily limited to, Pseudomonas fluorescens, Pseudomonas stutzeri, Pseudomonas aeruginosa, Pseudomonas putida, Acinetobacter anitratus, Bacillus subtilis, Bacillus licheniformis, Clostridium pasteurianum, Rhodococcus ST-5, and mixtures thereof.
- In another non-limiting embodiment of the invention, fluid temperature, pressure, and pH can aid microbe metabolic activity. Increase in temperature up to as much as 250° F. (121° C.) and fluid pH between about 4.0 and about 9.0 enhances microbe metabolic activity. Increase in fluid pressure up to as much as 22,000 psi (152 kPa) can also enhance microbe metabolic activity.
- In another non-limited embodiment inorganic and organic nutrients are added to aid microbe metabolic activity. Inorganic nutrients may include, but are not necessarily limited to, nitrites, nitrates, sulfites, sulfates, chlorides, phosphates, and mixtures thereof. Organic nutrients may include, but are not necessarily limited to, urea, amino acids, proteins, lipids, tryptic soy broth (TSB), agar, glucose, sugars, polysaccharides, turpenes, phosphonates, glycols, and mixtures thereof.
- In the embodiments where enzymes, such as lipases, are produced by bacteria and other microorganisms, the by-products, also termed bio-products, can be selectively extracted or pulled out of the microorganism solution, as is common with enzyme products. These bio-products can then be pumped or otherwise directed into the VES surfactant to reduce its viscosity. The producing biochemical agent, such as bacteria or fungus would not itself be delivered to the VES-gelled fluid.
- Besides lipase, other suitable enzymes include, but are not necessarily limited to oxidase, hydrolase, transferase, and mixtures thereof.
- The biochemical agent may be a fungi including, but not necessarily limited to, Candida antarctica, Candida tropicalis, Candida rugosa, Candida albicans, Candida cylindralea, Trichoderma reesei, Aspergillus niger, Aspergillus oryzae, Saccharomyces cerevisiae, Saccharomyces diastaticus, and mixtures thereof.
- Any or all of the above biologically produced by-products may be provided in an extended release form such as encapsulation by polymer or otherwise, pelletization with binder compounds, absorbed on a porous substrate, and/or a combination thereof. Specifically, the enzymes and other bio-products may be encapsulated to permit slow or timed release thereof. In non-limiting examples, the coating material may slowly dissolve or be removed by any conventional mechanism, or the coating could have very small holes or perforations therein for the bio-products within to diffuse through slowly. For instance, polymer encapsulation coatings such as used in fertilizer technology available from Scotts Company, specifically POLY-S® product coating technology, or polymer encapsulation coating technology from Fritz Industries could possibly be adapted to the methods of this invention. The bio-produced enzymes could also be absorbed onto zeolites, such as Zeolite A, Zeolite 13X, Zeolite DB-2 (available from PQ Corporation, Valley Forge, Pa.) or Zeolites Na-SKS5, Na-SKS6, Na-SKS7, Na-SKS9, Na-SKS10, and Na-SKS13, (available from Hoechst Aktiengesellschaft, now an affiliate of Aventis S.A.), and other porous solid substrates such as MICROSPONGE™ (available from Advanced Polymer Systems, Redwood, Calif.) and cationic exchange materials such as bentonite clay. Further, the bio-products may be both absorbed into and onto porous substrates and then encapsulated or coated, as described above.
- It is difficult, if not impossible, to specify with accuracy the amount of the biochemical agent and/or biologically produced by-product that should be added to a particular aqueous fluid gelled with viscoelastic surfactants to sufficiently or fully break the gel, in general. For instance, a number of factors affect this proportion, including but not necessarily limited to, the particular VES used to gel the fluid; the particular biochemical agent used; the temperature of the fluid; the downhole pressure of the fluid, the starting pH of the fluid; and the complex interaction of these various factors. Nevertheless, in order to give an approximate feel for the proportions of the bacteria to be used in the method of the invention, the amount of biochemical agent added may range from about 0.01 to about 20.0 volume %, based on the total weight of the fluid; preferably from about 0.1 to about 2.0 volume %.
- In a typical fracturing operation, the fracturing fluid of the invention is pumped at a rate sufficient to initiate and propagate a fracture in the formation and to place propping agents into the fracture. A typical fracturing treatment would be conducted by mixing a 20.0 to 60.0 gallon/1000 gal water (volume/volume—the same values may be used with any SI volume unit, e.g. 60.0 liters/-1000 liters) amine oxide VES, such as SurFRAQ, in a 2% (w/v) (166 lb/1000 gal, 19.9 kg/m3) KCl solution at a pH ranging from about 6.0 to about 8.0. The bio-chemical agent or agents are added after the VES addition.
- The various embodiments of the invention are summarized below.
-
- 1. The viscosity of the VES-gelled fluid may be reduced by the use of a biochemical agent (bacteria, fungus, enzyme, etc.) that will directly attack and break down the VES surfactant, such as by digestion, using the viscoelastic surfactant molecule as its carbon source. Suitable bacteria that can lower viscosity by this mechanism include, but are not necessarily limited to Pseudomonas fluorescens, Pseudomonas stutzeri, Enterobacter cloacae, Corynebacterium glucoronlyticum, Enterococcus faecalis, Pseudomonas aerugnosa, Pseudomonas putida, Acinetobacter anitratus, Serratia marcescens, Nitrobacter vulgaris, Clostridium thermocellum, Thermoanaerobacter ethanolicus, Clostridium pasteurianum, Rhodococcus ST-5, and mixtures thereof.
- 2. The viscosity of the VES-gelled fluid may be reduced by a biochemical agent (bacteria, fungus, enzyme, etc.) that will directly attack and break down another component in the fluid besides the VES surfactant. This other component could be one that is normally added to the VES fluid in the normal course of operations, such as a glycol solvent for the VES surfactant itself, or it could be added solely for the purpose of providing a food source, i.e. carbon source or energy source for the biochemical agent, such as sugars and proteins. Such compounds include, but are not necessarily limited to, alcohols, monoalkyl alcohol polymers, alcohol fatty acids, alkyl fatty acids, glycols, starches, potassium formate or other formate, polysaccharides, sugars, sugar chelants, sugar alcohols, aliphatic alcohols, reservoir crude oils, proteins, VES stabilizers, amino acids, acetates, isocyanates, esters, lactates, butyrates, turpenes, propionates, salicylates, phosphonates, phospholipids, hexaonates, nitrilotriacetic acid, ethylenediaminetetraacetic acid, polyaspartates, amine chelant compounds (e.g. hydroxyethyliminodiacetic acid), pyrrolidone compounds, and mixtures thereof. In one non-limiting example, the biochemical agent could operate on the propylene glycol in SurFRAQ to produce one or more bio-alcohols or bio-surfactants that will directly degrade the VES gel. The alcohol or bio-surfactant causes the micelles to change from rod-shaped to sphere-shaped, or disperses or disaggregates the micellar structure of the VES-gelled surfactant.
- 3. The viscosity of the VES-gelled fluid may be reduced by a biochemical agent (bacteria, fungus, enzyme, etc.) that will disaggregate, disorganize, rearrange or otherwise disrupt the VES micellar structure to the extent that the viscosity is reduced.
- 4. The viscosity of the VES-gelled fluid may have its viscosity reduced by use of a biochemical agent, in this case a bacteria or fungus, which secrets an enzyme that in turn reduces the viscosity of the VES-gelled fluid by one of the discussed mechanisms, namely (a) directly attacking and digesting or otherwise breaking down the VES itself, or producing a by-product that does so, (b) attacking or breaking down a component of the fluid other than the VES, such as an alcohol, glycol, turpene or the like which is already present in the fluid, or is added for the specific purpose of reaction with the generated enzyme, or the enzyme produces a by-product that does so, and/or (c) disaggregating the VES micelles, or producing a by-product that does so.
- 5. The rate of microbe metabolic activity of the bacteria, fungi, and/or enzymes can be enhanced by an increase in fluid temperature, such as up to 180° F. (82° C.); by controlling fluid pH, such as to about 7.5 pH; and by increasing fluid pressure, such as pressures greater than about 600 psi (4.1 kPa). In one non-limiting embodiment of the invention, the pH adjustment is to a range between about 2.0 and about 11.0, preferably between about 3.0 and about 9.0 pH.
- It will be appreciated that one biochemical agent, such as a particular bacteria type, may function to reduce viscosity by more than one mechanism in a particular VES system. For instance, a particular bacteria type may directly digest the VES itself, while also digesting propylene glycol that may be present to produce lipase that also acts on the VES, such as by catalysis, to also break down the surfactant molecules. Alternatively more than one bacteria type could be used, where the different bacteria operate by the same or different mechanisms as outlined above. Further, a bacteria and an enzyme could be used together. Other mechanism combinations are expected to be useful as well.
- In one embodiment of the invention, the method of the invention is practiced in the absence of gel-forming polymers and/or gels or aqueous fluid having their viscosities enhanced by polymers.
- Suitable bio-surfactants include, but are not necessarily limited to the group of glycolipid, phospholipids, lipopeptide, peptidolipids, neutral lipids, polysaccharide-fatty acid complexes, polysaccharide-protein complexes, and mixtures thereof. Suitable bio-solvents include, but are not necessarily limited to the group of methanol, ethanol, butanol, acetone, and mixtures thereof. Suitable bio-acids include, but are not necessarily limited to the group of formic, acetic, lactic, pyruvic, nitric acids, and mixtures thereof.
- The present invention will be explained in further detail in the following non-limiting Examples that are only designed to additionally illustrate the invention but not narrow the scope thereof. These particular Examples further illustrate the embodiment of the invention where bacteria are the biochemical agent used to reduce the viscosity of a VES-gelled fluid by directly digesting the VES surfactant.
- To a Waring blender were added 500 mls of distilled water, 10 grams of KCl, followed by 5.0 to 10.0 mis of viscoelastic surfactant (such as SurFRAQ TAPAO available from Baker Hughes, used in the Examples). The blender was used to mix the components on a very slow speed, to prevent foaming, for about 15 minutes to viscosify the VES fluid. Mixed samples were then placed into 500 ml wide mouth Nalgene plastic bottles. VES-breaking bacteria were then added to each sample, and the sample was shaken vigorously for 60 seconds. The samples were placed in a water bath at the indicated temperature and visually observed every 30 minutes for viscosity reduction difference between the samples. The sample with fast-acting bacteria such as Enterobacter colacae from Micro-TES Inc. lost viscosity noticeably quickly (Example 1;
FIG. 1 ). Most gel breaking occurred over the first 24 hour period with additional breaking continuing during a 48 to 96 hour period. - Viscosity reduction can be visually detected. Shaking the samples and comparing the elasticity of gel and rate of air bubbles rising out of the fluid can be used to estimate the amount of viscosity reduction observed. Measurements using a Fann 35 rheometer at 100 rpm can also be used to acquire quantitative viscosity reduction of each sample. The preferred method of measurement is by using of a
Fann 50 rheometer, where increases in temperature and pressure can be applied, simulating down hole temperature. The pressure limitation of aFann 50 rheometer is 1000 psi (6.9 kPa). -
FIGS. 1-3 show the results of Examples 1-3, respectively, charting the effects of using the indicated bacteria at 10% by volume concentrations. It may be seen that the SurFRAQ viscosity broke most quickly with Enterobacter colacae, losing most of its viscosity in the first 2-3 hours (Ex. 1,FIG. 1 ). Viscosity reduction was also more complete in this Example 1. Pseudomonas fluorescens (Ex. 2,FIG. 2 ) and Pseudomonas aeruginosa (Ex. 3,FIG. 3 ) gave viscosity reduction as well, but more gradually than Enterobacter colacae. All Examples were run using 2% TAPAO in 3% KCl. Example 1 (FIG. 1 ) was conducted at 125° F. (52° C.); Examples 2 and 3 (FIGS. 2 and 3 , respectively) were conducted at 75° F. (24° C.). -
FIGS. 4 and 9 show the results of Examples 4 and 9, respectively. Both Examples use 6.0% bv TAPAO surfactant at 180° F. (82° C.) and 950 psi (6.5 kPa) on aFann 50 rheometer. Both compositions contained 3% KCl. The order of mixing was: DI water, KCl, NH4NO3, TSB, Limonene (if used), EPA X-3C, TAPAO. The nutrient package for both Examples was 30.0 pptg (3.4 kg/m3) NH4PO3, 30 pptg (3.4 kg/m3) NH4NO3, and 15.0 pptg (1.7 kg/M3), Tryptic Soy Broth (TSB). -
FIG. 4 shows a highly modified strain of Pseudomonas aeruginosa esmeralda X-3C from Micro-TES, Inc., can completely degrade the TAPAO viscosity within 10 to 12 days at 1.0% to 3.0% bv addition.FIG. 9 shows the EPA X-3C strain at 1.0% concentration in the 6% bv TAPAO with and without 0.2% Limonene. The data show enhanced microbe metabolic activity in the Limonene addition test. -
FIGS. 5-8 show the results of Examples 5-8, respectively, charting the effects of various bacteria or microbe nutrients on 6% bv TAPAO surfactant at 180° F. (82° C.) and 950 psi (6.5 kPa). It may be seen that proper selection of microbe nutrient is possible that has minimal effects on the TAPAO viscosity. - All of Examples 5-8 used a
Fann 50 rheometer at 180° F. (82° C.) at 400 psi (2.8 kPa). Examples 5-7 used 6% TAPAO, 3% KCl, 30 pptg (3.4 kg/m3) NH4PO3 and NH4NO3 combined, and 20.0 pptg (2.4 kg/m3) TSB. Example 8 used 6% TAPAO and 3% KCl with the indicated additives. EGMBE in Example 6 refers to ethylene glycol monobutyl ether. - In the foregoing specification, the invention has been described with reference to specific embodiments thereof, and has been demonstrated as effective in providing methods and compositions for a VES fracturing fluid breaker mechanism. However, it will be evident that various modifications and changes can be made thereto without departing from the broader spirit or scope of the invention as set forth in the appended claims. Accordingly, the specification is to be regarded in an illustrative rather than a restrictive sense. For example, specific combinations of viscoelastic surfactants, biochemical agents, and other components falling within the claimed parameters, but not specifically identified or tried in a particular composition or fluid, are anticipated to be within the scope of this invention.
Claims (24)
1-32. (canceled)
33. An aqueous fluid comprising:
water;
at least one viscoelastic surfactant (VES) in an amount effective to increase the viscosity of the aqueous fluid;
at least one biochemical agent in an amount effective to reduce the viscosity of the gelled aqueous fluid, where the biochemical agent is selected from the group consisting of bacteria, fungi, enzymes, and combinations thereof, where the biochemical agent reduces the viscosity of the gelled aqueous fluid by disaggregating or rearranging a micelle structure of the VES.
34. (canceled)
35. The fluid of claim 33 where the biochemical agent is a bacteria type that digests the VES directly.
36. The fluid of claim 33 where the biochemical agent is selected from the group consisting of bacteria, fungi, and mixtures thereof, that have been bio-technically engineered by a technique selected from the group consisting of growth challenge, culture for selective gene expression, genetic modification through gene splicing techniques, and combinations thereof.
37. The fluid of claim 33 where the biochemical agent is selected from the group consisting of bacteria and fungi that digests a component of the fluid other than the VES to produce a by-product that in turn degrades the VES surfactant.
38. The fluid of claim 33 where the component is selected from the group consisting of alcohols, monoalcohol polymers, alcohol fatty acids, alkyl fatty acids, glycols, starches, potassium formate or other formate, polysaccharides, sugars, sugar chelants, sugar alcohols, aliphatic alcohols, reservoir crude oils, proteins, VES stabilizers, amino acids, acetates, phosphonates, phospholipids, lactates, isocyanates, esters, turpenes, butyrates, propionates, salicylates, hexaonates, nitrilotriacetic acid, ethylenediaminetetra-acetic acid, amino chelant compounds, polyaspartates, pyrrolidone compounds, and mixtures thereof.
39. The fluid of claim 37 where the by-product is an enzyme selected from the group of enzymes that (a) catalyze a reaction to break down the VES directly, and (b) catalyze a reaction utilizing another component of the fluid other than VES to produce a by-product that in turn degrades the VES surfactant.
40. The fluid of claim 39 where the enzyme is lipase.
41. The fluid of claim 33 where the VES is selected from the group consisting of amines, amine salts, quaternary ammonium salts, amidoamine oxides and amine oxides.
42. The fluid of claim 33 where the VES is tallow amido propylamine oxide (TAPAO).
43. The fluid of claim 33 where the VES is erucyl bis-(2-hydroxyethyl)methyl ammonium chloride.
44. The fluid of claim 33 where the biochemical agent is bacteria selected from the group consisting of the classes Enterobacter, Enterococcus, Pseudomonas, Bacillus, Leptospirillum, Clostridium, Arthrobacter, Rhodobacter, Rhodococcus, Micrococcus, Serratia, Thermoanaerobacter, Thiobacillus, Pyrococcus, Lactobacillus, Achromobacter, Propionibacterium, Thermomicrobium, Nitrobacter, Nitrosomonas, Sulfolobus, Methanobacterium, Methanococcus, Bacteroides, Fusobacterium, Syntrophus, Acetogenium, Actinomyces, Acetobacter, Citrobacter, Alteromonas, Acinetobacter, Flavobacterium, Corynebacterium, and mixtures thereof.
45. The fluid of claim 33 where the biochemical agent is bacteria selected from the group consisting of Arthrobacter globiformis, Enterobacter colacae, Lactobacillus sporogenes, Lactobacillus bulgaricus, Lactobacillus acidophillus, Pseudomonas fluorescens, Pseudomonas aeruginosa, Actinomyces israeli, Pseudomonas putida, Nitrobacter vulgaris, Arthrobactor M153B, Bacillus megaterium, Thiobacillus novellus, Bacillus subtilis, Bacillus licheniformis, Clostridium pasteurianum, Corynebacterium glucuronolyticum, Enterococcus faecalis Pyrococcus abyssi, Rhodococcus ST-5, Rhodococcus 33, Rhodococcus H13-A, Thermoanaerobacter ethanolicus, Thermoanaerobacter mathranii, Nitrosomonas europaea, Propionibacterium propionicus, Rhodobacter sphaeriodes, Clostridium thermocellum, Clostridium ATCC #53797, Clostridium ATCC #53793, Corynebacterium hydrocarbolastus, Acetomicrobium flavidum, Acetobacter pasteurianus, Serratia marcescens, Acetobacter aceti, Achromobacter xylosoxidans, and mixtures thereof.
46. The fluid of claim 33 where the microbe metabolic activity of the biochemical agent can be enhanced by a parameter selected from the group consisting of temperature, pressure, pH adjustment of the fluid to between about 2.0 and 11.0, and combinations thereof.
47. The fluid of claim 33 where the amount of biochemical agent ranges from about 0.01 to about 20.0 percent by volume based on the total volume of fluid.
48. An aqueous fluid comprising
water;
at least one viscoelastic surfactant (VES), in an amount effective to increase the viscosity of the aqueous fluid; and
bacteria, in an amount effective to reduce the viscosity of the gelled aqueous fluid after the viscosity of the aqueous fluid has been increased, where the bacteria reduces the viscosity of the gelled aqueous fluid by disaggregating or rearranging a micelle structure of the VES.
49. The fluid of claim 48 where the VES is selected from the group consisting of amines, amine salts, quaternary ammonium salts, and amine oxides.
50. The fluid of claim 48 where the VES is tallow amido propylamine oxide (TAPAO).
51. The fluid of claim 48 where the bacteria is selected from the group consisting of Arthrobacter globiformis, Enterobacter colacae, Lactobacillus sporogenes, Lactobacillus bulgaricus, Lactobacillus acidophillus, Pseudomonas fluorescens, Pseudomonas aeruginosa, Actinomyces israeli, Pseudomonas putida, Nitrobacter vulgaris, Arthrobactor M153B, Bacillus megaterium, Thiobacillus novellus, Bacillus subtilis, Bacillus licheniformis, Clostridium pasteurianum, Corynebacterium glucuronolyticum, Enterococcus faecalis, Pyrococcus abyssi, Rhodococcus ST-5, Rhodococcus 33, Rhodococcus H13A, Thermoanaerobacter ethanolicus, Thermoanaerobacter mathranii, Nitrosomonas europaea, Propionibacterium propionicus, Rhodobacter sphaeriodes, Clostridium thermocellum, Clostridium ATCC #53797, Clostridium ATCC #53793, Corynebacterium hydrocarbolastus, Acetomicrobium flavidum, Acetobacter pasteurianus, Serratia marcescens, Acetobacter aceti, Achromobacter xylosoxidans, and mixtures thereof.
52. The fluid of claim 48 where the bacteria has been bio-technically engineered by a technique selected from the group consisting of growth challenge, culture for selective gene expression, genetic modification through gene splicing techniques, and combinations thereof.
53. The fluid of claim 48 where the bacteria is a type that attacks the VES directly.
54. The fluid of claim 48 where the amount of bacteria present ranges from about 0.01 to about 20.0 percent by volume based on the total volume of fluid.
55. The fluid of claim 48 where the microbe metabolic activity of the bacteria can be enhanced by a parameter selected from the group consisting of temperature, pressure, pH adjustment of the fluid to between about 2.0 and 11.0, and combinations thereof.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/438,856 US20060281167A1 (en) | 2000-10-31 | 2006-05-23 | Bacteria-based and enzyme-based mechanisms and products for viscosity reduction breaking of viscoelastic fluids |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US24480400P | 2000-10-31 | 2000-10-31 | |
US10/041,528 US7052901B2 (en) | 2000-10-31 | 2001-10-24 | Bacteria-based and enzyme-based mechanisms and products for viscosity reduction breaking of viscoelastic fluids |
US11/438,856 US20060281167A1 (en) | 2000-10-31 | 2006-05-23 | Bacteria-based and enzyme-based mechanisms and products for viscosity reduction breaking of viscoelastic fluids |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/041,528 Division US7052901B2 (en) | 2000-10-31 | 2001-10-24 | Bacteria-based and enzyme-based mechanisms and products for viscosity reduction breaking of viscoelastic fluids |
Publications (1)
Publication Number | Publication Date |
---|---|
US20060281167A1 true US20060281167A1 (en) | 2006-12-14 |
Family
ID=22924168
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/041,528 Expired - Lifetime US7052901B2 (en) | 2000-10-31 | 2001-10-24 | Bacteria-based and enzyme-based mechanisms and products for viscosity reduction breaking of viscoelastic fluids |
US11/438,856 Abandoned US20060281167A1 (en) | 2000-10-31 | 2006-05-23 | Bacteria-based and enzyme-based mechanisms and products for viscosity reduction breaking of viscoelastic fluids |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/041,528 Expired - Lifetime US7052901B2 (en) | 2000-10-31 | 2001-10-24 | Bacteria-based and enzyme-based mechanisms and products for viscosity reduction breaking of viscoelastic fluids |
Country Status (5)
Country | Link |
---|---|
US (2) | US7052901B2 (en) |
AU (1) | AU785206B2 (en) |
CA (1) | CA2360459A1 (en) |
GB (1) | GB2368602B (en) |
NO (1) | NO20015313L (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090137429A1 (en) * | 2007-11-26 | 2009-05-28 | Rimassa Shawn Mccleskey | Temperature-Extended Enzyme Systems |
WO2018064320A1 (en) * | 2016-09-30 | 2018-04-05 | Baker Hughes, A Ge Company, Llc | Biologically mediated precipitation of carbonates for use in oilfield applications |
Families Citing this family (71)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU5793600A (en) * | 1999-09-22 | 2001-03-29 | Baker Hughes Incorporated | Hydraulic fracturing using non-ionic surfactant gelling agent |
KR100876765B1 (en) * | 2002-05-10 | 2009-01-07 | 삼성전자주식회사 | Apparatus for retransmitting data in mobile communication system and method thereof |
GB2412391A (en) * | 2004-03-27 | 2005-09-28 | Cleansorb Ltd | Process for disruption of filter cakes |
US7534745B2 (en) * | 2004-05-05 | 2009-05-19 | Halliburton Energy Services, Inc. | Gelled invert emulsion compositions comprising polyvalent metal salts of an organophosphonic acid ester or an organophosphinic acid and methods of use and manufacture |
US8196659B2 (en) * | 2004-05-13 | 2012-06-12 | Baker Hughes Incorporated | Multifunctional particles for downhole formation treatments |
US9029299B2 (en) * | 2004-05-13 | 2015-05-12 | Baker Hughes Incorporated | Methods and compositions for delayed release of chemicals and particles |
US7723272B2 (en) * | 2007-02-26 | 2010-05-25 | Baker Hughes Incorporated | Methods and compositions for fracturing subterranean formations |
US7703531B2 (en) * | 2004-05-13 | 2010-04-27 | Baker Hughes Incorporated | Multifunctional nanoparticles for downhole formation treatments |
US8226830B2 (en) | 2008-04-29 | 2012-07-24 | Baker Hughes Incorporated | Wastewater purification with nanoparticle-treated bed |
US8499832B2 (en) * | 2004-05-13 | 2013-08-06 | Baker Hughes Incorporated | Re-use of surfactant-containing fluids |
US8567502B2 (en) * | 2004-05-13 | 2013-10-29 | Baker Hughes Incorporated | Filtration of dangerous or undesirable contaminants |
US7879767B2 (en) * | 2004-06-03 | 2011-02-01 | Baker Hughes Incorporated | Additives for hydrate inhibition in fluids gelled with viscoelastic surfactants |
US7595284B2 (en) * | 2004-06-07 | 2009-09-29 | Crews James B | Metal-mediated viscosity reduction of fluids gelled with viscoelastic surfactants |
US7939472B2 (en) * | 2004-06-07 | 2011-05-10 | Baker Hughes Incorporated | Metal-mediated viscosity reduction of fluids gelled with viscoelastic surfactants |
US7696134B2 (en) | 2005-03-16 | 2010-04-13 | Baker Hughes Incorporated | Unsaturated fatty acids and mineral oils as internal breakers for VES-gelled fluids |
US7696135B2 (en) | 2005-03-16 | 2010-04-13 | Baker Hughes Incorporated | Use of oil-soluble surfactants as breaker enhancers for VES-gelled fluids |
US7645724B2 (en) * | 2005-03-16 | 2010-01-12 | Baker Hughes Incorporated | Compositions and use of mono- and polyenoic acids for breaking VES-gelled fluids |
US7261160B2 (en) * | 2005-09-13 | 2007-08-28 | Halliburton Energy Services, Inc. | Methods and compositions for controlling the viscosity of viscoelastic surfactant fluids |
US20070060482A1 (en) * | 2005-09-13 | 2007-03-15 | Halliburton Energy Services, Inc. | Methods and compositions for controlling the viscosity of viscoelastic surfactant fluids |
US7543646B2 (en) * | 2006-07-31 | 2009-06-09 | Baker Hughes Incorporated | Suspension of concentrated particulate additives containing oil for fracturing and other fluids |
US9120964B2 (en) | 2006-08-04 | 2015-09-01 | Halliburton Energy Services, Inc. | Treatment fluids containing biodegradable chelating agents and methods for use thereof |
US8567503B2 (en) * | 2006-08-04 | 2013-10-29 | Halliburton Energy Services, Inc. | Composition and method relating to the prevention and remediation of surfactant gel damage |
US9027647B2 (en) | 2006-08-04 | 2015-05-12 | Halliburton Energy Services, Inc. | Treatment fluids containing a biodegradable chelating agent and methods for use thereof |
US9127194B2 (en) | 2006-08-04 | 2015-09-08 | Halliburton Energy Services, Inc. | Treatment fluids containing a boron trifluoride complex and methods for use thereof |
US8567504B2 (en) | 2006-08-04 | 2013-10-29 | Halliburton Energy Services, Inc. | Composition and method relating to the prevention and remediation of surfactant gel damage |
US7741252B2 (en) * | 2006-08-07 | 2010-06-22 | Schlumberger Technology Corporation | Surfactants not toxic to bacteria |
US7635028B2 (en) * | 2006-09-18 | 2009-12-22 | Schlumberger Technology Corporation | Acidic internal breaker for viscoelastic surfactant fluids in brine |
US8067342B2 (en) * | 2006-09-18 | 2011-11-29 | Schlumberger Technology Corporation | Internal breakers for viscoelastic surfactant fluids |
US7287590B1 (en) * | 2006-09-18 | 2007-10-30 | Schlumberger Technology Corporation | Internal breaker for oilfield fluids |
US8481462B2 (en) | 2006-09-18 | 2013-07-09 | Schlumberger Technology Corporation | Oxidative internal breaker system with breaking activators for viscoelastic surfactant fluids |
US8012914B2 (en) * | 2006-10-27 | 2011-09-06 | Halliburton Energy Services, Inc. | Ortho ester breakers for viscoelastic surfactant gels and associated methods |
US8008236B2 (en) | 2006-10-27 | 2011-08-30 | Halliburton Energy Services, Inc. | Ortho ester breakers for viscoelastic surfactant gels and associated methods |
US8220548B2 (en) * | 2007-01-12 | 2012-07-17 | Halliburton Energy Services Inc. | Surfactant wash treatment fluids and associated methods |
US20080169103A1 (en) * | 2007-01-12 | 2008-07-17 | Carbajal David L | Surfactant Wash Treatment Fluids and Associated Methods |
US8056630B2 (en) * | 2007-03-21 | 2011-11-15 | Baker Hughes Incorporated | Methods of using viscoelastic surfactant gelled fluids to pre-saturate underground formations |
US8616284B2 (en) | 2007-03-21 | 2013-12-31 | Baker Hughes Incorporated | Methods for removing residual polymer from a hydraulic fracture |
US7942201B2 (en) * | 2007-05-11 | 2011-05-17 | Clearwater International, Llc | Apparatus, compositions, and methods of breaking fracturing fluids |
GB2450204B (en) * | 2007-05-11 | 2011-10-12 | Clearwater Int Llc | Apparatus, Compositions, and methods of breaking fracturing fluids |
US7527103B2 (en) * | 2007-05-29 | 2009-05-05 | Baker Hughes Incorporated | Procedures and compositions for reservoir protection |
US7989404B2 (en) | 2008-02-11 | 2011-08-02 | Clearwater International, Llc | Compositions and methods for gas well treatment |
US7906464B2 (en) | 2008-05-13 | 2011-03-15 | Halliburton Energy Services, Inc. | Compositions and methods for the removal of oil-based filtercakes |
US7833943B2 (en) | 2008-09-26 | 2010-11-16 | Halliburton Energy Services Inc. | Microemulsifiers and methods of making and using same |
US8980800B2 (en) * | 2008-12-08 | 2015-03-17 | Baker Hughes Incorporated | Methods for reducing fluid loss of a viscoelastic surfactant gel into a subterranean formation |
US8186433B2 (en) * | 2009-08-07 | 2012-05-29 | Baker Hughes Incorporated | Methods of gravel packing long interval wells |
US8347960B2 (en) * | 2010-01-25 | 2013-01-08 | Water Tectonics, Inc. | Method for using electrocoagulation in hydraulic fracturing |
US8881823B2 (en) | 2011-05-03 | 2014-11-11 | Halliburton Energy Services, Inc. | Environmentally friendly low temperature breaker systems and related methods |
NO20110794A1 (en) | 2011-05-31 | 2012-12-03 | Goe Ip As | Procedure for Microbial Control of Injection Fluid in a Hydrocarbon Reservoir |
US8778852B2 (en) | 2012-01-24 | 2014-07-15 | Baker Hughes Incorporated | Breaking viscoelastic surfactant gelled fluids using breaker nanoparticles |
US9334716B2 (en) | 2012-04-12 | 2016-05-10 | Halliburton Energy Services, Inc. | Treatment fluids comprising a hydroxypyridinecarboxylic acid and methods for use thereof |
CA2885856A1 (en) | 2012-09-25 | 2014-04-03 | Halliburton Energy Services, Inc. | Determining oil viscosity based on biodegradation |
US20140090849A1 (en) * | 2012-09-28 | 2014-04-03 | Baker Hughes Incorporated | Methods and Compositions for In Situ Microemulsions |
US9670399B2 (en) | 2013-03-15 | 2017-06-06 | Halliburton Energy Services, Inc. | Methods for acidizing a subterranean formation using a stabilized microemulsion carrier fluid |
US10190038B2 (en) * | 2014-04-21 | 2019-01-29 | Baker Hughes, A Ge Company, Llc | Method of using sophorolipids in well treatment operations |
US9550937B2 (en) * | 2014-07-31 | 2017-01-24 | Baker Hughes Incorporated | Methods and compositions for decreasing the viscosity of hydrocarbon-based fluids during refining |
JP2018509516A (en) | 2015-03-24 | 2018-04-05 | テラヴィア ホールディングス, インコーポレイテッド | Microalgae composition and use thereof |
US10214681B2 (en) | 2015-04-01 | 2019-02-26 | Schlumberger Technology Corporation | Method for treating a subterranean formation |
GB201511218D0 (en) * | 2015-06-25 | 2015-08-12 | Goe Ip As | Reservoir treatments |
US11584915B2 (en) * | 2017-07-12 | 2023-02-21 | Mc (Us) 3 Llc | Compositions and methods for remediation of sulfate reducing prokaryotes |
CN110965974A (en) * | 2018-09-29 | 2020-04-07 | 中国石油天然气股份有限公司 | Method for modifying and displacing oil by activating microorganisms in situ in oil reservoir after polymer flooding |
US11319478B2 (en) | 2019-07-24 | 2022-05-03 | Saudi Arabian Oil Company | Oxidizing gasses for carbon dioxide-based fracturing fluids |
WO2021138355A1 (en) | 2019-12-31 | 2021-07-08 | Saudi Arabian Oil Company | Viscoelastic-surfactant fracturing fluids having oxidizer |
US11352548B2 (en) | 2019-12-31 | 2022-06-07 | Saudi Arabian Oil Company | Viscoelastic-surfactant treatment fluids having oxidizer |
CN111621487A (en) * | 2020-06-11 | 2020-09-04 | 中国石油大学(华东) | Preparation and application method of microbial low-temperature gel breaking enzyme |
US11542815B2 (en) | 2020-11-30 | 2023-01-03 | Saudi Arabian Oil Company | Determining effect of oxidative hydraulic fracturing |
US12071589B2 (en) | 2021-10-07 | 2024-08-27 | Saudi Arabian Oil Company | Water-soluble graphene oxide nanosheet assisted high temperature fracturing fluid |
CN116144333B (en) * | 2021-11-23 | 2024-01-30 | 中国石油天然气股份有限公司 | Super-thick oil biochemical viscosity reducer and preparation method thereof |
US12025589B2 (en) | 2021-12-06 | 2024-07-02 | Saudi Arabian Oil Company | Indentation method to measure multiple rock properties |
US12012550B2 (en) | 2021-12-13 | 2024-06-18 | Saudi Arabian Oil Company | Attenuated acid formulations for acid stimulation |
CN114854620B (en) * | 2022-03-08 | 2024-06-04 | 黄河三角洲京博化工研究院有限公司 | Degradation strain of N-methylpyrrolidone and application thereof |
CN117654625B (en) * | 2024-01-31 | 2024-04-02 | 四川大学 | Natural polysaccharide modified biological iron-based catalytic material and preparation method and application thereof |
CN118291115B (en) * | 2024-05-28 | 2024-10-29 | 大庆斯略油田科技有限公司 | Preparation method of non-oxidative safe environment-friendly gel breaker system |
Citations (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3332487A (en) * | 1963-09-30 | 1967-07-25 | Pan American Petroleum Corp | Aerobic bacteria in oil recovery |
US3612178A (en) * | 1969-10-20 | 1971-10-12 | Walter F Germer Jr | Method of recovering oil using flow stimulating solution |
US3800872A (en) * | 1972-10-10 | 1974-04-02 | Getty Oil Co | Methods and compositions for recovery of oil |
US4035289A (en) * | 1974-11-26 | 1977-07-12 | Societe Nationale Elf Aquitaine (Production) | Purifying treatment for effluents of mineral oil drillings |
US4292406A (en) * | 1979-09-11 | 1981-09-29 | The United States Of America As Represented By The United States Department Of Energy | Anaerobic thermophilic culture system |
US4410625A (en) * | 1982-02-04 | 1983-10-18 | The United States Of America As Represented By The Secretary Of Agriculture | Salt-tolerant microbial xanthanase and method of producing same |
US4434062A (en) * | 1979-06-11 | 1984-02-28 | Exxon Research And Engineering Co. | Oil displacement enhanced by lyotropic liquid crystals in highly saline media |
US4490471A (en) * | 1981-12-11 | 1984-12-25 | Ciba-Geigy Corporation | Microorganisms of the genus Pseudomonas and process for degrading compounds which contain methyl groups in aqueous solutions |
US4522261A (en) * | 1983-04-05 | 1985-06-11 | The Board Of Regents For The University Of Oklahoma | Biosurfactant and enhanced oil recovery |
US4735731A (en) * | 1984-06-15 | 1988-04-05 | The Dow Chemical Company | Process for reversible thickening of a liquid |
US4886746A (en) * | 1988-05-10 | 1989-12-12 | The United States Of America As Represented By The Secretary Of Agriculture | Heat-stable, salt-tolerant microbial xanthanase |
US4905761A (en) * | 1988-07-29 | 1990-03-06 | Iit Research Institute | Microbial enhanced oil recovery and compositions therefor |
US4996153A (en) * | 1988-05-10 | 1991-02-26 | The United States Of America As Represented By The Secretary Of Agriculture | Heat-stable, salt-tolerant microbial xanthanase |
US5163510A (en) * | 1991-01-29 | 1992-11-17 | Den Norske Stats Oljeselskap A.S. | Method of microbial enhanced oil recovery |
US5265674A (en) * | 1992-02-20 | 1993-11-30 | Battelle Memorial Institute | Enhancement of in situ microbial remediation of aquifers |
US5297625A (en) * | 1990-08-24 | 1994-03-29 | Associated Universities, Inc. | Biochemically enhanced oil recovery and oil treatment |
US5369031A (en) * | 1992-07-21 | 1994-11-29 | University Of Houston | Bioremediation of polar organic compounds |
US5551516A (en) * | 1995-02-17 | 1996-09-03 | Dowell, A Division Of Schlumberger Technology Corporation | Hydraulic fracturing process and compositions |
US5813466A (en) * | 1994-06-06 | 1998-09-29 | Cleansorb Limited | Delayed acid for gel breaking |
US5869325A (en) * | 1996-03-22 | 1999-02-09 | Atlantic Richfield Company | Use of bacteria to break gels used in well treatment fluids |
US5952208A (en) * | 1997-04-07 | 1999-09-14 | Energy Biosystems Corporation | Dsz gene expression in pseudomonas hosts |
US5964295A (en) * | 1996-10-09 | 1999-10-12 | Schlumberger Technology Corporation, Dowell Division | Methods and compositions for testing subterranean formations |
US5979555A (en) * | 1997-12-02 | 1999-11-09 | Akzo Nobel Nv | Surfactants for hydraulic fractoring compositions |
US6035936A (en) * | 1997-11-06 | 2000-03-14 | Whalen; Robert T. | Viscoelastic surfactant fracturing fluids and a method for fracturing subterranean formations |
US6110875A (en) * | 1997-03-07 | 2000-08-29 | Bj Services Company | Methods and materials for degrading xanthan |
US6140277A (en) * | 1998-12-31 | 2000-10-31 | Schlumberger Technology Corporation | Fluids and techniques for hydrocarbon well completion |
US6232274B1 (en) * | 1997-12-13 | 2001-05-15 | Schlumberger Technology Corporation | Viscoelastic surfactant based gelling composition for wellbore service fluids |
US6239183B1 (en) * | 1997-12-19 | 2001-05-29 | Akzo Nobel Nv | Method for controlling the rheology of an aqueous fluid and gelling agent therefor |
US6613720B1 (en) * | 2000-10-13 | 2003-09-02 | Schlumberger Technology Corporation | Delayed blending of additives in well treatment fluids |
-
2001
- 2001-10-24 US US10/041,528 patent/US7052901B2/en not_active Expired - Lifetime
- 2001-10-29 CA CA002360459A patent/CA2360459A1/en not_active Abandoned
- 2001-10-30 GB GB0126058A patent/GB2368602B/en not_active Expired - Lifetime
- 2001-10-30 NO NO20015313A patent/NO20015313L/en not_active Application Discontinuation
- 2001-10-30 AU AU85524/01A patent/AU785206B2/en not_active Expired
-
2006
- 2006-05-23 US US11/438,856 patent/US20060281167A1/en not_active Abandoned
Patent Citations (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3332487A (en) * | 1963-09-30 | 1967-07-25 | Pan American Petroleum Corp | Aerobic bacteria in oil recovery |
US3612178A (en) * | 1969-10-20 | 1971-10-12 | Walter F Germer Jr | Method of recovering oil using flow stimulating solution |
US3800872A (en) * | 1972-10-10 | 1974-04-02 | Getty Oil Co | Methods and compositions for recovery of oil |
US4035289A (en) * | 1974-11-26 | 1977-07-12 | Societe Nationale Elf Aquitaine (Production) | Purifying treatment for effluents of mineral oil drillings |
US4434062A (en) * | 1979-06-11 | 1984-02-28 | Exxon Research And Engineering Co. | Oil displacement enhanced by lyotropic liquid crystals in highly saline media |
US4292406A (en) * | 1979-09-11 | 1981-09-29 | The United States Of America As Represented By The United States Department Of Energy | Anaerobic thermophilic culture system |
US4490471A (en) * | 1981-12-11 | 1984-12-25 | Ciba-Geigy Corporation | Microorganisms of the genus Pseudomonas and process for degrading compounds which contain methyl groups in aqueous solutions |
US4410625A (en) * | 1982-02-04 | 1983-10-18 | The United States Of America As Represented By The Secretary Of Agriculture | Salt-tolerant microbial xanthanase and method of producing same |
US4522261A (en) * | 1983-04-05 | 1985-06-11 | The Board Of Regents For The University Of Oklahoma | Biosurfactant and enhanced oil recovery |
US4735731A (en) * | 1984-06-15 | 1988-04-05 | The Dow Chemical Company | Process for reversible thickening of a liquid |
US4886746A (en) * | 1988-05-10 | 1989-12-12 | The United States Of America As Represented By The Secretary Of Agriculture | Heat-stable, salt-tolerant microbial xanthanase |
US4996153A (en) * | 1988-05-10 | 1991-02-26 | The United States Of America As Represented By The Secretary Of Agriculture | Heat-stable, salt-tolerant microbial xanthanase |
US4905761A (en) * | 1988-07-29 | 1990-03-06 | Iit Research Institute | Microbial enhanced oil recovery and compositions therefor |
US5297625A (en) * | 1990-08-24 | 1994-03-29 | Associated Universities, Inc. | Biochemically enhanced oil recovery and oil treatment |
US5163510A (en) * | 1991-01-29 | 1992-11-17 | Den Norske Stats Oljeselskap A.S. | Method of microbial enhanced oil recovery |
US5265674A (en) * | 1992-02-20 | 1993-11-30 | Battelle Memorial Institute | Enhancement of in situ microbial remediation of aquifers |
US5369031A (en) * | 1992-07-21 | 1994-11-29 | University Of Houston | Bioremediation of polar organic compounds |
US5813466A (en) * | 1994-06-06 | 1998-09-29 | Cleansorb Limited | Delayed acid for gel breaking |
US5551516A (en) * | 1995-02-17 | 1996-09-03 | Dowell, A Division Of Schlumberger Technology Corporation | Hydraulic fracturing process and compositions |
US5869325A (en) * | 1996-03-22 | 1999-02-09 | Atlantic Richfield Company | Use of bacteria to break gels used in well treatment fluids |
US5964295A (en) * | 1996-10-09 | 1999-10-12 | Schlumberger Technology Corporation, Dowell Division | Methods and compositions for testing subterranean formations |
US6110875A (en) * | 1997-03-07 | 2000-08-29 | Bj Services Company | Methods and materials for degrading xanthan |
US5952208A (en) * | 1997-04-07 | 1999-09-14 | Energy Biosystems Corporation | Dsz gene expression in pseudomonas hosts |
US6035936A (en) * | 1997-11-06 | 2000-03-14 | Whalen; Robert T. | Viscoelastic surfactant fracturing fluids and a method for fracturing subterranean formations |
US5979555A (en) * | 1997-12-02 | 1999-11-09 | Akzo Nobel Nv | Surfactants for hydraulic fractoring compositions |
US6232274B1 (en) * | 1997-12-13 | 2001-05-15 | Schlumberger Technology Corporation | Viscoelastic surfactant based gelling composition for wellbore service fluids |
US6239183B1 (en) * | 1997-12-19 | 2001-05-29 | Akzo Nobel Nv | Method for controlling the rheology of an aqueous fluid and gelling agent therefor |
US6140277A (en) * | 1998-12-31 | 2000-10-31 | Schlumberger Technology Corporation | Fluids and techniques for hydrocarbon well completion |
US6613720B1 (en) * | 2000-10-13 | 2003-09-02 | Schlumberger Technology Corporation | Delayed blending of additives in well treatment fluids |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090137429A1 (en) * | 2007-11-26 | 2009-05-28 | Rimassa Shawn Mccleskey | Temperature-Extended Enzyme Systems |
WO2018064320A1 (en) * | 2016-09-30 | 2018-04-05 | Baker Hughes, A Ge Company, Llc | Biologically mediated precipitation of carbonates for use in oilfield applications |
US11193054B2 (en) | 2016-09-30 | 2021-12-07 | Baker Hughes, A Ge Company, Llc | Biologically mediated precipitation of carbonates for use in oilfield applications |
Also Published As
Publication number | Publication date |
---|---|
NO20015313D0 (en) | 2001-10-30 |
US7052901B2 (en) | 2006-05-30 |
CA2360459A1 (en) | 2002-04-30 |
AU8552401A (en) | 2002-05-23 |
GB0126058D0 (en) | 2001-12-19 |
GB2368602A (en) | 2002-05-08 |
GB2368602B (en) | 2002-12-04 |
AU785206B2 (en) | 2006-11-02 |
NO20015313L (en) | 2002-05-02 |
US20020076803A1 (en) | 2002-06-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7052901B2 (en) | Bacteria-based and enzyme-based mechanisms and products for viscosity reduction breaking of viscoelastic fluids | |
US7595284B2 (en) | Metal-mediated viscosity reduction of fluids gelled with viscoelastic surfactants | |
US7939472B2 (en) | Metal-mediated viscosity reduction of fluids gelled with viscoelastic surfactants | |
AU784261B2 (en) | Polyols for breaking borate crosslinked fracturing fluid | |
US9803130B2 (en) | Methods of activating enzyme breakers | |
US8383557B2 (en) | Dual-functional breaker for hybrid fluids of viscoelastic surfactant and polymer | |
US7615517B2 (en) | Use of mineral oils to reduce fluid loss for viscoelastic surfactant gelled fluids | |
US20080153719A1 (en) | Use of Mineral Oils, Hydrogenated Polyalphaolefin Oils and Saturated Fatty Acids for Breaking VES-Gelled Fluids | |
US20070277981A1 (en) | Stimuli-degradable gels | |
EP1869139A1 (en) | Saponified fatty acids as breakers for viscoelastic surfactant-gelled fluids | |
EP2113547A1 (en) | Viscosified fluids for remediating subterranean damage background | |
US6706769B2 (en) | Aminocarboxylic acid breaker compositions for fracturing fluids | |
US20090137429A1 (en) | Temperature-Extended Enzyme Systems | |
US8833457B2 (en) | Sulfates and phosphates as allosteric effectors in mannanohydrolase enzyme breakers | |
US7195071B2 (en) | Enzyme compositions and methods of using these compositions to degrade succinoglycan | |
CN111925784B (en) | Guanidine gum fracturing fluid microbial composite oil displacement system and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: BAKER HUGHES INCORPORATED, TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CREWS, JAMES B.;REEL/FRAME:017905/0973 Effective date: 20011023 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |