US20060257236A1 - Automated container storage and delivery system - Google Patents

Automated container storage and delivery system Download PDF

Info

Publication number
US20060257236A1
US20060257236A1 US11/488,373 US48837306A US2006257236A1 US 20060257236 A1 US20060257236 A1 US 20060257236A1 US 48837306 A US48837306 A US 48837306A US 2006257236 A1 US2006257236 A1 US 2006257236A1
Authority
US
United States
Prior art keywords
containers
pallet
layers
delivery system
placing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/488,373
Inventor
Frederick Stingel
Jeffrey Stingel
James Smith
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US11/488,373 priority Critical patent/US20060257236A1/en
Publication of US20060257236A1 publication Critical patent/US20060257236A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G1/00Storing articles, individually or in orderly arrangement, in warehouses or magazines
    • B65G1/02Storage devices
    • B65G1/04Storage devices mechanical
    • B65G1/06Storage devices mechanical with means for presenting articles for removal at predetermined position or level
    • B65G1/08Storage devices mechanical with means for presenting articles for removal at predetermined position or level the articles being fed by gravity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G1/00Storing articles, individually or in orderly arrangement, in warehouses or magazines
    • B65G1/02Storage devices
    • B65G1/04Storage devices mechanical
    • B65G1/137Storage devices mechanical with arrangements or automatic control means for selecting which articles are to be removed
    • B65G1/1373Storage devices mechanical with arrangements or automatic control means for selecting which articles are to be removed for fulfilling orders in warehouses
    • B65G1/1378Storage devices mechanical with arrangements or automatic control means for selecting which articles are to be removed for fulfilling orders in warehouses the orders being assembled on fixed commissioning areas remote from the storage areas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G11/00Chutes
    • B65G11/08Chutes with discontinuous guiding surfaces, e.g. arranged in zigzag or cascade formation
    • B65G11/085Chutes with discontinuous guiding surfaces, e.g. arranged in zigzag or cascade formation with zig-zag formations
    • B65G11/086Chutes with discontinuous guiding surfaces, e.g. arranged in zigzag or cascade formation with zig-zag formations for articles

Definitions

  • This invention relates generally to material handling systems, and more particularly to automated container storage and delivery systems.
  • SKUs stock keeping units
  • Such systems mechanize the process of filling orders for multiple containers having different SKUs in an efficient and reliable manner.
  • Such systems can require a great deal of floor space and can be costly to install and use.
  • ICSDS individual container storage and delivery system
  • VASRS vertically accumulating storage and retrieval system
  • the tower has a frame that defines first and second tower sections, each supporting a number of vertically spaced shelf trays which in turn support the containers which are stacked on the trays when loaded.
  • the shelf trays of each tower section face inwardly toward and are staggered relative to each other.
  • Each tray is mounted for pivotal movement about a horizontal axis and is operated so that when a container is dispensed from a bottom shelf tray, each higher tray beginning at the bottom and progressing upward one at a time, pivots to transfer its carton to the upwardly tilted, next lower, empty shelf tray. This process is repeated until each container has been transferred to the next lower shelf tray.
  • the shelf trays are operated to pass the container downwardly in a zig-zag fashion from one tray to another until it reaches the highest unloaded shelf tray.
  • ICSDS systems such as vertically accumulating storage and dispensing apparatus provide an efficient methodology for delivering containers having many different SKUs.
  • many customer orders require a few containers having different SKUs, and many containers having the same SKUs. That is, many customer orders require many containers of a few popular SKUs, and then various lesser amounts of containers of less popular SKUs.
  • ICSDS systems deliver the containers typically under computer control to a conveyor system which conveys the containers to a palletizer. At the palletizer, the containers are placed onto a pallet layer-by-layer. It is a time consuming process to deliver individual containers to the palletizer, and to place these containers onto the pallet, even in a fully automated system.
  • a material storage and delivery system includes an individual container storage and delivery system (ICSDS).
  • ICSDS individual container storage and delivery system
  • a palletizer places containers from the ICSDS on a pallet.
  • a layer storage and delivery system (LSDS) places full layers of containers on a pallet.
  • a robotic container delivery system (RCDS) places individual containers on a pallet.
  • a conveyor system conveys containers and pallets between the ICSDS, the palletizer, the LSDS, the RCDS, and delivery/shipping.
  • the ICSDS preferably comprises a vertically accumulating storage and retrieval system.
  • a depalletizer system can be provided for delivering containers to the ICSDS.
  • the LSDS can include a full layer storage system for storing full layers of containers, and apparatus for taking the full layers of containers and placing the full layers of containers on a pallet.
  • the LSDS can comprise a pallet magazine for delivering empty pallets to a position for receiving the full layers of containers.
  • a control system for delivering containers and pallets bearing containers between the ICSDS, the palletizer, the LSDS, the RCDS, and shipping or delivery.
  • the control system can receive inventory data and order data.
  • the inventory data preferably comprises container position data in the ICSDS.
  • the control system can determine pallet configurations from the order data.
  • the pallet configurations can comprise the number of full layers of containers having homogeneous SKU's and whether such layers can be provided by the LSDS.
  • the control system if the number of homogeneous SKU layers in the order is available from the LSDS and exceeds a predetermined threshold, can direct the LSDS to place the requested number of homogeneous SKU layers on a pallet.
  • the control system can direct a pallet having the homogeneous SKU layers to the RCDS and cause the RCDS to place heterogeneous layers of containers on the pallet in addition to the homogeneous SKU layers that were placed on the pallet by the LSDS.
  • the control system can alternatively direct the pallet from the LSDS to the palletizer.
  • the control system can direct pallets from the palletizer to the RCDS and cause the RCDS to place heterogeneous layers of containers on the pallet.
  • the control system will, if the number of homogeneous layers of containers requested by the order does not exceed the predetermined threshold, cause the ICSDS to deliver an equivalent number of the containers to the palletizer for placement on a pallet.
  • the control system can determine the number of homogeneous package type layers of containers and, if the number of homogeneous package type layers requested by the order is above a threshold, direct the containers to be sent to the palletizer and, if below a threshold or if the containers are not of homogeneous package type, cause the containers to be sent to the RCDS. If the control system determines that homogeneous SKU layers are also necessary, it can direct the pallet from the palletizer to the LSDS and direct the LSDS to place the homogeneous SKU layers of containers on the pallet. If additional containers are necessary to complete the pallet, the control system directs the pallet to the RCDS to place incomplete layers of containers or containers having heterogeneous package type onto the pallet.
  • FIG. 1 is a top plan, exploded schematic of an automated storage and delivery system according to the invention.
  • FIG. 2 is a block diagram illustrating a method for delivering containers for customer orders according to the invention.
  • FIG. 3 is a block diagram illustrating a method for processing orders for containers according to the invention.
  • FIG. 4 is a block diagram illustrating a method for placing containers on pallets according to the invention.
  • FIG. 5 is a top plan, exploded schematic of an automated storage and delivery system according to an alternative embodiment of the invention.
  • FIG. 6 is a side elevation of a semi-automated individual container storage and delivery system.
  • FIG. 1 A top plan schematic of an automated storage and retrieval system according to the invention is shown in FIG. 1 .
  • the system comprises an individual container storage and delivery system (ICSDS) 10 .
  • a palletizer 14 receives containers from the ICSDS 10 and places them onto a pallet.
  • a layer storage and delivery system (LSDS) 18 places full layers of containers on a pallet.
  • a robotic container delivery system (RCDS) 22 places individual containers onto a pallet.
  • the term “container” is used herein generally, and can refer to almost any type of goods for which material handling is necessary.
  • the invention is useful for beverage containers and product containers of many different sizes and shapes.
  • the invention is also useful for the handling of containers within containers, as when cans of beverages are provided in packages, and such packages are in provided in cases.
  • the invention can also be used to move goods themselves, where such goods may not be in a container as such.
  • the ICSDS 10 is capable of storing many individual containers and delivering selected ones of the containers upon demand. Any suitable ICSDS can be used, however, a currently preferred ICSDS includes the vertically accumulating storage and dispensing apparatus described by Grace, U.S. Pat. No. 4,621,745, the disclosure of which is incorporated herein fully by reference.
  • This vertically accumulating storage and retrieval system (VASRS) is currently sold under the trademark VERTIQUE® by Vertique, Inc of Arden, N.C. This system incorporates towers of pivoting, vertically spaced shelf trays which Support containers and transport the containers downwardly in zig-zag fashion.
  • this VASRS system is capable of storing individual containers in vertically oriented towers, and then dispensing the goods from the bottom of the tower onto a discharge conveyer.
  • Containers are directed into the top of the towers by a supply conveyor.
  • Suitable diverting or container directing apparatus directs the containers into an appropriate tower.
  • the towers are typically aligned in rows such that one supply conveyor can service a row of towers or, in an alternative embodiment, a bank of towers can have a row of towers on each side of the supply conveyor such that one supply conveyor can service two rows of opposing towers.
  • a single discharge conveyor at the bottom of the towers can receive containers from a row of towers or, in the alternative embodiment, from opposing rows of towers on each side of the discharge conveyor.
  • VASRS There are many different VASRS, including those that are pneumatically operated, electronically operated, that have two position trays, and the like. Any such VASRS can be used. Others are also possible. Further, other ICSDS systems can be used with the invention. Systems such as gravity flow conveyors systems are known for individual container storage and delivery applications. Such systems and others can be used with the invention.
  • the ICSDS 10 shown in FIG. 1 is only one of many different possible configurations, and is intended only for purposes of illustration.
  • the ICSDS 10 includes a first bank 26 of VASRS towers comprising a first row 28 of towers and a second row 30 of towers that is substantially parallel to the row 28 .
  • a supply conveyor 34 delivers containers to the top of the towers in the rows 28 and 30 .
  • a discharge conveyor (not shown) below the supply conveyor 34 receives containers from the bottom of each tower in rows 28 and 30 .
  • Containers taken from the VASRS bank 26 are transported by a queuing conveyor system 60 .
  • the queuing conveyor system 60 delivers the containers to a merge 62 , and a conveyor 38 delivers the containers to the palletizer 14 .
  • the bank 26 can be replenished with containers from a pallet storage area 42 .
  • a gantry 48 removes containers from pallets delivered by a pallet supply conveyor 50 , and places the containers on a conveyor line which takes the containers to the supply conveyor 34 and the VASRS bank 26 . Not all of the containers will usually be removed from pallets by the gantry 48 , as only the number of containers necessary to replenish the towers will be removed.
  • the pallets with the remaining containers are taken by an automated storage and retrieval system (ASRS) 52 to one of the pallet storage positions 46 .
  • Containers are taken from the pallet storage area 42 by the ASRS 52 and the gantry 48 .
  • the ASRS 52 retrieves the necessary pallet from the appropriate pallet storage position 46 and brings it to the gantry 48 .
  • the gantry 48 removes the necessary number of layers of containers from the pallet and places them on a conveyor for delivery to the VASRS bank 26 .
  • the ASRS 52 then brings the pallet back to the storage position 46 , unless the pallet is empty, in which case the empty pallet is retrieved for reuse.
  • Other pallet storage and retrieval systems can be used with the invention.
  • the system can operate with any number of ICSDS systems or components that are interconnected with appropriate conveying systems.
  • the ICSDS 10 is provided with another bank 70 of VASRS towers 74 , 76 , which are serviced by a supply conveyor 80 .
  • Bank 70 can be replenished with containers from pallets retrieved from the pallet storage area 42 or from a separate pallet storage area 84 that is dedicated to the VASRS bank 70 and receives pallets of containers from pallet supply conveyor 85 .
  • a gantry 86 can be used to depalletize the containers
  • an ASRS 88 can be provided to store and retrieve pallets bearing containers to and from the gantry 86 and storage positions 46 associated with the pallet storage area 84 .
  • additional VASRS banks can be provided depending on system requirements. Also, the number of towers and the number of tray positions in the towers can be varied. In the example that is shown, additional VASRS banks 90 and 92 are provided and receive containers that are removed from pallets by the gantry 48 and the gantry 86 .
  • the VASRS banks 26 , 70 , 90 and 92 are fully automated in the example, that is, both the supply and discharge of containers from the banks is controlled entirely by the control system. In cases where the demand for certain containers is relatively low, the expense of a fully automated system for such containers can be partially avoided.
  • a bank 102 of VASRS towers is utilized to discharge containers on demand to a conveyor which carries the containers to the queuing conveyor 60 .
  • the VASRS bank 102 is semi-automated and manually replenished with containers whenever a particular tower needs replenishment.
  • the discharge function from each tower is automatic and under the control of the control system.
  • Additional semi-automated banks 104 and 106 can be connected by conveyors to deliver goods through a common conveyor line with the bank 102 to the queuing conveyor system 60 .
  • Another semi-automated bank 110 can be connected by a suitable conveyor line to the queuing conveyor system 60 .
  • the four fully automated VASRS banks 26 , 70 , 90 and 92 , the connected semi-automated VASRS banks 102 , 104 , and 106 , and the VASRS bank 110 create six lanes of conveyor lines 112 in the queuing conveyor system 60 , which then transports the cases to the palletizer 14 by conveyor 38 or other parts of the system by conveyor 114 .
  • Other VASRS bank and conveyor configurations are possible.
  • the palletizer 14 can be of any Construction suitable for taking individual containers and loading them onto a pallet as layers. Palletizers currently exist for handling a wide variety of container sizes, shapes, and weights.
  • Palletizers currently exist for handling a wide variety of container sizes, shapes, and weights.
  • One suitable palletizer is the PAI 6300 that is manufactured by Production Automation Inc. of Montgomery Ala.
  • the palletizer 14 takes containers that are of a homogeneous package type and forms the layer from individual containers, and then places the formed layers onto a pallet.
  • the homogeneity of containers for a layer depends generally on the containers having substantially the same height, width and length to permit the palletizer to form the layer without individual case placement.
  • the cases are typically oriented in the same direction such that, for example, the long sides of cases are aligned.
  • a high throughput system includes a replenishment conveyor system 66 .
  • Pallet supply conveyors 95 bring pallets of such high demand SKUs to the gantry 48 .
  • Pallet supply conveyors 97 bring pallets of high demand containers to the gantry 86 .
  • the gantry 48 and the gantry 86 remove containers from these pallets and deliver them to the replenishment conveyor system 66 .
  • the replenishment conveyor system 66 delivers the containers to the merge 62 , and the conveyor 38 delivers the containers to the palletizer 14 .
  • Pallet stackers 101 store and deliver empty pallets on demand.
  • the layer storage and delivery system (LSDS) 18 can be of any construction suitable for taking layers of containers and placing them onto a delivery pallet.
  • the LSDS 18 can include a plurality of layer storage positions 94 which can be supply conveyors having thereon pallets with containers.
  • each layer storage position 94 will have only containers with homogeneous SKUs.
  • SKU is used herein generally to refer to packages which are viewed to be interchangeable, if not identical. This typically requires that the containers have substantially the same product, in substantially the same quantity, and in substantially the same packaging. It is known to identify containers having only minor distinctions with the same SKU, for example, where different package coloring schemes are presented for aesthetic purposes or as a form of advertisement.
  • the control system must be able to track which SKUs are in the layers such that the system will be able to determine which containers are being placed onto a delivery pallet, and the order must require all of the containers that are in the non-homogeneous layer. It will be appreciated by those skilled in the art that the invention is not limited to systems using SKUs, so long as the system is capable of identifying containers within the system.
  • the LSDS 18 includes a suitable mechanical device such as gantry 98 to remove layers from pallets in the layer storage positions 94 and place them onto a delivery pallet. Empty pallets can be delivered to the LSDS 18 by a conveyor 99 .
  • gantry 98 to remove layers from pallets in the layer storage positions 94 and place them onto a delivery pallet. Empty pallets can be delivered to the LSDS 18 by a conveyor 99 .
  • the robotic container delivery system (RCDS) 22 can be any suitable structure capable of placing individual containers onto a pallet in an intelligent, container-by-container process.
  • One suitable device is the Fanuc Robot M-410 iHS of Rochester Hills, Mich.
  • the RCDS 22 takes individual containers and places them onto a delivery pallet in a position best suited to fit the pallet.
  • the RCDS 22 is effective to place containers of a variety of sizes and shapes on top of the full layers that have been placed onto the delivery pallet by the palletizer 14 or the LSDS 18 .
  • the RCDS 22 can also place full layers onto a pallet, but the process is generally much slower than the palletizer 14 or the LSDS 18 .
  • Containers with heterogeneous package types have different container characteristics such as dimension, shape and weight.
  • the control system must process the container information in order to direct the RCDS 22 as to how to fit the containers onto the pallet. In the example of containers having different container shapes and sizes, this may involve processing to instruct the RCDS 22 how to position and orient the containers so as to fit the available space.
  • the RCDS 22 can also be used to place less than a full layer of containers on the top of a pallet prior to shipment. This incomplete layer can consist of identical containers or different containers. In the example of an incomplete layer, this can include positioning the containers for maximum stability on the pallet. Appropriate computer control can be utilized to fit the containers which must be placed onto the pallet in a manner which fits both the geometry of the containers and the layer.
  • the RCDS 22 can be supplied with containers by any suitable method.
  • containers delivered to the merge 62 can be routed to a conveyor 114 which takes the containers to the RCDS by way of a branching conveyor system 134 .
  • a conveyor system 120 can be used to transport pallets between the palletizer 14 and the LSDS 18 or the RCDS 22 .
  • a conveyor system 122 can carry pallets between the LSDS 18 and the RCDS 22 .
  • a conveyor system 130 can branch from the conveyor 114 and carry urgent deliveries directly to the shipping area.
  • a conveyor system 140 can carry pallets from the RCDS 22 to shipping.
  • One or more shrink-wrapping stations 144 can be used to wrap the pallets if desired.
  • a control system 150 can be provided to control the operation of the system and the movement of containers and pallets through the system.
  • the control system 150 is typically a computer system that is used to operate motors and switches to direct containers and pallets through the system by methods known in the art.
  • the control system 150 has appropriate memory and processing capability to track the location of containers in the material storage and delivery system, and to process this information according to the principles discussed herein to route the containers and pallets to the appropriate places at the appropriate times.
  • PLCS programable logic controllers
  • a method for processing orders for containers according to the invention is illustrated by the block diagram of FIG. 2 .
  • An order is received at step 160 . It is determined in step 164 if full pallets of containers are necessary to fill the order. If so, the full pallets are obtained directly from the warehouse or storage area in step 168 , and the method then progresses to a shipping or delivery step 198 . Stretch wrapping or other pallet preparation steps can be performed in step 182 . It is determined in step 172 if full layers of homogeneous SKUs are necessary for the order and, if so, these are filled by the LSDS at step 176 . At step 184 , it is determined if the order requires layers of homogeneous package type. These are filled at the palletizer 14 at step 188 .
  • step 192 it is determined if the order requires heterogeneous package type and, if so, these containers are provided by the ICSDS at step 194 to be placed onto a pallet by the RCDS 22 at step 196 . The order is then shipped in step 198 .
  • FIGS. 3-4 A method according to the invention is illustrated in FIGS. 3-4 .
  • Customer order data is received in step 200 .
  • Orders can be organized for a particular truck, truck route, or customer in step 210 .
  • the customer order is compared to available inventory in step 220 to determine if all items are in inventory. If not, the system postpones processing in step 230 .
  • Inventory is rechecked in step 240 . If inventory is not available, a timing step 250 can determine if a predetermined time limit has been reached.
  • Step 250 can be a timing counter which counts the passage of time since the processing was postponed, or a clock-based timer which compares the current time to significant times for delivery operations, for example, the time at which a truck must depart or the end of a work shift. If the time step 250 indicates that the time limit has not been reached the process loops back to step 230 . If the time limit has been reached, the process progresses to complete the order in step 260 .
  • step 220 or step 260 The method progresses from step 220 or step 260 to step 300 ( FIG. 4 ), where it is determined whether there are full layers of homogeneous SKUs that must be supplied to fill the order. If so, the method can progress to step 313 where it is determined if a threshold number of layers of homogeneous SKUs is required for the pallet. If so, the method progresses to step 315 and the layers are supplied by the LSDS.
  • the LSDS 18 typically will comprise only layers of containers having homogeneous SKUs, that is, containers of an identical product, quantity, and size.
  • the LSDS 18 will typically not have all SKUs, and if the order requires a full layer of an SKU that is not available from the LSDS 18 , the LSDS must be bypassed. If the threshold in step 310 is not met or if the SKU is not available from the LSDS 18 , the LSDS 18 is bypassed through branch 312 .
  • the method determines in step 320 whether full layers of homogeneous package type are required.
  • Such containers are provided by the ICSDS in step 325 and are formed into layers and placed onto a pallet by the palletizer in step 327 .
  • the system determines in step 329 if the order requires heterogeneous package type containers or an incomplete layer.
  • the system progresses to the RCDS in step 335 if Such are necessary.
  • the RCDS 22 places heterogeneous package types or incomplete layers of containers on the pallet in step 335 .
  • the heterogeneous package types can comprise layers having differing SKUs, or container size, shape or weight.
  • the RCDS 22 is adapted to individually place these containers onto the pallet in a manner which best fits the pallet.
  • the completed pallet is then sent to a finish step 340 , which can be the shipping step in which the pallet is placed into a delivery truck or container for transport to the required destination.
  • the finish step 340 can include such steps known in the art as wrapping or banding the pallet prior to shipping.
  • step 320 if it is determined that full layers of homogeneous package type are not necessary, it is determined in step 345 if heterogeneous package types or incomplete layers are necessary. If so, these are supplied by the RCDS in step 350 , after which the method progresses to the finish step 340 .
  • step 355 it is determined at step 355 if full layers of homogeneous package type are necessary. If so, the order is sent to the ICSDS at step 360 and the containers are palletized by the palletizer 14 in step 365 . It is determined at step 370 whether heterogeneous package types or incomplete layers are required to finish the order. If so, such are supplied by the RCDS at step 375 and the method proceeds to the finish step 340 . If a determination is made at step 370 that heterogeneous package types or incomplete layers are not necessary, the method proceeds to the finish step 340 . If at step 355 it is determined that full layers of homogeneous package type are not necessary, the method proceeds to step 380 and remaining containers are supplied by the RCDS, and the method then proceeds to the finish step 340 .
  • FIG. 5 An alternative embodiment of the invention is shown in the top plan schematic shown in FIG. 5 .
  • the system 400 has banks 416 - 419 of VASRS towers as previously described, or other fully automated storage and delivery apparatus.
  • the system 400 also has banks 432 , 436 of semi-automated VASRS towers.
  • a depalletizer 440 removes containers from the supply pallets. Empty pallets are stored by pallet stackers 444 , 446 , and 448 .
  • Containers leaving the depalletizer 440 are unscrambled by an unscrambler 460 and sent by a conveyor 464 to the VASRS towers 416 - 419 .
  • the conveyor 464 connects to branching conveyors 468 which connect to the supply conveyors 472 which supply the containers to the top of the VASRS banks 416 - 419 .
  • a conveyor 476 can bypass the VASRS banks 416 - 419 and transport containers directly to the palletizer 480 .
  • Containers leaving the fully automated VASRS banks 416 - 419 and semi-automated VASRS banks 432 , 436 are transported to queuing conveyors 490 , 494 until needed at the palletizer 480 .
  • the queuing conveyors 490 merge to a palletizer supply conveyor 498 which transports the containers to the palletizer 480 .
  • the queuing conveyors 494 merge to a supply conveyor 502 which transports the containers to the manual palletizing area 510 .
  • a branch 506 carries urgently needed containers directly to shipping area 534 .
  • Pallets leaving the palletizer 480 are directed by a pallet conveyor 508 to a manual palletizing area 510 .
  • Individual containers are received from branch conveyor 518 and are lowered to the floor by suitable structure such as VASRS towers 522 . There the containers are manually placed onto pallets. The pallets can then be passed to wrapping station 526 .
  • Pallet conveyor 530 transports the pallets to shipping area 534 to be loaded onto trucks 536 .
  • Pallet conveyor 538 transports pallets to shipping area 542 .
  • Pallets are delivered to the depalletizer through a pallet que conveyor 544 . Pallets leaving the depalletizer 440 through pallet discharge conveyors 546 , 548 can be stored in pallet storage area 550 .
  • the pallet storage area 550 has a plurality of pallet storage positions 554 .
  • the pallets with the remaining containers are taken by an automated storage and retrieval system (ASRS) 558 to one of the pallet storage positions 554 .
  • Containers are taken from the pallet storage area 550 by the ASRS 558 to the gantry depalletizer 440 .
  • the ASRS 558 retrieves the necessary pallet from the appropriate pallet storage position 554 and brings it to the depalletizer 440 .
  • ASRS automated storage and retrieval system
  • the depalletizer 440 removes the necessary number of layers of containers from the pallet and places them on a conveyor for delivery to the VASRS banks 416 - 419 .
  • the ASRS 558 then brings the pallet back to the storage position 554 , unless the pallet is empty, in which case the empty pallet is retrieved for reuse.
  • a control system 556 can coordinate and control all system components to ensure that containers and pallets are routed to suitable locations at the appropriate times.
  • the control system 556 can be a single system as shown, or can be comprised of multiple systems that are communicatively linked.
  • a semi-automated VASRS tower assembly 600 is shown in FIG. 6 .
  • the assembly includes at least one VASRS tower 610 comprising first and second tower sections 604 , 608 .
  • Each of the tower sections 604 , 608 supports a number of vertically spaced shelf trays 612 .
  • the shelf trays 612 support the containers 618 which are stacked on the trays 612 when loaded as shown.
  • the shelftrays of each tower section 604 , 608 face inwardly toward and are staggered relative to each other, and are mounted for pivotal movement about a horizontal axis and operated so that when a container 618 is dispensed from a bottom shelf tray 612 a, the container 618 is carried by ramp 622 onto conveyor 626 .
  • the shelftrays 612 are operated to pass the container downwardly in zig zag fashion from one shelf tray 612 to another until the container 618 reaches the highest unloaded shelf tray 612 .
  • An upper container input location 628 serves as the entry point for containers into the tower 610 , and can be a ramp as shown, other structure, or an open space for placement of containers 618 into the top of the tower 610 .
  • a storage area 630 permits containers 618 to be stored in the immediate vicinity of the respective tower 610 in which the containers 618 are to be loaded.
  • a walkway 634 is provided such that a workman can walk past each of the towers 610 to determine which tower is in need of containers.
  • a signaling means 638 such as a light or a buzzer can provide an indication of when the tower 610 is in need of containers.
  • the workman takes the containers 618 from the storage area 630 and places the containers into top of the respective tower 610 .
  • a lower level having a walkway 642 and storage area 646 can be provided to fill shorter towers (not shown), which can be positioned adjacent the taller towers 610 , for containers 650 which are in lower demand and thereby need fewer storage spaces.
  • the containers can be placed into the storage areas 630 , 646 by any suitable means, but will typically be placed on pallets which are lifted into position by a lift vehicle.
  • Orders requiring full pallets of homogeneous SKUs can be filled by the container storage and delivery system of the invention. It is usually most efficient to determine if such pallets are available in a storage warehouse and to retrieve these pallets directly from the warehouse, rather than to build such pallets through the system.

Abstract

A material storage and delivery system includes an individual container storage and delivery system (ICSDS). A palletizer is provided for placing containers from the ICSDS on a pallet. A layer storage and delivery system (LSDS) places full layers of containers on a pallet. A robotic container delivery system (RCDS) places individual containers on a pallet. A conveyor system conveys containers and pallets between at least two of the ICSDS, the palletizer, the LSDS and the RCDS. A method for storing and delivering containers is also disclosed.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a divisional of U.S. patent application Ser. No. 10/370,548, filed Feb. 20, 2003, which is a divisional of U.S. patent application Ser. No. 10/098,160, filed on Mar. 13, 2002, the entirety of which are incorporated herein by reference.
  • FIELD OF THE INVENTION
  • This invention relates generally to material handling systems, and more particularly to automated container storage and delivery systems.
  • BACKGROUND OF THE INVENTION
  • Manufacturers, retailers, and distributors must store and deliver great quantities of goods at a time. Many such users have hundreds if not thousands of products. Orders are received from customers and material handling systems must locate inventory and then route inventory necessary to fill the orders to an appropriate location for shipping or delivery. Through-put is a concern as sometimes many thousands of containers per hour must be processed through a single facility. Intelligent control systems have been developed to track customer orders, inventory, and the routing of the inventory necessary to fill the customer orders. Automation is a solution for reducing the amount of manual labor necessary to fill such orders, as manual labor tends to reduce reliability and through-put, and increases costs.
  • Individual container storage and delivery systems have been developed which are capable of storing multiple stock keeping units (SKUs) of different products and variations in products, such as size, color, quantity, and flavoring. Such systems mechanize the process of filling orders for multiple containers having different SKUs in an efficient and reliable manner. Such systems, however, can require a great deal of floor space and can be costly to install and use.
  • Grace, U.S. Pat. No. 4,621,745, discloses an individual container storage and delivery system (ICSDS) in which a vertically accumulating storage and retrieval system (VASRS) for containers is loaded at the top of a tower and selectively dispenses at the bottom. The tower has a frame that defines first and second tower sections, each supporting a number of vertically spaced shelf trays which in turn support the containers which are stacked on the trays when loaded. The shelf trays of each tower section face inwardly toward and are staggered relative to each other. Each tray is mounted for pivotal movement about a horizontal axis and is operated so that when a container is dispensed from a bottom shelf tray, each higher tray beginning at the bottom and progressing upward one at a time, pivots to transfer its carton to the upwardly tilted, next lower, empty shelf tray. This process is repeated until each container has been transferred to the next lower shelf tray. As a container is loaded at the top of the tower, the shelf trays are operated to pass the container downwardly in a zig-zag fashion from one tray to another until it reaches the highest unloaded shelf tray.
  • ICSDS systems such as vertically accumulating storage and dispensing apparatus provide an efficient methodology for delivering containers having many different SKUs. However, many customer orders require a few containers having different SKUs, and many containers having the same SKUs. That is, many customer orders require many containers of a few popular SKUs, and then various lesser amounts of containers of less popular SKUs. ICSDS systems deliver the containers typically under computer control to a conveyor system which conveys the containers to a palletizer. At the palletizer, the containers are placed onto a pallet layer-by-layer. It is a time consuming process to deliver individual containers to the palletizer, and to place these containers onto the pallet, even in a fully automated system.
  • SUMMARY OF THE INVENTION
  • A material storage and delivery system includes an individual container storage and delivery system (ICSDS). A palletizer places containers from the ICSDS on a pallet. A layer storage and delivery system (LSDS) places full layers of containers on a pallet. A robotic container delivery system (RCDS) places individual containers on a pallet. A conveyor system conveys containers and pallets between the ICSDS, the palletizer, the LSDS, the RCDS, and delivery/shipping.
  • The ICSDS preferably comprises a vertically accumulating storage and retrieval system. A depalletizer system can be provided for delivering containers to the ICSDS.
  • The LSDS can include a full layer storage system for storing full layers of containers, and apparatus for taking the full layers of containers and placing the full layers of containers on a pallet. The LSDS can comprise a pallet magazine for delivering empty pallets to a position for receiving the full layers of containers.
  • A control system is provided for delivering containers and pallets bearing containers between the ICSDS, the palletizer, the LSDS, the RCDS, and shipping or delivery. The control system can receive inventory data and order data. The inventory data preferably comprises container position data in the ICSDS. The control system can determine pallet configurations from the order data. The pallet configurations can comprise the number of full layers of containers having homogeneous SKU's and whether such layers can be provided by the LSDS. The control system, if the number of homogeneous SKU layers in the order is available from the LSDS and exceeds a predetermined threshold, can direct the LSDS to place the requested number of homogeneous SKU layers on a pallet. The control system can direct a pallet having the homogeneous SKU layers to the RCDS and cause the RCDS to place heterogeneous layers of containers on the pallet in addition to the homogeneous SKU layers that were placed on the pallet by the LSDS. The control system can alternatively direct the pallet from the LSDS to the palletizer.
  • The control system can direct pallets from the palletizer to the RCDS and cause the RCDS to place heterogeneous layers of containers on the pallet. The control system will, if the number of homogeneous layers of containers requested by the order does not exceed the predetermined threshold, cause the ICSDS to deliver an equivalent number of the containers to the palletizer for placement on a pallet.
  • The control system can determine the number of homogeneous package type layers of containers and, if the number of homogeneous package type layers requested by the order is above a threshold, direct the containers to be sent to the palletizer and, if below a threshold or if the containers are not of homogeneous package type, cause the containers to be sent to the RCDS. If the control system determines that homogeneous SKU layers are also necessary, it can direct the pallet from the palletizer to the LSDS and direct the LSDS to place the homogeneous SKU layers of containers on the pallet. If additional containers are necessary to complete the pallet, the control system directs the pallet to the RCDS to place incomplete layers of containers or containers having heterogeneous package type onto the pallet.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • There are shown in the drawings embodiments which are presently preferred, it being understood, however, that the invention is not limited to the precise arrangements and instrumentalities shown, wherein:
  • FIG. 1 is a top plan, exploded schematic of an automated storage and delivery system according to the invention.
  • FIG. 2 is a block diagram illustrating a method for delivering containers for customer orders according to the invention.
  • FIG. 3 is a block diagram illustrating a method for processing orders for containers according to the invention.
  • FIG. 4 is a block diagram illustrating a method for placing containers on pallets according to the invention.
  • FIG. 5 is a top plan, exploded schematic of an automated storage and delivery system according to an alternative embodiment of the invention.
  • FIG. 6 is a side elevation of a semi-automated individual container storage and delivery system.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • A top plan schematic of an automated storage and retrieval system according to the invention is shown in FIG. 1. The system comprises an individual container storage and delivery system (ICSDS) 10. A palletizer 14 receives containers from the ICSDS 10 and places them onto a pallet. A layer storage and delivery system (LSDS) 18 places full layers of containers on a pallet. A robotic container delivery system (RCDS) 22 places individual containers onto a pallet.
  • The term “container” is used herein generally, and can refer to almost any type of goods for which material handling is necessary. The invention is useful for beverage containers and product containers of many different sizes and shapes. The invention is also useful for the handling of containers within containers, as when cans of beverages are provided in packages, and such packages are in provided in cases. The invention can also be used to move goods themselves, where such goods may not be in a container as such.
  • The ICSDS 10 is capable of storing many individual containers and delivering selected ones of the containers upon demand. Any suitable ICSDS can be used, however, a currently preferred ICSDS includes the vertically accumulating storage and dispensing apparatus described by Grace, U.S. Pat. No. 4,621,745, the disclosure of which is incorporated herein fully by reference. This vertically accumulating storage and retrieval system (VASRS) is currently sold under the trademark VERTIQUE® by Vertique, Inc of Arden, N.C. This system incorporates towers of pivoting, vertically spaced shelf trays which Support containers and transport the containers downwardly in zig-zag fashion. Thus, this VASRS system is capable of storing individual containers in vertically oriented towers, and then dispensing the goods from the bottom of the tower onto a discharge conveyer. Containers are directed into the top of the towers by a supply conveyor. Suitable diverting or container directing apparatus directs the containers into an appropriate tower. The towers are typically aligned in rows such that one supply conveyor can service a row of towers or, in an alternative embodiment, a bank of towers can have a row of towers on each side of the supply conveyor such that one supply conveyor can service two rows of opposing towers. Similarly, a single discharge conveyor at the bottom of the towers can receive containers from a row of towers or, in the alternative embodiment, from opposing rows of towers on each side of the discharge conveyor.
  • There are many different VASRS, including those that are pneumatically operated, electronically operated, that have two position trays, and the like. Any such VASRS can be used. Others are also possible. Further, other ICSDS systems can be used with the invention. Systems such as gravity flow conveyors systems are known for individual container storage and delivery applications. Such systems and others can be used with the invention.
  • The ICSDS 10 shown in FIG. 1 is only one of many different possible configurations, and is intended only for purposes of illustration. The ICSDS 10 includes a first bank 26 of VASRS towers comprising a first row 28 of towers and a second row 30 of towers that is substantially parallel to the row 28. A supply conveyor 34 delivers containers to the top of the towers in the rows 28 and 30. A discharge conveyor (not shown) below the supply conveyor 34 receives containers from the bottom of each tower in rows 28 and 30. Containers taken from the VASRS bank 26 are transported by a queuing conveyor system 60. The queuing conveyor system 60 delivers the containers to a merge 62, and a conveyor 38 delivers the containers to the palletizer 14.
  • The bank 26 can be replenished with containers from a pallet storage area 42. Within the pallet storage area 42, there are a plurality of pallet storage positions 46. A gantry 48 removes containers from pallets delivered by a pallet supply conveyor 50, and places the containers on a conveyor line which takes the containers to the supply conveyor 34 and the VASRS bank 26. Not all of the containers will usually be removed from pallets by the gantry 48, as only the number of containers necessary to replenish the towers will be removed. The pallets with the remaining containers are taken by an automated storage and retrieval system (ASRS) 52 to one of the pallet storage positions 46. Containers are taken from the pallet storage area 42 by the ASRS 52 and the gantry 48. The ASRS 52 retrieves the necessary pallet from the appropriate pallet storage position 46 and brings it to the gantry 48. The gantry 48 removes the necessary number of layers of containers from the pallet and places them on a conveyor for delivery to the VASRS bank 26. The ASRS 52 then brings the pallet back to the storage position 46, unless the pallet is empty, in which case the empty pallet is retrieved for reuse. Other pallet storage and retrieval systems can be used with the invention.
  • The system can operate with any number of ICSDS systems or components that are interconnected with appropriate conveying systems. In the example shown in FIG. 1, the ICSDS 10 is provided with another bank 70 of VASRS towers 74, 76, which are serviced by a supply conveyor 80. Bank 70 can be replenished with containers from pallets retrieved from the pallet storage area 42 or from a separate pallet storage area 84 that is dedicated to the VASRS bank 70 and receives pallets of containers from pallet supply conveyor 85. Similarly, a gantry 86 can be used to depalletize the containers, and an ASRS 88 can be provided to store and retrieve pallets bearing containers to and from the gantry 86 and storage positions 46 associated with the pallet storage area 84.
  • Any number of additional VASRS banks can be provided depending on system requirements. Also, the number of towers and the number of tray positions in the towers can be varied. In the example that is shown, additional VASRS banks 90 and 92 are provided and receive containers that are removed from pallets by the gantry 48 and the gantry 86.
  • The VASRS banks 26, 70, 90 and 92 are fully automated in the example, that is, both the supply and discharge of containers from the banks is controlled entirely by the control system. In cases where the demand for certain containers is relatively low, the expense of a fully automated system for such containers can be partially avoided. In the embodiment shown, a bank 102 of VASRS towers is utilized to discharge containers on demand to a conveyor which carries the containers to the queuing conveyor 60. The VASRS bank 102 is semi-automated and manually replenished with containers whenever a particular tower needs replenishment. The discharge function from each tower is automatic and under the control of the control system. Additional semi-automated banks 104 and 106 can be connected by conveyors to deliver goods through a common conveyor line with the bank 102 to the queuing conveyor system 60. Another semi-automated bank 110 can be connected by a suitable conveyor line to the queuing conveyor system 60. The four fully automated VASRS banks 26, 70, 90 and 92, the connected semi-automated VASRS banks 102, 104, and 106, and the VASRS bank 110 create six lanes of conveyor lines 112 in the queuing conveyor system 60, which then transports the cases to the palletizer 14 by conveyor 38 or other parts of the system by conveyor 114. Other VASRS bank and conveyor configurations are possible.
  • The palletizer 14 can be of any Construction suitable for taking individual containers and loading them onto a pallet as layers. Palletizers currently exist for handling a wide variety of container sizes, shapes, and weights. One suitable palletizer is the PAI 6300 that is manufactured by Production Automation Inc. of Montgomery Ala. The palletizer 14 takes containers that are of a homogeneous package type and forms the layer from individual containers, and then places the formed layers onto a pallet. The homogeneity of containers for a layer depends generally on the containers having substantially the same height, width and length to permit the palletizer to form the layer without individual case placement. At the palletizer the cases are typically oriented in the same direction such that, for example, the long sides of cases are aligned. In addition to case dimensions, it is also preferable that the containers not differ greatly in weight, since the palletizer may require different settings to handle cases of substantially different weight.
  • Containers of high volume SKUs must be depalletized from supply pallets and re-palletized to a delivery pallet on a frequent basis. For these SKUs, a high throughput system includes a replenishment conveyor system 66. Pallet supply conveyors 95 bring pallets of such high demand SKUs to the gantry 48. Pallet supply conveyors 97 bring pallets of high demand containers to the gantry 86. The gantry 48 and the gantry 86 remove containers from these pallets and deliver them to the replenishment conveyor system 66. The replenishment conveyor system 66 delivers the containers to the merge 62, and the conveyor 38 delivers the containers to the palletizer 14. Pallet stackers 101 store and deliver empty pallets on demand.
  • The layer storage and delivery system (LSDS) 18 can be of any construction suitable for taking layers of containers and placing them onto a delivery pallet. The LSDS 18 can include a plurality of layer storage positions 94 which can be supply conveyors having thereon pallets with containers. In the usual case, each layer storage position 94 will have only containers with homogeneous SKUs. The term SKU is used herein generally to refer to packages which are viewed to be interchangeable, if not identical. This typically requires that the containers have substantially the same product, in substantially the same quantity, and in substantially the same packaging. It is known to identify containers having only minor distinctions with the same SKU, for example, where different package coloring schemes are presented for aesthetic purposes or as a form of advertisement. If the layers are not homogeneous with respect to SKU, the control system must be able to track which SKUs are in the layers such that the system will be able to determine which containers are being placed onto a delivery pallet, and the order must require all of the containers that are in the non-homogeneous layer. It will be appreciated by those skilled in the art that the invention is not limited to systems using SKUs, so long as the system is capable of identifying containers within the system.
  • The LSDS 18 includes a suitable mechanical device such as gantry 98 to remove layers from pallets in the layer storage positions 94 and place them onto a delivery pallet. Empty pallets can be delivered to the LSDS 18 by a conveyor 99.
  • The robotic container delivery system (RCDS) 22 can be any suitable structure capable of placing individual containers onto a pallet in an intelligent, container-by-container process. One suitable device is the Fanuc Robot M-410 iHS of Rochester Hills, Mich. The RCDS 22 takes individual containers and places them onto a delivery pallet in a position best suited to fit the pallet. The RCDS 22 is effective to place containers of a variety of sizes and shapes on top of the full layers that have been placed onto the delivery pallet by the palletizer 14 or the LSDS 18. The RCDS 22 can also place full layers onto a pallet, but the process is generally much slower than the palletizer 14 or the LSDS 18. Containers with heterogeneous package types have different container characteristics such as dimension, shape and weight. The control system must process the container information in order to direct the RCDS 22 as to how to fit the containers onto the pallet. In the example of containers having different container shapes and sizes, this may involve processing to instruct the RCDS 22 how to position and orient the containers so as to fit the available space. The RCDS 22 can also be used to place less than a full layer of containers on the top of a pallet prior to shipment. This incomplete layer can consist of identical containers or different containers. In the example of an incomplete layer, this can include positioning the containers for maximum stability on the pallet. Appropriate computer control can be utilized to fit the containers which must be placed onto the pallet in a manner which fits both the geometry of the containers and the layer.
  • The RCDS 22 can be supplied with containers by any suitable method. In the present example, containers delivered to the merge 62 can be routed to a conveyor 114 which takes the containers to the RCDS by way of a branching conveyor system 134.
  • Suitable conveying systems are provided to conduct containers and pallets through the system. It will be appreciated that any number of systems capable of moving pallets and containers would be suitable for the invention. A conveyor system 120 can be used to transport pallets between the palletizer 14 and the LSDS 18 or the RCDS 22. A conveyor system 122 can carry pallets between the LSDS 18 and the RCDS 22. A conveyor system 130 can branch from the conveyor 114 and carry urgent deliveries directly to the shipping area. A conveyor system 140 can carry pallets from the RCDS 22 to shipping. One or more shrink-wrapping stations 144 can be used to wrap the pallets if desired.
  • A control system 150 can be provided to control the operation of the system and the movement of containers and pallets through the system. The control system 150 is typically a computer system that is used to operate motors and switches to direct containers and pallets through the system by methods known in the art. The control system 150 has appropriate memory and processing capability to track the location of containers in the material storage and delivery system, and to process this information according to the principles discussed herein to route the containers and pallets to the appropriate places at the appropriate times. Although the control system 150 is shown as a single system, it will be appreciated that one or more computers or programable logic controllers (PLCS) could be used in tandem to perform the control according to the invention.
  • A method for processing orders for containers according to the invention is illustrated by the block diagram of FIG. 2. An order is received at step 160. It is determined in step 164 if full pallets of containers are necessary to fill the order. If so, the full pallets are obtained directly from the warehouse or storage area in step 168, and the method then progresses to a shipping or delivery step 198. Stretch wrapping or other pallet preparation steps can be performed in step 182. It is determined in step 172 if full layers of homogeneous SKUs are necessary for the order and, if so, these are filled by the LSDS at step 176. At step 184, it is determined if the order requires layers of homogeneous package type. These are filled at the palletizer 14 at step 188. At step 192, it is determined if the order requires heterogeneous package type and, if so, these containers are provided by the ICSDS at step 194 to be placed onto a pallet by the RCDS 22 at step 196. The order is then shipped in step 198.
  • A method according to the invention is illustrated in FIGS. 3-4. Customer order data is received in step 200. Orders can be organized for a particular truck, truck route, or customer in step 210. The customer order is compared to available inventory in step 220 to determine if all items are in inventory. If not, the system postpones processing in step 230. Inventory is rechecked in step 240. If inventory is not available, a timing step 250 can determine if a predetermined time limit has been reached. Step 250 can be a timing counter which counts the passage of time since the processing was postponed, or a clock-based timer which compares the current time to significant times for delivery operations, for example, the time at which a truck must depart or the end of a work shift. If the time step 250 indicates that the time limit has not been reached the process loops back to step 230. If the time limit has been reached, the process progresses to complete the order in step 260.
  • The method progresses from step 220 or step 260 to step 300 (FIG. 4), where it is determined whether there are full layers of homogeneous SKUs that must be supplied to fill the order. If so, the method can progress to step 313 where it is determined if a threshold number of layers of homogeneous SKUs is required for the pallet. If so, the method progresses to step 315 and the layers are supplied by the LSDS. The LSDS 18 typically will comprise only layers of containers having homogeneous SKUs, that is, containers of an identical product, quantity, and size. If the number of homogeneous SKU layers required for a pallet does not exceed the threshold, it can be more efficient to bypass the LSDS 18 in favor of supplying these cases from the ICSDS 10 to the palletizer 14. Also, the LSDS 18 will typically not have all SKUs, and if the order requires a full layer of an SKU that is not available from the LSDS 18, the LSDS must be bypassed. If the threshold in step 310 is not met or if the SKU is not available from the LSDS 18, the LSDS 18 is bypassed through branch 312.
  • The method then determines in step 320 whether full layers of homogeneous package type are required. Such containers are provided by the ICSDS in step 325 and are formed into layers and placed onto a pallet by the palletizer in step 327. The system determines in step 329 if the order requires heterogeneous package type containers or an incomplete layer. The system progresses to the RCDS in step 335 if Such are necessary. The RCDS 22 places heterogeneous package types or incomplete layers of containers on the pallet in step 335. The heterogeneous package types can comprise layers having differing SKUs, or container size, shape or weight. The RCDS 22 is adapted to individually place these containers onto the pallet in a manner which best fits the pallet. The completed pallet is then sent to a finish step 340, which can be the shipping step in which the pallet is placed into a delivery truck or container for transport to the required destination. The finish step 340 can include such steps known in the art as wrapping or banding the pallet prior to shipping.
  • In step 320, if it is determined that full layers of homogeneous package type are not necessary, it is determined in step 345 if heterogeneous package types or incomplete layers are necessary. If so, these are supplied by the RCDS in step 350, after which the method progresses to the finish step 340.
  • If it is determined in step 300 that full layers of homogeneous package type are not necessary, it is determined at step 355 if full layers of homogeneous package type are necessary. If so, the order is sent to the ICSDS at step 360 and the containers are palletized by the palletizer 14 in step 365. It is determined at step 370 whether heterogeneous package types or incomplete layers are required to finish the order. If so, such are supplied by the RCDS at step 375 and the method proceeds to the finish step 340. If a determination is made at step 370 that heterogeneous package types or incomplete layers are not necessary, the method proceeds to the finish step 340. If at step 355 it is determined that full layers of homogeneous package type are not necessary, the method proceeds to step 380 and remaining containers are supplied by the RCDS, and the method then proceeds to the finish step 340.
  • An alternative embodiment of the invention is shown in the top plan schematic shown in FIG. 5. The system 400 has banks 416-419 of VASRS towers as previously described, or other fully automated storage and delivery apparatus. The system 400 also has banks 432, 436 of semi-automated VASRS towers. A depalletizer 440 removes containers from the supply pallets. Empty pallets are stored by pallet stackers 444, 446, and 448.
  • Containers leaving the depalletizer 440 are unscrambled by an unscrambler 460 and sent by a conveyor 464 to the VASRS towers 416-419. The conveyor 464 connects to branching conveyors 468 which connect to the supply conveyors 472 which supply the containers to the top of the VASRS banks 416-419. A conveyor 476 can bypass the VASRS banks 416-419 and transport containers directly to the palletizer 480.
  • Containers leaving the fully automated VASRS banks 416-419 and semi-automated VASRS banks 432, 436 are transported to queuing conveyors 490, 494 until needed at the palletizer 480. The queuing conveyors 490 merge to a palletizer supply conveyor 498 which transports the containers to the palletizer 480. The queuing conveyors 494 merge to a supply conveyor 502 which transports the containers to the manual palletizing area 510. A branch 506 carries urgently needed containers directly to shipping area 534.
  • Pallets leaving the palletizer 480 are directed by a pallet conveyor 508 to a manual palletizing area 510. Individual containers are received from branch conveyor 518 and are lowered to the floor by suitable structure such as VASRS towers 522. There the containers are manually placed onto pallets. The pallets can then be passed to wrapping station 526. Pallet conveyor 530 transports the pallets to shipping area 534 to be loaded onto trucks 536. Pallet conveyor 538 transports pallets to shipping area 542.
  • Pallets are delivered to the depalletizer through a pallet que conveyor 544. Pallets leaving the depalletizer 440 through pallet discharge conveyors 546, 548 can be stored in pallet storage area 550. The pallet storage area 550 has a plurality of pallet storage positions 554. The pallets with the remaining containers are taken by an automated storage and retrieval system (ASRS) 558 to one of the pallet storage positions 554. Containers are taken from the pallet storage area 550 by the ASRS 558 to the gantry depalletizer 440. The ASRS 558 retrieves the necessary pallet from the appropriate pallet storage position 554 and brings it to the depalletizer 440. The depalletizer 440 removes the necessary number of layers of containers from the pallet and places them on a conveyor for delivery to the VASRS banks 416-419. The ASRS 558 then brings the pallet back to the storage position 554, unless the pallet is empty, in which case the empty pallet is retrieved for reuse.
  • A control system 556 can coordinate and control all system components to ensure that containers and pallets are routed to suitable locations at the appropriate times. The control system 556 can be a single system as shown, or can be comprised of multiple systems that are communicatively linked.
  • A semi-automated VASRS tower assembly 600 is shown in FIG. 6. The assembly includes at least one VASRS tower 610 comprising first and second tower sections 604, 608. Each of the tower sections 604, 608 supports a number of vertically spaced shelf trays 612. The shelf trays 612 support the containers 618 which are stacked on the trays 612 when loaded as shown. The shelftrays of each tower section 604, 608 face inwardly toward and are staggered relative to each other, and are mounted for pivotal movement about a horizontal axis and operated so that when a container 618 is dispensed from a bottom shelf tray 612 a, the container 618 is carried by ramp 622 onto conveyor 626. Each higher tray beginning at the bottom and progressing upward one at a time, pivots to transfer its container to the upwardly tilted next lower shelf tray 612. As a container 618 is loaded at the top of the tower 610, the shelftrays 612 are operated to pass the container downwardly in zig zag fashion from one shelf tray 612 to another until the container 618 reaches the highest unloaded shelf tray 612. An upper container input location 628 serves as the entry point for containers into the tower 610, and can be a ramp as shown, other structure, or an open space for placement of containers 618 into the top of the tower 610.
  • A storage area 630 permits containers 618 to be stored in the immediate vicinity of the respective tower 610 in which the containers 618 are to be loaded. A walkway 634 is provided such that a workman can walk past each of the towers 610 to determine which tower is in need of containers. A signaling means 638 such as a light or a buzzer can provide an indication of when the tower 610 is in need of containers. The workman takes the containers 618 from the storage area 630 and places the containers into top of the respective tower 610. A lower level having a walkway 642 and storage area 646 can be provided to fill shorter towers (not shown), which can be positioned adjacent the taller towers 610, for containers 650 which are in lower demand and thereby need fewer storage spaces. The containers can be placed into the storage areas 630, 646 by any suitable means, but will typically be placed on pallets which are lifted into position by a lift vehicle.
  • Orders requiring full pallets of homogeneous SKUs can be filled by the container storage and delivery system of the invention. It is usually most efficient to determine if such pallets are available in a storage warehouse and to retrieve these pallets directly from the warehouse, rather than to build such pallets through the system.
  • The invention has been disclosed with reference to an exemplary system shown in the drawings and described in the present specification. It will be appreciated by one skilled in the art, however, that various modifications and rearrangements to the embodiment described herein are possible. The number and particular layout of the various components could be modified for the particular use. The system components are capable of being performed by various different mechanical equipment, both currently in existence and which may come into existence. The present invention provides a system and method which is capable of taking many different specific embodiments, in keeping with the many different container handling uses that are contemplated.
  • This invention can be embodied in other forms without departing from the spirit of the essential attributes thereof. Accordingly, reference should be had to the following claims, rather than to the foregoing specification, as indicating the scope of the invention.

Claims (58)

1. A method for storing and delivering containers, comprising:
providing an individual container storage and delivery system;
providing a palletizer for forming a group of containers from said individual container storage and delivery system into a layer or a partial layer, and placing this layer or partial layer onto a pallet;
providing a layer storage and delivery system for taking full layers of containers from a storage area and placing said full layers onto a pallet;
maintaining inventory data comprising position data for at least some containers in said system;
receiving customer order data;
determining at least one pallet configuration from said order data and said inventory data, said pallet configuration including layers of containers for said pallet configuration; and,
if said configuration of containers includes layers of homogeneous SKUs, placing said homogeneous SKU containers on a pallet with said layer storage and delivery system;
if said configuration requires layers of homogeneous package type, placing said homogeneous package type containers on said pallet with said individual container storage and delivery system and said palletizer; and,
if said configuration requires heterogeneous package types, placing said heterogeneous package types onto a pallet.
2. The method of claim 1, further comprising providing a system for placing containers onto a pallet.
3. The method of claim 2, wherein the system for placing containers onto a pallet comprises a robotic delivery system for placing individual containers onto a pallet.
4. The method of claim 3, further comprising determining layer configurations for heterogeneous layers of containers and causing said robotic delivery system to place said heterogeneous layers onto a pallet according to said layer configuration.
5. The method of claim 4, wherein said heterogeneous layers comprise at least one selected from the group consisting of incomplete layers and full layers having at least two different package types.
6. The method of claim 1, wherein said individual container storage and delivery system is a vertically accumulating storage and dispensing apparatus.
7. The method of claim 1, further comprising replenishing said individual container storage and delivery system with containers from a pallet storage area.
8. The method of claim 1, Further comprising determining if full pallets of goods are necessary, and obtaining such full pallets from a storage area.
9. A method for storing and delivering containers, comprising:
providing an individual container storage and delivery system;
providing a palletizer for forming a group of containers from said individual container storage and delivery system into a layer or a partial layer, and placing this layer or partial layer onto a pallet;
providing a layer storage and delivery system for taking full layers of containers from a storage area and placing said full layers onto a pallet;
providing a container delivery system for placing individual containers onto a pallet;
maintaining inventory data comprising position data for at least some containers in said system:
receiving customer order data;
determining at least one pallet configuration from said order data and said inventory data, said pallet configuration including layers of containers for said pallet configuration; and,
if said configuration of containers includes layers of homogeneous SKUs, placing said homogeneous SKU containers on a pallet with said layer storage and delivery system;
if said configuration requires layers of homogeneous package type, placing said homogeneous package type containers on said pallet with said individual container storage and delivery system and said palletizer; and,
if said configuration requires heterogeneous package types, placing said heterogeneous package types onto a pallet;
wherein, if said number of layers of homogeneous SKUs exceeds a predetermined threshold and said layers are available from said layer storage and delivery system, causing said layer storage and delivery system to place said homogeneous layers of homogeneous SKUs on a pallet and, if additional containers are required to complete said pallet configuration, directing said pallet from said layer storage and delivery system to the container delivery system and causing the container delivery system to place said containers onto said pallet; and,
if said number of layers of containers does not exceed said predetermined threshold or if said layers are not available from the layer storage and delivery system, causing said individual container storage and delivery system to deliver containers to said palletizer and causing said palletizer to place said containers onto a pallet and, if additional containers are required to complete said pallet configuration, causing said conveyor system to direct said pallet to said container delivery system for placing said additional containers onto said pallet.
10. The method of claim 9, wherein the container delivery system for placing containers onto a pallet comprises a robotic container delivery system for placing individual containers onto a pallet.
11. The method of claim 10, further comprising determining layer configurations for heterogeneous layers of containers and causing said robotic container delivery system to place said heterogeneous layers onto a pallet according to said layer configuration.
12. The method of claim 11, wherein said heterogeneous layers comprise at least one selected from the group consisting of incomplete layers and full layers having at least two different package types.
13. The method of claim 9, wherein said individual container storage and delivery system is a vertically accumulating storage and dispensing apparatus.
14. The method of claim 9, further comprising replenishing said individual container storage and delivery system with containers from a pallet storage area.
15. The method of claim 9, further comprising determining if full pallets of homogenous SKU's are necessary, and obtaining such full pallets from a storage area.
16. A method for storing and delivering containers, comprising:
providing an individual container storage and delivery system;
providing a palletizer for forming a group of containers from said individual container storage and delivery system into a layer or a partial layer, and placing this layer or partial layer onto a pallet;
providing a layer storage and delivery system for taking full layers of containers from a storage area and placing said full layers onto a pallet;
maintaining inventory data comprising position data for at least some containers in said system;
receiving customer order data;
determining at least one pallet configuration from said order data and said inventory data, said pallet configuration including layers of containers for said pallet configuration; and,
if said configuration of containers includes layers of homogeneous SKUs, placing said homogeneous SKU containers on a pallet with said layer storage and delivery system;
if said configuration requires layers of homogeneous package type, placing said homogeneous package type containers on said pallet with said individual container storage and delivery system and said palletizer; and,
if said configuration requires heterogeneous package types, placing said heterogeneous package types onto a pallet;
wherein after containers have been placed on said pallet by said palletizer, placing full layers on said pallet from said layer storage and delivery system.
17. The method of claim 16, further comprising providing a system for placing containers onto a pallet.
18. The method of claim 17, wherein the system for placing containers onto a pallet comprises a robotic delivery system for placing individual containers onto a pallet.
19. The method of claim 18, further comprising determining layer configurations for heterogeneous layers of containers and causing said robotic delivery system to place said heterogeneous layers onto a pallet according to said layer configuration.
20. The method of claim 19, wherein said heterogeneous layers comprise at least one selected from the group consisting of incomplete layers and full layers having at least two different package types.
21. The method of claim 16, wherein said individual container storage and delivery system is a vertically accumulating storage and dispensing apparatus.
22. The method of claim 16, further comprising replenishing said individual container storage and delivery system with containers from a pallet storage area.
23. The method of claim 18, wherein, after placing layers on said pallet in said layer storage and delivery system, directing said pallet to said robotic delivery system for placing individual containers onto said pallet.
24. The method of claim 16, further comprising determining if full pallets of homogenous SKU's are necessary, and obtaining such full pallets from a storage area.
25. A method for storing and delivering containers, comprising:
providing an individual container storage and delivery system;
providing a palletizer for forming a group of containers from said individual container storage and delivery system into a layer or a partial layer, and placing this layer or partial layer onto a pallet;
providing a layer storage and delivery system for taking full layers of containers from a storage area and placing said full layers onto a pallet;
maintaining inventory data comprising position data for at least some containers in said system;
receiving customer order data;
determining at least one pallet configuration from said order data and said inventory data, said pallet configuration including layers of containers for said pallet configuration; and,
if said configuration of containers includes layers of homogeneous SKUs, placing said homogeneous SKU containers on a pallet with said layer storage and delivery system;
if said configuration requires layers of homogeneous package type, placing said homogeneous package type containers on said pallet with said individual container storage and delivery system and said palletizer; and,
if said configuration requires heterogeneous package types, placing said heterogeneous package types onto a pallet with said container delivery system; and,
determining high through-put containers, and maintaining full layers of said high through-put containers in said layer storage and delivery system.
26. The method of claim 25, including providing a container delivery system for placing individual containers onto a pallet.
27. The method of claim 26, wherein the container delivery system for placing containers onto a pallet comprises a robotic delivery system for placing individual containers onto a pallet.
28. The method of claim 27, further comprising determining layer configurations for heterogeneous layers of containers and causing said robotic delivery system to place said heterogeneous layers onto a pallet according to said layer configuration.
29. The method of claim 25, wherein said heterogeneous layers comprise at least one selected from the group consisting of incomplete layers and full layers having at least two different package types.
30. The method of claim 25, wherein said individual container storage and delivery system is a vertically accumulating storage and dispensing apparatus.
31. The method of claim 25, further comprising replenishing said individual container storage and delivery system with containers from a pallet storage area.
32. The method of claim 25, further comprising determining if full pallets of goods are necessary, and obtaining such full pallets from a storage area.
33. A method for storing and delivering containers, comprising:
providing an individual container storage and delivery system;
providing a palletizer for forming a group of containers from said individual container storage and delivery system into a layer or a partial layer, and placing this layer or partial layer onto a pallet;
providing a layer storage and delivery system for taking full layers of containers from a storage area and placing said full layers onto a pallet;
maintaining inventory data comprising position data for at least some containers in said system;
receiving customer order data;
determining at least one pallet configuration from said order data and said inventory data, said pallet configuration including layers of containers for said pallet configuration; and,
if said configuration of containers includes layers of homogeneous SKUs, placing said homogeneous SKU containers on a pallet with said layer storage and delivery system;
if said configuration requires layers of homogeneous package type, placing said homogeneous package type containers on said pallet with said individual container storage and delivery system and said palletizer; and,
if said configuration requires heterogeneous package types, placing said heterogeneous package types onto a pallet; and,
determining low through put containers, and maintaining said low through-put containers in a semi-automated vertically accumulating storage and delivery apparatus, and directing containers from said semi-automated storage and delivery apparatus to said palletizer.
34. The method of claim 33, further comprising providing a system for placing containers onto a pallet.
35. The method of claim 34, wherein the system for placing containers onto a pallet comprises a robotic delivery system for placing individual containers onto a pallet.
36. The method of claim 35, further comprising determining layer configurations for heterogeneous layers of containers and causing said robotic delivery system to place said heterogeneous layers onto a pallet according to said layer configuration.
37. The method of claim 33, wherein said heterogeneous layers comprise at least one selected from the group consisting of incomplete layers and full layers having at least two different package types.
38. The method of claim 33, wherein said individual container storage and delivery system is a vertically accumulating storage and dispensing apparatus.
39. The method of claim 33, further comprising replenishing said individual container storage and delivery system with containers from a pallet storage area.
40. The method of claim 33, further comprising the step of determining if full pallets of the same SKU's are necessary, and obtaining such full pallets from a storage area.
41. A method for storing and delivering containers, comprising:
(a) delivering individual containers from container storage;
(b) forming a group of containers from said individual containers into a layer or a partial layer, and placing this layer or partial layer onto a pallet;
(c) maintaining inventory data comprising position data for at least some containers;
(d) receiving customer order data;
(e) determining at least one pallet configuration from said order data and said inventory data, said pallet configuration including layers of containers for said pallet configuration; and,
(f) if said configuration of containers includes layers of homogeneous SKU containers, placing said homogeneous SKU containers on a pallet;
(g) if said configuration requires layers of homogeneous package type containers of different SKU's, placing said homogeneous package type containers on said pallet; and,
(h) if said configuration requires heterogeneous SKU containers or package types, placing said heterogeneous SKU containers or package types onto a pallet.
42. The method of claim 41, wherein at least one of steps (b), (f), (g) or (h) is performed at least partially by a palletizer.
43. The method of claim 41, wherein homogenous SKU containers are placed on said pallet vertically below heterogeneous SKU containers.
44. The method of claim 41, wherein at least one container is delivered from container storage by a robotic system.
45. The method of claim 41, wherein at least one container is placed on a pallet by a robotic system.
46. The method of claim 41, wherein at least one container in step (h) is placed onto a pallet by a robotic system.
47. The method of claim 41, wherein at least one layer of said pallet is formed of homogeneous SKU containers.
48. The method of claim 41, wherein at least one layer of said pallet is formed of heterogeneous SKU containers or package types.
49. The method of claim 41, wherein at least one pallet layer configuration is determined based on containers within a predetermined height range.
50. A method for storing and delivering containers, comprising:
(a) receiving order data from a customer;
(b) comparing said order data to maintained inventory data to determine available containers in a container storage area for inclusion on at least one pallet for delivery to said customer;
(c) delivering said available containers from a container storage area to a pallet building area for inclusion on said at least one pallet;
(d) placing layers of available containers on said at least one pallet in said pallet building area; and,
(e) if said configuration of containers includes layers of homogeneous SKU containers, placing said homogeneous SKU containers on a pallet;
(f) if said configuration requires layers of homogeneous package type containers of different SKU's, placing said homogeneous package type containers on said pallet; and,
(g) if said configuration requires heterogeneous SKU containers or package types, placing said heterogeneous SKU containers or package types onto a pallet.
51. The method of claim 50, wherein at least one of steps (d), (e), (f) or (g) is performed at least partially by a palletizer.
52. The method of claim 50, wherein homogenous SKU containers are placed on said pallet vertically below heterogeneous SKU containers.
53. The method of claim 50, wherein at least one container is delivered from container storage by a robotic system.
54. The method of claim 50, wherein at least one container is placed on a pallet by a robotic system.
55. The method of claim 50, wherein at least one container in step (g) is placed onto a pallet by a robotic system.
56. The method of claim 50, wherein at least one layer of said pallet is formed of homogeneous SKU containers.
57. The method of claim 50, wherein at least one layer of said pallet is formed of heterogeneous SKU containers or package types.
58. The method of claim 50, wherein at least one pallet layer configuration is determined based on containers within a predetermined height range.
US11/488,373 2002-03-13 2006-07-17 Automated container storage and delivery system Abandoned US20060257236A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/488,373 US20060257236A1 (en) 2002-03-13 2006-07-17 Automated container storage and delivery system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/098,160 US6729836B2 (en) 2002-03-13 2002-03-13 Automated container storage and delivery system
US10/370,548 US7200465B2 (en) 2002-03-13 2003-02-20 Automated container storage and delivery system
US11/488,373 US20060257236A1 (en) 2002-03-13 2006-07-17 Automated container storage and delivery system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/370,548 Division US7200465B2 (en) 2002-03-13 2003-02-20 Automated container storage and delivery system

Publications (1)

Publication Number Publication Date
US20060257236A1 true US20060257236A1 (en) 2006-11-16

Family

ID=28039323

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/098,160 Expired - Lifetime US6729836B2 (en) 2002-03-13 2002-03-13 Automated container storage and delivery system
US10/370,548 Expired - Fee Related US7200465B2 (en) 2002-03-13 2003-02-20 Automated container storage and delivery system
US11/488,373 Abandoned US20060257236A1 (en) 2002-03-13 2006-07-17 Automated container storage and delivery system

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US10/098,160 Expired - Lifetime US6729836B2 (en) 2002-03-13 2002-03-13 Automated container storage and delivery system
US10/370,548 Expired - Fee Related US7200465B2 (en) 2002-03-13 2003-02-20 Automated container storage and delivery system

Country Status (1)

Country Link
US (3) US6729836B2 (en)

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100042249A1 (en) * 2006-11-16 2010-02-18 Ryoichi Wada Storage system and storage method
WO2010118412A1 (en) * 2009-04-10 2010-10-14 Casepick Systems, Llc Storage and retrieval system
US20100307889A1 (en) * 2008-02-14 2010-12-09 Rotzinger Ag Intermediate storage for bulk goods
CN103442997A (en) * 2010-12-15 2013-12-11 西姆伯蒂克有限责任公司 Bot payload alignment and sensing
US8676425B2 (en) 2011-11-02 2014-03-18 Harvest Automation, Inc. Methods and systems for maintenance and other processing of container-grown plants using autonomous mobile robots
US8915692B2 (en) 2008-02-21 2014-12-23 Harvest Automation, Inc. Adaptable container handling system
US8919801B2 (en) 2010-12-15 2014-12-30 Symbotic, LLC Suspension system for autonomous transports
US8937410B2 (en) 2012-01-17 2015-01-20 Harvest Automation, Inc. Emergency stop method and system for autonomous mobile robots
US8965619B2 (en) 2010-12-15 2015-02-24 Symbotic, LLC Bot having high speed stability
US9147173B2 (en) 2011-10-31 2015-09-29 Harvest Automation, Inc. Methods and systems for automated transportation of items between variable endpoints
US9187244B2 (en) 2010-12-15 2015-11-17 Symbotic, LLC BOT payload alignment and sensing
CN105189314A (en) * 2013-03-15 2015-12-23 西姆伯蒂克有限责任公司 Automated storage and retrieval system
US9315344B1 (en) * 2012-07-20 2016-04-19 Amazon Technologies, Inc. Container stacking configurations
US9321591B2 (en) 2009-04-10 2016-04-26 Symbotic, LLC Autonomous transports for storage and retrieval systems
US9499338B2 (en) 2010-12-15 2016-11-22 Symbotic, LLC Automated bot transfer arm drive system
US9561905B2 (en) 2010-12-15 2017-02-07 Symbotic, LLC Autonomous transport vehicle
US9926131B1 (en) * 2012-07-20 2018-03-27 Amazon Technologies, Inc. Custom container stacking configurations
US10000338B2 (en) 2013-03-15 2018-06-19 Alert Innovation Inc. Automated system for transporting payloads
US10118723B2 (en) 2012-03-23 2018-11-06 Amazon Technologies, Inc. Custom containers in a materials handling facility
CN109715527A (en) * 2016-08-09 2019-05-03 赫伯特·费纳 Method for picking the product mix on target tray
US10435241B2 (en) 2015-06-02 2019-10-08 Alert Innovation Inc. Storage and retrieval system
US10562705B2 (en) 2014-12-12 2020-02-18 Symbotic, LLC Storage and retrieval system
US10766699B2 (en) 2017-08-31 2020-09-08 Alert Innovation Inc. Order fulfillment robot capable of horizontal and vertical motion
US10781060B2 (en) 2015-01-23 2020-09-22 Symbotic Llc Storage and retrieval system transport vehicle
US10815057B2 (en) 2017-08-08 2020-10-27 Alert Innovation Inc. Universal gripper for tote and sub-tote transport
US10822168B2 (en) 2010-12-15 2020-11-03 Symbotic Llc Warehousing scalable storage structure
US10839347B2 (en) 2015-01-16 2020-11-17 Symbotic Llc Storage and retrieval system
US10850921B2 (en) 2015-01-16 2020-12-01 Symbotic Llc Storage and retrieval system
US10894663B2 (en) 2013-09-13 2021-01-19 Symbotic Llc Automated storage and retrieval system
US10919701B2 (en) 2017-01-10 2021-02-16 Alert Innovation Inc. Interchangeable automated mobile robots with a plurality of operating modes configuring a plurality of different robot task capabilities
US10954066B2 (en) 2015-01-16 2021-03-23 Symbolic Llc Storage and retrieval system
US10984375B2 (en) 2017-04-18 2021-04-20 Alert Innovation Inc. Picking workstation with mobile robots and machine vision verification of each transfers performed by human operators
US11078017B2 (en) 2010-12-15 2021-08-03 Symbotic Llc Automated bot with transfer arm
US11142398B2 (en) 2015-06-02 2021-10-12 Alert Innovation Inc. Order fulfillment system
US11142402B2 (en) 2016-11-17 2021-10-12 Alert Innovation Inc. Automated-service retail system and method
US11192719B2 (en) 2018-08-02 2021-12-07 Alert Innovation Inc. Automated decant system
US11203486B2 (en) 2015-06-02 2021-12-21 Alert Innovation Inc. Order fulfillment system
US11254502B2 (en) 2015-01-16 2022-02-22 Symbotic Llc Storage and retrieval system
US11315072B2 (en) 2017-02-24 2022-04-26 Alert Innovation Inc. Inventory management system and method
US11623342B2 (en) 2017-12-12 2023-04-11 Walmart Apollo, Llc Configurable service isolation zones for service of equipment employing mobile robots
US11893533B2 (en) 2015-01-16 2024-02-06 Symbotic Llc Storage and retrieval system
US11905058B2 (en) 2016-11-29 2024-02-20 Walmart Apollo, Llc Automated retail supply chain and inventory management system

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO20020585L (en) * 2002-02-05 2003-08-06 Zopa As System and method for transferring products from a storage area to a delivery area
US6729836B2 (en) * 2002-03-13 2004-05-04 Stingel, Iii Frederick J. Automated container storage and delivery system
US7184855B2 (en) * 2002-03-13 2007-02-27 Stingel Iii Frederick J Automated container storage and delivery system
US7250582B2 (en) * 2002-10-08 2007-07-31 Lockheed Martin Corporation Method and system for sequentially ordering objects using a single pass delivery point process
US6871116B2 (en) * 2002-10-17 2005-03-22 Vertique, Inc. Determining pallet case configurations for placement by a robot
WO2004085294A2 (en) 2003-03-24 2004-10-07 Dan Lafontaine Order handling system
US7591630B2 (en) 2003-08-29 2009-09-22 Casepick Systems, Llc Materials-handling system using autonomous transfer and transport vehicles
US7991505B2 (en) * 2003-08-29 2011-08-02 Casepick Systems, Llc Materials-handling system using autonomous transfer and transport vehicles
CA2524414C (en) * 2004-10-26 2014-01-14 3584925 Canada Inc. Automated order mixing system
US7270229B2 (en) 2004-11-05 2007-09-18 New England Machinery, Inc. Container unscrambler system having adjustable track and method
US7219794B2 (en) * 2004-11-05 2007-05-22 New England Machinery, Inc. Adjustable guide chute and method for processing containers
DE102005058478A1 (en) * 2005-12-07 2007-06-14 Walter Winkler Display shelf for e.g. fruit, has shelf board with conveyor belt provided above storage surface on upper side of shelf board and transported in endless loop via end face, where belt is provided with drive
AT503473B1 (en) * 2006-02-16 2013-07-15 Salomon Automation Gmbh AUTOMATED SYSTEM AND METHOD FOR AUTOMATIC PICKING OR CONSOLIDATION OF ARTICLES
ITBO20060559A1 (en) * 2006-07-26 2008-01-27 Tissue Logistics Solutions S P A MACHINE FOR THE PRODUCTION OF GROUPS OF ROLLED PRODUCTS.
JP5235297B2 (en) * 2006-11-30 2013-07-10 サンデン株式会社 Article transport and storage mechanism
US20080131255A1 (en) * 2006-11-30 2008-06-05 Transbotics Corporation Palletizing systems and methods
US20090143910A1 (en) * 2007-12-03 2009-06-04 Electronics And Telecommunications Research Institute Intelligent printing system with delivery robots for delivering printed documents and method therefor
US7963383B2 (en) * 2007-12-05 2011-06-21 Vertique, Inc. Dampened spring-operated vertically accumulating container storage and retrieval system
CA2634695C (en) 2008-07-18 2009-08-04 The Procter & Gamble Company Assembling a packaged bundle using an adjustable multi-shelved product transporter
US7963384B2 (en) * 2008-12-19 2011-06-21 3584925 Canada Inc. Automated order sequencing method and system
DE102009003564A1 (en) * 2009-03-04 2010-09-09 Krones Ag System, method and operating unit for creating mixed layers for pallets
CA2698178C (en) * 2009-04-01 2016-12-13 Walter Winkler System and method for order picking
US20110014017A1 (en) * 2009-07-14 2011-01-20 Pflow Industries, Inc. Storage retrieval machine
KR101720704B1 (en) * 2010-03-12 2017-03-28 심보틱 엘엘씨 Replenishment and order fulfillment system
TWI568643B (en) 2011-10-17 2017-02-01 辛波提克有限責任公司 Automated palletizer and merterial handling system
DE102011056254A1 (en) * 2011-12-10 2013-06-13 Walter Winkler Combined picking with order picking vehicles and a lay-up palletizer
DK3053860T3 (en) * 2015-02-03 2019-01-14 Ct Pack Srl DEVICE FOR ACCUMULATION AND RELEASE OF PRODUCTS, ESPECIALLY FOR SUPPLYING PACKAGE LINES WITH SUCH PRODUCTS
TWI588074B (en) * 2016-10-24 2017-06-21 Automatic material storage machine for storage equipment
US10407251B2 (en) * 2017-01-18 2019-09-10 Kabushiki Kaisha Yaskawa Denki Workpiece handling apparatus, workpiece handling system, method for discharging workpiece, method for supplying workpiece, and method for storing workpiece
KR102441409B1 (en) * 2017-11-21 2022-09-08 풀필 솔루션스, 인크. Product handling and packaging systems

Family Cites Families (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2715950A (en) * 1950-11-06 1955-08-23 Comm Engineering Pty Ltd Article dispensing systems
US3153487A (en) * 1960-08-30 1964-10-20 Cutler Hammer Inc Storage conveyor system
US3262584A (en) 1964-05-25 1966-07-26 Unarco Industries Article distribution and storage system
US3436968A (en) * 1965-02-11 1969-04-08 Fairbanks Morse Inc Processing control system
US3379321A (en) * 1966-02-25 1968-04-23 Fmc Corp Carrier with an article label unit for a warehouse system
GB1187933A (en) * 1967-06-24 1970-04-15 Holstein & Kappert Maschf Pallet Loading and Unloading Machines.
US3528213A (en) * 1967-09-27 1970-09-15 Lynch Corp Conveying system
US3643798A (en) * 1970-02-27 1972-02-22 Bell & Howell Co Mail weighing and sorting machine
JPS5232133B1 (en) * 1970-07-25 1977-08-19
US3741345A (en) * 1971-03-03 1973-06-26 H Saridis Semi automated retail store
US3757939A (en) * 1971-05-12 1973-09-11 Thompson & Co J Method and apparatus for sorting articles such as letters
US3731782A (en) * 1971-06-09 1973-05-08 Hi Speed Checkweigher Co Magnetic flow director
US3815313A (en) * 1972-10-04 1974-06-11 R Heisler Apparatus and method for automatically sizing and wrapping a shrink wrap envelope around advancing luggage
IT1082516B (en) * 1977-01-25 1985-05-21 Bruno & Co Alisyncro PLANT FOR THE DISTRIBUTION OF FOOD PRODUCTS PARTICULARLY SWEET TO A MULTIPLE OF PACKAGING STATIONS PLACED IN SERIES
US4161094A (en) * 1977-03-16 1979-07-17 Hauni-Werke Korber & Co. Kg. Apparatus for processing biscuits or the like
CH625474A5 (en) * 1978-02-14 1981-09-30 Sig Schweiz Industrieges
US4181947A (en) * 1978-05-23 1980-01-01 Rapistan, Incorporated Conveyor sorting system
US4385859A (en) * 1979-09-25 1983-05-31 Goossens Willy P M Storage installation permitting the automatic selection and removal of articles
JPS57102277A (en) * 1980-12-19 1982-06-25 Tokyo Shibaura Electric Co Classifier with automatic extractor
DE3213119C2 (en) * 1982-04-07 1995-10-05 Knapp Logistik Automation Method for picking piece goods and device for carrying out the method
US4672553A (en) * 1983-02-03 1987-06-09 Goody Products, Inc. Order processing method and apparatus
US4543970A (en) * 1983-02-21 1985-10-01 Tokyo Shibaura Denki Kabushiki Kaisha Automatic set-up system
FR2543308B1 (en) * 1983-03-25 1985-07-26 Oreal METHOD AND DEVICE FOR DETECTING THE POSITION OF OBJECTS STORED ON PALLETS, POSITION MARKING MEDIA AND DETECTION ASSEMBLY COMPRISING SUCH A DEVICE AND SUCH MEDIA
US4656591A (en) * 1983-04-18 1987-04-07 Goody Products, Inc. Order processing method and apparatus (II)
US4567988A (en) * 1983-04-22 1986-02-04 Eastman Kodak Company Apparatus and method for sorting and distributing objects
US4527937A (en) * 1983-05-13 1985-07-09 Orion Automation Industries Automatic storage and distribution system
US4542808A (en) * 1983-06-30 1985-09-24 House Of Lloyd, Inc. Order filling system
US4641271A (en) * 1983-11-09 1987-02-03 Hitachi, Ltd. Piling planning method and piling system of cargoes by palletizing robot
US4692876A (en) * 1984-10-12 1987-09-08 Hitachi, Ltd. Automatic freight stacking system
US4621745A (en) 1984-10-24 1986-11-11 Grace Robert W Mechanized carton picker
IT8522218V0 (en) * 1985-06-19 1985-06-19 Ottavio Conterno AUTOMATIC PALLETIZER.
EP0209116B1 (en) * 1985-07-16 1990-11-07 Kao Corporation Goods handling apparatus
US4826360A (en) * 1986-03-10 1989-05-02 Shimizu Construction Co., Ltd. Transfer system in a clean room
DE3782968T2 (en) * 1986-05-09 1993-06-24 Kao Corp METHOD AND SYSTEM FOR SORTING GOODS.
US5256028A (en) * 1986-07-23 1993-10-26 Winski Ernest P Process for handling material
FR2610908B1 (en) * 1987-02-18 1991-08-23 Vega Automation Sa METHOD AND DEVICE FOR STORING AND DISTRIBUTING CUT-OUT UNITS, ESPECIALLY FOR PACKAGING
DE3720933A1 (en) 1987-06-25 1989-01-05 Focke & Co METHOD AND DEVICE FOR LOADING PALLETS BY LAYER
US4815190A (en) * 1987-08-20 1989-03-28 Gmf Robotics Corporation Method for automated assembly of assemblies such as automotive assemblies
US4894908A (en) * 1987-08-20 1990-01-23 Gmf Robotics Corporation Method for automated assembly of assemblies such as automotive assemblies and system utilizing same
JPS6464759A (en) * 1987-09-03 1989-03-10 Hitachi Seiki Kk Free-flow type production system
US4867628A (en) * 1988-01-15 1989-09-19 Ammon J Preston Dispenser storage system
US4907699A (en) * 1989-03-03 1990-03-13 Speed Sort, Inc. Method and apparatus for sorting randomly positioned garments minimizing serting conveyor movement
US5018073A (en) * 1989-03-21 1991-05-21 Goody Products, Inc. High density loaded sorting conveyors
DE3925272A1 (en) * 1989-07-31 1991-02-07 Haensel Otto Gmbh METHOD FOR CONVEYING OBJECTS CONTINUOUSLY ARRIVING ON A CONTINUOUS CONVEYOR IN CROSS-ROWS, IN PARTICULAR PARTS OF SUESSE, LIKE CHOCOLATE TABLES, BARS, CHOCOLATES, ETC. AND PACKAGING PLANT FOR CARRYING OUT THE PROCESS
US5211528A (en) * 1989-08-31 1993-05-18 Mitsubishi Denki Kabushiki Kaisha Industrial robot apparatus
US5281081A (en) * 1990-01-10 1994-01-25 Mitsubishi Denki Kabushiki Kaisha Stowage device for plural species of works
US5119954A (en) * 1990-03-29 1992-06-09 Bell & Howell Company Multi-pass sorting machine
JP3055924B2 (en) * 1990-09-04 2000-06-26 ヤマザキマザック株式会社 Production system
DE4015935C2 (en) * 1990-05-17 1997-07-24 Ferdinand Christ Order picking device for articles
US5322406A (en) * 1990-08-13 1994-06-21 Electrocom Automation, L.P. Order filling system with cartridge dispenser
FR2669888B1 (en) * 1990-12-03 1993-10-22 Erca Sa METHOD AND DEVICE FOR POSITIONING BEFORE SEALING A STRIP OF LIDS ON A SET OF CONTAINERS.
US5105600A (en) * 1990-12-11 1992-04-21 Eastman Kodak Company Flexible apparatus and method for erecting and loading cases
US5119732A (en) * 1991-01-18 1992-06-09 R.R. Donnelley & Sons Company Portable gantry robot
US5106259A (en) * 1991-01-22 1992-04-21 Robotic Originals, Inc. Method for loading transport racks
US5220511A (en) * 1991-01-22 1993-06-15 White Conveyors, Inc. Computer control system and method for sorting articles on a conveyor
DE69228014T2 (en) * 1991-01-29 1999-05-27 Shinko Electric Co Ltd Unit for airtight storage of semiconductor wafers
KR960015906B1 (en) * 1991-03-18 1996-11-23 후지쓰 가부시끼가이샤 Method and apparatus for manufacturing printed wiring boards
US5203671A (en) * 1991-07-09 1993-04-20 C&D Robotics Apparatus for palletizing bundles of paper
DE4210812A1 (en) * 1992-04-01 1993-10-07 Schmermund Maschf Alfred Cartoning device
JPH0616206A (en) * 1992-07-03 1994-01-25 Shinko Electric Co Ltd Transportation system inside clean room
US5328319A (en) * 1992-09-14 1994-07-12 James River Paper Company, Inc. Robotic system for mixing and packing articles
US5636966A (en) 1992-10-07 1997-06-10 Hk Systems, Inc. Case picking system
JPH06179511A (en) * 1992-12-14 1994-06-28 Hitachi Ltd Automatic delivery center system
US5501571A (en) * 1993-01-21 1996-03-26 International Business Machines Corporation Automated palletizing system
US5406770A (en) * 1993-05-24 1995-04-18 Fikacek; Karel J. Packaging apparatus for random size articles
US5412923A (en) * 1993-10-18 1995-05-09 Riverwood International Corporation Tray packaging of stacked articles
US5806574A (en) * 1995-12-01 1998-09-15 Shinko Electric Co., Ltd. Portable closed container
US5720157A (en) * 1996-03-28 1998-02-24 Si Handling Systems, Inc. Automatic order selection system and method of operating
US5908283A (en) * 1996-11-26 1999-06-01 United Parcel Service Of Americia, Inc. Method and apparatus for palletizing packages of random size and weight
JPH10156670A (en) * 1996-12-03 1998-06-16 Fanuc Ltd Information transmitting method in plant system
JP2968742B2 (en) * 1997-01-24 1999-11-02 山形日本電気株式会社 Automatic storage shelf and automatic storage method
US5903464A (en) 1997-03-07 1999-05-11 Stingel, Jr.; Frederick John Conveying system and method for mixing stacked articles
US5996316A (en) 1997-04-25 1999-12-07 The Coca-Cola Company System and method for order packing
US6077017A (en) * 1997-06-06 2000-06-20 Park Plus, Inc. Vehicle handling system
US6558102B2 (en) * 1997-08-29 2003-05-06 psb GmbH Förderanlagen und Lagertechnik High storage shelf system for hanging goods
AU4032999A (en) * 1998-04-23 1999-11-16 Certus Maschinenbau Gmbh Device for processing bottles
DE19823083A1 (en) 1998-05-22 1999-11-25 Dynamic Systems Engineering B Dispatch holding unit for food wholesale warehouse has a series of
DE19905967B4 (en) 1999-02-12 2004-02-05 Dynamic Systems Engineering B.V. System for order picking, in particular for order picking of food in rectangular package containers
US6201203B1 (en) * 1999-05-12 2001-03-13 Northrop Grumman Corporation Robotic containerization system
US20030149644A1 (en) * 2002-02-05 2003-08-07 Vertique, Inc. Method, system, and apparatus for delivering product
US6729836B2 (en) * 2002-03-13 2004-05-04 Stingel, Iii Frederick J. Automated container storage and delivery system
US6868847B2 (en) * 2002-06-17 2005-03-22 Dieter Ainedter Method and apparatus for producing wall panels
US6871116B2 (en) * 2002-10-17 2005-03-22 Vertique, Inc. Determining pallet case configurations for placement by a robot
US6911300B2 (en) * 2003-11-10 2005-06-28 Think Laboratory Co., Ltd. Photogravure plate making method

Cited By (109)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8006824B2 (en) * 2006-11-16 2011-08-30 Hirata Corporation Storage system and storage method
US20100042249A1 (en) * 2006-11-16 2010-02-18 Ryoichi Wada Storage system and storage method
US20100307889A1 (en) * 2008-02-14 2010-12-09 Rotzinger Ag Intermediate storage for bulk goods
US8109380B2 (en) * 2008-02-14 2012-02-07 Rotzinger Ag Intermediate storage for bulk goods
US8915692B2 (en) 2008-02-21 2014-12-23 Harvest Automation, Inc. Adaptable container handling system
US11254501B2 (en) 2009-04-10 2022-02-22 Symbotic Llc Storage and retrieval system
US9051120B2 (en) 2009-04-10 2015-06-09 Symbotic Llc Control system for storage and retrieval systems
US20100322747A1 (en) * 2009-04-10 2010-12-23 Casepick Systems, Llc Storage and retrieval system
CN102725213A (en) * 2009-04-10 2012-10-10 凯斯皮克系统有限责任公司 Storage and retrieval system
US8425173B2 (en) 2009-04-10 2013-04-23 Symbotic Llc Autonomous transports for storage and retrieval systems
US8594835B2 (en) 2009-04-10 2013-11-26 Symbotic, LLC Control system for storage and retrieval systems
US11124361B2 (en) 2009-04-10 2021-09-21 Symbotic Llc Storage and retrieval system
US10759600B2 (en) 2009-04-10 2020-09-01 Symbotic Llc Autonomous transports for storage and retrieval systems
US8740538B2 (en) 2009-04-10 2014-06-03 Symbotic, LLC Storage and retrieval system
US20100316470A1 (en) * 2009-04-10 2010-12-16 Casepick Systems, Llc Control system for storage and retrieval systems
US10717599B2 (en) 2009-04-10 2020-07-21 Symbotic, LLC Control system for storage and retrieval systems
US9694975B2 (en) 2009-04-10 2017-07-04 Symbotic, LLC Lift interface for storage and retrieval systems
US10556743B2 (en) 2009-04-10 2020-02-11 Symbotic, LLC Storage and retrieval system
US20100322746A1 (en) * 2009-04-10 2010-12-23 Casepick Systems, Llc Lift interface for storage and retrieval systems
US9096375B2 (en) 2009-04-10 2015-08-04 Symbotic, LLC Storage and retrieval system
US10442622B2 (en) 2009-04-10 2019-10-15 Symbotic, LLC Control system for storage and retrieval systems
WO2010118412A1 (en) * 2009-04-10 2010-10-14 Casepick Systems, Llc Storage and retrieval system
US11608228B2 (en) 2009-04-10 2023-03-21 Symbotic Llc Control system for storage and retrieval systems
US10239691B2 (en) 2009-04-10 2019-03-26 Symbotic, LLC Storage and retrieval system
US10207870B2 (en) 2009-04-10 2019-02-19 Symbotic, LLC Autonomous transports for storage and retrieval systems
US9321591B2 (en) 2009-04-10 2016-04-26 Symbotic, LLC Autonomous transports for storage and retrieval systems
US11661279B2 (en) 2009-04-10 2023-05-30 Symbotic Llc Autonomous transports for storage and retrieval systems
US11858740B2 (en) 2009-04-10 2024-01-02 Symbotic Llc Storage and retrieval system
US10035649B2 (en) 2009-04-10 2018-07-31 Symbotic Llc Control system for storage and retrieval systems
US11939158B2 (en) 2009-04-10 2024-03-26 Symbotic Llc Storage and retrieval system
US9771217B2 (en) 2009-04-10 2017-09-26 Symbotic, LLC Control system for storage and retrieval systems
US9725239B2 (en) 2009-04-10 2017-08-08 Symbotic, LLC Storage and retrieval system
US8965619B2 (en) 2010-12-15 2015-02-24 Symbotic, LLC Bot having high speed stability
US9423796B2 (en) 2010-12-15 2016-08-23 Symbotic Llc Bot having high speed stability
US9676551B2 (en) 2010-12-15 2017-06-13 Symbotic, LLC Bot payload alignment and sensing
US11078017B2 (en) 2010-12-15 2021-08-03 Symbotic Llc Automated bot with transfer arm
CN107444813A (en) * 2010-12-15 2017-12-08 西姆伯蒂克有限责任公司 Robot payload adjustment and sensing
US9862543B2 (en) 2010-12-15 2018-01-09 Symbiotic, LLC Bot payload alignment and sensing
US9908698B2 (en) 2010-12-15 2018-03-06 Symbotic, LLC Automated bot transfer arm drive system
CN103442997A (en) * 2010-12-15 2013-12-11 西姆伯蒂克有限责任公司 Bot payload alignment and sensing
US9946265B2 (en) 2010-12-15 2018-04-17 Symbotic, LLC Bot having high speed stability
US8919801B2 (en) 2010-12-15 2014-12-30 Symbotic, LLC Suspension system for autonomous transports
US9561905B2 (en) 2010-12-15 2017-02-07 Symbotic, LLC Autonomous transport vehicle
US9550225B2 (en) 2010-12-15 2017-01-24 Symbotic Llc Bot having high speed stability
US9499338B2 (en) 2010-12-15 2016-11-22 Symbotic, LLC Automated bot transfer arm drive system
US10106322B2 (en) 2010-12-15 2018-10-23 Symbotic, LLC Bot payload alignment and sensing
US10683169B2 (en) 2010-12-15 2020-06-16 Symbotic, LLC Automated bot transfer arm drive system
US10822168B2 (en) 2010-12-15 2020-11-03 Symbotic Llc Warehousing scalable storage structure
US9156394B2 (en) 2010-12-15 2015-10-13 Symbotic, LLC Suspension system for autonomous transports
US10227177B2 (en) 2010-12-15 2019-03-12 Symbotic, LLC Automated bot transfer arm drive system
US11952214B2 (en) 2010-12-15 2024-04-09 Symbotic Llc Automated bot transfer arm drive system
US11273981B2 (en) 2010-12-15 2022-03-15 Symbolic Llc Automated bot transfer arm drive system
US9187244B2 (en) 2010-12-15 2015-11-17 Symbotic, LLC BOT payload alignment and sensing
US10414586B2 (en) 2010-12-15 2019-09-17 Symbotic, LLC Autonomous transport vehicle
US9147173B2 (en) 2011-10-31 2015-09-29 Harvest Automation, Inc. Methods and systems for automated transportation of items between variable endpoints
US9568917B2 (en) 2011-10-31 2017-02-14 Harvest Automation, Inc. Methods and systems for automated transportation of items between variable endpoints
US8676425B2 (en) 2011-11-02 2014-03-18 Harvest Automation, Inc. Methods and systems for maintenance and other processing of container-grown plants using autonomous mobile robots
US8937410B2 (en) 2012-01-17 2015-01-20 Harvest Automation, Inc. Emergency stop method and system for autonomous mobile robots
US10118723B2 (en) 2012-03-23 2018-11-06 Amazon Technologies, Inc. Custom containers in a materials handling facility
US10246275B1 (en) 2012-07-20 2019-04-02 Amazon Technologies, Inc. Container stacking configurations
US9315344B1 (en) * 2012-07-20 2016-04-19 Amazon Technologies, Inc. Container stacking configurations
US9714145B1 (en) 2012-07-20 2017-07-25 Amazon Technologies, Inc. Container stacking configurations
US9969571B1 (en) 2012-07-20 2018-05-15 Amazon Technologies, Inc. Container stacking configurations
US9926131B1 (en) * 2012-07-20 2018-03-27 Amazon Technologies, Inc. Custom container stacking configurations
US10435242B2 (en) 2013-03-15 2019-10-08 Alert Innovation Inc. Automated system for transporting payloads
US10040632B2 (en) 2013-03-15 2018-08-07 Alert Innovation Inc. Automated system for transporting payloads
US11332310B2 (en) 2013-03-15 2022-05-17 Alert Innovation Inc. Automated system for transporting payloads
US10179700B2 (en) 2013-03-15 2019-01-15 Alert Innovation Inc. Automated system for transporting payloads
CN105189314A (en) * 2013-03-15 2015-12-23 西姆伯蒂克有限责任公司 Automated storage and retrieval system
US10000338B2 (en) 2013-03-15 2018-06-19 Alert Innovation Inc. Automated system for transporting payloads
US11912500B2 (en) 2013-03-15 2024-02-27 Walmart Apollo, Llc Automated system for transporting payloads
US11866257B2 (en) 2013-03-15 2024-01-09 Walmart Apollo, Llc Automated system for transporting payloads
US10894663B2 (en) 2013-09-13 2021-01-19 Symbotic Llc Automated storage and retrieval system
US11708218B2 (en) 2013-09-13 2023-07-25 Symbolic Llc Automated storage and retrieval system
US10562705B2 (en) 2014-12-12 2020-02-18 Symbotic, LLC Storage and retrieval system
US11731832B2 (en) 2014-12-12 2023-08-22 Symbotic Llc Storage and retrieval system
US11130631B2 (en) 2014-12-12 2021-09-28 : Symbolic LLC Storage and retrieval system
US10954066B2 (en) 2015-01-16 2021-03-23 Symbolic Llc Storage and retrieval system
US11787634B2 (en) 2015-01-16 2023-10-17 Symbotic Llc Storage and retrieval system
US11893533B2 (en) 2015-01-16 2024-02-06 Symbotic Llc Storage and retrieval system
US11254502B2 (en) 2015-01-16 2022-02-22 Symbotic Llc Storage and retrieval system
US11562321B2 (en) 2015-01-16 2023-01-24 Symbotic Llc Storage and retrieval system
US10850921B2 (en) 2015-01-16 2020-12-01 Symbotic Llc Storage and retrieval system
US10839347B2 (en) 2015-01-16 2020-11-17 Symbotic Llc Storage and retrieval system
US11623822B2 (en) 2015-01-16 2023-04-11 Symbotic Llc Storage and retrieval system
US11745964B2 (en) 2015-01-23 2023-09-05 Symbotic Llc Storage and retrieval system transport vehicle
US11230447B2 (en) 2015-01-23 2022-01-25 Symbolic Llc Storage and retrieval system transport vehicle
US10781060B2 (en) 2015-01-23 2020-09-22 Symbotic Llc Storage and retrieval system transport vehicle
US11365049B2 (en) 2015-06-02 2022-06-21 Alert Innovation Inc. Storage and retrieval system
US10435241B2 (en) 2015-06-02 2019-10-08 Alert Innovation Inc. Storage and retrieval system
US11235928B2 (en) 2015-06-02 2022-02-01 Alert Innovation Inc. Storage and retrieval system
US11203486B2 (en) 2015-06-02 2021-12-21 Alert Innovation Inc. Order fulfillment system
US11142398B2 (en) 2015-06-02 2021-10-12 Alert Innovation Inc. Order fulfillment system
CN109715527A (en) * 2016-08-09 2019-05-03 赫伯特·费纳 Method for picking the product mix on target tray
US11014746B2 (en) * 2016-08-09 2021-05-25 Herbert Fellner Method for picking mixed products on a target pallet
US11952215B2 (en) 2016-11-17 2024-04-09 Walmart Apollo, Llc Automated-service retail system and method
US11142402B2 (en) 2016-11-17 2021-10-12 Alert Innovation Inc. Automated-service retail system and method
US11905058B2 (en) 2016-11-29 2024-02-20 Walmart Apollo, Llc Automated retail supply chain and inventory management system
US10919701B2 (en) 2017-01-10 2021-02-16 Alert Innovation Inc. Interchangeable automated mobile robots with a plurality of operating modes configuring a plurality of different robot task capabilities
US11836672B2 (en) 2017-02-24 2023-12-05 Walmart Apollo, Llc Inventory management system and method
US11315072B2 (en) 2017-02-24 2022-04-26 Alert Innovation Inc. Inventory management system and method
US11820600B2 (en) 2017-04-18 2023-11-21 Walmart Apollo, Llc Picking workstation with mobile robots and machine vision verification of each transfers performed by human operators
US10984375B2 (en) 2017-04-18 2021-04-20 Alert Innovation Inc. Picking workstation with mobile robots and machine vision verification of each transfers performed by human operators
US11724877B2 (en) 2017-08-08 2023-08-15 Walmart Apollo, Llc Universal gripper for tote and sub-tote transport
US10815057B2 (en) 2017-08-08 2020-10-27 Alert Innovation Inc. Universal gripper for tote and sub-tote transport
US10766699B2 (en) 2017-08-31 2020-09-08 Alert Innovation Inc. Order fulfillment robot capable of horizontal and vertical motion
US11623342B2 (en) 2017-12-12 2023-04-11 Walmart Apollo, Llc Configurable service isolation zones for service of equipment employing mobile robots
US11845610B2 (en) 2018-08-02 2023-12-19 Walmart Apollo, Llc Automated decant system
US11192719B2 (en) 2018-08-02 2021-12-07 Alert Innovation Inc. Automated decant system

Also Published As

Publication number Publication date
US20030176944A1 (en) 2003-09-18
US20030176943A1 (en) 2003-09-18
US7200465B2 (en) 2007-04-03
US6729836B2 (en) 2004-05-04

Similar Documents

Publication Publication Date Title
US7200465B2 (en) Automated container storage and delivery system
US7184855B2 (en) Automated container storage and delivery system
US10703585B2 (en) Pallet building system
US5636966A (en) Case picking system
US8494673B2 (en) Warehouse system and method for operating the same
US6425226B1 (en) System and method for order packing
CN106715292B (en) Method for feeding palletizing devices in distribution centers
US20070005180A1 (en) Automated container storage and delivery system
US5395206A (en) Method and apparatus for filling orders in a warehouse
CA2524414C (en) Automated order mixing system
JP2004010289A (en) Physical distribution facility
WO1989007563A1 (en) System for delivery
JP2003103222A (en) Treating facility
MXPA99009618A (en) A system and method for order packing

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION