US20060229193A1 - Metal loaded microporous material for hydrocarbon isomerization processes - Google Patents

Metal loaded microporous material for hydrocarbon isomerization processes Download PDF

Info

Publication number
US20060229193A1
US20060229193A1 US11/449,421 US44942106A US2006229193A1 US 20060229193 A1 US20060229193 A1 US 20060229193A1 US 44942106 A US44942106 A US 44942106A US 2006229193 A1 US2006229193 A1 US 2006229193A1
Authority
US
United States
Prior art keywords
extrudate
catalyst
molecular sieve
formed particle
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/449,421
Inventor
Joseph Biscardi
Darren Fong
Paul Marcantonio
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chevron USA Inc
Original Assignee
Chevron USA Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chevron USA Inc filed Critical Chevron USA Inc
Priority to US11/449,421 priority Critical patent/US20060229193A1/en
Publication of US20060229193A1 publication Critical patent/US20060229193A1/en
Priority to US12/392,894 priority patent/US20090163353A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/74Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/78Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/58Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
    • C10G45/60Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used
    • C10G45/64Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/02Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
    • C10G65/04Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps
    • C10G65/043Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps at least one step being a change in the structural skeleton
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/20After treatment, characterised by the effect to be obtained to introduce other elements in the catalyst composition comprising the molecular sieve, but not specially in or on the molecular sieve itself
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/42Addition of matrix or binder particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7049Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1022Fischer-Tropsch products
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/1048Middle distillates
    • C10G2300/1059Gasoil having a boiling range of about 330 - 427 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/1062Lubricating oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4018Spatial velocity, e.g. LHSV, WHSV

Abstract

The invention is directed to a method of making a catalyst comprising an intermediate pore size molecular sieve, preferably a zeolite of the MTT or TON type. SSZ-32 and ZSM-22 are examples of such molecular sieves. This catalyst is modified with a metal or metals selected from the group consisting of Ca, Cr, Mg, La, Ba, Pr, Sr, K and Nd. The catalyst is additionally loaded with a Group VIII metal or metals for hydrogenation purposes. The catalyst is suitable for use in a process whereby a feed including straight chain and slightly branched paraffins having 10 or more carbon atoms is isomerized.

Description

    FIELD OF THE INVENTION
  • This invention is directed to a method of making a catalyst comprising an intermediate pore size zeolite, the catalyst being suitable for use in isomerizing a feed which includes straight chain and slightly branched paraffins having 10 or more carbon atoms.
  • BACKGROUND OF THE INVENTION
  • The production of Group II and Group III base oils employing hydroprocessing has become increasing popular in recent years. Catalysts that demonstrate improved isomerization selectivity and conversion are continually sought. As discussed in U.S. Pat. No. 5,282,958, col. 1-2, the use of intermediate pore molecular sieves such as ZSM-22, ZSM-23, ZSM-35, SSZ-32, SAPO-11, SAPO-31, SM-3, SM-6 in isomerization and shape-selective dewaxing is well-known. Other typical zeolites useful in dewaxing include ZSM-48, ZSM-57, SSZ-20, EU-I, EU-13, Ferrierite, SUZ-4, theta-1, NU-10, NU-23, Nu-87, ISI-1, ISI-4, KZ-1, and KZ-2.
  • U.S. Pat. Nos. 5,252,527 and 5,053,373 disclose a zeolite such as SSZ-32 which is prepared using an N-lower alkyl-N′-isopropyl-imidazolium cation as a template. U.S. Pat. No. 5,053,373 discloses a silica to alumina ratio of greater than 20 to less than 40 and a constraint index, after calcination and in the hydrogen form of 13 or greater. The zeolite of U.S. Pat. No. 5,252,527 is not restricted to a constraint index of 13 or greater. U.S. Pat. No. 5,252,527 discloses loading zeolites with metals in order to provide a hydrogenation-dehydrogenation function. Typical replacing cations can include metal cations, e.g., rare earth, Group IIA and Group VIII metals, as well as their mixtures. Of the replacing metallic cations, cations of metals such as rare earth, Mn, Ca, Mg, Zn, Cd, Pt, Pd, Ni, Co, Ti, Al, Sn, Fe and Co are particularly preferred. A method for preparation of MTT-type zeolites such as SSZ-32 or ZSM-23 using small neutral amines is disclosed in U.S. Pat. No. 5,707,601.
  • U.S. Pat. No. 5,397,454 discloses hydroconversion processes employing a zeolite such as SSZ-32 which has a small crystallite size and a constraint index of 13 or greater, after calcinations and in the hydrogen form. The catalyst possess a silica to alumina ratio of greater than 20:1 and less than 40:1.
  • SUMMARY OF THE INVENTION
  • The instant invention discloses a process for dewaxing a hydrocarbon feed to produce an isomerized product, the feed includes straight chain and slightly branched paraffins having 10 or more carbon atoms. The feed is contacted under isomerization conditions in the presence of hydrogen with a catalyst comprising an intermediate pore size molecular sieve. One embodiment of the catalyst is prepared according to the following steps:
      • (a) synthesizing 10 ring molecular sieve having one-dimensional pores, said pores having a minor axis between about 4.2 A and about 4.8 A and a major axis between about 5.0 A and about 7.0 A;
      • (b) mixing said molecular sieve with a refractory inorganic oxide carrier precursor and an aqueous solution to form a mixture;
      • (c) extruding or forming the mixture from step (b) to form an extrudate or formed particle;
      • (d) drying the extrudate or formed particle of step (c);
      • (e) calcining the dried extrudate or formed particle of step (d);
      • (f) impregnating the calcined extrudate or formed particle of step (e) with at least one metal selected from the group consisting of Ca, Cr, Mg, La, Ba, Na, Pr, Sr, K, and Nd to prepare a metal loaded extrudate or formed particle;
      • (g) drying of the metal loaded extrudate or formed particle of step (f),
      • (h) further impregnating of the metal loaded extrudate or formed particle of step (g) with a Group VIII metal to prepare a catalyst precursor;
      • (i) drying the catalyst precursor of step (h);
      • (j) calcining the dried catalyst precursor of step (i) to form a finished bound dewaxing catalyst.
    DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • Catalyst Preparation
  • The catalyst of the instant invention is comprised of a molecular sieve(s) such as those discussed here. The catalyst employed may comprise from 5 to 60 wt % zeolite or molecular sieve. Molecular sieves may be of the AEL type, such as SAPO-11, SAPO-31, SM-3, SM-6 as well as zeolite type materials of the MTT or TON type. They may also be of the FER type. ‘Molecular sieves’ as used herein can include ‘zeolites’. The terms MTT type zeolite, MTT molecular sieve, or variations thereof refers to the framework structure code for a family of molecular sieve materials. The Structure Commission of the International Zeolite Association (IZA) gives codes consisting of three alphabetical letters to zeolites (a type of molecular sieve) having a structure that has been determined. Zeolites having the same topology are generically called by such three letters. The code MTT is given to the structure of molecular sieves including: ZSM-23, SSZ-32, EU-13, ISI-4, and KZ-1. Thus zeolites having a framework structure similar to that of ZSM-23 and SSZ-32 are named a MTT-type zeolite. The code TON is given to the molecular sieves including; Theta-1, ISI-1, KZ-2, NU-10, and ZSM-22. The parameters of MTT/TON type molecular sieves are further described in the Atlas of Molecular Sieves which is published by the IZA following the rules set up by an IUPAC Commission on Zeolite Nomenclature in 1978. MTT and TON have related structures and both have unidimensional channels. Also useful in the instant invention are zeolite type materials of the FER type, which include FU-9, ZSM-35, ISI-6, and NU-23. ZSM-23, SSZ-32, ZSM-22 and ZSM-35 are all constrained intermediate pore zeolites. Another material of use is SSZ-54, an intergrowth MTT and TON zeolite structures. It is described in co-pending application Ser. No. 10/186,905, “Zeolite SSZ-54 Composition of Matter and Synthesis Thereof.”
  • The term MTT/TON-type zeolites used herein means silicate-series crystalline microporous materials, which include crystalline alumino-silicates, crystalline metallo-silicates, and crystalline metallo-aluminosilicates having the (MTT/TON) structure. Metallo-silicates and metallo-aluminosilicates mean herein aluminosilicates, part or all of aluminum therein being replaced with other metals than aluminum, other metals which include gallium, iron, titanium, boron, cobalt, and chromium. Elements forming the framework structure other than silicon and oxygen, for example, aluminum, gallium, iron, titanium, boron, cobalt, zinc, magnesium, and chromium are herein defined as heteroatoms.
  • The molecular sieve described above is converted to its acidic form and then is mixed with a refractory inorganic oxide carrier precursor and an aqueous solution to form a mixture. The aqueous solution is preferably acidic. The solution acts as a peptizing agent. The carrier (also known as a matrix or binder) may be chosen for being resistant to the temperatures and other conditions employed in organic conversion processes. Such matrix materials include active and inactive materials and synthetic or naturally occurring zeolites as well as inorganic materials such as clays, silica and metal oxides. The latter may occur naturally or may be in the form of gelatinous precipitates, sols, or gels, including mixtures of silica and metal oxides. Use of an active material in conjunction with the synthetic zeolite, i.e., combined with it, tends to improve the conversion and selectivity of the catalyst in certain organic conversion processes.
  • Zeolites or molecular sieves are commonly composted with porous matrix materials and mixtures of matrix materials such as silica, alumina, titania, magnesia, silica-alumina, silica-magnesia, silica-zirconia, silica-thoria, silica-beryllia, silica-titania, titania-zirconia as well as ternary compositions such as silica-alumina-thoria, silica-alumina-zirconia, silica-alumina-magnesia and silica-magnesia-zirconia. The matrix can be in the form of a cogel. In the instant invention, the preferred matrix materials are alumina and silica. It is possible to add metals for the enhancement of isomerization selectivity during the actual synthesis of the zeolite, as well as during later steps in catalyst preparation. Methods of preparation include solid state ion exchange which is achieved by thermal means, spray drying with a metal salt solution, and preparation of a slurry in a salt solution. The slurry may be filtered to retrieve the zeolite, now loaded with metal.
  • Generally it is desirable to minimize the amount of molecular sieve in the finished catalyst for economic reasons. Lower levels of the molecular sieve in the finished catalyst are desirable if good activity and selectivity results are achieved. In the present invention the preferred level of molecular sieve is between 5 and 60 wt %. Preferred levels of molecular sieve may vary for different molecular sieve types.
  • Inactive materials can suitably serve as diluents to control the amount of conversion in a given process so that products can be obtained economically without using other means for controlling the rate of reaction. Frequently, zeolite materials have been incorporated into naturally occurring clays, e.g., bentonite and kaolin. These materials, i.e., clays, oxides, etc., function, in part, as binders for the catalyst. It is desirable to provide a catalyst having good crush strength, because in petroleum refining the catalyst is often subjected to rough handling. This tends to break the catalyst down into powders which cause problems in processing.
  • Naturally occurring clays which can be composited with the synthetic zeolites of this invention include the montmorillonite and kaolin families, which families include the sub-bentonites and the kaolins commonly known as Dixie, McNamee, Georgia and Florida clays or others in which the main mineral constituent is halloysite, kaolinite, dickite, nacrite, or anauxite. Fibrous clays such as sepiolite and attapulgite can also be used as supports. Such clays can be used in the raw state as originally mined or can be initially subjected to calcination, acid treatment or chemical modification.
  • The mixture of molecular sieve and binder can be formed into a wide variety of physical shapes. Generally speaking, the mixture can be in the form of a powder, a granule, or a molded product, such as an extrudate having a particle size sufficient to pass through a 2.5-mesh (Tyler) screen and be retained on a 48-mesh (Tyler) screen. In cases where the catalyst is molded, such as by extrusion with an organic binder, the mixture can be extruded before drying, or dried or partially dried and then extruded. The zeolite can also be steamed; steaming helps stabilize the crystalline lattice to attack from acids. The dried extrudate is then thermally treated, using calcination procedures.
  • Calcination temperature may range from 390 to 1100 F. Calcination may occur for periods of time ranging from 0.5 to 5 hours, or more, to produce a catalytically active product especially useful in hydrocarbon conversion processes.
  • The calcined extrudate or formed particle is then loaded with at least one metal selected from the group consisting of Ca, Cr, Mg, La, Na, Pr, Sr, K and Nd. These metals are known for their ability to modify performance of the catalyst by reducing the number of strong acid sites on the catalyst and thereby lowering the selectivity for cracking versus isomerization. Modification may also involve increased metal dispersion such that acid or cation sites in the catalysts are blocked. Metals loading may be accomplished by a variety of techniques, including impregnation and ion exchange.
  • Typical ion exchange techniques involve contacting the extrudate or particle with a solution containing a salt of the desired replacing cation or cations. Although a wide variety of salts can be employed, chlorides and other halides, nitrates, and sulfates are particularly preferred. Representative ion exchange techniques are disclosed in a wide variety of patents including U.S. Pat. Nos. 3,140,249; 3,140,251; and 3,140,253. Ion exchange can take place either before or after the extrudate or particle is calcined. Calcination is carried out in a temperature range from 400 to 1100° F.
  • Following contact with the salt solution of the desired replacing cation, the extrudate or particle is dried at temperatures ranging from 149 F. to about 599 F. The extrudate or particle is then further loaded using a technique such as impregnation, with a Group VIII metal to enhance the hydrogenation function. It may be desirable to coimpregnate a modifying metal and Group VIII metal at once, as disclosed in U.S. Pat. No. 4,094,821. The Group VIII metal is preferably platinum, palladium or a mixture of the two. After loading, the material can be calcined in air or inert gas at temperatures from 500 to 900 F.
  • Feeds
  • The instant invention may be used to dewax a variety of feedstocks ranging from relatively light distillate fractions such as kerosene and jet fuel up to high boiling stocks such as whole crude petroleum, reduced crudes, vacuum tower residua, cycle oils, synthetic crudes (e.g., shale oils, tars and oil, etc.), gas oils, vacuum gas oils, foots oils, Fischer-Tropsch derived waxes, and other heavy oils. Straight chain n-paraffins either alone or with only slightly branched chain paraffins having 16 or more carbon atoms are sometimes referred to herein as waxes. The feedstock will often be a C10+ feedstock generally boiling above about 350 F., since lighter oils will usually be free of significant quantities of waxy components. However, the process is particularly useful with waxy distillate stocks such as middle distillate stocks including gas oils, kerosenes, and jet fuels, lubricating oil stocks, heating oils and other distillate fractions whose pour point and viscosity need to be maintained within certain specification limits. Lubricating oil stocks will generally boil above 230[deg] C. (450[deg] F.), more usually above 315[deg] C. (600[deg] F.). Hydroprocessed stocks are a convenient source of stocks of this kind and also of other distillate fractions since they normally contain significant amounts of waxy n-paraffins. The feedstock of the present process will normally be a C10+ feedstock containing paraffins, olefins, naphthenes, aromatic and heterocyclic compounds and with a substantial proportion of higher molecular weight n-paraffins and slightly branched paraffins which contribute to the waxy nature of the feedstock. During the processing, the n-paraffins and the slightly branched paraffins undergo some cracking or hydrocracking to form liquid range materials which contribute to a low viscosity product. The degree of cracking which occurs is, however, limited so that the yield of products having boiling points below that of the feedstock is reduced, thereby preserving the economic value of the feedstock.
  • Typical feedstocks include hydrotreated or hydrocracked gas oils, hydrotreated lube oil raffinates, brightstocks, lubricating oil stocks, synthetic oils, foots oils, Fischer-Tropsch synthesis oils, high pour point polyolefins, normal alphaolefin waxes, slack waxes, deoiled waxes and microcrystalline waxes.
  • Conditions
  • The conditions under which the isomerization/dewaxing process of the present invention is carried out generally include a temperature which falls within a range from about 392° F. to about 800° F., and a pressure from about 15 to about 3000 psig. More preferably the pressure is from about 100 to about 2500 psig. The liquid hourly space velocity during contacting is generally from about 0.1 to about 20, more preferably from about 0.1 to about 5. The contacting is preferably carried out in the presence of hydrogen. The hydrogen to hydrocarbon ratio preferably falls within a range from about 2000 to about 10,000 standard cubic feet H2 per barrel hydrocarbon, more preferably from about 2500 to about 5000 standard cubic feet H2 per barrel hydrocarbon.
  • The product of the present invention may be further treated as by hydrofinishing. The hydrofinishing can be conventionally carried out in the presence of a metallic hydrogenation catalyst, for example, platinum on alumina. The hydrofinishing can be carried out at a temperature of from about 374 F to about 644 F and a pressure of from about 400 psig to about 3000 psig. Hydrofinishing in this manner is described in, for example, U.S. Pat. No. 3,852,207 which is incorporated herein by reference.
  • Examples Example 1
  • The hydroisomerization of n-hexadecane is tested in terms of looking for catalysts which give a high selectivity to isomerized nC-16 over cracked products. These results can be anticipated to be of value in selecting useful catalysts for n-paraffin isomerization of molecules of C10 and greater. An initial test of this type has been described in U.S. Pat. No. 5,282,958. (see col. 5, lines 25-55).
  • Here reactions were run under isothermal conditions to remove temperature effects. Conversion could be adjusted with changes in space velocity. All materials were first reduced in flowing hydrogen at 630° F. for 2 hours. Once the run was begun the conditions were to use 0.50 grams of catalyst loaded with 0.5 wt % Pd prepared as 20-40 mesh chips and packed into a downflow reactor. The hydrogen pressure was 1200 psig, flowing at 160 ml/min.
  • The Pd incorporation was carried out by ion-exchange at 160° F. for a minimum of 5 hours followed by filtration, washing, drying and calcination at 900° F.
  • Under these reaction conditions, the selectivity of a Pd SSZ-32 catalyst for isomerized nC16 was 69% at a conversion of 93%.
  • Example 2
  • A modified SSZ-32 catalyst was made by treatment with an additional metal to modify the acidity of the zeolite. In cases where ion-exchange could be used a procedure was followed of (1) introducing 10 grams of zeolite into 300 cc of water heated to 70° C., (2) stirring for 10 minutes and (3) then introducing the metal salt for exchange. In one example, 1.00 grams of Ca(OH)2 was added and the resulting exchange efficiency turned out to be 70%.
  • After filtration, washing and drying the material was calcined to 900° F. before Pd treatment as in Example 1. Running the catalyst as demonstrated in Example 1 but at 570° F. resulted in a selectivity of 80% for isomerized nC16 at 93% conversion which compares with the catalyst of Example 1 yielding a selectivity of 69% under the same conversion and temperature of run. The treatment of the zeolite with Ca(OH)2 has resulted in an improved isomerization catalyst for nC16 feed.
  • Examples 3-11
  • A series of catalyst were made as in Example 2 but using different modifying metals to demonstrate the range of conditions which might be considered. The addition of modifying metals was selected such that a ratio of 0.3-0.4 metal/Al sites in the SSZ-32 zeolite was achieved. The zeolite used had SiO2/Al2O3 of 35.
    TABLE 1
    METAL nC16 ISOMERIZATION
    EX # added CONVERSION SELECTIVITY
    3 none 92% (570° F.) 74%
    4 Ca same 83%
    5 Pr same 81%
    6 Sr same 79%
    7 La same 79%
    8 Mg same 79%
    9 Na same 79%
    10 K same 77%
    11 Cr same 76%
  • It can be seen that several metal treatments can improve the isomerization selectivity for n C16 by amounts typically as great as 5%. In general, the effect observed seems to be that the metal modifier has an ability to affect the combined Pd/zeolite catalyst in a manner which reduces hydrocarbon scission to make light gases, thereby enhancing isomerization.
  • Example 12
  • A sample of TON zeolite was made as described in Nakagawa and Zones (U.S. Pat. No. 5,707,600, col. 10, lines 50-61). The zeolite was then treated as in Examples 1 and 8. Running the zeolites as in Example 8 in the hexadecane conversion test, it was found that modification of the TON zeolite with metal also led to improved isomerization selectivity. The improved catalyst gave a 69% selectivity over a basecase (no metal added) of 64% for this particular TON sample. Again a roughly 5% improvement was seen. This experiment demonstrates that other 1 D, 10-ring zeolites can be advantageously modified.
  • Example 13-16
  • In modifying the zeolite with additional metals it has been seen that optimum levels can be described for modification. In the example which follow in Table 2, it can be seen that for a Ca treatment and subsequent catalyst testing as in Example 4, increased addition of Ca results in improved isomerization selectivity up to a point. It can be anticipated that a number of the other metals in Examples 4-11 will show a similar behavior, though the optimization value will not be identical in each case.
    TABLE 2
    Ca/Al in SSZ-32 nC16 Isomerization
    Ex # Atomic ratio Conversion Selectivity
    13 0.00 93% 69%
    14 0.25 93% 77%
    15 0.35 93% 82%
    16 0.58 93% 80%
  • Example 15 depicts the optimum ratio for Ca/Al on Pd/Ca/H-SSZ-32. Optimum ratios will vary for different metals used on SSZ-32. For example, 0.35 Sr/Al on SSZ-32 might not result in the best conversion and selectivity. Optimum ratios vary for each zeolite and metal pairing.
  • Example 17
  • These metal modification treatments can be of value on zeolites which were bound with alumina, silica or other refractories. The H-SSZ-32 zeolite was bound with alumina by use of Catapal B and a peptizing procedure (HNO3) as is typically practiced by those skilled in the art, and is described in U.S. Pat. No. 5,376,260, col. 9, lines 65-Col. 11, line 19). The extrudate was prepared from forcing the peptized mixture through a die to produce 1/16 inch material. This was subsequently dried and then calcined to a variety of temperatures. The subsequent treatment with Pd and then testing for hexadecane isomerization showed that a catalyst made from extrudate calcined below 1100° F. (a rather typical extrudate calcination temperature) performed better.
  • Following the procedure of Example 17, an extrudate was formed at 65% zeolite and calcined to 700° F. before the Pd was added and the material re-calcined. Another catalyst was prepared from this extrudate where a modifying metal was added before the subsequent Pd steps. The modification was such that the Ca/Al atomic ratio in the zeolite was 0.45. The isomerization selectivity for the Pd/zeolite/extrudate system without metal modification was 67% at 92% conversion, while the modified catalyst improved to a selectivity of 76% under the same conditions. This example demonstrates that the advantages of metal modification of the 10-ring 1 D zeolites can improve their paraffin isomerization (for C10 and larger) capability even when they are bound with a refractory oxide.
  • Example 18
  • An extrudate was prepared as in Example 17 but the zeolite content was reduced to 45%. This material was split into 2 portions. One was processed through to a catalyst as in Example 17 for the Pd-only material. The second portion contained both Ca and Pd and was prepared as its counterpart in Example 17. The non-metal modified catalyst at 45 wt % zeolite content 55 wt % alumina performed below that of Example 17, giving only about 50% isomerization selectivity at 93% conversion. However, the same 45% zeolite material, modified with calcium showed a jump in selectivity to near 75%. In comparison with Example 17, these results show that the metal-modification approach is effective in raising the isomerization selectivity for a zeolite in a binder even as the zeolite content is changed.
  • Example 19-21
  • The performance of the extrudate can also be beneficially affected by carefully selected steaming. The sequence of extrudates was steamed at 900° F. for a series of run times and then converted into finished catalysts and tested for n C16 isomerization selectivity at 570° F.
    TABLE 3
    HOURS nC16 ISOMERIZATION
    EX # STEAMED CONVERSION SELECTIVITY
    19 0 92% 67%
    20 1 92% 50%
    21 4 92% 64%
    22 8 92% 70%

Claims (13)

1-9. (canceled)
10. A method of preparing a dewaxing catalyst suitable for use in a process for dewaxing a hydrocarbon feed to produce an isomerized product, the feed including straight chain and slightly branched chain paraffins having 10 or more carbon atoms, the method of preparation comprising the following steps:
(a) synthesizing a one-dimensional 10 ring molecular sieve having one-dimensional pores, said pores having a minor axis between about 4.2 A and about 4.8 A and a major axis between about 5.0 A and about 7.0 A, wherein said molecular sieve is an FER zeolite which is selected from the group consisting of FU-9, ZSM-35, ISI-6 and NU-23.
(b) mixing said molecular sieve with a refractory inorganic oxide carrier precursor and an aqueous solution to form a mixture, the mixture having a molecular sieve content from about 5 to about 60 wt %;
(c) extruding or forming the mixture from step (b) to form an extrudate or formed particle;
(d) drying the extrudate or formed particle of step (c);
(e) calcining the dried extrudate or formed particle of step (d);
(f) modifying the calcined extrudate or formed particle of step (e) with at least one metal selected from the group consisting of Ca, Cr, Mg, La, Ba, Na, Pr, Sr, K, and Nd to prepare a metal modified extrudate or formed particle;
(g) drying of the metal loaded extrudate or formed particle of step (f),
(h) loading of the metal modified extrudate or formed particle of step (g) with a Group VIII metal to prepare a catalyst precursor;
(i) drying the catalyst precursor of step (h);
(j) calcining the dried catalyst precursor of step (i) to form a finished bound dewaxing catalyst.
11-36. (canceled)
37. A method of preparing a dewaxing catalyst suitable for use in a process for dewaxing a hydrocarbon feed to produce an isomerized product, the feed including straight chain and slightly branched chain paraffins having 10 or more carbon atoms, the method of preparation comprising the following steps:
(a) synthesizing a one-dimensional 10 ring molecular sieve having one-dimensional pores, said pores having a minor axis between about 4.2 A and about 4.8 A and a major axis between about 5.0 A and about 7.0 A wherein the molecular sieve is subsequently converted to acidic form;
(b) mixing said molecular sieve with a refractory inorganic oxide carrier precursor and an aqueous solution to form a mixture, the mixture having a molecular sieve content from about 5 to about 60 wt %;
(c) extruding or forming the mixture from step (b) to form an extrudate or formed particle;
(d) drying the extrudate or formed particle of step (c);
(e) calcining the dried extrudate or formed particle of step (d);
(f) loading of the calcined extrudate or formed particle of step (e) with a Group VIII metal to prepare a catalyst precursor;
(g) drying the catalyst precursor of step (f);
(h) calcining the dried catalyst precursor of step (g) to form a finished bound dewaxing catalyst.
38. A method of preparing a dewaxing catalyst suitable for use in a process for dewaxing a hydrocarbon feed to produce an isomerized product, the feed including straight chain and slightly branched chain paraffins having 10 or more carbon atoms, the method of preparation comprising the following steps:
(a) synthesizing a one-dimensional 10 ring molecular sieve having one-dimensional pores, said pores having a minor axis between about 4.2 A and about 4.8 A and a major axis between about 5.0 A and about 7.0 A wherein the molecular sieve is subsequently converted to acidic form;
(b) mixing said molecular sieve with a refractory inorganic oxide carrier precursor and an aqueous solution to form a mixture, the mixture having a molecular sieve content from about 5 to about 60 wt %;
(c) extruding or forming the mixture from step (b) to form an extrudate or formed particle;
(d) drying the extrudate or formed particle of step (c);
(e) calcining the dried extrudate or formed particle of step (d);
(f) loading the calcined extrudate or formed particle of step (e) with at least one metal selected from the group consisting of Ca, Cr, Mg, La, Ba, Na, Pr, Sr, K, and Nd and at least one metal selected from Group VIII to prepare a catalyst precursor wherein the non-Group VIII metals modification enhances the n-paraffin isomerization selectivity of the catalyst;
(g) drying the catalyst precursor of step (f);
(h) calcining the dried catalyst precursor of step (i) to form a finished bound dewaxing catalyst.
39. A catalyst prepared by the method of claim 10.
40. The method of claim 10 wherein at least one modifying metal, added to enhance the n-paraffin isomerization selectivity of the catalyst, is selected from the group consisting of Ca, Cr, Mg, La, Ba, Na, Pr, Sr, K, and Nd and is added to the molecular sieve during step (a), during step (b), or at some point in between step (a) and step (b).
41. The method of claim 10, wherein the aqueous solution of step (b) is acidic.
42. The method of claim 10, in which the calcination of step (e) occurs at a temperature of no greater than 1100° F.
43. The method of claim 42, in which the calcinations of step (e) occurs at a temperature of no greater than 700° F.
44. The method of claim 10, in which the refractory inorganic oxide is selected from the group consisting of alumina and silica.
45. The method of claim 10, wherein the extrudate is steamed prior to metal loading.
46. The process of claim 10, wherein Group VIII metals are selected from the Group consisting of platinum and palladium, and mixtures thereof.
US11/449,421 2003-03-21 2006-06-07 Metal loaded microporous material for hydrocarbon isomerization processes Abandoned US20060229193A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/449,421 US20060229193A1 (en) 2003-03-21 2006-06-07 Metal loaded microporous material for hydrocarbon isomerization processes
US12/392,894 US20090163353A1 (en) 2003-03-21 2009-02-25 Metal Loaded Micropopous Material For Hydrocarbon Isomerization Processes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/393,817 US7141529B2 (en) 2003-03-21 2003-03-21 Metal loaded microporous material for hydrocarbon isomerization processes
US11/449,421 US20060229193A1 (en) 2003-03-21 2006-06-07 Metal loaded microporous material for hydrocarbon isomerization processes

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/393,817 Continuation US7141529B2 (en) 2003-03-21 2003-03-21 Metal loaded microporous material for hydrocarbon isomerization processes

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/392,894 Continuation US20090163353A1 (en) 2003-03-21 2009-02-25 Metal Loaded Micropopous Material For Hydrocarbon Isomerization Processes

Publications (1)

Publication Number Publication Date
US20060229193A1 true US20060229193A1 (en) 2006-10-12

Family

ID=32988235

Family Applications (4)

Application Number Title Priority Date Filing Date
US10/393,817 Expired - Lifetime US7141529B2 (en) 2003-03-21 2003-03-21 Metal loaded microporous material for hydrocarbon isomerization processes
US11/012,051 Active 2024-08-31 US7390394B2 (en) 2003-03-21 2004-12-13 Metal loaded microporous material for hydrocarbon isomerization processes
US11/449,421 Abandoned US20060229193A1 (en) 2003-03-21 2006-06-07 Metal loaded microporous material for hydrocarbon isomerization processes
US12/392,894 Abandoned US20090163353A1 (en) 2003-03-21 2009-02-25 Metal Loaded Micropopous Material For Hydrocarbon Isomerization Processes

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US10/393,817 Expired - Lifetime US7141529B2 (en) 2003-03-21 2003-03-21 Metal loaded microporous material for hydrocarbon isomerization processes
US11/012,051 Active 2024-08-31 US7390394B2 (en) 2003-03-21 2004-12-13 Metal loaded microporous material for hydrocarbon isomerization processes

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12/392,894 Abandoned US20090163353A1 (en) 2003-03-21 2009-02-25 Metal Loaded Micropopous Material For Hydrocarbon Isomerization Processes

Country Status (7)

Country Link
US (4) US7141529B2 (en)
EP (1) EP1615719A4 (en)
JP (1) JP4912872B2 (en)
AU (1) AU2004223947B2 (en)
CA (1) CA2519972C (en)
WO (1) WO2004085445A2 (en)
ZA (1) ZA200507756B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012005981A3 (en) * 2010-06-29 2012-04-19 Chevron U.S.A. Inc. CATALYTIC PROCESSES AND SYSTEMS FOR BASE OIL PRODUCTION USING ZEOLITE SSZ-32x
WO2012005980A3 (en) * 2010-06-29 2012-04-19 Chevron U.S.A. Inc. Catalytic processes and systems for base oil production from heavy feedstock
WO2012005976A3 (en) * 2010-06-29 2012-04-19 Chevron U.S.A. Inc. Catalytic processes and systems for base oil production from light feedstock
US20130008827A1 (en) * 2010-03-29 2013-01-10 Jx Nippon Oil & Energy Corporation Hydroisomerization catalyst, process for producing the same, method of dewaxing hydrocarbon oil, process for producing hydrocarbon, and process for producing lube base oil
US9492818B2 (en) 2009-06-12 2016-11-15 Albemarle Europe Sprl SAPO molecular sieve catalysts and their preparation and uses

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7141529B2 (en) * 2003-03-21 2006-11-28 Chevron U.S.A. Inc. Metal loaded microporous material for hydrocarbon isomerization processes
US7662273B2 (en) * 2004-09-08 2010-02-16 Exxonmobil Research And Engineering Company Lube basestocks manufacturing process using improved hydrodewaxing catalysts
US7638453B2 (en) * 2004-09-08 2009-12-29 Exxonmobile Research And Engineering Company Molecular sieve containing hydrodewaxing catalysts
CN100400161C (en) * 2005-09-16 2008-07-09 中国石油化工股份有限公司 Modified molecular sieve for catalytic cracking to prepare lower carbon olefin
US20080083657A1 (en) * 2006-10-04 2008-04-10 Zones Stacey I Isomerization process using metal-modified small crystallite mtt molecular sieve
AU2008268777B2 (en) * 2007-06-27 2011-12-08 Nippon Oil Corporation Hydroisomerization catalyst, method of dewaxing hydrocarbon oil, process for producing base oil, and process for producing lube base oil
JP2010116328A (en) * 2008-11-11 2010-05-27 Nippon Oil Corp Method for producing unsaturated hydrocarbon and oxygen-containing compound, catalyst and method for producing the same
TWI473652B (en) * 2008-12-26 2015-02-21 Nippon Oil Corp Hydrogenated isomerization catalyst, method for producing the same, dewaxing method for hydrocarbon oil and method for producing lubricating base oil
JP5411864B2 (en) * 2009-07-03 2014-02-12 Jx日鉱日石エネルギー株式会社 Lubricating base oil manufacturing method and lubricating base oil
US8431014B2 (en) * 2009-10-06 2013-04-30 Chevron U.S.A. Inc. Process and catalyst system for improving dewaxing catalyst stability and lubricant oil yield
CA2810567A1 (en) * 2010-09-07 2012-03-15 Sasol Technology (Pty) Ltd. Diesel engine efficiency improvement
WO2012135728A1 (en) 2011-03-30 2012-10-04 University Of Louisville Research Foundation, Inc. Catalytic isomerisation of linear olefinic hydrocarbons
GB2515841B (en) 2013-07-02 2018-11-14 Bharat Petroleum Corp Ltd Dispersed novel metal-containing catalyst for hydrocarbon conversion
CN105214717B (en) * 2015-10-22 2017-07-28 中国海洋石油总公司 A kind of preparation method of lube base oil isomerization dewaxing catalyst
CN108262060A (en) * 2016-12-30 2018-07-10 中国石油天然气股份有限公司 A kind of gasoline catalyzing and olefine reducing aromatized catalyst and its preparation method and application
CN111097480B (en) * 2018-10-26 2022-08-09 中国石油化工股份有限公司 Molecular sieve with mesopores, preparation method and application thereof
EP4281521A1 (en) 2021-01-19 2023-11-29 Chevron U.S.A. Inc. Method for producing high quality base oils using two stage hydrofinishing
US20220228074A1 (en) 2021-01-20 2022-07-21 Chevron U.S.A. Inc. Method for producing high quality base oils using multiple stage processing

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3140249A (en) * 1960-07-12 1964-07-07 Socony Mobil Oil Co Inc Catalytic cracking of hydrocarbons with a crystalline zeolite catalyst composite
US3140253A (en) * 1964-05-01 1964-07-07 Socony Mobil Oil Co Inc Catalytic hydrocarbon conversion with a crystalline zeolite composite catalyst
US3140251A (en) * 1961-12-21 1964-07-07 Socony Mobil Oil Co Inc Process for cracking hydrocarbons with a crystalline zeolite
US4049821A (en) * 1976-05-12 1977-09-20 A. H. Robins Company, Inc. Method of treating allergy
US4379027A (en) * 1981-12-24 1983-04-05 Mobil Oil Corporation Selective hydrogenation of vinyltoluene
US4428865A (en) * 1981-01-13 1984-01-31 Mobil Oil Corporation Catalyst composition for use in production of high lubricating oil stock
US4482773A (en) * 1982-02-25 1984-11-13 Mobil Oil Corporation Catalyst for xylene isomerization
US4485185A (en) * 1979-03-29 1984-11-27 Teijin Petrochemical Industries, Ltd. Catalyst composition
US4568655A (en) * 1984-10-29 1986-02-04 Mobil Oil Corporation Catalyst composition comprising Zeolite Beta
US4605488A (en) * 1984-05-03 1986-08-12 Mobil Oil Corporation Catalytic dewaxing of light and heavy oils in dual parallel reactors
US4859312A (en) * 1987-01-12 1989-08-22 Chevron Research Company Process for making middle distillates using a silicoaluminophosphate molecular sieve
US4882307A (en) * 1987-09-02 1989-11-21 Mobil Oil Corporation Process for preparing noble metal-containing zeolites
US5053373A (en) * 1988-03-23 1991-10-01 Chevron Research Company Zeolite SSZ-32
US5187133A (en) * 1990-03-30 1993-02-16 Cosmo Oil Co., Ltd. Catalyst composition for hydrotreating of hydrocarbons and hydrotreating process using the same
US5252527A (en) * 1988-03-23 1993-10-12 Chevron Research And Technology Company Zeolite SSZ-32
US5282958A (en) * 1990-07-20 1994-02-01 Chevron Research And Technology Company Use of modified 5-7 a pore molecular sieves for isomerization of hydrocarbons
US5707601A (en) * 1995-03-17 1998-01-13 Chevron U.S.A. Inc. Process for preparing zeolites having MTT crystal structure using small, neutral amines
US6576120B1 (en) * 1998-11-16 2003-06-10 Shell Oil Company Catalytic dewaxing process
US6709570B1 (en) * 1999-09-27 2004-03-23 Shell Oil Company Method for preparing a catalyst
US6746598B1 (en) * 1998-08-15 2004-06-08 Enitecnologie S.P.A. Process and catalysts for upgrading of hydrocarbons boiling in the naphtha range

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1072525A (en) 1975-05-22 1980-02-26 Exxon Research And Engineering Company Catalysts, method of making said catalysts and uses thereof
US4601993A (en) * 1984-05-25 1986-07-22 Mobil Oil Corporation Catalyst composition dewaxing of lubricating oils
JPH01228554A (en) * 1988-03-08 1989-09-12 Tosoh Corp Platinum group metal supporting mordenite and manufacture thereof
AU642289B2 (en) * 1990-07-20 1993-10-14 Chevron Research And Technology Company Wax isomerization using catalyst of specific pore geometry
US5376260A (en) * 1993-04-05 1994-12-27 Chevron Research And Technology Company Process for producing heavy lubricating oil having a low pour point
FR2765236B1 (en) * 1997-06-25 1999-12-03 Inst Francais Du Petrole PROCESS FOR IMPROVING THE FLOW POINT OF LOADS CONTAINING PARAFFINS WITH A MODIFIED ZEOLITH NU-87 CATALYST
US6663768B1 (en) * 1998-03-06 2003-12-16 Chevron U.S.A. Inc. Preparing a HGH viscosity index, low branch index dewaxed
JP2002519281A (en) * 1998-06-29 2002-07-02 カリフォルニア インスティチュート オブ テクノロジー Molecular sieve CIT-6
US6187981B1 (en) * 1999-07-19 2001-02-13 Uop Llc Process for producing arylalkanes and arylalkane sulfonates, compositions produced therefrom, and uses thereof
US7141529B2 (en) * 2003-03-21 2006-11-28 Chevron U.S.A. Inc. Metal loaded microporous material for hydrocarbon isomerization processes

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3140249A (en) * 1960-07-12 1964-07-07 Socony Mobil Oil Co Inc Catalytic cracking of hydrocarbons with a crystalline zeolite catalyst composite
US3140251A (en) * 1961-12-21 1964-07-07 Socony Mobil Oil Co Inc Process for cracking hydrocarbons with a crystalline zeolite
US3140253A (en) * 1964-05-01 1964-07-07 Socony Mobil Oil Co Inc Catalytic hydrocarbon conversion with a crystalline zeolite composite catalyst
US4049821A (en) * 1976-05-12 1977-09-20 A. H. Robins Company, Inc. Method of treating allergy
US4485185A (en) * 1979-03-29 1984-11-27 Teijin Petrochemical Industries, Ltd. Catalyst composition
US4428865A (en) * 1981-01-13 1984-01-31 Mobil Oil Corporation Catalyst composition for use in production of high lubricating oil stock
US4379027A (en) * 1981-12-24 1983-04-05 Mobil Oil Corporation Selective hydrogenation of vinyltoluene
US4482773A (en) * 1982-02-25 1984-11-13 Mobil Oil Corporation Catalyst for xylene isomerization
US4605488A (en) * 1984-05-03 1986-08-12 Mobil Oil Corporation Catalytic dewaxing of light and heavy oils in dual parallel reactors
US4568655A (en) * 1984-10-29 1986-02-04 Mobil Oil Corporation Catalyst composition comprising Zeolite Beta
US4859312A (en) * 1987-01-12 1989-08-22 Chevron Research Company Process for making middle distillates using a silicoaluminophosphate molecular sieve
US4882307A (en) * 1987-09-02 1989-11-21 Mobil Oil Corporation Process for preparing noble metal-containing zeolites
US5053373A (en) * 1988-03-23 1991-10-01 Chevron Research Company Zeolite SSZ-32
US5252527A (en) * 1988-03-23 1993-10-12 Chevron Research And Technology Company Zeolite SSZ-32
US5397454A (en) * 1988-03-23 1995-03-14 Chevron U.S.A. Inc. Hydrocarbon conversion process using zeolite SSZ-32 having constraint index of 13 or greater
US5187133A (en) * 1990-03-30 1993-02-16 Cosmo Oil Co., Ltd. Catalyst composition for hydrotreating of hydrocarbons and hydrotreating process using the same
US5282958A (en) * 1990-07-20 1994-02-01 Chevron Research And Technology Company Use of modified 5-7 a pore molecular sieves for isomerization of hydrocarbons
US5707601A (en) * 1995-03-17 1998-01-13 Chevron U.S.A. Inc. Process for preparing zeolites having MTT crystal structure using small, neutral amines
US6746598B1 (en) * 1998-08-15 2004-06-08 Enitecnologie S.P.A. Process and catalysts for upgrading of hydrocarbons boiling in the naphtha range
US6576120B1 (en) * 1998-11-16 2003-06-10 Shell Oil Company Catalytic dewaxing process
US6709570B1 (en) * 1999-09-27 2004-03-23 Shell Oil Company Method for preparing a catalyst

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9492818B2 (en) 2009-06-12 2016-11-15 Albemarle Europe Sprl SAPO molecular sieve catalysts and their preparation and uses
US20130008827A1 (en) * 2010-03-29 2013-01-10 Jx Nippon Oil & Energy Corporation Hydroisomerization catalyst, process for producing the same, method of dewaxing hydrocarbon oil, process for producing hydrocarbon, and process for producing lube base oil
US9637692B2 (en) * 2010-03-29 2017-05-02 Jx Nippon Oil & Energy Corporation Hydroisomerization catalyst, process for producing the same, method of dewaxing hydrocarbon oil, process for producing hydrocarbon, and process for producing lube base oil
US8617387B2 (en) 2010-06-29 2013-12-31 Chevron U.S.A. Inc. Catalytic processes and systems for base oil production from light feedstock
WO2012005976A3 (en) * 2010-06-29 2012-04-19 Chevron U.S.A. Inc. Catalytic processes and systems for base oil production from light feedstock
CN102695781A (en) * 2010-06-29 2012-09-26 雪佛龙美国公司 Catalytic processes and systems for base oil production using zeolite SSZ-32x
KR20130038354A (en) * 2010-06-29 2013-04-17 셰브런 유.에스.에이.인크. Catalytic processes and systems for base oil production from light feedstock
US8475648B2 (en) 2010-06-29 2013-07-02 Chevron U.S.A. Inc. Catalytic processes and systems for base oil production from heavy feedstock
WO2012005981A3 (en) * 2010-06-29 2012-04-19 Chevron U.S.A. Inc. CATALYTIC PROCESSES AND SYSTEMS FOR BASE OIL PRODUCTION USING ZEOLITE SSZ-32x
US8790507B2 (en) 2010-06-29 2014-07-29 Chevron U.S.A. Inc. Catalytic processes and systems for base oil production using zeolite SSZ-32x
CN102869753A (en) * 2010-06-29 2013-01-09 雪佛龙美国公司 Catalytic processes and systems for base oil production from heavy feedstock
WO2012005980A3 (en) * 2010-06-29 2012-04-19 Chevron U.S.A. Inc. Catalytic processes and systems for base oil production from heavy feedstock
US9677016B2 (en) 2010-06-29 2017-06-13 Chevron U.S.A. Inc. Catalytic processes and systems for base oil production using zeolite SSZ-32X
KR101885192B1 (en) 2010-06-29 2018-08-06 셰브런 유.에스.에이.인크. Catalytic processes and systems for base oil production from light feedstock
KR101905476B1 (en) 2010-06-29 2018-10-10 셰브런 유.에스.에이.인크. Catalytic processes and systems for base oil production from heavy feedstock
KR20180123180A (en) * 2010-06-29 2018-11-14 셰브런 유.에스.에이.인크. CATALYTIC PROCESSES AND SYSTEMS FOR BASE OIL PRODUCTION USING ZEOLITE SSZ-32x
KR101968323B1 (en) 2010-06-29 2019-04-12 셰브런 유.에스.에이.인크. CATALYTIC PROCESSES AND SYSTEMS FOR BASE OIL PRODUCTION USING ZEOLITE SSZ-32x

Also Published As

Publication number Publication date
CA2519972C (en) 2013-05-14
WO2004085445A2 (en) 2004-10-07
JP2006523136A (en) 2006-10-12
AU2004223947A1 (en) 2004-10-07
JP4912872B2 (en) 2012-04-11
WO2004085445A3 (en) 2005-04-28
EP1615719A4 (en) 2010-09-08
US20040186006A1 (en) 2004-09-23
US7390394B2 (en) 2008-06-24
US20090163353A1 (en) 2009-06-25
ZA200507756B (en) 2007-01-31
US7141529B2 (en) 2006-11-28
US20050155907A1 (en) 2005-07-21
EP1615719A2 (en) 2006-01-18
CA2519972A1 (en) 2004-10-07
AU2004223947B2 (en) 2009-10-08

Similar Documents

Publication Publication Date Title
US20060229193A1 (en) Metal loaded microporous material for hydrocarbon isomerization processes
JP4671967B2 (en) Preparation of small crystal SSZ-32 and its use in hydrocarbon conversion process
US9677016B2 (en) Catalytic processes and systems for base oil production using zeolite SSZ-32X
EP2373413B1 (en) Dewaxing catalysts and processes
KR101385333B1 (en) Isomerization Process Using Metal-Modified Small Crystallite MTT Molecular Sieve
KR101885192B1 (en) Catalytic processes and systems for base oil production from light feedstock
EP3215267B1 (en) Base stock production using a high activity catalyst
US5376260A (en) Process for producing heavy lubricating oil having a low pour point
US11542446B2 (en) Dewaxing using a molecular sieve catalyst
AU2003286537A1 (en) Enhanced lube oil yield by low hydrogen pressure catalytic dewaxing of paraffin wax

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION