US20060210405A1 - Vacuum pressure controller - Google Patents
Vacuum pressure controller Download PDFInfo
- Publication number
- US20060210405A1 US20060210405A1 US11/372,695 US37269506A US2006210405A1 US 20060210405 A1 US20060210405 A1 US 20060210405A1 US 37269506 A US37269506 A US 37269506A US 2006210405 A1 US2006210405 A1 US 2006210405A1
- Authority
- US
- United States
- Prior art keywords
- vacuum
- pump
- vacuum pressure
- valve
- pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D3/00—Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
- B01D3/10—Vacuum distillation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D3/00—Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
- B01D3/08—Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping in rotating vessels; Atomisation on rotating discs
- B01D3/085—Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping in rotating vessels; Atomisation on rotating discs using a rotary evaporator
Definitions
- This invention relates to a vacuum pressure controller of the type that is used for rotary evaporators, vacuum ovens and stationary distillation equipment
- Vacuum pressure controllers are used in several chemical laboratory applications such as rotary evaporators, vacuum ovens and stationary distillation equipment. Of these, rotary evaporators are by far the predominant usage.
- Vacuum pressure controllers maintain present vacuum pressure during these distillation processes at temperatures typically not exceeding 180° C. and for volumes up to about 30 liters of distilled liquid.
- the typical process setup consists of a distillation apparatus, a condenser with a liquid collector, a pressure controller and a vacuum pump.
- a rotary evaporator is disclosed, for example, in U.S. Pat. No. 6,709,025. Chemicals used during distillation require maintaining pressure in the range of several Torr to a few hundred Torr.
- the vacuum pump applies the vacuum to the system through a vacuum pressure controller.
- Prior controllers had different means of controlling the pressure.
- a pressure transducer was supplied to give a measurement of the pressure in the system and a controller controlled a valve to maintain the pressure set by the user.
- the valve most typically an inline proportional or on-off valve, controlled the amount of vacuum applied to the distillation apparatus.
- Other systems would turn the vacuum pump on or off to control the amount of vacuum.
- the invention provides a vacuum pressure controller in which a dry gas, for example air, is bled into the vacuum stream in connection with maintaining the required vacuum pressure in the system.
- a dry gas for example air
- the gas bled into the vacuum stream dilutes the vapor, cools the mixture of vapor and gas admitted to the pump, prevents condensation in the vacuum pump.
- the result is a longer pump-life, longer maintenance intervals, a lower operation cost, and quicker recovery of the pump.
- the diluted vapor is less chemically aggressive on the pump and other parts of the system.
- the lower operating temperature of the vapor diluted with the gas lowers the pump temperature, which increases its life.
- the vapor diluted with air also helps prevent internal condensation in the pump and by always permitting a flow through the pump, it lowers oil contamination in oil-sealed pumps. Since the pump can be run at or near its full speed all the time, the pump will recover quickly to its original vacuum pressure once the bleed valve is shut.
- FIG. 1 is a schematic view of a rotary evaporator system, including a vacuum pressure controller of the invention
- FIG. 2 is an enlarged cross-sectional view of the valve illustrated in FIG. 1 ;
- FIG. 3 is a perspective view of the valve
- FIG. 4 is a sectional view of an alternative embodiment of the rotary evaporator system wherein the vacuum pressure controller and pump are within the same housing.
- the system 10 includes a rotary separator distillation apparatus 12 , a vacuum pump 14 and a vacuum pressure controller 16 of the invention.
- the vacuum pressure controller 16 includes an air bleed valve 18 and a control unit 20 .
- a first vacuum pressure line 22 connects the pump 14 to a manifold 24 of the unit 16 and a second vacuum pressure line 26 connects the manifold 24 to the rotary evaporator 12 .
- a pressure transducer 28 is in communication with the manifold 24 to provide an electrical signal indicative of the vacuum pressure within manifold 24 , which signal is input to control unit 20 by line 30 .
- Control unit 20 includes dial 32 and pressure gauge 34 for a user to dial-in the level of vacuum that the user desires the system to produce.
- Line 36 connects the output of control unit 20 to the control input of valve 18 and control unit 20 controls valve 18 , which may be a proportional valve or an on-off valve.
- Control unit 20 is similar to control units which have been used in prior vacuum pressure controllers that had in-line valves.
- the valve 18 has an intake port 40 into which outside air flows when the valve 18 is opened by the control unit 20 . Air entering the valve 18 through the port 40 flows through the valve 18 into the manifold 24 and there mixes with vapor entering inlet port 29 of the manifold 24 through the line 26 . The mixture of air and vapor then flows through the manifold 24 and out the outlet port 31 of the manifold 24 through the conduit 22 , into the pump 14 , and after flowing through the pump 14 may be discharged by the pump 14 through the outlet of the pump 14 .
- FIG. 4 includes all of the components of FIG. 1 .
- the components of the pump and the vacuum pressure controller are configured so as to be disposed within the same housing as the pump.
- both rotary vacuum pressure systems operate in the same manner.
- 20 a refers to the controller of FIG. 4
- 20 refers to the controller in FIG. 1 .
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Control Of Fluid Pressure (AREA)
Abstract
A vacuum pressure controller for vacuum distillation equipment is controlled to mix a dilution gas with the distillation vapors to control the vacuum pressure to which the distillation equipment is subjected.
Description
- This application claims priority of U.S. provisional application 60/662,157 filed Mar. 16, 2005.
- This invention relates to a vacuum pressure controller of the type that is used for rotary evaporators, vacuum ovens and stationary distillation equipment
- Vacuum pressure controllers are used in several chemical laboratory applications such as rotary evaporators, vacuum ovens and stationary distillation equipment. Of these, rotary evaporators are by far the predominant usage.
- Vacuum pressure controllers maintain present vacuum pressure during these distillation processes at temperatures typically not exceeding 180° C. and for volumes up to about 30 liters of distilled liquid. The typical process setup consists of a distillation apparatus, a condenser with a liquid collector, a pressure controller and a vacuum pump. A rotary evaporator is disclosed, for example, in U.S. Pat. No. 6,709,025. Chemicals used during distillation require maintaining pressure in the range of several Torr to a few hundred Torr.
- In these processes, the vacuum pump applies the vacuum to the system through a vacuum pressure controller. Prior controllers had different means of controlling the pressure. A pressure transducer was supplied to give a measurement of the pressure in the system and a controller controlled a valve to maintain the pressure set by the user. The valve, most typically an inline proportional or on-off valve, controlled the amount of vacuum applied to the distillation apparatus. Other systems would turn the vacuum pump on or off to control the amount of vacuum. These various methods sometimes shortened the pump life, required maintenance, or required time for the vacuum pump to recover from a low vacuum to a high vacuum.
- The invention provides a vacuum pressure controller in which a dry gas, for example air, is bled into the vacuum stream in connection with maintaining the required vacuum pressure in the system. The gas bled into the vacuum stream dilutes the vapor, cools the mixture of vapor and gas admitted to the pump, prevents condensation in the vacuum pump. The result is a longer pump-life, longer maintenance intervals, a lower operation cost, and quicker recovery of the pump.
- Using the invention, the diluted vapor is less chemically aggressive on the pump and other parts of the system. In addition, the lower operating temperature of the vapor diluted with the gas lowers the pump temperature, which increases its life. The vapor diluted with air also helps prevent internal condensation in the pump and by always permitting a flow through the pump, it lowers oil contamination in oil-sealed pumps. Since the pump can be run at or near its full speed all the time, the pump will recover quickly to its original vacuum pressure once the bleed valve is shut.
- These and other features and advantages of the invention will be apparent from the detailed description and drawings.
- The foregoing and other objects and advantages of the invention will appear in the detailed description which follows. In the description, reference is made to the accompanying drawings which illustrate preferred embodiments of the invention.
-
FIG. 1 is a schematic view of a rotary evaporator system, including a vacuum pressure controller of the invention -
FIG. 2 is an enlarged cross-sectional view of the valve illustrated inFIG. 1 ; -
FIG. 3 is a perspective view of the valve; -
FIG. 4 is a sectional view of an alternative embodiment of the rotary evaporator system wherein the vacuum pressure controller and pump are within the same housing. - Referring to
FIG. 1 , thesystem 10 includes a rotaryseparator distillation apparatus 12, avacuum pump 14 and avacuum pressure controller 16 of the invention. Thevacuum pressure controller 16 includes an air bleedvalve 18 and acontrol unit 20. A firstvacuum pressure line 22 connects thepump 14 to amanifold 24 of theunit 16 and a secondvacuum pressure line 26 connects themanifold 24 to therotary evaporator 12. Apressure transducer 28 is in communication with themanifold 24 to provide an electrical signal indicative of the vacuum pressure withinmanifold 24, which signal is input to controlunit 20 byline 30.Control unit 20 includesdial 32 andpressure gauge 34 for a user to dial-in the level of vacuum that the user desires the system to produce.Line 36 connects the output ofcontrol unit 20 to the control input ofvalve 18 andcontrol unit 20controls valve 18, which may be a proportional valve or an on-off valve.Control unit 20 is similar to control units which have been used in prior vacuum pressure controllers that had in-line valves. - The
valve 18 has anintake port 40 into which outside air flows when thevalve 18 is opened by thecontrol unit 20. Air entering thevalve 18 through theport 40 flows through thevalve 18 into themanifold 24 and there mixes with vapor enteringinlet port 29 of themanifold 24 through theline 26. The mixture of air and vapor then flows through themanifold 24 and out theoutlet port 31 of themanifold 24 through theconduit 22, into thepump 14, and after flowing through thepump 14 may be discharged by thepump 14 through the outlet of thepump 14. -
FIG. 4 includes all of the components ofFIG. 1 . The difference between the two embodiments is that the components of the pump and the vacuum pressure controller are configured so as to be disposed within the same housing as the pump. Schematically, however, both rotary vacuum pressure systems operate in the same manner. For clarity those components which are depicted inFIG. 4 which correspond to a like component inFIG. 1 are given the same number asFIG. 1 except the reference numbers inFIG. 4 all have the suffix “a”. Thus, for example, 20 a refers to the controller ofFIG. 4 and 20 refers to the controller inFIG. 1 . - A preferred embodiment of the invention has been described in considerable detail. Many modifications and variations to the preferred embodiment described will be apparent to a person of ordinary skill in the art. Therefore, the invention should not be limited to the embodiment described but should be defined by the claims which follow.
Claims (4)
1. A vacuum pressure controller for a vacuum distillation comprising:
a manifold having an inlet port for receiving distillation vapor, an intake port for receiving a dilution gas, a chamber for mixing the distillation vapor and the dilution gas, and an outlet port through which the mixed distillation vapor and outlet gas are discharged from the manifold;
a valve controlling the admittance of dilution gas to the intake port of the manifold, the valve being responsive to a sensed pressure.
2. The system of claim 1 wherein a pressure transducer is in communication with the manifold.
3. The improvement of claim 2 wherein the sensed pressure that the valve is responsive to is the pressure sensed by the pressure transducer.
4. The system of claim 1 wherein the controller is disposed within a housing wherein the housing also houses at least part of a vacuum pump.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/372,695 US20060210405A1 (en) | 2005-03-16 | 2006-03-10 | Vacuum pressure controller |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US66215705P | 2005-03-16 | 2005-03-16 | |
US11/372,695 US20060210405A1 (en) | 2005-03-16 | 2006-03-10 | Vacuum pressure controller |
Publications (1)
Publication Number | Publication Date |
---|---|
US20060210405A1 true US20060210405A1 (en) | 2006-09-21 |
Family
ID=36934076
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/372,695 Abandoned US20060210405A1 (en) | 2005-03-16 | 2006-03-10 | Vacuum pressure controller |
Country Status (2)
Country | Link |
---|---|
US (1) | US20060210405A1 (en) |
DE (1) | DE102006012032A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110192710A1 (en) * | 2008-10-15 | 2011-08-11 | Ika-Werke Gmbh & Co. Kg | Rotary evaporator |
US20140348717A1 (en) * | 2013-05-24 | 2014-11-27 | Ebara Corporation | Vacuum pump with abatement function |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106474752B (en) * | 2016-12-22 | 2018-10-12 | 河南华瑞高新材料有限公司 | A kind of sealing rotary evaporating device of conveniently regulating and controlling pressure |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4213796A (en) * | 1978-03-01 | 1980-07-22 | Sparkle Wash, Inc. | Mobile cleaning unit |
US4476708A (en) * | 1982-11-12 | 1984-10-16 | Thoratec Laboratories Corporation | Flow controller |
US5340444A (en) * | 1992-02-27 | 1994-08-23 | Peter W. D. Van Der Heijden Laborbedarf | Circulation cooler for vacuum distillation apparatus |
US6123645A (en) * | 1999-06-01 | 2000-09-26 | General Motors Corporation | Neutral idle control mechanism for a torque-transmitting clutch in a power transmission |
US6974115B2 (en) * | 2002-12-11 | 2005-12-13 | Young & Franklin Inc. | Electro-hydrostatic actuator |
US20060169322A1 (en) * | 2003-12-12 | 2006-08-03 | Torkelson John E | Concealed automatic pool vacuum systems |
US7270749B1 (en) * | 2004-08-03 | 2007-09-18 | Intellicool Llc | Pump system |
-
2006
- 2006-03-10 US US11/372,695 patent/US20060210405A1/en not_active Abandoned
- 2006-03-14 DE DE102006012032A patent/DE102006012032A1/en not_active Withdrawn
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4213796A (en) * | 1978-03-01 | 1980-07-22 | Sparkle Wash, Inc. | Mobile cleaning unit |
US4476708A (en) * | 1982-11-12 | 1984-10-16 | Thoratec Laboratories Corporation | Flow controller |
US5340444A (en) * | 1992-02-27 | 1994-08-23 | Peter W. D. Van Der Heijden Laborbedarf | Circulation cooler for vacuum distillation apparatus |
US6123645A (en) * | 1999-06-01 | 2000-09-26 | General Motors Corporation | Neutral idle control mechanism for a torque-transmitting clutch in a power transmission |
US6974115B2 (en) * | 2002-12-11 | 2005-12-13 | Young & Franklin Inc. | Electro-hydrostatic actuator |
US20060169322A1 (en) * | 2003-12-12 | 2006-08-03 | Torkelson John E | Concealed automatic pool vacuum systems |
US7270749B1 (en) * | 2004-08-03 | 2007-09-18 | Intellicool Llc | Pump system |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110192710A1 (en) * | 2008-10-15 | 2011-08-11 | Ika-Werke Gmbh & Co. Kg | Rotary evaporator |
US8894822B2 (en) * | 2008-10-15 | 2014-11-25 | Ika-Werke Gmbh & Co. Kg | Rotary evaporator |
US20140348717A1 (en) * | 2013-05-24 | 2014-11-27 | Ebara Corporation | Vacuum pump with abatement function |
US10143964B2 (en) * | 2013-05-24 | 2018-12-04 | Ebara Corporation | Vacuum pump with abatement function |
Also Published As
Publication number | Publication date |
---|---|
DE102006012032A1 (en) | 2006-09-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8387471B2 (en) | Diluter for exhaust gas sampling and method therefor | |
CN101086221B (en) | Method for supplying an internal combustion engine with conditioned combustion gas, device for carrying out said method | |
EP2775284B1 (en) | Exhaust gas sampling apparatus | |
CN102224405B (en) | Gas sampling device | |
US7189066B2 (en) | Light gas vacuum pumping system | |
US20060210405A1 (en) | Vacuum pressure controller | |
US20190271284A1 (en) | Evaporated fuel treatment device | |
GB2535703B (en) | Gas supply apparatus | |
CN100543290C (en) | Fuel vapor treatment apparatus | |
KR100668015B1 (en) | Oil vapour frequency system | |
JPH10220373A (en) | Control method and device for volumetric flow amount of vacuum pump | |
US20230040776A1 (en) | Virtual sensor for water content in oil circuit | |
KR20170062513A (en) | Pumping system for generating a vacuum and method for pumping by means of this pumping system | |
US20040149007A1 (en) | Sample handling system with solvent washing | |
KR20170063839A (en) | Vacuum-generating pumping system and pumping method using this pumping system | |
CN108387031A (en) | A kind of heat pump system and control method | |
KR20090034304A (en) | System for creating a vacuum in a tanning dryer | |
CN109932490B (en) | Gas pretreatment device with back-pumping function and gas detection device | |
CN210109069U (en) | Gas pretreatment device with mixing instrument and gas detection device | |
WO2021039305A1 (en) | Instrument for elemental analysis | |
US11703419B2 (en) | Condensate discharging system for an exhaust-gas measuring device | |
RU2180871C1 (en) | Device for multistage membrane separation of neon-helium mixture | |
CN207557181U (en) | A kind of cleaning solution transfusion system of ion chromatograph | |
JPH11211631A (en) | Apparatus for diluting sampling exhaust gas | |
JP3689661B2 (en) | Oil / water separator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: THOMAS INDUSTRIES, INC., WISCONSIN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FUKSA, RICHARD C.;KNUDSEN, RENO G.;REEL/FRAME:017699/0191 Effective date: 20050627 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |